
Response to RC1: 
 
Thank you for your comments. Our response to your suggestions and questions are detailed 
point-by-point in the following: 
 

1. Page 4, line 6: It is stated that Raman scattering is ignored. The impact of rotational Raman 
scattering in the O2-A band has been quantified by Vasilkov et al. (2013). Please justify why you 
omit Raman scattering considering their results. Specifically, may Raman scattering significantly 
impact your dynamical scaling method? 
 
The primary reason for ignoring RRS is due to its computational requirement, which is 
significant. RRS is also dependent on the amount of Rayleigh scattering, which has a low cross 
section in the near-infrared. As such, RRS can be ignored for ALH retrievals. 
 
Regarding the effect of RRS on the dynamic scaling method, we performed a synthetic 
experiment wherein spectra were generated with a 3-polynomial approximated RRS, and the 
retrieval forward model ignored RRS. We did this for 195 spectra, generated with randomly 
varying input parameters. The experiment excludes Ring spectrum and a differential ring 
spectrum, for simplicity. 
 
The results are as follows. 
 
The average bias in the retrieved aerosol layer height from the formal (unscaled) approach was 
approximately -7 hPa, whereas the same from the dynamic scaling approach was -11 hPa. The 
standard deviation of these biases were similar. So, ignoring RRS does affect dynamic scaling, 
just not to the degree that we can term significant, especially since including RRS will result in 
computational times doubling, sometimes tripling, the time from runs that ignore RRS. As such, 
ignoring RRS is a logical step. 
 
Amendment to the manuscript: 
 
Replace ‘​To that extent, rotational Raman scattering is also ignored in the forward model.’ 
with ‘Because of the low Rayleigh Scattering cross section in the near-infrared, Rotational 
Raman Scattering can also be ignored.’ 
 

2. Page 9, line 2: Please define LER. 
 
Accepted. 
 
Amendment to the manuscript: 
 
Replace ‘​monthly LER database​’ with ‘monthly database of Lambertian Equivalent Reflectivity 
(LER) values’. 



 
3. Page 9, line 14: Please remove ’seems to’. The formal approach does not ’seems to’ retrieve 

more pixels, it actually does so. 
Accepted. 
 
Amendment to the manuscript: 
 
Replace ‘​The formal approach seems to retrieve …’​ with ‘The formal approach retrieves …’ 
 

4. Page 10, line 13: Please quantify ’majority of the cases’, for example by giving the percentage.  
 
Accepted. In order to comply, we calculated biases for retrievals with the formal approach, and 
compared their absolute value for the same with the dynamic scaling method. We found that, 
out of 2000 experiments, 1727 (or about 86%) of the retrievals had a lowered absolute bias 
value from using the dynamic scaling method. 
 
Amendment to the manuscript: 
 
Replace ‘​However, the method is able to improve both convergence and retrieval biases 
for a majority of the cases.​’ with ‘However, the dynamic scaling method improves 
convergence from 89.3% to 92.3%, and reduces bias for 86.4% of the cases.’ 
 

5. Page 11, lines 22-24: These numbers are provided in Table 4 and need not to be repeated 
here. If you choose to repeat them, include a reference to Table 4.  
 
Accepted. 
 
Amendment to the manuscript: 
 
Replace ‘​The algorithm assumes a cloud fraction of 0.0, and aerosols homogeneously 
distributed over the entire pixel. The a-priori aerosol optical thickness chosen is 0.8 at 
760 nm, the aerosol layer top and bottom pressures are 775.0 hPa and 825.0 hPa, the 
aerosol single scattering albedo is 0.95 and the aerosol phase function is a 
Henyey-Greenstein model with an anisotropy factor of 0.7.​’ with ‘Algorithm settings are 
detailed in Table 3’. 
 

6. Page 11, line 32: Table 3 is first referenced after Table 4. Please rearrange. 
 
Accepted. 
 
Amendment to the manuscript: 
 



Replace referencing of Tables 3 and 4: Table 4, containing algorithm settings, will be referenced 
before Table 3, which contains validation data location and GOME-2 colocation. 
 

7. Page 13, line 5: What is your reason for stating that the ’values are not realistic’? The Moscow 
station may not be representative as the plume is thick and nonhomogeneous (manuscript page 
12, line 14.) Have you compared the retrieved AOT values with MODIS AOT? That might shed 
light on how realistic the retrieved values are.  
 
The retrieved AOT value using the dynamic scaling method over Moscow is 6.60 at 760 nm. 
With the formal approach, the retrieval does not converge. We did not check with the MODIS 
AOT value, and instead relied on the AERONET AOD values, which report AOD values of 
approximately 1.0 at 870 nm and 1.5 at 675 nm (meaning that AOT retrieved at 760 nm must lie 
in this range). 
 
Amendment to the manuscript: 
 
Please check our response to point 8. 
 

8. Page 13, line 6: Please give the retrieved AOT values for the Moscow station pixel.  
 
Accepted. 
 
Amendment to the manuscript: 
 
Replace ‘​These values are not realistic, since aerosol optical thickness retrieved from the 
AErosol RObotic NETwork (AERONET) station in Moscow, which falls within one of the 
GOME-2A pixels, on the same day observed values between 1.0 at 870 nm and 1.5 at 675 
nm between 09:00 UTC and 10:00 UTC.​’​ ​ with ‘These values are not realistic - aerosol optical 
thickness from the AErosol RObotic NETwork (AERONET) station in Moscow on the same day 
observed values between 1.0 at 870 nm and 1.5 at 675 nm between 09:00 UTC and 10:00 
UTC, whereas our retrieval estimates an AOT of 6.60 at 760 nm over Moscow using dynamic 
scaling.’  
 

9. Page 14, line 4: I would replace ’still unrealistic’ with ’still high’, but see also comment above for 
Page 13, line 5.  
 
Accepted. 
 
Amendment to the manuscript: 
 
Replace ‘​... retrieved AOT values are still unrealistic to the scene, the spatial distribution 
is consistent with the biomass burning plume ...​’ with ‘... retrieved AOT values are still high 
to the scene, the spatial distribution is consistent with the biomass burning plume ...’ 



 
10. Page 14, line 18: Please include reference to Table 5, that is, the sentence should end with: ’ 

the 2010 fires is 0.19, see Table 5.’  
 
Accepted. 
 
Amendment to the manuscript: 
 
Replace ‘​ On average, the LER of this scene from the 2017 fires is 0.15 at 760 nm, whereas 
the same for the 2010 fires is 0.19.​’ with ‘ On average, the LER of this scene from the 2017 
fires is 0.15 at 760 nm, whereas the same for the 2010 fires is 0.19, see Table 5.’ 
 

11. Page 15, line 3: Please change ’is to profiles from a’ to ’to profiles from a’.  
 
Accepted. 
 
Amendment to the manuscript: 
 
Replace ‘​... is to profiles from a ground-based ceilometer in De Bilt ...​’ to ‘... to profiles from 
a ground-based ceilometer in De Bilt ...’’. 
 

12. Page 16, line 23: Please change ’demonstrated over real’ to ’demonstrated for real’.  
 
Accepted. 
 
Amendment to the manuscript: 
 
Replace ‘​The dynamic scaling method is also demonstrated over real spectra by using 
GOME-2A and GOME-2B oxygen A band​’ with ‘The dynamic scaling method is also 
demonstrated for real spectra by using GOME-2A and GOME-2B oxygen A band’ 
 

13. Page 16, line 29: Please change ’improves’ to ’increases’.  
 
Accepted. 
 
Amendment to the manuscript: 
 
Replace ‘​The dynamic scaling method, on the other hand, improves the number of 
converged pixels by 60% in comparison to the formal approach​’ with ‘The dynamic scaling 
method, on the other hand, increases the number of converged pixels by 60% in comparison to 
the formal approach’. 
 

14. Page 16, lines 31: Maybe change ’not realistic’ to ’too high’?  



 
Accepted. 
 
Amendment to the manuscript: 
 
Replace ‘​The retrieved aerosol optical thickness is still not realistic, but the spatial ...​’ with 
‘The retrieved aerosol optical thickness is still too high, but the spatial ...’ 
 

15. Page 17, lines 19-22: Your algorithm retrieves AOT and ALH. Here you state that the AOT is not 
necessarily a realistic value, but rather a diagnostic quality measure. If the AOT is of diagnostic 
quality only, how can then the ALH be a realistic value when they both come from the same 
retrieval? The discussion about AOT over these lines is rather unclear and maybe it is better to 
just leave it out.  
 
The question about the AOT being a diagnostic quantity compromising the realism behind ALH 
can be challenged by the fact that the retrieval of ALH depends more on the amount of light 
absorbed by oxygen, whereas the retrieval of AOT depends on the amount of light scattered 
back by aerosols. AOT does affect ALH, no doubt, and your concern regarding our discussion of 
AOT in these lines are well founded. To that extent, we accept to remove discussions of AOT in 
these lines. 
 
Amendment to the manuscript: 
 
Replace ‘​However, the goal of the aerosol layer height retrieval algorithm is to estimate a 
diagnostic aerosol optical thickness rather than a realistic value. In this case, the 
dynamic scaling method improves the retrieved aerosol optical thickness’s 
representativity of the aerosol plume over the 2010 Russian wildfires, and hence it’s 
overall diagnostic quality.​’ with ‘In any case, the dynamic scaling method improves the 
representativity of the retrieved aerosol optical thickness of the MODIS Terra observed smoke 
plume.’ 
 

