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Abstract. We have developed an algorithm that retrieves the microphysical properties of falling snow from multi-frequency

radar observations. This work builds on previous studies that have indicated that three-frequency radars can provide information

on snow density, potentially improving the accuracy of snow parameter estimates. The algorithm is based on a Bayesian

framework, using lookup tables mapping the measurement space to the state space, which allows fast and robust retrieval. In5

the forward model, we calculate the radar reflectivities using recently published snow scattering databases. We demonstrate

the algorithm using multi-frequency airborne radar observations from the OLYMPEX/RADEX field campaign, comparing the

retrieval results to hydrometeor identification using ground-based polarimetric radar, and also to collocated in situ observations

made using another aircraft. Using these data, we examine how the availability of multiple frequencies affects the retrieval

accuracy, and test the sensitivity of the algorithm to the prior assumptions. The results suggest that multi-frequency radars10

are substantially better than single-frequency radars at retrieving snow microphysical properties. Meanwhile, triple-frequency

radars can retrieve wider ranges of snow density than dual-frequency radars, and better locate regions of high-density snow

such as graupel, although these benefits are relatively modest compared to the difference in retrieval performance between

dual- and single-frequency radars.

1 Introduction15

Atmospheric ice formation and growth processes have a major impact on the Earth’s radiative balance and on the hydrological

cycle. Ice clouds and snowfall occur nearly everywhere, as ice processes occur at high altitudes even in areas where freez-

ing temperatures at the surface are rare (Field and Heymsfield, 2015; Mülmenstädt et al., 2015). Ice clouds have also long
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been a challenge for weather and climate models (Waliser et al., 2009). Improving the microphysics schemes, which describe

nucleation of small ice crystals and their transformation into precipitation-sized particles, is also currently an active area of

model development where conceptually new schemes have been recently introduced (Harrington et al., 2013; Morrison and

Milbrandt, 2015).

Observational data is needed to evaluate the representation of ice and snow in models. While direct measurements of ice5

particle properties can be made in situ, such measurements only produce limited samples, and are difficult and expensive to

make, especially when surface observations are not possible and aircraft-based measurements are needed. Remote sensing

instruments are able to sample far larger volumes. Radars, in particular, can make range-resolved measurements and thus map

the vertical structure of the ice cloud–precipitation column. However, the interpretation of radar signatures of ice particles

is subject to uncertainties because the microwave scattering properties of icy hydrometeors depend on their size, shape and10

structure. These are extremely variable, as deposition growth alone results in diverse and often complicated shapes, and further

growth through aggregation and riming adds to the complexity (Pruppacher and Klett, 1997; Lamb and Verlinde, 2011).

Multi-frequency radars have emerged as a potential tool for ice microphysics investigations. It has been recognized for

a while that snowflake size can be constrained with collocated measurements at two different frequencies (Matrosov, 1993,

1998; Hogan et al., 2000; Liao et al., 2005). More recently, several studies have shown, using detailed numerical scattering15

simulations and empirical evidence, that triple-frequency measurements provide information on both the size and density of

icy hydrometeors (Kneifel et al., 2011, 2015; Leinonen et al., 2012a; Kulie et al., 2014; Stein et al., 2015; Leinonen and

Moisseev, 2015; Leinonen and Szyrmer, 2015; Gergely et al., 2017; Yin et al., 2017). The availability of this information has

been expected to enable more accurate quantitative estimation of ice water content and snowfall rate, and to provide a method

to remotely distinguish and characterize icy hydrometeor growth processes.20

Studies on the triple-frequency signatures of snow have, so far, been mostly limited to numerical and theoretical investi-

gations, as well as empirical studies that demonstrated the plausibility of the concept. Only very recently, databases of snow

scattering properties covering a wide range of snow growth processes (e.g. Leinonen and Szyrmer, 2015; Kuo et al., 2016; Lu

et al., 2016) have become available, enabling the development of a versatile radar forward model that can produce the radar sig-

natures of many types of snowflakes. This, together with the expanded availability of collocated triple-frequency measurement25

datasets from field campaigns, has provided the prerequisites for the development of a practical snowfall retrieval algorithm

for triple-frequency radars.

In this paper, we introduce a method for retrieving the microphysical properties of snow from multi-frequency radar observa-

tions. The algorithm is based on a Bayesian framework, and uses radar cross sections from detailed snowflake models that cover

a wide range of sizes and densities. In Sect. 2, we describe the algorithm formulation. Section 3 describes the datasets used30

for demonstrating and evaluating the algorithm, and Sect. 4 describes how the a priori distributions used in the retrieval were

derived. In Sect. 5, we investigate case studies of airborne radar data from the Olympic Mountain Experiment / ACE Radar

Definition Experiment 2015 (OLYMPEX/RADEX’15) coordinated by NASA, and compare the retrieval results to ground-

based polarimetric radar observations. Section 6 describes comparisons to collocated in situ measurements. Section 7 presents

2



statistical analyses on the sensitivity of the algorithm to the number of frequencies available and to the a priori assumptions.

Finally, we discuss the implications of the results and summarize the study in Sect. 8.

2 Algorithm

2.1 Physical basis

The objective of a radar retrieval algorithm for snowfall is to provide the best estimate of the microphysical properties of the5

snowflakes based on the received radar signals. The unattenuated equivalent radar reflectivity factor Ze for a given wavelength

λ is

Ze =
λ4

π5|Kw|2

∞∫
0

σbsc(D)N(D)dD, (1)

where σbsc(D) is the backscattering cross section as a function of the maximum diameter D, N(D) is the particle size distri-

bution, and Kw is the dielectric factor defined as Kw = (n2w−1)/(n2w+2), where nw is the complex refractive index of liquid

water assumed at a reference temperature and frequency.10

The attenuation of the radar signal must be accounted for in radar-only retrieval algorithms. The attenuated reflectivity at

distance r from the radar is given by

Z ′e(r) = Ze(r)exp

−2

r∫
0

∞∫
0

σext(D,r
′)N(D,r′)dDdr′

 , (2)

where σext is the extinction cross section. The resulting reflectivity is usually expressed in logarithmic units of dBZ, defined

by15

Z ′dB = 10log10

Z ′e
Z0
, (3)

where Z0 = 1 mm6 m−3. The attenuated reflectivity can be written as

Z ′dB(r) = 10log10

Ze(r)

Z0
−

r∫
0

AdB(r′)dr′, (4)

where AdB is the two-way specific attenuation, that is, the attenuation in decibels per unit length.

