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Abstract. In this paper we compare two different methods of estimating the error variances of two or more independent data

sets. One method, called the “three-cornered hat” (3CH) method, requires three data sets. Another method, which we call the

“two-cornered hat” (2CH) method, requires only two data sets. Both methods have been used in previous studies to estimate

the error variances associated with a number of physical and geophysical data sets. A key assumption in both methods is that

the errors of the data sets are not correlated, although some studies have considered the effect of the partial correlation of5

representativeness errors in two or more of the data sets.

We compare the 3CH and 2CH methods using a simple model to simulate three and two data sets with various error corre-

lations and biases. With this model, we know the exact error variances and covariances, which we use to assess the accuracy

of the 3CH and 2CH estimates. We examine the sensitivity of the estimated error variances to the degree of error correlation

between two of the data sets as well as the sample size. We find that the 3CH method is less sensitive to these factors than10

the 2CH method and hence is more accurate. We also find that biases in one of the data sets has a minimal effect on the 3CH

method, but can produce large errors in the 2CH method.

1 Introduction

In atmospheric sciences, observations and models are often combined with the goal of providing accurate and complete rep-

resentations of the current or future state of the atmosphere. Knowing the error characteristics of observations and models is15

important to understanding the degree to which atmospheric phenomena of interest are accurately described and analyzed.

Estimating observational and modeling error characteristics is thus of inherent scientific interest. In addition, knowing the error

characteristics is important for practical applications such as data assimilation and numerical weather prediction. In many mod-

ern data assimilation schemes, observations of a given type are weighted proportionally to the inverse of their error variance

(e.g. Desroziers and Ivanov, 2001).20

There are several somewhat similar methods for estimating the error variances associated with two or more data sets.

The “three-cornered hat” (3CH) method and the closely related “triple collocation” (TC) method have been used in physics,

oceanography, and other scientific disciplines to estimate the errors associated with three independent data sets. Braun et al.

(2001) combined two independent data sets, Global Positioning System (GPS) slant water vapor (SWV) and water vapor ra-
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diometer (WVR), to estimate the SWV and WVR errors. In analogy to the 3CH method, we refer to the Braun et al. (2001)

method as the two-cornered hat (2CH) method. Kuo et al. (2004) and Chen et al. (2011) used the “apparent error method”,

which is a variation of the 2CH method, to estimate the error of radio occultation (RO) observations using the known (or

estimated) error variance of a forecast model.

The 3CH method was originally developed as the “N-cornered hat” method (Gray and Allan, 1974) for estimating error5

variances from N atomic clocks. Requiring three data sets at a minimum, the 3CH method produces estimates of the error

variances of each of three data sets. Riley (2003), and references therein, provide a summary of the 3CH method. Variations

and enhancements of the method have been applied to many diverse geophysical data sets. The 3CH method has been used

to estimate the stability of GNSS clocks using the measured frequencies from multiple clocks (Ekstrom and Koppang, 2006;

Griggs et al., 2014, 2015; Luna et al., 2017). Valty et al. (2013) used the 3CH method to estimate the geophysical load de-10

formation computed from GRACE satellites, GPS vertical displacement measurements, and global general circulation (GCM)

models. O’Carroll et al. (2008) compared three systems to measure sea-surface temperatures: two different radiometers and in

situ observations from buoys. They discuss the assumption of neglecting the error correlations among the three data sets and

the effect of representativeness errors. Anthes and Rieckh (2018) used the 3CH method to estimate the error variances of three

observational (two radio occultation retrievals and radiosondes) and two model data sets using various combinations of the five15

data sets.

The major assumption in all of the above methods is that the errors of the three systems are uncorrelated. Correlations

between any or all of the three measurement systems will reduce the accuracy of the error estimates. Other factors that can

reduce the accuracy include widely different errors associated with the three systems or a small sample size. These factors can

lead to negative estimates of error variances, especially when the estimates are close to zero (Gray and Allan, 1974; Riley,20

2003; Griggs et al., 2014).

Stoffelen (1998) developed a closely related method, termed the “triple collocation” (TC) method, to estimate both errors

and linear calibration coefficients of surface winds using three data sets. Stoffelen (1998) discussed the correlation between

part of the representativeness errors of two of the data sets and subtracted the variance common to the scale of these errors from

the estimated error variance of one of the data sets used in his pairwise estimate of error variances. This correction requires25

an independent estimate of the correlated part of the representativeness error. All variations of TC methods assume that, apart

from the correlated part of the representativeness errors, the errors of the different observation systems are uncorrelated.

Variations of Stoffelen’s TC method have been have been widely used in the fields of oceanography and hydrometeorology

(e.g. Su et al., 2014; Gruber et al., 2016). Roebeling et al. (2012) used the TC method to estimate the errors associated with

three ways of measuring precipitation: the Spinning Enhanced Visible and Infrared Imager (SEVERI), weather radars, and30

ground-based rain gauges.

In this paper we estimate the effect of neglecting the error covariances using two or three simulated data sets for which the

true error variances and covariances are known. We develop a model to simulate the data sets with random and bias errors

using a set of assumed True profiles. We then calculate the true error variance and covariance terms in the simulated data sets

and show the impact of neglecting these terms on the estimated error variances.35
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2 Error estimates using the 2CH and 3CH methods

We assume we have three data sets X, Y, and Z that are all measuring the same physical variable, e.g. specific humidity, q, at

the same location and time.

The error variance of the data set X is defined as

VARerr(X) =
1

n

∑
(X−True)2 =

1

n

∑
X2

err (1)5

where True is the true (but unknown) value of X (as well as Y and Z), Xerr = (X – True), and n is the number of samples.

O’Carroll et al. (2008) provide an excellent discussion of the meaning of “True” in the context of the 3CH method.