16. Page 23, Fig. 3, caption: Please include overpass times for the MODIS images.  
 
Accepted. 
 
Amendment to the manuscript: 
 
Replace ‘​(a) MODIS RGB composite on August 8, 2010 of the 2010 Russian wildfires. The 
white line represents an approximation of CALIPSO’s ground track. (b) Portugal wildfire 
plume over Western Europe on October 17, 2017. Blue dots represent 12 ceilometer 
locations.​’ with ‘(a) MODIS RGB composite on 08:50 UTC, August 8, 2010 of the 2010 Russian 
wildfires. The white line represents an approximation of CALIPSO’s ground track. (b) Portugal 



wildfire plume over Western Europe on 11:00 UTC, October 17, 2017. Blue dots represent 12 
ceilometer locations.’ 
 

17. Pages 24 and 27, Figs. 4 and 7: Please change colour scale range in Figs. 4b,d and 7b,d so it 
agrees with the height ranges in Figs. 5b and 5d, respectively. As they are, Figs. 4b,d and 7b,d 
do not show the height structure.  
 
Accepted. 
 
Amendment to the manuscript: 
Will replace the Figure 4 and 7 with images 1 and 2 included in this response. 
 
Image 1 (to replace Figure 4): 
 



 
Image 2 (To replace Figure 7): 
 



 
 
 

18. Page 26, Fig. 6, caption: Please change ’attenated’ to ’attenuated’.  
 
Accepted. 
 
Amendment to the manuscript: 
 
Replace ‘​... ground track (using great circle distance), plotted over attenated backscatter 
…​’ with ‘... ground track (using great circle distance), plotted over attenuated backscatter ...’ 
 



19. Page 28, Fig. 8, caption: The following sentences are repeated twice: ’The red and blue dashed 
line represents retrieved aerosol layer height using the formal approach and the dynamic 
scaling method, respectively. The red and blue shaded boxes represent the aerosol layer from 
the respective retrieval methods.’ 
 
Accepted. 
 
Amendment to the manuscript: 
 
Replace ‘​The red and blue dashed line represents retrieved aerosol layer height using the 
formal approach and the dynamic scaling method, respectively. The red and blue shaded 
boxes represent the aerosol layer from the respective retrieval methods.​’ with ‘The red and 
blue dashed line represents retrieved aerosol layer height using the formal approach and the 
dynamic scaling method, respectively.’ 
 
 



Response to RC2: 
 
Thank you for your comments. Our response to your suggestions and questions are detailed 
point-by-point in the following: 
 

1. The authors tested the algorithm with synthetic experiments with high AOD (1<AOD<5) 
conditions. However the retrieved parameters of ALH are showed with low AOD (<1) 
results in Figure 5c. How much does the improved method increase the accuracy with 
low AOD (<1) case? What is the smallest value of AOD with the proposed method 
compared to formal one? 
 
To clarify, the AOD in the synthetic experiment are values at 550 nm, whereas the retrieved 
AOD in Figure 5c are at 760 nm. Our synthetic experiments have, so far, dealt with the issue of 
a bright surface hindering the accurate estimation of aerosol layer height. So, the real retrievals 
do include some aspects of the synthetic experiments.  
 
If we split the AOD to two different classes, synthetic spectra for AOD <= 2.0 and AOD > 2.0, we 
observe that, in general, the dynamic scaling method improves the accuracy of the retrieved 
aerosol layer height in the presence of a model error in the surface albedo. This improvement is 
much larger for scenes with AOD > 2.0. 
 
The same split, when applied to synthetic experiments with a model error in aerosol layer 
pressure thickness shows that the dynamic scaling method better improves ALH retrieval 
accuracy for scenes containing optically thinner aerosol layers, in comparison to scenes with 
AOT > 2.0. This is because optically thin aerosol layers allow more influence of the surface in 
the ALH retrievals due to more photons interacting with the surface, whereas optically thick 
aerosol layer do not. 
 
These results are not included in a table format in the submitted manuscript. We propose to 
include them in the text as follows. 
 
Amendment to the manuscript: 
 
Add to Page 9 lin 14: ‘... scaling and formal approach are almost identical. Splitting the results to 
$\tau \leq$ 2.0 and $\tau >$ 2.0, it is observed that the dynamic scaling method reduces 
retrieval biases of $z_{\rm aer}$ by 40% relative to the same from the formal approach for high 
aerosol loads, and about 11.5% for low aerosol loads. This is because a scene containing low 
aerosols allow for more interactions between photons and the surface, which results in $z_{\rm 
aer}$ retrievals being biased closer to the surface. The dynamic scaling method ameliorates this 
behaviour by reducing the sensitivity of the retrieval algorithm to these photons.’ 
 
Add to Page 10 line 17: ‘...  if the modification is necessary. A similar split of results for $\tau \leq 
2.0$ and $\tau > 2.0$’ reveals that the dynamic scaling method is almost similar to the formal 



approach for low values of $\tau$, and only results in significant improvements if the scene 
contains sufficient aerosols. Relative to $z_{\rm aer}$ biases from the formal approach, the 
biases from the dynamic scaling are reduced by 53% for $\tau >$ 2.0, and is practically the 
same for $\tau \leq$ 2.0’ 
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Abstract. This paper presents a weighted least squares approach to retrieve aerosol layer height from top-of-atmosphere

reflectance measurements in the oxygen A band (758 nm - 770 nm) over bright surfaces. A property of the measurement error

covariance matrix is discussed, due to which photons traveling from the surface are given a higher preference over photons

that scatter back from the aerosol layer. This is a potential source of biases in the estimation of aerosol properties over land,

which can be mitigated by revisiting the design of the measurement error covariance matrix. The alternative proposed in this5

paper, which we call the dynamic scaling method, introduces a scene-dependent and wavelength-dependent modification in

the measurement signal-to-noise ratio in order to influence this matrix. This method is generally applicable to other retrieval

algorithms using weighted least squares. To test this method, synthetic experiments are done in addition to application to

GOME-2A and GOME-2B measurements of the oxygen A band over the August 2010 Russian wildfires, and the October

2017 Portugal wildfire plume over Western Europe.10

1 Introduction

Algorithms that estimate properties of atmospheric species from satellite measurements of top-of-atmosphere (TOA) radiance

(including spectral signatures of gases) in planetary atmospheres typically employ an inverse method based on least squares.

In the case of retrieving terrestrial properties, this approach requires spectrally resolved measurements of the TOA Earth

radiance, solar irradiance, and a forward model as the minimal base ingredients to retrieve the state vector parameters (which15

are also model parameters). The goal of the least squares approach is to minimize a cost function, which aims to reduce

discrepancies between the forward model and the measurement by iteratively manipulating state vector parameters. Upon

minimization, the iterative scheme converges to a solution that, in principle, best describes the forward model’s representation

of the measurement.

Many atmospheric retrieval algorithms employ a weighted least-squares estimation (WLSE) method modified to include20

a-priori information on the state vector. An example of such an inverse method setup is optimal estimation (OE, Rodgers
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(2000)), which is an attractive method particularly because of its efficacy in providing posteriori error statistics on the retrieved

parameter. The KNMI aerosol layer height (ALH) retrieval algorithm uses an inverse method based on OE, and exploits the

spectral structure of the near-infrared spectrum of the top-of-atmosphere radiance between 758 - 770 nm, where photons

traveling through the Earth’s atmosphere predominantly get absorbed by molecular oxygen. Oxygen is a well-mixed gas and

has a pressure-dependent spectral structure of its absorption lines (Min and Harrison, 2004); the further light in the oxygen5

A band passes through the atmosphere, the more it gets absorbed until it interacts with scattering species (such as clouds

and aerosols) and scatters back to the TOA. It is this feature of the oxygen A band that has made it an attractive wavelength

region for retrieving aerosol information (Gabella et al., 1999; Corradini and Cervino, 2006; Pelletier et al., 2008; Hollstein and

Fischer, 2014; Sanghavi et al., 2012; Frankenberg et al., 2012; Wang et al., 2012; Sanders and de Haan, 2013; Sanders et al.,

2015; Sanders and de Haan, 2016). The algorithm is operational for the TROPOspheric Monitoring Instrument (TROPOMI)10

on board the Sentinel-5 Precursor (S5P) mission (Veefkind et al., 2012), and is also a part of the Sentinel-4 (S4) and Sentinel-5

(S5) missions (Ingmann et al., 2012) under the Copernicus satellite program of the European Union.

Due to the large spectral variability in absorption within the oxygen A band, the measured TOA radiance and the measure-

ment noise have a high dynamic range. The minimization of the propagation of measurement noise to the final retrieval solution

should be a critical component of any retrieval algorithm. In WLSE, this is accomplished by the inverse measurement error15

covariance matrix which ranks the measurement on each detector pixel using the information available on the measurement

noise. Due to the extent of the dynamic range of the measurement noise in the oxygen A band, this ranking matrix becomes

a primary controlling entity; if the measurement noise is very large, the inverse noise variance is very low, which results in a

lower rank to the measured signal from that specific detector pixel.

Since the measured signal is scene dependent, the spectral rank of each detector pixel is also scene dependent. This has spe-20

cial consequences over bright surfaces, where the dynamic range of the measured signal is much larger than over dark surfaces.

Due to this, photons at wavelengths where the oxygen A band has a lower absorption cross section are less absorbed (subse-

quently traveling further into the atmosphere) and have a much larger representation in the WLSE method. A consequence of

this, reported by Nanda et al. (2018), is that the retrieved ALH values are inaccurate for measurements over land.