It was shown as early as Hitschfeld and Bordan (1954) that weather radar attenuation correction is subject to mathematical20

instabilities that can lead to small errors multiplying in a positive feedback loop. Namely, overestimation of attenuation in

one radar range bin leads to overcompensation in all subsequent bins away from the radar, causing overestimation of the

precipitation signal, which in turn leads to further overestimation of the attenuation. In multi-frequency radars, the lower-

frequency signals are generally attenuated less. In the case of snowfall, the W-band signal can be significantly attenuated, the

Ka band much less so, and the Ku band is practically unattenuated by the snowflakes. Thus, the Ku-band radar reflectivity can25

be used to correct the Ka- and W-band signals in a stable manner.
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We use a similar technique as Kulie et al. (2014) for attenuation correction: We draw samples from the a priori distribution

(described in Sect. 4), calculate both the Ku-band reflectivity and the specific attenuation at the Ka or W band for each sample,

and fit a function between the reflectivity and the attenuation. We found that a linear function between ZdB and ln AdB fits the

relationship well. We validated this approach by computing attenuation afterwards from the retrieved microphysical values;

the root-mean-square (RMS) difference in the total attenuation, calculated over all bins in the case shown in Sect. 5.2, is only5

0.27 dB, so this approximate approach to attenuation correction seems to work adequately.

Attenuation also results from atmospheric gases and from supercooled liquid water. The gaseous attenuation was calculated

and corrected for with the ITU-R P.676-11 model (ITU, 2016), using radio sounding data for the temperature, pressure and

humidity required by the model. The gaseous attenuation varies spatially since it is dependent on water vapor, but the error

introduced by this is likely small given that the maximum two-way gaseous attenuation in the cases analyzed in this study is10

only 1.1 dB at 94 GHz (W band), and much less at the lower frequencies. On the other hand, supercooled liquid water found

in mixed-phase clouds can cause significant radar attenuation. However, the radar echo of the supercooled water is very weak

because of the small size of the drops, making it practically impossible, using radar signals alone, to detect supercooled water

coexisting with ice. Thus, we do not correct for attenuation caused by supercooled water, while acknowledging its role as a

potential error source.15

In order to manage the dimensionality of the problem, the microphysical properties of the snowflakes must be parameterized.

We utilize two common assumptions for this. First, we assume that the particle size distribution (PSD) follows the exponential

distribution

N(D) =N0 exp(−ΛD), (5)

where N0 and Λ are the intercept and slope parameters, respectively. Although gamma distributions, and other forms that20

introduce additional parameters, are sometimes used, the exponential distribution has been found to describe snowflake size

distributions well (Sekhon and Srivastava, 1970; Heymsfield et al., 2008). We also found it to be a good match to the in situ

airborne size distribution measurements used in this study (see Sect. 6). Therefore, we find it preferable over more complicated

alternatives. Second, we assume that the mass of snowflakes is given as a function of the diameter as

m(D) = αDβ (6)25

as has been commonly done in microphysics literature (e.g Pruppacher and Klett, 1997). In the following section, we explain

how these assumptions are used to compute the radar reflectivities.

2.2 Forward model

The forward model in an inversion algorithm is responsible for calculating the measurements that correspond to a given state

vector — in our case, the radar reflectivity at each wavelength given the microphysical parameters. The simulation of radar30

reflectivity from snowflakes whose diameters are comparable to or larger than the wavelength is known to require calculations

that account for the internal structure of the snowflake (Petty and Huang, 2010; Botta et al., 2011; Tyynelä et al., 2011).
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Recently, such calculations have been used for a wide variety of model snowflakes in order to establish databases of scattering

properties. We chose a combination of two such datasets as the basis of our forward model: The rimed snowflakes of Leinonen

and Szyrmer (2015), and the OpenSSP database of Kuo et al. (2016). The dataset of Leinonen and Szyrmer (2015) covers

a wide range of snowflake densities, but due to the relatively coarse resolution of the volume elements, it mostly contains

moderate- and large-sized snowflakes. The Kuo et al. (2016) dataset was used to augment the set of snowflakes used by the5

forward model at small sizes, D < 1 mm.

While there have been considerable recent advances on the problem of modeling snowflakes produced by different ice

processes and calculating their scattering properties, the abundance of available snowflake models leads to another question:

Which set of snowflakes should be used by the forward model in a particular situation? We use an approach that does not force

us to select any one dataset. Instead, the scattering properties are given as a function of mass and size: σ(D,m), where σ can be10

one of σbsc, σsca or σabs, the latter two being the scattering and absorption cross sections, respectively, with σext = σsca+σabs.

The function σ(D,m) is constructed by organizing all model snowflakes from the combined scattering database into bins by

D and m; we use 128× 128 logarithmically spaced bins to cover the range of diameters and masses found in the dataset. For

each bin, we compute the average of σnorm ≡ σ/mγ , where γ = 2 for the backscattering and scattering cross sections, and

γ = 1 for the absorption cross section. The reason for the normalization by m2 or m is that in the Rayleigh scattering regime15

(D� λ), σbsc and σsca are proportional to m2, and σabs is proportional to m (Bohren and Huffman, 1983). It follows that the

normalized cross sections are roughly constant at the small-particle limit. To smoothen the binned values, the samples used in

the averaging are weighted using a Gaussian function of the distance from the bin center, with a standard deviation of 0.15 for

both lnD and lnm. A continuous function of the form

ln σnorm(ln D, ln m) (7)20

is then formed by interpolation between the bin centers. Not all bins have snowflakes in them; for those we are unable to do

the averaging and instead assign the scattering properties to zero. This means that the limits of the coverage of the snowflake

database in the (D,m) space are effectively assumed to be the limits of the natural variability of snowflakes. While this is not

exactly true, the combined database does cover a wide range of microphysical processes. The assumption that the cross section

goes to zero (as opposed to, for instance, extrapolating it) outside the coverage area also effectively truncates the integrals in25

Eqs. 1 and 2.

With a method to calculate the cross sections as a function of D and m, it is relatively straightforward to compute radar

reflectivities from the microphysical inputs. As can be seen from the previous section, the input parameters for the forward

model are N0, Λ, α and β. We start with a fixed set of 1024 logarithmically spaced integration points that span the interval

[Dmin,Dmax]. The parameters α and β are used to find the corresponding masses using Eq. 6. The cross section for each30

integration point is then found from the lookup table using interpolation. The cross sections are multiplied with the size

distribution determined by N0 and Λ, which allows us to compute the integral in Eq. 1 with fixed-point numerical integration.

5



2.3 Retrieval

A radar retrieval algorithm needs to invert Eqs. 1 and 2 such that an input of Z ′e at one or more wavelengths yields the

properties of N(D) and m(D). The inversion is unavoidably inexact, as the wide variety of snowflake number concentrations,

size distributions and densities leads to a variability too large to constrain with a few radar reflectivities. The retrieval must be

performed in a probabilistic sense, deriving the most likely solution from the possible alternatives, using the prior information5

about snowflake properties as a constraint.

The retrieval problem is commonly stated as finding a state vector x that explains a given measurement vector y. The

formulation of the state vector depends on which variables are chosen for retrieval and which ones are simply assumed. In

our experimentation with different combinations, we found that the most stable solution was to retrieve N0, Λ and α. The

β parameter was fixed at 2.1. While β varies in nature, many experimental and modeling studies (e.g. Mitchell et al., 1990;10

Pruppacher and Klett, 1997; Westbrook et al., 2004; Leinonen and Moisseev, 2015; Delanoë et al., 2014; Erfani and Mitchell,

2017; Moisseev et al., 2017; Mascio et al., 2017; Mascio and Mace, 2017) have found exponents near this value for various

types of snowflakes; we will examine the sensitivity of the results to this assumption in Sect. 7.3. We retrieve the logarithm of

each microphysical parameter because the dynamic ranges of the retrieved values are large, and because using the logarithmic

values makes the forward model more linear; this was examined analytically for the simpler case of cloud water retrieval by15

Leinonen et al. (2016). The state vector then becomes

x =
[
ln N0 ln Λ ln α

]T
. (8)

In our multi-frequency radar retrieval algorithm, the most straightforward way to formulate the measurement vector would

be to use each of the three radar reflectivities. However, earlier studies (e.g. Kneifel et al., 2011; Leinonen and Szyrmer, 2015)

have shown that combinations of dual-wavelength ratios (DWRs), such as simultaneous measurements of Ka/W-band and20

Ku/Ka-band DWRs, contain information about the size and density of the snowflakes. Following this concept, we form the

measurement vector with the Ku-band reflectivity and the Ka/W-band and Ku/Ka-band DWRs. The measurement vector is

then

y =
[
ZdB,Ku DWRKa/W DWRKu/Ka

]T
. (9)

The choice of the Ku-band reflectivity is somewhat arbitrary, as any of the three bands could be used, but the Ku-band does25

benefit from that band being the least attenuated of the three. In studies where we omit one of the radar bands, instead operating

with a dual-frequency radar, y consists of the reflectivity from the lowest-frequency radar and the DWR. For single-frequency

retrievals, y simply contains ZdB at the single band.

The measurement vector must be accompanied by an error estimate, which should include not only the radar instrument

error but also the error due to the forward model assumptions. In our case, the latter includes the errors due to the assumptions30

of an exponential size distribution, a fixed mass–dimensional exponent β, and the orientation distributions assumed in the

scattering databases. The extent of these errors is difficult to quantify, but their effect should be similar on each collocated

radar frequency: For example, the radar cross section will increase with increasing particle size for all frequencies, and thus,
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the errors in radar reflectivity at different frequencies will partially cancel out when computing the DWRs. This suggests that

the DWRs can be assumed to have smaller errors than the absolute value of the reflectivity. Accordingly, we assign 3 dB of

error standard deviation for the absolute value of the radar reflectivity, and 1 dB for each of the DWRs.

In atmospheric remote sensing, the inversion problem is often solved using optimal estimation (OE; Rodgers, 2000). This is a

Bayesian method that assumes that x and y are jointly distributed according to the multivariate normal distribution, and which5

is solved using optimization methods. We found this technique to be problematic for our retrieval, partly due to the limited

and discrete nature of the snowflake scattering database used in the forward model. The optimization in OE often converged

to local minima, especially near the extreme values supported by the snowflake database, introducing sudden changes to the

retrieved values.

Despite the shortcomings of OE, a Bayesian approach was still desirable in order to constrain the retrieved microphysical10

parameters. We found that the retrieval can be performed in a robust way through a global calculation of the expected value of

the state x given a measurement y. This is given by

E[x|y] =

∫
xp(x|y)dx =

1

p(y)

∫
xp(y|x)p(x)dx, (10)

where p(y) is the marginal probability of y, p(y|x) is the conditional probability of a measurement y given a state x, and p(x)

is the a priori probability of x, described in detail in Sect. 4. This approach is slightly different from the common strategy of15

finding the most likely solution given the prior and the measurement: That method aims to find the mode of the conditional

distribution; ours determines the mean.

Using Eq. 10, we can construct a lookup table that maps discrete values of y to the corresponding expected values E[x|y].

Multilinear interpolation is used to estimate E[x|y] for values of y that fall between the discrete values used in the table. The

errors associated with the discretization can be reduced to arbitrarily small by making the intervals between the values finer.20

In the studies presented here, the lookup table for E[x|y] ranged between 0 and 35 dBZ for ZdB,Ku, between −2 and 14 dB

for DWRKa/W, and between −2 and 9 dB for DWRKu/Ka, with 0.25 dB discretization for each dimension. The integral in

Eq. (10) was computed by evaluating the integrand at approximately 10000 discrete points, which were distributed uniformly

across a finite search space spanning (x̄i− 3σi,x̄i + 3σi) along each variable, where x̄i is the prior mean of the ith variable in

x, and σi is its prior standard deviation. Making the discretization finer than this did not seem to change the retrieval results25

significantly in our case, although we encourage those using this approach for other problems to establish the appropriate

discretization for their problem.

Error estimates for the retrieved values can be computed using the same technique. The error covariance matrix of the state

given an observation, Sx|y, can be computed as

Sx|y = E[x⊗x|y]−E[x|y]⊗E[x|y], (11)30

where “⊗” is the outer product. E[x⊗x|y] can be evaluated using a lookup table and interpolation, in the same manner as

explained for E[x|y] above.

The method described above allows the state and its covariance to be retrieved robustly and very quickly, with only a table

lookup and an interpolation needed for each measurement. This comes at the cost of a relatively expensive initialization of the
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tables before the retrieval is started. However, with our parameters for the discretization, this only took about one minute on a

modern laptop computer with no parallelization, so it does not present a major computational burden.

2.4 Derived variables

The results of the retrieval are the parameters of Eqs. 8, but for further analysis of the results, it is useful to derive other

variables that are important for microphysics or more intuitively understood by end users. Perhaps most importantly, the ice5

water content (IWC; denoted by Wice), which expresses the ice mass in a unit volume of air, is given by

Wice =

∞∫
0

m(D)N(D)dD. (12)

Consistently with the calculation of the scattering properties, we set m(D) = 0 in the integral (and other integrals in this

section) where no snowflake samples are available for the (D,m) combination. If this truncation is not used, the assumptions

of Eqs. 5 and 6 give Wice in the simple form10

Wice =N0αΛ−β−1Γ(β+ 1), (13)

where Γ is the gamma function.

When discussing the snowflake size, Λ−1 gives the average diameter for the untruncated exponential size distrubution, but

it is often clearer and more convenient to state the diameter that contributes most to the IWC. This is the mass-weighted mean

diameter15

Dm =

∫∞
0
Dm(D)N(D)dD∫∞

0
m(D)N(D)dD

. (14)

Similarly, the total number concentration of snowflakes may be a more meaningful quantity than N0. This is given simply by

NT =

∞∫
0

N(D)dD. (15)

Also, the density of the snowflakes depends on the diameter, but a bulk density for the snowflake ensemble can be computed

by dividing the IWC by the volume spanned by the enclosing spheres of the snowflakes in a unit volume:20

ρbulk =
Wice∫∞

0
π
6D

3N(D)dD
. (16)

We use this definition for simplicity; a somewhat higher density would be obtained by using the volume of the enclosing

spheroid or ellipsoid in the integral in the denominator, but the shape of this ellipsoid is in general dependent on D and m,

which would complicate the calculation.