In order to account for unknown instrument and model errors, Sanders et al. (2015) multiply the measurement error from L1b25

by two for their GOME-2 case studies and by ten in SCIAMACHY case studies (Sanders et al. 2018, manuscript in preparation)

for retrieving ALH over ocean and land. They observe that increasing the measurement noise results in an increase in the

number of retrieval convergences without significantly decreasing the accuracy of the retrieved ALH for the already-converged

solutions. The method utilized by Sanders et al. (2015) does not change the shape of the noise spectrum since it is multiplied

by a constant. This paper investigates a vector-based weighing scheme (we call it the dynamic scaling method, as opposed to30

the formal approach which is unscaled OE), which dynamically varies from scene to scene; such a weighting scheme changes

the shape of the noise spectrum itself. The objective of the dynamic scaling method is to influence the inverse measurement

error covariance matrix in its choice in ranking the instrument’s detector pixels in its spectral dimension in order to maximize

sensitivity to aerosol layer height. The study discussed in this paper is a part of a series of papers discussing the ALH retrieval
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algorithm developed at the KNMI (Sanders and de Haan, 2013; Sanders et al., 2015; Sanders and de Haan, 2016; Nanda et al.,

2018).

The retrieval algorithm is described in section 2, which provides a description of the forward model and the formalism of

OE. The incompatibility of retrieving aerosol properties from oxygen A band measurements with the formal design of the

measurement error covariance matrix are briefly discussed in the same section (section 2), before a full description of the5

proposed method in section 3 and a demonstration in a synthetic environment in section 4 are given. This method is applied

to real data in section 5. The Russian wildfires in August 2010, which were discussed by Nanda et al. (2018), are revisited

to compare the two approaches. The data are derived from the GOME-2A (Global Ozone Monitoring Experiment on board

the MetOp-A platform of the EUropean Organization for the Exploitation of METeorological SATellites, or EUMETSAT)

instrument, and validated with a co-located CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation10

of the National Aeronautics and Space Administration, or NASA) overpass. The dynamic scaling method is further applied

to the Portugal fires plume over Western Europe on the 17th of October, 2017, using data from the GOME-2B instrument,

with validation from the ground-based EUropean METeorological services NETwork (EUMETNET, Alexander et al. (2016))

ceilometer network in the Netherlands and Germany, along with radiosonde measurements of the relative humidity profile and

the back trajectory of the aerosol plumes. This demonstration is followed by the conclusion in section 6.15

2 The ALH retrieval algorithm

The algorithm is comprised of a forward model and an inverse method. The forward model uses a radiative transfer model

described by de Haan et al. (1987) to calculate the top-of-atmosphere (TOA) Earth radiance (I) in the oxygen A band. This is

done by propagating incoming solar irradiance (E0) in the oxygen A band through the Earth’s atmosphere, which is described

by an atmospheric model. Finally, this model is fitted to the measured spectrum to retrieve primary unknowns,
:::
the

:::::::
primary20

:::::::
unknown

:::::
ALH,

:::::
while

::::::
fitting

:::
the Aerosol Optical Thickness (AOT)and ALH. For more details, the reader may refer to Sanders

et al. (2015).

2.1 The forward model

The atmospheric model describes the interaction of photons with various components of the Earth’s atmosphere that either

absorb photons or scatter it in different directions. The oxygen absorption cross-sections are derived from the NASA Jet25

Propulsion Laboratory database, and first-order line mixing and collision induced absorption between O2-O2 and O2-N2 are

defined from Tran et al. (2006) and Tran and Hartmann (2008). The scattering species in the atmosphere include gases and

molecules that follow Rayleigh scattering principles, aerosols, clouds and the surface. At present, the algorithm assumes cloud-

free scenes, since the presence of clouds can result in large biases in the retrieved ALH (Sanders et al., 2015; Sanders and

de Haan, 2016). Aerosols are modeled as a single layer with a fixed thickness of 50 hPa. ALH is defined as the mid pressure of30

the aerosol layer, converted to a height above the ground. The aerosol layer has a constant aerosol extinction coefficient and a

fixed aerosol single scattering albedo (ω). Scattering by aerosols is described by a Henyey-Greenstein phase function (Henyey
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and Greenstein, 1941) with an anisotropy factor g of 0.7. This choice is motivated by the model’s simplicity in describing

scattering, which facilitates faster radiative transfer calculations than a more complex Mie scattering model. Currently, the

surface is modeled as Lambertian.

The radiative transfer calculations are done line-by-line within the wavelength range of 758 nm - 770 nm, which requires a

large computational effort for a single retrieval per iteration. In order to reduce computational time per iteration, polarization is5

ignored. This is a viable step, since the Rayleigh scattering cross section is very low in the near-infrared region. To that extent,

rotational Raman scattering is also ignored in the forward model
:::::::
Because

::
of

:::
the

::::
low

::::::::
Rayleigh

:::::::::
Scattering

::::
cross

:::::::
section

::
in

:::
the

:::::::::::
near-infrared,

:::::::::
Rotational

::::::
Raman

:::::::::
Scattering

:::
can

::::
also

::
be

:::::::
ignored.

The solar irradiance and Earth radiance are convolved with an Instrument Spectral Response Function (ISRF) fISRF(λ−λi)
to simulate a spectrum observed by a satellite instrument. The TOA Reflectance (R) is computed as10

yi =R(λi) =
π

µ0

∫
fISRF(λ−λi)I(λ)dλ∫
fISRF(λ−λi)E0(λ)dλ

(1)

where µ0 is the cosine of the solar zenith angle θ0, and the subscript i is the index of the spectral channel. For a more in-depth

description of the forward model, please refer to Sanders et al. (2015). All synthetic spectra presented in this paper are from

a hypothetical instrument with a Gaussian ISRF and a spectral resolution (FWHM) of 0.11 nm oversampled by a factor 3.

These specifications are very similar to the Sentinel-4 Ultraviolet Visible and Near infrared (UVN) instrument. The sensitivity15

analyses conducted in this paper may also be applicable to instruments with a lower spectral resolution. Further on in this

paper, experiments are conducted with measured spectra from the GOME-2 A and B instruments, which have a lower spectral

resolution than the S4 UVN instrument.

2.2 The formal ALH inverse method

OE is a maximum a-posteriori (MAP) estimator designed to find a solution for unknowns x in the classic inverse problem20

described in Equation 2 as,

y = F (x,b)+ ε, (2)

where y is the vector of measurements (in this case, reflectance in the oxygen A band as a function of spectral channel index),

F (x,b) is the aforementioned forward model with the state vector x and other model parameters b, and ε represents the

measurement noise (at each spectral point). The OE method, being a MAP estimator, requires the knowledge of a priori errors25

in the estimation parameters. These errors are represented by the a priori error covariance matrix Sa and the measurement noise

covariance matrix Sε. Because measurement noise is considered uncorrelated, Sε is diagonal. Sa is also considered diagonal
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since the state vector elements are assumed to be uncorrelated. The inverse method propagates these errors into the a posteriori

error covariance matrix Ŝ following Equation 3,

Ŝ=
(
KTS−1ε K+Sa

−1)−1 , (3)

with K as the Jacobian, or the matrix of partial derivatives of F (x,b) with respect to the state vector parameters x at the

retrieval solution. Since the forward model is non-linear, a Gauss-Newton method is employed to minimize the cost function5

(Equation 4) towards a zero gradient,

χ2 = [y−F (x,b)]TSε
−1[y−F (x,b)] + (x−xa)

TSa
−1(x−xa), (4)

with xa as the a-priori state vector. The update to the state vector xn+1 for iteration n is provided in Equation 5,

xn+1 = xa +(KT
nSε

−1Kn+Sa
−1)−1KT

nSε
−1[y−F (xn,b)+Kn(xn−xa)], (5)

where Kn is the Jacobian at the nth iteration and xn is the state vector at the nth iteration. The retrieval is said to converge10

to a solution when the state vector update is lower than the expected precision. The matrix Sε plays a very important role in

the WLSE framework by, essentially, ranking each spectral point based on the absolute measurement error in order to reduce

the effect of measurement noise in the retrieved parameter. This is done by the Sε
−1 matrix, which assigns a relatively higher

value for spectral points with a lower noise covariance, and vice versa. The spectral points with a higher Sε−1 value essentially

have an overall stronger influence in the WLSE. The design of this WLSE framework makes the retrieval solution intrinsically15

dependent on the quality of the Sε
−1 matrix. This matrix will always rank higher those spectral points that represent photons

less absorbed by oxygen, i.e. those which travel through the atmosphere more easily, as the relative error at these spectral points

is low. Because aerosols are weak scatterers of light, a large fraction of photons pass through the aerosol layer and interact with

the surface before returning to the detector.

A spectrometer’s detector pixel (in the spectral dimension) that contains a higher concentration of oxygen absorption lines20

receives less number of photons, in comparison to spectral points that contain fewer or no absorption lines. As a result of this,

the relative error at these spectral points is larger, resulting in a lower signal-to-noise ratio (SNR). The expression of noise

in the Sε matrix at each spectral point is, hence, dependent on the average absorption line strength within a spectral point.

When the surface becomes brighter (e.g. over land), the number of photons traveling from the surface to the detector increases

heterogeneously, depending on many contributing factors such as oxygen absorption line strength, aerosol optical thickness,25

aerosol layer height, and other atmospheric properties. In principle, however, the increase in signal for detector pixels with low

oxygen absorption cross section is much higher than the same for detector pixels with a high oxygen absorption cross section.