The quantities in Eqs. 12–16 are nonlinear functions of the state x, and consequently estimating their errors is not completely25

straightforward. Since our algorithm returns a probability distribution function (PDF) for x, we can obtain statistically valid

error estimates by computing the standard deviation of a quantity over the PDF. This can be estimated quickly with Gauss-

Hermite quadratures; see Appendix A.
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3 Data

The main source of data that we use to demonstrate the triple-frequency retrieval is from the Airborne Third Generation

Precipitation Radar (APR-3; Sadowy et al., 2003) flown on board the NASA DC-8 aircraft during the OLYMPEX/RADEX

experiment, which took place around the Olympic Mountains of Washington State, USA, in late 2015 (Houze et al., 2017).

The RADEX involvement in this field campaign was intended specifically to assess the the capabilities of multi-frequency5

radar observations for satellite remote sensing of precipitation processes. APR-3 acquired simultaneous measurements at three

frequencies: 13.4 GHz (Ku band), 35.6 GHz (Ka band) and 94.9 GHz (W band). APR-3 is a scanning polarimetric cloud-

profiling radar with Doppler capability. With a vertical resolution of 30 m, it provides high-resolution 3D measurements of

clouds and precipitation. OLYMPEX was the first time it was deployed in its triple-frequency configuration.

We investigated the ability of the triple-frequency algorithm to identify snowfall processes qualitatively by comparing the10

results to collocated ground-based dual-polarization radar observations. These observations were made by the NASA S-Band

Dual-Polarimetric Radar (NPOL), which was deployed 2 km from the coast at 47.277◦N, 124.211◦W, 157 m above mean sea

level (MSL). The NPOL scanning strategy interleaved planned position indicator scans (PPIs) with a series of high resolution

range-height indicator (RHI) sector scans to the west over the ocean and to the east over the Quinault River Valley (Houze

et al., 2017). During OLYMPEX, the NASA DC-8 aircraft frequently flew directly along NPOL RHI azimuths, making it15

relatively straightforward to collocate with the nadir-pointing scans from APR-3. We collocated NPOL data to the APR-3

radar coordinates using the Python ARM Radar Toolkit (Helmus and Collis, 2016) by first identifying RHI scans whose time

and direction coincided with the APR-3 overpass, then copying data from the nearest NPOL bin to each APR-3 bin. We used

two variables from NPOL: the radar reflectivity and the hydrometeor identification (HID) product (Dolan and Rutledge, 2009).

The latter uses fuzzy logic to assign the most likely hydrometeor class to each radar bin based on temperature and the radar20

reflectivity and polarimetric parameters. We use this product to provide independent estimates of the type of icy hydrometeors

and compare them to the microphysical properties retrieved by our algorithm.

During the OLYMPEX campaign, the University of North Dakota Citation aircraft often flew in the same area as the NASA

DC-8. Typically, the Citation flew at lower altitudes than the DC-8, and consequently there are many data points where the

Citation measurements are collocated with the APR-3. 16 cases from OLYMPEX were analyzed. The APR-3 gate closest to the25

Citation is found using a k-dimensional-tree search algorithm. The Citation measured the PSD using the 2-Dimensional Stereo

Probe (2D-S; Lawson et al., 2006) in the range 225 µm≤D < 1 mm, and the High Volume Particle Spectrometer (1 mm≤
D ≤ 3.25 cm). To eliminate shattered artifacts created from ice crystals colliding with the probe housing, antishattering tips are

used in conjunction with the University of Illinois-Oklahoma Optical Array Probe Processing Software (Jackson et al., 2014).

In addition to the optical array probes, the Citation also carried a Nevzorov probe (Korolev et al., 1998) to measure bulk total30

water content.

The ground-based observations of snowfall microphysics used to derive the a priori distribution were gathered at the Hyytiälä

Forestry Field Station (61.845◦N, 24.287◦E, 150 m above MSL) of the University of Helsinki, Finland, during the Biogenic

Aerosols-Effects on Clouds and Climate (BAECC) campaign (Petäjä et al., 2016) and the following winter of 2014-–2015.
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The weather conditions during BAECC and the following winter were mostly mild, and most of the snowfall observations

were collected at temperatures above −4◦C. Both aggregation and riming occurred frequently during the measurement period

(Moisseev et al., 2017). The PSDs were measured with a video disdrometer, the Particle Imaging Package (PIP; Newman et al.,

2009), as a function of the disk-equivalent diameter (the diameter of a disk with the projected area of the particle image). The

mean PSD was calculated for every 5-min period. The resolution of the PIP is 0.1 mm, although in practice, the smallest disk-5

equivalent diameter used in the computations was approximately 0.2 mm. The PSD was divided into 120 bins with a bin size

of 0.2 mm; the highest bin is for diameters larger than 26.0 mm. A linear scaling factor between the disk-equivalent diameter

and the maximum diameter was determined by analyzing PIP images of snowflakes from each case, and utilized to give the

PSD as a function of maximum diameter. The mass retrievals were obtained by combining PIP observations with a collocated

precipitation gauge. Based on the particle fall velocity and shape measurements provided by the PIP, the masses of individual10

falling snow particles were estimated with hydrodynamic theory (Mitchell and Heymsfield, 2005; von Lerber et al., 2017). The

mass-dimensional relation in the form of Eq. 6 was determined for every 5 min with mass as a function of maximum diameter

and with a linear regression fit in the log scale.

We also used balloon sounding data to support the analysis of the case studies. These data were derived from publicly

available operational soundings launched daily at 0 UTC and 12 UTC from Quillayute, Washington, near the area where the15

radar measurements took place.

4 A priori assumptions

Bayesian retrievals depend on the availability of a priori data. We based our a priori values on two sources of in situ data: the

Citation dataset from OLYMPEX and the ground-based measurements from BAECC. Both of these datasets can be used to

derive the N0, Λ and α parameters. For both datasets, N0 and Λ can be derived from the binned PSDs. The α parameter can be20

derived by fitting a curve defined by Eq. 6 to the mass as a function of diameter; this is included in the BAECC data, in which

the mass was derived from the snowflake fall velocity (von Lerber et al., 2017). In calculating α from the BAECC dataset, we

fixed β to 2.1, consistent with the assumptions in the retrieval algorithm. For the Citation data, mass is not directly available as

a function of diameter, but Wice is estimated with the Nevrozov probe and thus α can be roughly estimated using Eq. 13.

For the purposes of demonstrating the algorithm, we based the a priori distribution used in this study on a combination of25

the two datasets, taking an equal number of samples from each for a total N ≈ 6000. We recognize that this is an imperfect

solution, and a further analysis using these and other datasets should be conducted to establish a priori distributions suitable for

remote sensing retrievals of snowfall under various atmospheric conditions. Doing this rigorously will likely require an entire

study of its own.

The analysis resulted in means of ln N0 = 15.4, ln Λ = 7.50 and ln α=−2.30, and standard deviations of Std[ln N0] =30

1.67, Std[ln Λ] = 0.52 and Std[ln α] = 0.69. Because the two datasets cannot be expected to cover the entire natural dis-

tribution of these parameters, basing the a priori distribution on them would likely result in an overly restrictive prior. To

compensate for this, we increase the standard deviations given above by a factor of 1.5, acknowledging that this choice is

10



somewhat arbitrary. The correlation matrix of x derived from the datasets is

Ca =


1 0.46 −0.07

0.46 1 0.54

−0.07 0.54 1

 , (17)

from which the a priori covariance matrix can be computed as

Sa = DCaD (18)

where D is a diagonal matrix with the standard deviations of x on the diagonal. The resulting distribution, used as the prior in5

all retrievals in this study, is then given by the mean xa and covariance Sa:

xa =
[
15.4 7.50 −2.30

]T
(19)

Sa =


6.28 0.90 −0.18

0.90 0.61 0.44

−0.18 0.44 1.07

 . (20)

In Sect. 7.2 we examine the sensitivity of the results to the choice of prior.

We assume that the a priori distribution is multivariate normal. Given the limited scope of the datasets used to derive the prior10

distribution in this study, we cannot rigorously test this assumption, but the choice is motivated by probabilistic arguments that

the normal distribution is the most natural choice for an unknown distribution Jaynes (2003). Global distributions for micro-

physical quantities have also often been found to be lognormal (e.g. Kedem and Chiu, 1987; Leinonen et al., 2012b), meaning

that the distributions of their logarithms (we use the logarithmic values in the state vector) are normal. Thus a multivariate

normal distribution is a reasonable assumption for this study, although larger datasets should be analyzed in this manner in15

order to derive appropriate global priors.

5 Case studies and comparison to NPOL

5.1 December 3, 2015

The first of the two cases that we examined together with NPOL data took place on December 3, 2015. The APR-3 flight leg

started at 16:17:23 UTC over the Olympic Mountains, from where the DC-8 flew towards the coast, passing directly over the20

NPOL site. A map of the flight path is shown in Fig. 1a. The case consisted primarily of prefrontal stratiform precipitation; see

Houze et al. (2015a) for details. We only used data from regions above the melting layer, which we identified just below 3 km

altitude based on the the radar bright band; this also agrees with the 0◦C isotherm of 2.85 km in the 12 UTC balloon sounding

from nearby Quillayute, Washington.

The retrievals from the case are shown in Fig. 2a–e. On the left side of Figs. 2a–c, an orange box delineates a column where25

Dm increases significantly with decreasing altitude, accompanied by a rapid decrease in ρbulk. Together, these changes point

11
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Figure 1. The paths of the flights used in Sects. 5.1 (panel a) and 5.2 (panel b). The darker sections of the paths show the part of the flight data

used in this study (the rest of the measurements were discarded for the lack of useful data). The timestamps (UTC) denote the beginning and

end of each flight, and the beginning and end of the data that were used. The gray background shows the outline of the Olympic Peninsula,

with Vancouver Island to the north.

to the onset of aggregation, which results in rapid growth of snowflakes accompanied by a decrease in density as single ice

crystals stick together to form aggregates, whose density decreases as a function of size. The transition can also be seen in

Fig. 2e, where orange dots denote the data points from the orange box in Figs. 2a–c.

The transition from ice crystals to aggregates is also detected at around 5 km altitude, 20–45 km on the distance scale,

by both the triple-frequency retrieval, which shows a sudden increase in Dm (Fig. 2a), and by NPOL, which identifies a5

change in the hydrometeor type at roughly the same altitude. According to NPOL HID, the hydrometeors above this altitude

consist mostly of a mixture of ice crystals and aggregates, while the hydrometeors below it are identified as aggregates. While

the altitude where aggregation initiates appears to be similar between NPOL and our retrieval, small discrepancies are to be

expected because the APR-3 observations are not perfectly simultaneous with the NPOL scan. The time difference ranges from

4 min at the beginning of the observations shown in Fig. 2 to 14 min at the end. Further evidence for aggregation is provided10

by sounding data, which indicate a temperature between −15 and −12◦C in the layer at 5.0–5.5 km altitude, a common

temperature range for the onset of aggregation driven by dendritic growth of ice crystals at these temperatures (Bailey and

Hallett, 2009; Lamb and Verlinde, 2011).

Another interesting feature found in this case is denoted by the red boxes in Figs. 2a–c. In this region, the retrieved micro-

physical variables indicate moderate-sized snowflakes with relatively high ρ, which suggests that rimed snowflakes occur in15
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Figure 2. Data from the December 3, 2015, case, described in Sect. 5.1. (a) The mass-weighted mean diameter Dm (Eq. 14). (b) The bulk

density ρbulk (Eq. 16). (c) The ice water content (Eq. 12). (d) The NPOL hydrometeor identification. (e) A scatter plot ofDm and ρbulk from

panels a and b, with the red and orange points identifying the data inside the boxes of corresponding colors shown on those panels. (f) The

radar reflectivity observed by NPOL.
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the area. The data points located within this box are shown in red in the scatter plot of Fig. 2e, which confirms these attributes.

It is interesting to note that the red region and the bottom of the orange region have similar ice water contents, but the sizes and

densities are very different. NPOL also detects some graupel in this region, which suggests that the three-frequency retrieval is

detecting snowflake riming and graupel formation. In the following case, we further explore this capability.

5.2 December 4, 20155

On December 4, 2015, precipitation originated mostly from postfrontal convection following the passage of the front on the

previous day (Houze et al., 2015b). The DC-8 followed a similar flight path as in the previous case (Fig. 1b); APR-3 data

collection for the dataset shown here started at 14:53:21 UTC. We collocated two NPOL RHIs to APR-3 coordinates, one

pointing toward land and the other toward the ocean. For the ocean-pointing scan, we selected an RHI that is offset by 4◦ from

the optimal collocation with APR-3 in order to better capture a convective plume that was observed by APR-3 but had moved10

before being scanned by NPOL 2 minutes later. This shifted the location of the scan by only 500 m at the distance of the plume.

The sounding data and the radar bright band both placed the melting level at around 1.3 km, lower than on the previous day.

We again only used data points located above the melting layer.

The large convective plume found by APR-3 in this case is marked with a red box in Figs. 3a–c. As with Fig. 2, the data

points from this box are denoted with red dots in Fig. 3e. In this case, the data points from the plume are particularly distinct15

from the rest of the joint distribution of Dm and ρbulk, indicating moderately large particles with high density, characteristic

of graupel. NPOL also indicates a similar-sized plume of graupel in this region. The time separation of the scans in the region

to the right of NPOL on Fig. 3 is only 2 min, so it seems likely that the same plume was captured by both radars. The spatial

shift between the plumes observed by APR-3 and NPOL appears to be 1–2 km; this is consistent with the 13 ms−1 wind speed

measured by the sounding at 3 km altitude, which translates to a 1.5 km distance over 2 min.20

On the left side of NPOL, another graupel-containing region is denoted by an orange box. This region is also accompanied

by an NPOL detection of graupel in the vicinity. The time separation in this region was longer, between 4 and 8 min, so the

plume had more time to move away from the vertical cross section before being observed by APR-3. Regardless, the two radars

agree on location of the plume to within 2 km and on its height to within 0.5 km.