This will be reflected in the Sε matrix, which will (for example) rank measurements in the continuum higher than the same in

the deepest part of the absorption band.
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If the information on ALH is derived from absorption by oxygen, this design of the Sε
−1 matrix does not encourage an

accurate ALH retrieval. From a WLSE standpoint, the consequences of an increase in the number of photons in the TOA

reflectance that travel to the surface can be quite significant, some of which are reported in Figure 7 of Nanda et al. (2018). A

possible avenue of improving the Sε
−1 matrix involves its dynamical manipulation. The manipulation proposed in this paper

has been termed as the dynamic scaling method. The next section elucidates this method, with a comparative analysis against5

the formal inverse method, henceforth called the formal approach, presented further on in this paper.

3 The dynamic scaling method

The dynamic scaling method identifies favorable spectral points for ALH retrieval by first identifying spectral points that are

the least favorable. The noise is increased at these unfavorable points, while keeping the noise at the other points unchanged.

These favorable and unfavorable spectral points are identified using a class of vectors known as modifying vectors (with the10

symbolM, and length equal to the number of spectral points).

To identify the unfavorable spectral points at which the measurement noise is to be modified, a modifying vector MAs/zaer

is proposed as,

MAs/zaer(λi) =
KAs

(λi)

Kzaer(λi)
[hPa], (6)

where KAs(λi) is the derivative of the TOA reflectance with respect to surface reflectance at the ith index of the spectral point15

on the detector, and Kzaer(λi) is the same for zaer. In principle, the ratio of KAs
and Kzaer is used as an identification tool

since our primary retrieval parameter is zaer whose information reduces as As increases. This opposing nature is discussed by

Nanda et al. (2018) (Figure 3 and Figure 4 in their paper), where they show an anti-correlation in the sensitivity of τ and zaer

in the atmospheric path contribution and surface contribution to the TOA reflectance. A large value inMAs/zaer(λi) represents

spectral points in the measurement with more sensitivity to As than to zaer. The motivation for choosing derivatives as the20

means for modification is also partly motivated from the fact that they are scene-dependent parameters, which make each

modification unique to the scene.

Spectral points with a MAs/zaer(λi) higher than a specific threshold value should have a limited representation in the

estimation — these are the unfavorable spectral points. We define this threshold as the modifying threshold (T ), which is the

20th percentile value of MAs/zaer . The threshold value set in our method has been chosen in a way to avoid scaling the deeper25

parts of the R and P branches in the A band. The choice of thresholding remains configurable to the user of this method, based

on their requirements — in our case we have chosen to use a static rule for deciding the value of T , but this could also be made

dynamic. An example of the shape of MAs/zaer is provided in Figure 1 (top row).

The reason for increasing the noise at specific unfavorable spectral points is to increase the value of Sε at these points. With

a higher Sε value, the Sε
−1 value will be lower, and hence that spectral point will have a lower weight in the estimation. In30
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principle, this is equivalent to artificially increasing noise of measurements that contain less sensitivity to aerosol layer height.

To do this, the modified SNR (denoted as SNRM) is defined as,

SNRM(λi) =

SNR(λi), ifMAs/zaer(λi)< T

SNR(λi)/MAs/τ (λi), otherwise
(7)

where MAs/τ (λi) (belonging to the class of modifying vectors) is defined as the ratio between the derivative of the TOA

reflectance with respect to the surface (KAs
(λi)) and the same with respect to aerosol optical thickness (τ ) at 760 nm (Kτ (λi)),5

MAs/τ (λi) =
KAs

(λi)

Kτ (λi)
[-]. (8)

The choice of modifying the SNR based on MAs/τ arises from the fact that the amount of contribution by the aerosol layer

to the TOA reflectance depends on its optical thickness. In such a case, we are interested in how much this contribution fares

against the contribution from the surface. Information on both of these contributions can be inferred from the ratio ofKAs
and

Kτ , which have comparatively similar shapes. If the measurement of a spectral pixel i is more sensitive to As,MAs/τ (λi)10

will be larger, and hence the noise at i will be increased, following Equation 7.

To run a retrieval using the dynamic scaling method, the derivatives of the reflectance with respect to As, zaer and τ at

760 nm are calculated first, followed by the modification of SNR according to Equation 7. The state vector parameters τ and

zaer are then retrieved using spectrum
:::::::
estimated

:::::
using

:
SNRM. Users of this method may choose to scale the measurement

error covariance matrix at each iteration, since the derivatives change at each iteration. Nevertheless, we have chosen to do it15

semi-statically since the measurement error covariance matrix is a static matrix throughout every iteration.

Examples of modifying vectors and SNRM are provided in Figure 1 (bottom row), which shows the robustness of the method

in scaling the SNR for different surfaces. The spectra generated in the figure represents two scenes with identical atmospheric

parameters, solar and satellite geometries, but different As. MAs/zaer , T and MAs/τ for different surfaces are different —

this is important, since over-scaling the SNR can force the retrieval to rank the measurements of photons traveling from the20

upper parts of the atmosphere higher, while ignore the same from the lower parts of the atmosphere. This is why the modifying

vector MAs/τ is chosen as a dynamically scene-dependent parameter (according to Equation 8), such that the scaling is large

when As is large (Figure 1, mid row). In the next section, the dynamic scaling method is demonstrated and compared to the

formal approach (which is the unscaled OE method) for synthetically generated spectra.

4 Sensitivity Analyses25

To demonstrate the dynamic scaling method, synthetic spectra are generated for randomly varying values in zaer, τ , solar-

satellite geometry (θ, θ0 and φ−φ0), and As, while keeping other parameters constant. Noise is not added to the synthetic

spectra. This method of randomly generating model parameters for generating synthetic spectra gives a broad picture of the

7



Figure 1. Top row: Modifying Vector MAs/zaer as a function of wavelength λ. The solar zenith angle is 45◦, the viewing zenith angle

is 20◦ and the relative azimuth angle is 0◦. The aerosol optical thickness (τ ) is 0.5 at 760 nm, over a surface with an albedo of 0.2 (left

column) and 0.3 (right column) at 760 nm. The height of the aerosol layer is 900 hPa with a pressure thickness of 200 hPa. The aerosol single

scattering albedo is 0.95 and the aerosol scattering is described by a Henyey-Greenstein phase function with an asymmetry factor of 0.7.

The red dashed line represents the modification threshold value T , which has been set at the 20th percentile of MAs/zaer in this example.

Middle row: Modifying function MAs/τ , Equation 8 as a function of wavelength. Bottom row: The blue line represents the unscaled SNR

whereas the green line represents the modified SNR according to Equation 7.
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method’s behavior. Table 1 provides a brief overview of the input model parameters chosen for generating these spectra. An

error is introduced in the forward model during retrieval, and the bias in zaer (defined as retrieved - true) is used to assess

retrieval. The a priori zaer and τ are set at 825 hPa and true τ , respectively. While there are many possible sources of errors,

this paper presents two kinds of errors, a) error in the thickness of the aerosol layer, and b) error in the surface albedo database.

A reason for limiting the retrieval experiment scope to these two errors in the atmospheric part of the forward model is due5

to the fact that they are one of the more common contributors to retrieval biases. In real cases, aerosol layers may not be

concentrated in a single layer of 50 hPa thickness, and the true surface albedo may vary significantly (to the order of 10%

relative errors) from a monthly LER database
::::::
database

:::
of

::::::::::
Lambertian

:::::::::
Equivalent

::::::::::
Reflectivity

::::::
(LER)

::::::
values

:
depending on

many parameters. In total, 2000 synthetic spectra are generated for each synthetic experiment and the parameters zaer and τ

are retrieved
:::::::
estimated

:
using both the formal approach and the dynamic scaling method, to be compared side-by-side. The10

results from analyzing biases in retrieved zaer are plotted in Figure 2. Although the dynamic scaling method is specifically

designed for land, retrievals over surfaces with a low As (less than 0.1) are also included.

Table 1. Input parameters for synthetic experiments.

name value/remarks

atmospheric parameters

As 0.01 - 0.4 @ 760 nm (Lambertian)

τ 1.0 - 5.0 @ 550 nm
::
(or,

::::
0.60

:
-
::
3.0

:::
@

:::
760

:::
nm)

:

zaer 600.0 - 900.0 hPa

ω 0.95

g 0.7

Angstrom Exponent (Å) 1.5

temperature-pressure profile mid-latitude summer

instrument parameters

slit function FWHM 0.11 nm

spectral oversampling factor 3

slit function shape Gaussian

solar-satellite geometry parameters

θ (viewing zenith angle) 0◦ - 70◦

θ0 0◦ - 70◦

φ−φ0 (relative azimuth angle) φ = 180◦, φ0 varied between 0◦ - 360◦
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4.1 Error in aerosol layer thickness

The synthetic spectra generated assume an aerosol layer thickness (pthick) of 100 hPa, whereas the retrieval forward model

assumes a 50 hPa thickness. For simplicity, a PDF (denoted as ϕ) of the biases of retrieved zaer is calculated, the peak of which

represents the value of maximum frequency of occurrence, and the full-width at half maximum of which represents the spread.

In comparison with the formal approach (Figure 2a), the peak of ϕ for the dynamic scaling method is closer to 0 hPa and has5

a larger magnitude (Table 2). The retrieval biases for As ≤ 0.1 and above 0.1 are indicative of the robustness of the dynamic

scaling method in its scaling of the SNR (Table 2, pthick bias row). For As ≤ 0.1, the retrieval biases from both dynamic scaling

and formal approach are almost identical. The formal approach seems to retrieve
:::::::
Splitting

:::
the

:::::
results

:::
to

:::
τ ≤

:::
2.0

::::
and

:
τ
::

>
::::
2.0,

:
it
::
is

::::::::
observed

::::
that

:::
the

:::::::
dynamic

::::::
scaling

:::::::
method

:::::::
reduces

:::::::
retrieval

::::::
biases

::
of

::::
zaer ::

by
:::::
40%

::::::
relative

::
to

:::
the

:::::
same

:::::
from

:::
the

::::::
formal

:::::::
approach

:::
for

::::
high

::::::
aerosol

::::::
loads,

:::
and

:::::
about

::::::
11.5%

::
for

::::
low

::::::
aerosol

:::::
loads.

::::
This

::
is
:::::::
because

:
a
:::::
scene

:::::::::
containing

::::
low

:::::::
aerosols

:::::
allow10

::
for

:::::
more

::::::::::
interactions

:::::::
between

:::::::
photons

:::
and

:::
the

:::::::
surface,

:::::
which

::::::
results

::
in

:::::
ALH

::::::::
retrievals

::::
being

::::::
biased

:::::
closer

::
to
:::
the

:::::::
surface.

::::
The

:::::::
dynamic

::::::
scaling

:::::::
method

:::::::::
ameliorates

::::
this

:::::::
behavior

:::
by

::::::::
reducing

::
the

:::::::::
sensitivity

::
of

:::
the

::::::::
retrieval

::::::::
algorithm

::
to

:::::
these

:::::::
photons.

::::
The

:::::
formal

::::::::
approach

::::::::
retrieves 27 more pixels than the dynamic scaling method for As > 0.1. An observation to note is that there

are instances where even the dynamic scaling method can result in large retrieval biases (Figure 2b). Generally however, the

dynamic scaling method is shown to reduce retrieval biases in the presence of model errors in the aerosol layer thickness.15

Table 2. Results of the retrieval accuracy of zaer from sensitivity analyses, split into two classes of As. The number of successful retrievals

are reported in the ‘retrieved’ column. Columns with the heading A are the locations of the peak of ϕ, representing the zaer bias value with

the highest frequency of occurrence. The same with B are the full width at half maximum of ϕ, representing the spread of zaer biases.

Experiment
Formal Approach Dynamic scaling method

As total spectra retrieved A [hPa] B [hPa] Retrieved A [hPa] B [hPa]

pthick error

≤ 0.1 453 453 8.70 22.31 453 8.70 20.04

> 0.1 1547 1473 8.70 48.62 1446 3.34 38.76

2000 1926 8.70 44.18 1899 4.70 35.56

As error

≤ 0.1 451 451 -2.00 17.84 451 -2.00 14.36

> 0.1 1549 1335 -2.00 178.27 1408 -3.34 96.07

2000 1786 -2.00 150.64 1859 -3.34 81.85

4.2 Error in surface albedo database

For generating errors in surface albedo, randomly varying relative errors (with respect to the true surface albedo in the synthetic

spectra) ranging between -10% to 10% were introduced to the retrieval forward model. The results heavily favor the dynamic

scaling method, which shows a significant improvement in retrieval behavior over the formal method. The dynamic scaling

method retrieves 73 more pixels than the formal approach (Table 2, As error row), while also having a much smaller spread20

of retrieval biases around the peak (Figure 2c). For As ≤ 0.1, the dynamic scaling method and the formal approach are almost
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identical, with the dynamic scaling method having a smaller spread. For As > 0.1, however, the dynamic scaling method

improves the spread of the retrieval biases significantly. The mean biases for the dynamic scaling approach are slightly larger

than the same for the formal approach, and the spread of retrieval biases in Figure 2d indicates that the dynamic scaling

method does not necessarily improve retrieval biases for all cases. However, the method is able to improve both convergence

and retrieval biases for a majority
::::::
dynamic

:::::::
scaling

::::::
method

::::::::
improves

:::::::::::
convergence

::::
from

::::::
89.3%

::
to

::::::
92.3%,

:::
and

:::::::
reduces

::::
bias

:::
for5

:::::
86.4%

:
of the cases.

The analysis of retrieval biases from the synthetic sensitivity analyses are very encouraging for the dynamic scaling method.

The method has shown significant improvements for As > 0.1 (at 760 nm) in the presence of two very relevant model errors.

The fact that the dynamic scaling method is almost identical to the formal approach for As ≤ 0.1 reaffirms the design of the

modifying vector MAs/τ , which is intended to modify the SNR only if the modification is necessary.
::
A

::::::
similar

::::
split

::
of

::::::
results10

::
for

::::
τ ≤

:::
2.0

:::
and

::
τ
::
>

:::
2.0

::::::
reveals

:::
that

:::
the

::::::::
dynamic

::::::
scaling

:::::::
method

::
is

:::::
almost

:::::::
similar

::
to

:::
the

::::::
formal

:::::::
approach

:::
for

::::
low

:::::
values

:::
of

::
τ ,

:::
and

::::
only

::::::
results

::
in

:::::::::
significant

::::::::::::
improvements

::
if

:::
the

:::::
scene

:::::::
contains

::::::::
sufficient

::::::::
aerosols.

:::::::
Relative

::
to

::::
zaer :::::

biases
:::::
from

:::
the

::::::
formal

::::::::
approach,

:::
the

:::::
biases

:::::
from

:::
the

:::::::
dynamic

:::::::
scaling

:::
are

:::::::
reduced

::
by

:::::
53%

::
for

::
τ
::
>

::::
2.0,

:::
and

::
is

:::::::::
practically

:::
the

:::::
same

:::
for

:::
τ ≤

::::
2.0.

:
The

success of the dynamic scaling method in a synthetic environment also confirms the fact that the design of the Sε
−1 plays an

important role in the biases of the retrieved zaer. The next section applies the dynamic scaling method to measured spectra15

from GOME-2A and GOME-2B instruments over aerosol plumes from forest fire events in Europe.

5 Application to GOME-2 data

The GOME-2 instrument is a part of an operational mission by the European Organization for the Exploitation of Meteorolog-

ical Satellites (EUMETSAT) to monitor trace gases and aerosols in the atmosphere. It is a spectrometer with an across-track

scanning mirror that projects the TOA Earth radiance and solar irradiance through a prism on a grating to get information in the20

ultraviolet, visible and the near-infrared regions of the electromagnetic spectrum. In the oxygen A band, the spectral sampling

interval is typically about 0.20 nm and the FWHM is 0.50 nm (Munro et al., 2016). The GOME-2 instrument is designed to

have a footprint size of 80 × 40 km2 in the oxygen A band. The instrument also measures the linear polarization of Earth

radiance, which is important for correcting measured signal to calculate reflectance accurately.

In this section, measured spectra from the GOME-2A instrument on-board the Metop-A satellite over Russian wildfires on25

August 8, 2010 (Figure 3a) and the Portuguese fire plume with the GOME-2B instrument on-board the MetOp-B satellite

on October 17, 2017 over Western Europe (Figure 3b) are used. The formal OE method is compared to the dynamic scaling

method by using space-based and ground based validation data. The noise spectrum is derived from the GOME-2 Level 1-b

product, which is a combination of the systematic and random error components of the measurements (EUMETSAT, 2014).

Auxiliary information required for these retrievals are meteorological data, surface albedo, and a-priori values for the optimal30

estimation (Table 3). The meteorological data required are temperature-pressure profiles and the surface pressure, derived

from the ERA-Interim database from Dee et al. (2011). These meteorological parameters are available in regular space (1◦×
1◦ spatial resolution) and time grids, and require interpolation to the satellite pixel’s coordinates and time of record. This
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interpolation is done using nearest neighbor. The surface albedo database is derived from Tilstra et al. (2017) version 2.1,

which has a resolution of 0.25◦× 0.25◦, derived from the GOME-2A instrument. The surface LER is chosen as the median of

all LER database pixels intersecting the GOME-2 instrument pixel, at wavelengths 758 nm and 772 nm with linear interpolation

used for calculating LER values at intermediate wavelengths. The algorithm assumes a cloud fraction of 0.0, and aerosols

homogeneously distributed over the entire pixel. The a-priori aerosol optical thickness chosen is 0.8 at 760 nm, the aerosol5

layer top and bottom pressures are 775.0 hPa and 825.0 hPa, the aerosol single scattering albedo is 0.95 and the aerosol phase

function is a Henyey-Greenstein model with an anisotropy factor of 0.7
::::::::
Algorithm

:::::::
settings

:::
are

:::::::
detailed

::
in

:::::
Table

::
3. The test

cases chosen in this paper are relatively cloud-free, although not fully.

For validation, atmospheric lidar data from satellite and ground-based instruments are chosen. For the 2010 Russian wild-

fires, the lidar attenuated backscatter at 1064 nm from the CALIOP instrument (Cloud-Aerosol LIdar with Orthogonal Polar-10

ization) on board NASA’s CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) mission are used.