Our retrieval and the NPOL HID also seem to be in reasonably good agreement regarding the transition from ice crystals25

to aggregates. Both indicate the presence of ice crystals (i.e. small, relatively dense hydrometeors) at higher altitudes and

aggregates at lower altitudes (below approximately 4 km), with the transition point varying considerably within this case. Both

products also identify the presence of smaller particles at 2–3 km altitude in the region around 20 km on the horizontal scale.

6 Comparison to in situ data

As described in Sect. 3, the UND Citation aircraft gathered particle probe measurements simultaneously with the NASA DC-830

radar observations during OLYMPEX. This resulted in a set of collocated radar and in situ data. The retrieval algorithm was

run using the collocated and attenuation-corrected radar reflectivity values. The retrieved microphysical quantities were then
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Figure 3. As Fig. 2, except for the December 4, 2015, case described in Sect. 5.2. The location of NPOL on the flight track is marked by the

arrow on panels a–d and f.

compared to those measured in situ. The availability of variables from the in situ dataset is somewhat limited: While the number

and projected sizes of the ice particles can be measured quite accurately using the imaging probes, the two-dimensional nature

of the imager limits the accuracy of the maximum dimension as this must be estimated from a projection of the particle. The

snowflake masses are also difficult to determine. The bulk ice water content can be estimated with the Nevzorov probe, but its

inlet is only 8 mm in diameter, which causes it to underestimate IWC when the maximum particle size exceeds approximately5

4 mm (Korolev et al., 2013). Unfortunately, the cases with large snowflakes are where one would expect the largest benefits

from multi-frequency methods because of the stronger resonance effects involved in scattering. Thus, this limitation of the

Nevzorov probe somewhat diminishes its value in validating the retrievals. While the Citation measurements do not give the

masses of individual particles, α can be estimated from Eq. 13 if the IWC given by the Nevzorov probe is assumed to be

correct.10
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To filter out outliers and poor collocations, we applied two filters. First, to ensure an acceptably accurate collocation between

the two measurements, the time separation between them was required to be less than 2 min. Second, for adequate sampling,

the total number concentration NT was required to be more than 103 m−3. These criteria successfully removed most outliers

that we found in the unfiltered comparisons.

The comparisons of the retrievals against the in situ values are shown on the top row of Fig. 4 (the same analysis run with5

reduced frequencies, shown on the other rows of Fig. 4, is discussed in Sect. 7.1). The figures show that retrievals of the slope

parameter Λ compare considerably better to the in situ values than do the retrievals of the intercept parameter N0, which in

turn are better than those of the mass–dimensional factor α. The Λ parameters agree well throughout the range of values (for

ln Λ, root-mean-square error is RMSE[ln Λ] = 0.41, bias is bias[ln Λ] = 0.023 and correlation is Cor[ln Λ] = 0.70), showing

that particle sizing can be done reliably using the multi-frequency retrieval.N0 is also quite well matched (Cor[lnN0] = 0.56),10

but the relative errors are much larger than for Λ (RMSE[lnN0] = 3.01, bias[lnN0] =−0.73). The α parameters are poorly

matched between the two datasets, although the retrieval produces some variation in this parameter. In any case, one should

be skeptical of the α comparison as the in situ values have been derived from the Nevzorov probe data, which suffers from

the above-mentioned problems, and using Eq. 13, which is an approximation. Furthermore, fixing the β parameter may further

exacerbate the problem with estimating α.15

The retrieved ice water contents Wice correspond quite well to the in situ values (RMSE[lnWice] = 0.72, bias[lnWice] =

0.30, Cor[lnWice] = 0.67). Interestingly, the ice water content, which is a function of N0 and α, appears to be better retrieved

than either of those parameters. Opposite errors in N0 and α, seen in their respective scatter plots, suggest that their retrieval

errors compensate for each other in a way that allows Wice to be constrained better than either N0 or α alone. This is also

supported by the correlation matrix of the retrieval errors, where the error correlation between ln N0 and ln α is −0.30 on20

average. The red dots in Fig. 4 correspond to larger ice particles, where the Nevzorov probe might be prone to underestimation.

However, there does not appear to be a significant difference in Wice between the small and large particles. On the other hand,

the large particles stand out in the α scatter plot, where they are clearly the worst match between the in situ and retrieved

values.

7 Sensitivity analysis25

7.1 Sensitivity to the number of frequencies

In the assessment of a multi-frequency algorithm, one interesting question is: What are the benefits of introducing additional

frequencies? To evaluate this, we re-ran the analysis of Sect. 6 with subsets of the frequencies used in the full analysis. We

examined all the possible combinations of available bands, always using the lowest frequency for the absolute reflectivity,

combined with the DWRs that were available (one DWR for dual-frequency retrievals, and 2 DWRs for the triple-frequency30

retrieval).

The scatter plots of the in situ and retrieved microphysical parameters are shown in Fig. 4. These plots suggest that the results

of the triple-frequency retrieval are similar to those of the dual-frequency retrievals. On the other hand, the multi-frequency
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Figure 4. Scatter plots of in situ measured (horizontal axis) and retrieved (vertical axis) microphysical values from the collocated

Citation/APR-3 dataset. The columns correspond to different microphysical parameters: from left to right, the intercept parameter N0;

the slope parameter Λ; the mass–dimensional prefactor α; and the ice water content Wice. The rows correspond to different combinations of

radar frequencies and DWRs used to run the retrieval, as shown to the left of each row. The color denotes the size of the snowflakes: Blue

dots correspond to small particles (largest 25% of Λ), orange to medium-sized particles, and red to large particles (smallest 25% of Λ). On

each plot, the black line is the 1 : 1 line. Note the logarithmic scales on the axes.
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retrievals clearly outperform single-frequency retrievals. The triple- and dual-frequency scatter plots are visually similar for all

two- and three-frequency combinations for Λ, and to a lesser extent N0. The dual-frequency retrieval using the Ka/W bands

seems to be limited in its ability to determine the size of large particles (small Λ), presumably because the dual-frequency ratio

saturates at large sizes, while the Ku/Ka-band retrieval suffers from a similar problem with small particles. The Ku/W-band

retrieval and the triple-frequency retrieval do not suffer from this problem. Meanwhile, the single-frequency retrievals all have5

poor sensitivity toN0. Ku- and Ka-band single-frequency retrievals have some sensitivity to Λ for small particles, while the W-

band retrieval also cannot discern this parameter particularly well. None of the retrievals perform adequately with α, although

the multi-frequency retrievals, especially the triple-frequency retrieval, permit considerably more variation in the values of that

parameter: α is almost constant with the single-frequency retrievals, while its relative standard deviation is about 60% in the

triple-frequency results, indicating that the retrieval algorithm is confident enough in the signal to estimate α as something10

other than the a priori mean. The results for α should be interpreted skeptically because of the issues with the derivation of

α, as explained in Sect. 6. The single-frequency retrievals appear to constrain Wice much better than they constrain any of the

individual microphysical parameters.

Another way to evaluate the sensitivity to the number of frequencies is to examine the a posteriori errors reported by

the algorithm itself. These errors, derived from the December 4, 2015, case, are shown in Fig. 5 for the different frequency15

combinations. According to the error estimate from the algorithm, the three-frequency retrieval seems to yield a modest but

fairly consistent improvement over the dual-frequency results. These, like with the in situ data comparison, are clearly better

than the single-frequency results for all parameters, although the differences for α, Wice and ρbulk are less pronounced.

The errors in the single-frequency retrievals are all similar; the W-band seems to have somewhat smaller errors for Wice

and N0, while the Ku-band is slightly better with the particle size. Notably, the a posteriori errors for the single-frequency20

retrievals are not much smaller than the a priori errors of Stda[ln N0] = 2.45, Stda[ln Λ] = 0.83 and Stda[ln α] = 1.13,

which emphasizes the poor information content in the single-frequency retrievals. Regardless, with Wice the single-frequency

retrievals perform nearly as well as the multi-frequency ones, consistent with what was shown in the comparison to in situ

values. None of the dual-frequency options is significantly better than the others, either, although the Ku/Ka-band configuration

underperforms the Ka/W-band and Ku/W-band configurations in retrievals of N0 and NT , and to a lesser extent Wice. The25

Ka/W- and Ku/W-band configurations are nearly equally good.

We have additionally created plots of the microphysical parameters shown in Fig. 3 using each of the frequency combinations

found in Fig. 5. Due to the large number of plots resulting from this analysis, these plots are not shown here, but can be found

in Figs. S1–S21 of the supplement accompanying this article. A notable feature of these plots is the higher level of detail and

wider range of variation found in the triple-frequency plots of Dm and especially ρbulk compared to the dual-frequency plots.30

The Ka/W band dual-frequency retrieval appears to capture the plume found by the triple-frequency approach, albeit with a

more subdued signal; the other two dual-frequency configurations miss the plume altogether. Consistently with the results of

other comparisons shown in this section, the dual-frequency plots capture more detail than the single-frequency plots. This is

especially striking for the plots of ρbulk, where the single-frequency retrievals appear to always give nearly the same density. In
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Figure 5. The average posterior retrieval errors of the logarithms of microphysical variables with different combinations of radar frequencies.

The data from the December 4, 2015, case (Sect. 5.2) are used in this figure.

contrast toDm and ρbulk,Wice has only small differences, and similar levels of detail, between the single- and multi-frequency

retrievals. This is again similar to the findings in Fig. 4.

7.2 Sensitivity to prior assumptions

In order to examine the sensitivity of the results of the retrieval algorithm to the prior assumptions, we ran the case of December

4, 2015, with shifted prior means. We changed the mean of each variable in the state vector x, one at a time, by ±1 standard5

deviation of that variable. The results are shown in Fig. 6. The results are consistent with the retrievals in the sense that a shift

in the prior of a variable causes a smaller shift of the same sign in the a posteriori value of that variable.

The effects on other variables from adjusting the prior of one variable are not straightforward to interpret. These are con-

nected in a complicated way due to the significant a priori correlations between the different variables, as well as the necessity

of explaining the observed reflectivities with other parameters when one of them is shifted. The dependencies are clearly not10

linear. The shifts in the prior also interact with the limits of the scattering database, which further complicates the interpreta-

tion. The ice water content is the most sensitive to the prior of ln N0. The results are the least sensitive to the prior assumption

of ln Λ, indicating that ln Λ is very well constrained by the observations. Changes to the priors of either ln N0 or lnα induce

considerably larger changes in the results. Thus, the triple-frequency algorithm is clearly still somewhat dependent on the a
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Figure 6. The root-mean-square changes in the microphysical parameters in response to changes in the prior. The change in the prior is

indicated on the left side of each row. The data are from the December 4, 2015, case (Sect. 5.2).

priori assumptions, although the changes in the posterior values are much smaller than the corresponding changes in the prior,

showing that the radar signal constrains them quite effectively.

In Figs. S22–S28 of the supplement, we repeat this analysis with the reduced frequencies. These clearly show the increasing

dependence on the prior assumptions with fewer available frequencies. Again, the difference between triple- and dual-frequency

is fairly modest, while the single-frequency retrievals shift much more in response to changes in the prior.5

7.3 Sensitivity to mass–dimensional exponent

The most significant fixed parameter in the retrieval is the exponent β of the mass–dimensional relationship (Eq. 6). Similar

to Sects. 7.2, we carried out an analysis of the sensitivity of the retrieval results to the choice of β. We used the value usually

adopted in this paper, β = 2.1, as the reference and compared the results obtained with β = 1.9, β = 2.3 and β = 2.5 to the

reference retrieval. The values were chosen based on exponents found in the literature for sincle crystals, aggregate snowflakes10

and rimed particles (e.g. Mitchell et al., 1990, their Tables 1 and 2); higher exponents such as those close to 3.0 often found

for graupel (Locatelli and Hobbs, 1974; Heymsfield and Kajikawa, 1987) were not tested because the distribution of particles

in the scattering databases does not support such high exponents well. The results are shown in Fig. 7. This figure is similar to

Fig. 6, but we have omitted the changes in the mass–dimensional prefactor α because this parameter does not have a physical

meaning independent of β.15

The changes in the retrieval results for different values of β exhibit similar patterns as those resulting from the change in

prior values: The parameters corresponding to number concentration (N0 and NT ) and density (ρbulk) are the most sensitive
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Figure 7. The root-mean-square changes in the microphysical parameters in response to changes in the mass–dimensional exponent β. The

standard assumption of this paper, β = 2.1, is used as the baseline. The value of β is indicated on the left side of each row. The analysis is

based on the December 4, 2015, case (Sect. 5.2).

to the assumptions. Meanwhile, parameters related to particles size (Λ and Dm) and, to a lesser extent, the ice water content

Wice, are less affected by changes in β. The changes in retrieved parameters with changing β can be substantial, suggesting

that a good estimate of β is important for quantitatively correct retrievals. On the other hand, the changes are predictable and

reasonable, which suggests that the algorithm is robust and can function with different values of β without major problems. A

notable exception to the predictable behavior is that of Wice, whose retrieved value increases in response to both increase and5

decrease in β from 2.1.

8 Conclusions

In this study, we described and evaluated an algorithm for retrieving the microphysical properties of snowfall from multi-

frequency radar measurements. The probabilistic method is based on direct application of Bayes’ theorem using lookup tables.