These data have a very good representation of the scattering ability of clouds and aerosols in the atmosphere at a vertical

resolution of 60 m and a horizontal resolution of 5 km. For the 2010 Russian wildfires, the CALIPSO overpass is at 10:45

UTC. All GOME-2A pixels co-located withing a 100 km vicinity of a CALIOP profile are considered for validation. For the

October 17, 2017 Portugal fire plume over Western Europe, ground-based ceilometer data are used for validation (Table 4).15

These ceilometers are a part of the ALC (Automated Lidars and Ceilometers) network of the E-PROFILE observation program

in the framework of the EUropean METeorological services NETwork (EUMETNET). The parameter used for validation is

the uncalibrated raw backscatter profile, since the paper focuses on qualitatively assessing the aerosol height retrievals with

the lidar backscatter profiles. Lidar profiles within an hour of the satellite instrument overpass time are averaged into a single

averaged profile, in order to reduce noise. These lidars have a vertical range of approximately 15 m, and record data at a20

very high temporal resolution, nominally every 6 seconds (Alexander et al., 2016). Although CALIOP data is available for the

plume over Western Europe for October 2017, CALIPSO does not have as good a co-location (both spatially and temporally)

in comparison to the ceilometers.

Input data and algorithm setup for retrieving aerosol properties from GOME-2 measurements in the oxygen A band.

parameter source remarks radiance and irradiance GOME-2A/GOME-2B 3 minute granules SNR measured spectrum GOME-2A/GOME-2B25

operational Level-1b product 3 minute granules solar and satellite geometry GOME-2A/GOME-2B Level 1-b data 3 minute

granules surface albedo As Tilstra et al. (2017) GOME-2A LER at 0.25◦ x 0.25◦ grid at 758 nm and 772 nm temperature-pressure

profile ERA-Interim nearest-neighbor interpolated aerosol optical thickness τ state vector element, a-priori = 0.8 aerosol

layer height hmid kmstate vector element, a-priori = 800 hPa aerosol single scattering albedo ω fixed at 0.95 aerosol phase

function P (θ) Henyey-Greenstein model with anisotropy factor g of 0.7 cloud mask none validation (Russian wildfires in30

2010) CALIOP lidar profiles 5 km × 5 km total attenuated backscatter at 1064 nm validation (Portugal fires in 2017)

Alexander et al. (2016) ground-based ceilometer network
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Table 3.
::::
Input

::::
data

:::
and

:::::::
algorithm

::::
setup

:::
for

:::::::
retrieving

::::::
aerosol

::::::::
properties

::::
from

:::::::
GOME-2

:::::::::::
measurements

::
in

::
the

::::::
oxygen

::
A

::::
band.

::::::::
parameter

:::::
source

::::::
remarks

::::::
radiance

:::
and

::::::::
irradiance

:::::::::::::::::
GOME-2A/GOME-2B

:
3
:::::
minute

:::::::
granules

::::
SNR

:::::::
measured

:::::::
spectrum

:::::::::::::::::
GOME-2A/GOME-2B

::::::::::::::
operational

::::::
Level-1b

::::::
product

:

:
3
:::::
minute

:::::::
granules

:::
solar

::::
and

::::::
satellite

:::::::
geometry

:::::::::::::::::
GOME-2A/GOME-2B

::::
Level

:::
1-b

:::
data

: :
3
:::::
minute

:::::::
granules

:::::
surface

:::::
albedo

:::
As ::::::::::::::::::::::

Tilstra et al. (2017) GOME-2A
::::::

LER
:::

at

::::
0.25◦

:
x
:::::
0.25◦

:::
grid

::
at

:::
758

:::
nm

:::
and

:::
772

:::
nm

:::::::::::::::
temperature-pressure

:::::
profile

: :::::::::
ERA-Interim

: ::::::::::::
nearest-neighbor

:::::::::
interpolated

:

:::::
aerosol

::::::
optical

:::::::
thickness

:
τ
: :::

state
:::::
vector

:::::::
element,

::::::
a-priori

:
=
:::
0.8

:::::
aerosol

::::
layer

:::::
height

::::
hmid:[

:::
km]

:::
state

:::::
vector

:::::::
element,

::::::
a-priori

:
=
:::
800

:::
hPa

:

:::::
aerosol

:::::
single

:::::::
scattering

::::::
albedo

:
ω
: ::::

fixed
:
at
::::
0.95

:::::
aerosol

:::::
phase

::::::
function

::::
P (θ)

: ::::::::::::::
Henyey-Greenstein

:::::
model

::::
with

::::::::
anisotropy

::::
factor

::
g

::
of

::
0.7

:

::::
cloud

::::
mask

: :::
none

:

:::::::
validation

:::::::
(Russian

:::::::
wildfires

::
in

::::
2010)

: ::::::
CALIOP

::::
lidar

::::::
profiles

: :
5
:::
km

:
×
::
5
::
km

::::
total

::::::::
attenuated

::::::::
backscatter

::
at

::::
1064

::
nm

:

:::::::
validation

:::::::
(Portugal

::::
fires

::
in

::::
2017)

: :::::::::::::::::
Alexander et al. (2016)

::::::::::
ground-based

::::::::
ceilometer

::::::
network

:

5.1 Russian wildfires on August 8, 2010

The wildfire plumes in and around Moscow on the 8th of August, 2010 are chosen as the test case for the dynamic scaling

method. Anti-cyclonic conditions on this day meant that the region of interest was predominantly cloud-free. This case is the

same as analyzed in Nanda et al. (2018) (but with a smaller pixel selection to only focus on the plumes), with the exception that

the study presented in the current paper uses a more-recent version of the surface LER product from Tilstra et al. (2017) with5

a larger amount of GOME-2A data incorporated into its creation. The inclusion of this more-recent LER database has slightly

improved the results from the formal approach, but not significantly. A MODIS Terra image taken over the region on the same

day (Figure 3a) shows that the plume, although thick, is non-homogeneously distributed in the scene, since the source of fires
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Table 4. Ceilometer stations in Western Europe used for validating the the retrieved zaer from GOME-2B for plumes from the October 17,

2017 Portugal wildfires.

name institute coordinates GOME-2B overpass time

Hoogeveen KNMI 52.74◦ 6.59◦ 09:31:10 UTC

Bonn DWD 50.74◦ 7.19◦ 09:31:51 UTC

Luegde DWD 51.86◦ 9.27◦ 09:31:18 UTC

Putbus DWD 54.36◦ 13.47◦ 09:30:21 UTC

Luebeck DWD 53.81◦ 10.71◦ 09:30:40 UTC

De Bilt KNMI 52.09◦ 5.17◦ 09:31:21 UTC

Barth DWD 54.34◦ 12.71◦ 09:30:25 UTC

Elpersbuettel DWD 54.06◦ 9.01◦ 09:30:41 UTC

Soltau DWD 52.95◦ 9.80◦ 09:30:56 UTC

Aachen DWD 50.79◦ 6.03◦ 09:31:43 UTC

Hamburg DWD 53.65◦ 10.10◦ 09:30:56 UTC

Braunschweig DWD 52.29◦ 10.44◦ 09:31:05 UTC

are very close to the region of interest described in the test case. There are 85 GOME-2A pixels over the primary biomass

burning plume that are considered for retrieving aerosol optical thickness and aerosol layer height. During the iterations, if the

inverse method estimates non-physical state vector values (such as an aerosol layer below the surface and a negative aerosol

optical thickness or a cloud-like optical thickness) twice in a row, the retrieval is stopped and is said to have failed to converge.

The algorithm also puts an upper cap of 12 iterations, beyond which the retrieval is also labeled to have failed to converge.5

On applying the formal ALH retrieval approach, 49 pixels converge and 36 pixels do not converge to a solution (Figure

4 a,b). The retrieved
:::::
fitted aerosol optical thickness values are in excess of 6.0 in many cases — on average, the retrieved

::::
fitted

:
AOT is 5.34 with a standard deviation of 1.87 (Figure 5a, red). These values are not realistic, since aerosol optical

thickness retrieved from
::
too

::::
high

::
- the AErosol RObotic NETwork (AERONET) station in Moscow , which falls within one of

the GOME-2A pixels,
::::::::
observed,

:
on the same dayobserved ,

:
values between 1.0 at 870 nm and 1.5 at 675 nm between 09:0010

UTC and 10:00 UTC
:
,
:::::::
whereas

:::
our

::::::::
retrieval

::::::::
estimates

::
an

:::::
AOT

::
of

::::
6.60

::
at

::::
760

:::
nm

::::
over

::::::::
Moscow

:::::
using

:::::::
dynamic

::::::
scaling. The

distribution of retrieved
:::::
fitted τ appears to be spatially inconsistent with the aerosol plume observed by MODIS Terra (Figure

4, a). The formal approach misses the primary biomass burning aerosol plume. The average retrieved height of the plume

is 0.5 km above the ground, with a standard deviation of 0.15 km (Figure 5b, red histogram). Realistically, one can expect

aerosols this close to the surface, especially if the boundary layer captures much of the pollution. However, aerosol-corrected15

boundary layer height modeled by Péré et al. (2014) for the same day over Moscow shows that the atmospheric boundary layer

is approximately around 1.5-2.0 km altitude. Comparing the retrieval to co-located CALIPSO data in Figure 6 (blue markers),

there are aerosols observed up to 4 km altitude, possibly in a multi-layered structure. Based on the CALIPSO observations and
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the modeled height of the atmospheric boundary layer, the retrieved ALH seems to be biased low in the atmosphere, thus too

close to the surface. These results are summarized in Table 5.