We examined the capabilities and limitations of the retrieval algorithm using data from the OLYMPEX/RADEX measurement10

campaign. The results were compared both to ground-based radar measurements from the NASA NPOL radar and to in situ

measurements from the UND Citation aircraft, both of which were collocated with the APR-3 measurements.

The results indicate that, at least for the retrieval approach presented here, triple-frequency radar retrievals provide modest

benefits over dual-frequency retrievals of snowfall properties. The probabilistic error estimates from the triple-frequency re-

trievals are generally only slightly smaller than those from dual-frequency retrievals, but closer examination of the retrieved15

values shows that the triple-frequency approach produces more detailed retrievals with higher degrees of variability than the

dual-frequency retrievals. The triple-frequency method can also determine particle size throughout the range of snowflake

sizes studied here, avoiding problems with some of the dual-frequency methods with sizing either small or large particles.

Multi-frequency retrievals significantly outperform those using only one frequency, and none of the three dual-frequency con-

figurations studied (Ka/W-, Ku/Ka- and Ku/W-bands) appears to be decisively better than the others, although the Ka/W band20

combination was found to have more sensitivity to the snowflake density than the Ku/Ka- or Ku/W-band combinations. Simi-
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larly, we found the relative performances of Ku-, Ka- and W-band single-frequency retrievals to be approximately equal. Thus,

information content analysis appears to suggest that multi-frequency radars are preferable to single-frequency radars in snow-

fall retrievals, but it does not provide much insight into the exact choice of frequencies; this choice should probably be more

dependent on other factors such as achievable sensitivity and resolution, the importance of attenuation, and cost.

The triple-frequency technique appears to be useful at identifying graupel, that is, ice particles that are heavily rimed and5

thus considerably denser than most aggregate snowflakes, providing a sufficient signal for the triple-frequency retrieval to

detect. This was confirmed in this study with the comparison to polarimetric observations with the NPOL ground-based radar.

Globally, graupel occurs in relatively rare events that represent only a small fraction of snow cases, and consequently graupel

events do not impact the statistics much. On the other hand, graupel (and hail, which is even denser) can have a substantial

societal impact where it occurs, and thus detecting it can be valuable even though it only occurs in a small percentage of10

icy precipitation. Detecting graupel plumes, together with accurate snowflake size determination elsewhere in a precipitating

region, can also shed light into the processes involved in the formation of graupel. These plumes are usually small in their

horizontal extent, on the order of 1 km, requiring a fairly high spatial resolution in the radars used to detect them, which can

be challenging to achieve if multi-frequency radars are considered for satellite applications.

The findings of this study concern the retrieval accuracy of multi-frequency radars, and do not address their other potential15

benefits. For instance, multi-frequency radars can utilize lower-frequency channels (e.g. Ku-band) to penetrate deeper into

precipitation, particularly heavy rain that can attenuate higher frequencies (e.g. W-band) heavily enough to block detection

altogether. Conversely, higher-frequency radars can generally be made more sensitive, allowing detection in regions below the

sensitivity thresholds of low-frequency bands. These benefits should be considered together with the retrieval performance

when decisions about instrument specifications are made; see, e.g., Leinonen et al. (2015) for a quantitative assessment of20

retrieval capabilities of a potential spaceborne triple-frequency radar.

This study builds on earlier experimental and modeling results that suggested that triple-frequency radars can be used to

constrain snowflake habits, and examines this capability in practice with a prototype retrieval algorithm. Based on the expe-

rience gained in this study, we can identify two requirements for future research that need to be fulfilled in order to use such

an algorithm in an operational setting. First, the snowflake scattering database, while more extensive than those previously25

available, is still limited in its scope, and its coverage of snowflake sizes, densities and habits should be expanded in order

to support the forward model in all scenarios. Second, the a priori distributions used in the retrievals in this study are based

on relatively few data points. An abundance of in situ data from ice clouds and snowfall currently exists as a result of many

ground- and aircraft-based field campaigns; analyses of the data from these are needed to support retrieval algorithm develop-

ment by providing representative a priori distributions of snowfall properties. The substantial cross-correlations found in this30

study between the snow microphysical properties (Eq. 17) emphasize the need of a multivariate analysis of these datasets.

Data availability. The APR-3 data files can be downloaded from the OLYMPEX data repository at https://ghrc.nsstc.nasa.gov/pub/fieldCampaigns/

gpmValidation/olympex/APR3/, and the NPOL data from https://ghrc.nsstc.nasa.gov/pub/fieldCampaigns/gpmValidation/olympex/NPOL/.
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The Citation data will be posted to https://github.com/dopplerchase/Chase_et_al_2018; before release, they are available upon request from

RC (email: randyjc2@illinois.edu). The BAECC campaign data are available at https://github.com/dmoisseev/Snow-Retrievals-2014-2015.

The sounding data can be obtained from the University of Wyoming collection at http://weather.uwyo.edu/upperair/sounding.html. The

retrieval results, used to generate the plots, are available in numerical form from JL (email: jussi.s.leinonen@jpl.nasa.gov).

Appendix A: Fast derivation of error estimates for retrieved quantities5

Consider a scalar Q(x) that is a function (not necessarily a linear function) of the vector x of normally distributed random

variables, whose probability distribution p(x) is given by the mean 〈x〉 and the covariance S. For example, Q can be ln Wice

or the logarithm of any variable introduced in Sect. 2.4. Then, a probabilistic error estimate is given by the standard deviation

∆Q= Std[Q] =
√
〈Q2〉− 〈Q〉2 (A1)

where the expectation, denoted by 〈·〉, is taken over the PDF of x. The expectation can be estimated efficiently using a Gauss-10

Hermite quadrature. For a three-variable x (generalization to other numbers of variables is straightforward), the expectation

〈Q〉 is obtained as follows:

〈Q〉 =

∫
x

Q(x)p(x)dx≈
∑
i,j,k

wiwjwkQ(xijk) (A2)

wi =
1√
π
wGH,i (A3)

xijk = 〈x〉+
√

2VΛ1/2
[
xGH,i xGH,j xGH,k

]T
(A4)15

where:

– V is a matrix whose columns contain the normalized eigenvectors of S

– Λ is a diagonal matrix containing the corresponding eigenvalues of S

– xGH and wGH are the points and weights of a Gauss-Hermite quadrature that give the approximation

∞∫
−∞

exp(−x2)f(x)dx≈
N∑
i=1

wGH,i f(xGH,i) (A5)20

where the approximation is exact if f is a polynomial of at most degree 2N − 1; xGH and wGH can be found in many

tables (e.g. Beyer, 1987) and in scientific software packages (e.g. SciPy; Oliphant, 2007).

〈Q2〉 can also be estimated using the above method, thus giving the error estimate when substituted into Eq. A1. This is

derived by computing the Gauss-Hermite quadrature for the standard multivariate normal distribution with zero mean and

identity covariance, then mapping the quadrature points to the corresponding points in the distribution of x.25
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