Table 5. Retrieval results from GOME-2 experiments. Columns marked with A, B, C and D are mean retrieved zaer (in km), standard

deviation of retrieved zaer (in km), mean retrieved
:::
fitted

:
τ and standard deviation of the retrieved

:::
fitted

:
τ , respectively. ntotal represents the

total number of pixels in the scene, and nret represents the number of retrieved pixels. As avg represents the average surface albedo of the

scene.

case ntotal As avg
formal approach dynamic scaling method

nret A [km] B [km] C [-] D [-] nret A [km] B [km] C [-] D [-]

2010 Russian wildfires 85 0.19 49 0.5 0.15 5.34 1.87 78 1.37 0.367 4.82 2.04

2017 Portugal wildfires 206 0.15 161 2.66 1.85 2.31 1.69 173 3.35 1.75 2.22 1.83

Applying the dynamic scaling method to the same scenario, we observe an increase in the number of convergences to 78

pixels out of the 85 chosen (60% increase compared to the formal approach), as shown in Figure 4 (c and d). The retrieved

::::
fitted

:
aerosol optical thickness is approximately 4.82, with a standard deviation of 2.04 (Figure 5a, blue histogram). While5

these retrieved
::::
fitted

:
AOT values are still unrealistic

:::
high

:
to the scene, the spatial distribution is consistent with the biomass

burning plume seen by MODIS (Figure 4c). The retrieved aerosol layer height is, on average, 1.37 km, with a standard deviation

of 0.367 km (Figure 5b, blue histogram). Looking at CALIPSO data, this value appears to be more realistic for the biomass

burning plume (Figure 6, black markers), as the aerosol particles are located farther away from the surface.

5.2 Portugal fire plume over Western Europe on October 17, 201710

The October 2017 Portugal wildfires began in the third week of October. On the 16th of October, the hurricane Ophelia made

landfall over Ireland as a mid-latitude cyclone. Due to the cyclonic conditions the forest fire aerosol plumes were pulled from

Portugal into Western Europe along with Saharan desert dust (CAMS, 2017), which was observed the next day (Figure 3b).

The aerosol plume from these fires are different from the aerosol plumes observed with the 2010 Russian wildfires case,

primarily because the region of our interest is farther away from the fires; the plume over Western Europe appears to be more15

homogeneous. The GOME-2B overpass on the 17th October, 2017, is approximately around 09:30 UTC, and the MODIS image

in Figure 3b is approximately around 11:00 UTC. Although some of these GOME-2B pixels may be cloud-contaminated, our

retrieval assumes cloud-free conditions. This assumption can result in large values in retrieved aerosol heights and
::::
fitted optical

thicknesses. 206 GOME-2B pixels are chosen for this study. On average, the LER of this scene from the 2017 fires is 0.15 at

760 nm, whereas the same for the 2010 fires is 0.19
:
,
:::
see

:::::
Table

:
5.20

Out of the 206 pixels, 161 pixels converge to a solution from the formal approach (Figure 7 a, b). The retrieved
::::
fitted τ at 760

nm is on average 2.31, with a standard deviation of 1.69 (Figure 5c, red histogram). Typical retrieved
::::
fitted

:
τ over the plume

seems to be around 3.0, which is too high of a value for this case since it disagrees with AERONET measurements, which

show AOT values approximately between 2.0 and 1.0 at 675 nm and 870 nm over Lille during the GOME-2B overpass time.

The retrieved zaer is, on average, approximately 2.66 km from the ground with a standard deviation of 1.85 km (Figure 5d,25
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red histogram). Many of the pixels that do not converge seem to be cloudy (the bottom corner of the GOME-2B pixels, Figure

7a). The dynamic scaling method increases the number of convergences to 173 pixels (Figure 7 c, d). On average, this method

retrieves an aerosol layer height of 3.35 km, with a standard deviation of 1.75 km (Figure 5d, blue histogram). The average

aerosol optical thickness at 760 nm retrieved
::::
fitted

:
is 2.22 with a standard deviation of 1.83 (Figure 5c, blue histogram).

Comparing the retrieved zaer is to profiles from a ground-based ceilometer in De Bilt, Netherlands (Figure 8a, black profile),5

the first observation is that the dynamic scaling method seems to retrieve a height that is more representative of the top of

the aerosol layer, whereas the formal approach retrieves a more realistic aerosol height that is more-or-less at the centroid of

the elevated layer’s profile. It is, however, important to note that pulses from ceilometers are weak and tend to get attenuated

beyond the bottom of the aerosol layer. Because of this, layers above these can appear as weak backscatterers even though they

may not be. A radiosonde profile of the relative humidity reveals the presence of an atmospheric layer that extends well beyond10

the altitude range from where the lidar backscatter becomes progressively weaker. This profile also shows the presence of a

layer at the 200 - 400 hPa pressure levels, coinciding with a weak attenuated backscattered signal observed by the ceilometer in

the same atmospheric level. A look into back trajectories, calculated using the TRAJKS model described in Stohl et al. (2001),

shows that the pressure levels between 800 hPa to 600 hPa (at De Bilt) likely contains aerosols carried from Portugal to De Bilt

(Figure 8b). The back trajectory of air mass at 250 hPa also passes through this peninsula, but may not contain biomass burning15

aerosols since the layer at this atmospheric level does not mix with the lower level (according to the TRAJKS calculations).

Following this, we have compared the retrieved zaer from both methods to backscatter profiles from other ceilometer stations,

reported in Figure 9. In general, while both the dynamic scaling method and the formal approach retrieve zaer values that

fall within the aerosol plumes, the dynamic scaling method retrieves heights that are slightly higher. This has to do with our

conclusions from Figure 8.20

The LER of a scene tells us which surface is brighter. In this case, the surface in the 2010 Russian fires was brighter

than the same in the 2017 Western Europe case. The values of the modifying vectors MAs/zaer and MAs/τ over the two

different scenes, however, can tell us the influence of the surface on the measurements itself, since these parameters are a direct

comparison of the sensitivity of the measurement to aerosol properties and surface albedo. On average, MAs/zaer and MAs/τ

in the 2010 Russian wildfires case are much larger in comparison to the same for the 2017 Portugal fire plume over Western25

Europe (Figure 10). This suggests that backscatter from the surface for the 2010 Russian wildfires case plays a bigger role

in the measurements observed by the GOME-2 instrument. The dynamic scaling method is, hence, effectively able to apply a

wavelength-dependent scaling of the SNR by relying on scene-dependent parameters. If the modifying vector MAs/τ is very

low, aerosol properties retrieved from the dynamic scaling method will be approximately equal to the same from the formal

approach. This is an example of the robustness of the method — the SNR should only be scaled when there is a need for it to30

be scaled.
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6 Conclusions

Inversion algorithms that retrieve aerosol properties from spectral measurements in the oxygen A band (between 758 nm and

770 nm) can face a lot of trouble over land. This is primarily because of the location of oxygen A band band beyond the

red-edge, a wavelength region with diminishing ability of vegetation to absorb solar radiation as wavelength increases. This

is especially the case when retrieving aerosol layer height using optimal estimation and radiative transfer models, as observed5

from Nanda et al. (2018), Sanders and de Haan (2016), and Sanders et al. (2015).

The optimal estimation framework, an application of the weighted least squares technique, is designed to rank data points

(in this case, spectral points in the measured TOA radiance and solar irradiance) higher when the SNR is higher, in order to

reduce the influence of measurement error in the final retrieved solution. In the oxygen A band, these spectral points coincide

with weak oxygen absorption cross sections, since low absorption equates to a high number of photons that can traverse10

through the atmospheric medium. Over oceans, due to its low albedo the number of photons that travel back from the surface

are few. The signal recorded by satellites from an ocean scene, hence, predominantly arise from scattering and absorption

by atmospheric species (in this case, aerosols). Over land, however, the number of photons that travel back from the surface

increases dramatically. Due to this, the optimal estimation framework ranks spectral points representing photons that have

traveled back from the surface higher than the same from aerosol layers. This is the primary error source when it comes to15

biases in aerosol retrievals from oxygen A band measurements over land.

This paper introduces the dynamic scaling method, which is designed to retrieve aerosol layer height over bright surfaces

from oxygen A band measurements. The core principle of this proposed improvement is the wavelength-dependent modifica-

tion of the measurement error covariance matrix by the subsequent wavelength-dependent modification of the signal-to-noise

ratio of the measured spectrum, in order to reduce its preference towards photons that interact with the surface. The modifica-20

tion uses the scene-dependent Jacobian matrix, which makes it robust. The dynamic scaling method is compared with formal

optimal estimation approach by retrieving aerosol layer height and aerosol optical thickness from synthetically generated spec-

tra with randomly varied model parameters and model errors (that is, the forward models for simulation and retrieval have

different model parameters). The results from the synthetic experiments generally favor the dynamic scaling method, which

shows a significant improvement of in the accuracy of retrieved aerosol layer height in the presence of errors in the assumed25

aerosol geometric thickness and the surface albedo (up to 10% relative errors) in the model.

The dynamic scaling method is also demonstrated over
:::
for real spectra by using GOME-2A and GOME-2B oxygen A band

measurements of two separate wildfire incidences in Europe, one being the 8th of August, 2010 Russian wildfires and the

other being the more-recent 17th of October, 2017 Portugal wildfires. In the case of the 2010 Russian wildfires, the formal

optimal estimation retrieval approach produces few convergences, and misses out the primary biomass burning aerosol plume30

(as observed from a MODIS Terra image). The retrieved
::::
fitted

:
aerosol optical thickness are unrealistically high and spatially

inconsistent with the aerosol plume observed by MODIS Terra. Co-located CALIOP lidar profiles show that the retrieved

aerosol layer height is biased low in the atmosphere, closer to the surface. The dynamic scaling method, on the other hand,

improves
:::::::
increases

:
the number of converged pixels by 60% in comparison to the formal approach. The retrieved

::::
fitted

:
aerosol
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optical thickness is still not realistic
::
too

::::
high, but the spatial distribution of the aerosol optical thickness, as compared to same

observed in the MODIS Terra image, is consistent. The retrieved aerosol layer heights are also more realistic, as they are

positioned close to the centroid of the CALIOP backscatter profile describing aerosols. For the Portugal wildfire plume in

the 17th of October, 2017 over Western Europe, the dynamic scaling method does not increase the number of convergences

significantly. The dynamic scaling method retrieves aerosol layer heights that are only slightly higher, and
::
fits

:
aerosol optical5

thicknesses that
::
at

:::::
values

:
are slightly lower in comparison to the same from the formal approach. The retrieved heights from

both method are compared to lidar profiles from the EUMETNET ACL network of ceilometers. The comparison shows that

both methods retrieved heights that are within the profiles that could be associated with aerosol layers. Analyzing a radiosonde

profile of the relative humidity and calculated back trajectories, it is observed that the ceilometer profiles miss higher aerosol

layers due to attenuation of the signal at lower atmospheric levels. This explains why the retrieved heights from the dynamic10

scaling method are slightly higher than the same from the formal approach.

In general, the dynamic scaling method improves the number of converged pixels. Between the two discussed cases, the

dynamic scaling method provides a better improvement in the 2010 Russian wildfires case. This is primarily because the

method is scene dependent. An important driver that determines the improvement of retrievals is the level to which the surface

influences the TOA reflectance, which is jointly influenced by two parameters — the surface albedo and the aerosol optical15

thickness. The average surface albedo of the scene for the 2010 Russian wildfires case was observed to be brighter than the

same for the 2017 Portugal wildfires case. This is a possible explanation for the differences in the performance of the dynamic

scaling method for the two cases.

The retrieved
::::
fitted

:
aerosol optical thickness is systematically lower for the dynamic scaling method in comparison to the

formal approach. A part of this can be attributed to the reduction of influence of spectral points in the measurement with a20

larger influence from the surface albedo. While this is expected, the method does not necessarily make the retrieved
::::
fitted

aerosol optical thickness more realistic. It may well be the influence of assumptions in aerosol properties such as aerosol single

scattering albedo and the phase function. It could, however, also be that the method does not fully remove the influence of

surface in the measured top-of-atmosphere reflectance signal. However, the goal of the aerosol layer height retrieval algorithm

is to estimate a diagnostic aerosol optical thickness rather than a realistic value. In this
:
In

::::
any case, the dynamic scaling method25

improves the retrieved
::::::::::::
representativity

::
of

:::
the

:::::
fitted

:
aerosol optical thickness ’s representativity of the aerosol plumeover the

2010 Russian wildfires, and hence it’s overall diagnostic quality
::
of

:::
the

:::::::
MODIS

::::
Terra

::::::::
observed

::::::
smoke

:::::
plume.

The dynamic scaling method is designed to modify the signal-to-noise ratio to an extent that is necessary and sufficient in

order to reduce the influence that photons traveling from the surface back to the detector have on the weighted least squares

estimate of aerosol properties. The choice of using the Jacobian to dictate the preference of weight least squares for spectral30

points in the measurement makes the dynamic scaling method a robust, generally-applicable retrieval setup. Results from this

paper are applicable to other algorithms using weighted least squares techniques for retrieving atmospheric properties from

measurements of top-of-atmosphere reflectance in the oxygen A band over bright surfaces.
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Figure 2. Biases in retrieved zaer (in hPa) from synthetic measurements (2000 in total for each experiment) discussed in Section 4. The top

row represents zaer biases in the presence of a model error in the thickness of the aerosol layer. The bottom row represents zaer biases in the

presence of a model error in As. (a), (c) Probability distribution function ϕ of retrieval biases. Blue line represents results from the dynamic

scaling method, and the red line represents the same for the formal approach. (b), (d) 2D density plot showing the distribution of biases

(density ranges from high in red to low in blue). The x axis represents biases from the dynamic scaling method, whereas the y axis represents

biases from the formal approach.
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Figure 3. MODIS Terra images of the two test cases. (a) MODIS RGB composite on
:::::
08:50

::::
UTC,

:
August 8, 2010 of the 2010 Russian

wildfires. The white line represents an approximation of CALIPSO’s ground track. (b) Portugal wildfire plume
:::::::
observed

::
by

::::::
MODIS

:::::
Terra

::
on

::::
11:00

::::
UTC

:
over Western Europe on October 17, 2017. Blue dots represent 12 ceilometer locations.
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Figure 4. Results from processing 85 GOME-2A pixels over Russia on the 8th of August, 2010 using the formal approach and the dynamic

scaling method. Empty GOME-2A pixels with a white border represent non-convergences. (a) Retrieved
::::
Fitted τ at 760 nm from the formal

approach. (b) Retrieved zaer from the formal approach. (c) Retrieved
::::
Fitted

:
τ at 760 nm from the dynamic scaling method. (d) Retrieved

zaer from the dynamic scaling method.
:::
The

:::::::::
background

:::::
image

:::
for

::
all

::::
plots

:
is
::

a
:::::
subset

::
of

::
the

:::::::
MODIS

::::
Terra

:::::
image

:
in
::::::
Figure

::
3a.

25



Figure 5. Histograms of retrieved
:::
fitted

:
aerosol optical thickness (τ , left column) and aerosol layer height (zaer, right column) from GOME-

2A and GOME-2B pixels. Histograms in red are retrievals from the formal approach and the histograms in blue are results from the dynamic

scaling method. (a) Retrieved
::::
Fitted

:
τ from the GOME-2A pixels over the August 8, 2010 wildfires plume over Russian. (b) Retrieved zaer

from the GOME-2A pixels over the August 8, 2010 wildfires plume over Russian. (c) Retrieved
::::
Fitted

:
τ from the GOME-2B pixels over the

October 17, 2017 wildfires plume over Western Europe. (d) Retrieved zaer from the GOME-2B pixels over the October 17, 2017 wildfires

plume over Western Europe. The axes are adjusted for each plot.
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Figure 6. GOME-2A derived aerosol layer heights colocated within 100 km to the CALIPSO ground track (using great circle distance),

plotted over attenated
::::::::
attenuated backscatter (β) of the CALIOP lidar at 1064 nm. The blue and black markers

:
in

:::::
white

::::::
squares represent

converged ALH from the formal approach and the dynamic scaling method, respectively.
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Figure 7. Results from processing 206 GOME-2B pixels over Western Europe using the formal approach and the dynamic scaling method.

Empty GOME-2B pixels with a white border represent non-convergences. (a) Retrieved
::::
Fitted τ at 760 nm from the formal approach. (b)

Retrieved zaer from the formal approach. (c) Retrieved
::::
Fitted

:
τ at 760 nm from the dynamic scaling method. (d) Retrieved zaer from the

dynamic scaling method.
:::
The

:::::::::
background

:::::
image

::
is

:
a
:::::
subset

::
of

:::
the

::::::
MODIS

::::
Terra

:::::
image

::
in

:::::
Figure

::
3b.
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Figure 8. (a) Radiosonde profile of relative humidity (blue), plotted alongside an averaged raw attenuated backscatter profile (black) from

the ceilometer at De Bilt, Netherlands. Both profiles are approximately around 13:00 UTC. The red and blue dashed line represents retrieved

aerosol layer height using the formal approach and the dynamic scaling method, respectively. The red and blue shaded boxes represent the

aerosol layer from the respective retrieval methods. The red and blue dashed line represents retrieved aerosol layer height using the formal

approach and the dynamic scaling method, respectively. The red and blue shaded boxes represent the aerosol layer from the respective

retrieval methods. (b) Back trajectories calculated for 17 October, 2017 at 13:00 UTC with the end point at De Bilt, and the sources going

back to 3 days.
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Figure 9. Validation of the retrieved aerosol layer height over Western Europe from ceilometers located in Netherlands and Germany from the

CEILONET and DWD network. The black lines represent averaged ceilometer profiles of acquisitions 1 hour before and after the GOME-2B

overpass over each location (600 profiles). The profiles are uncalibrated raw attenuated backscatter β as a function of lidar range (in km).

The gray shaded region represents the standard deviation of the profiles used to create the averaged profile. The red and blue dashed line

represents retrieved aerosol layer height using the formal approach and the dynamic scaling method, respectively. The red and blue shaded

boxes represent the aerosol layer from the respective retrieval methods.
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Figure 10. A comparison of the calculated matrices in the dynamic scaling method for all chosen GOME-2 pixels as a function of wavelength

calculated for (a) the 2010 Russian wildfires, and (b) the 2017 Portugal wildfires. The black dotted line is the averaged modifying vector

MAs/zaer (Equation 6) and the blue line is the averaged modifying vector MAs/τ (Equation 8) for all GOME-2 pixels chosen in each

scene. The y-axis on the left is the range of values for MAs/zaer , and the same on the right is for MAs/τ . The red line is the averaged

modifying threshold T , which is set at the 20th percentile of MAs/zaer .
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