The error covariance of the data sets X and Y is defined as

COVerr(X, Z) =
1

n

∑
(X−True)(Y−True) (2)

In general, the errors of X, Y, and Z may be correlated or not.10

2.1 Three-cornered hat (3CH) method

In the 3CH method, the relationship between the error variances, the mean square (MS) differences of X and Y (MS(X–Y)),

and their error covariances are given by Eqs. (7)–(9) of Anthes and Rieckh (2018):

VARerr(X) =1/2 [MS(X – Y) + MS(X – Z) – MS(Y – Z)]

+ COVerr(X, Y) + COVerr(X, Z)−COVerr(Y, Z)
(3)

15

VARerr(Y) =1/2[MS(X – Y) + MS(Y – Z) – MS(X – Z)]

+ COVerr(X, Y) + COVerr(Y, Z)−COVerr(X, Z)
(4)

VARerr(Z) =1/2[MS(X – Z) + MS(Y – Z) – MS(X – Y)]

+ COVerr(X, Z) + COVerr(Y, Z)−COVerr(X, Y)
(5)

We note that Eqs. (3)–(5) are identical to Eq. (1) in O’Carroll et al. (2008) in their application of the TC method to estimate

the error variances of sea surface temperature using observations from two satellite systems and in-situ buoys.20

The last three covariance terms in Eqs. (3)–(5) are unknown for real data sets, unless they are estimated independently, and

are neglected when estimating the error variances of the real data sets X, Y and Z. This assumption is valid for no correlation

between the errors of the data sets and a large sample size. The estimated error variances are therefore:

VARerr(X)est = 1/2 [MS(X – Y) + MS(X – Z) – MS(Y – Z)] (3a)

VARerr(Y)est = 1/2[MS(X – Y) + MS(Y – Z) – MS(X – Z)] (4a)25

VARerr(Z)est = 1/2[MS(X – Z) + MS(Y – Z) – MS(X – Y)] (5a)
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2.2 Two-cornered hat (2CH) method

The 2CH method uses only two data sets, X and Z. The derivation is presented in Appendix A. The 2CH method error variances

for X and Z are given as

VARerr(X) =MS(X) – 1/4 [MS(X + Z) – MS(X – Z)]

− 2M(True, Xerr) + COVerr(X, Z) + M(True, Xerr + Zerr)
(6)

and5

VARerr(Z) =MS(Z) – 1/4 [MS(X + Z) – MS(X – Z)]

− 2M(True, Zerr) + COVerr(X, Z) + M(True, Xerr + Zerr).
(7)

where M(X) is the mean value of X. The last three error terms in Eq. (6) and (7) are unknown for real data sets„ unless they

are estimated independently, and are neglected when estimating the error variances of the real data sets X and Z:

VARerr(X)est = MS(X) – 1/4 [MS(X + Z) – MS(X – Z)] (6a)

VARerr(Z)est = MS(Z) – 1/4 [MS(X + Z) – MS(X – Z)]. (7a)10

Equations (6a) and (7a) are equivalent to Eqs. (12) and (13) of Braun et al. (2001).

An alternative form of Eqs. (6a) and (7a) that is used in some studies (e.g. Stoffelen, 1998; Vogelzang et al., 2011) is

VARerr(X)est = MS(X) – M(XZ) (6b)

VARerr(Z)est = MS(Z) – M(XZ). (7b)

2.3 Comparison of neglected terms in 3CH and 2CH methods15

In the 3CH method, the neglected error terms when computing VARerr(X) with Eq. (3) are

COVerr(X, Y) + COVerr(X, Z) – COVerr(Y, Z).

In the 2CH method, the neglected error terms when computing VARerr with Eq. (6) are

– 2 M(True, Xerr) + COVerr(X, Z) + M(True, Xerr + Zerr).

We note that the neglected error terms in the 2CH method contain terms involving the product of True with errors, unlike in20

the 3CH method. Because True is typically an order of magnitude greater than the errors, these terms are likely much larger

than the neglected terms involving only products of errors, as in the 3CH method. We also note that if the errors are random

and uncorrelated, all of the error terms will be zero for an infinite sample size. However, for finite sample sizes, these terms

will be non-zero even if these conditions are met.

2.4 Side note: apparent error method25

We note that Eq. (A7) in Appendix A is the basis for the “apparent error” (AE) method in which X is an observed data set

(Xobs) and Z is a forecast of the X data set (Xfcst)

4



AE = Xobs – Xfcst

VARerr(Xobs) = MS(Xobs – Xfcst) – VARerr(Xfcst) + 2 COVerr(Xobs, Xfcst)

The apparent error is equivalent to the Observation minus Background (O – B) statistic used in data assimilation studies. In

the apparent error method, the correlation of errors between the observations and forecasts is assumed negligible and the error

variance of the forecast is obtained from an independent estimate.5

3 Generation of True data set and three simulated data sets with errors

We first generate a set of n vertical profiles of a variable, True, which we take as specific humidity from the ERA-Interim

reanalysis (Dee et al., 2011), normalized by the mean specific humidity q̄ averaged over all samples. We next generate three

data sets X, Y and Z that are approximations of True (True plus random errors), where the errors of X and Z are correlated to

a degree that we can control. For simplicity, we assume the errors for Y are always uncorrelated with those of X and Z. This10

is analogous to a system of three observational systems in which the errors of two of them are correlated, but the errors of the

third are not. In this section, only random errors are considered. The effect of bias errors is discussed in Sect. 4.4.2.

We then look at the magnitude of the error terms in the 2CH and 3CH methods with various assumed correlation coefficients

between the errors in X and Z and compare the estimated error variances of X, Y and Z with their true error variances. Our

tests will show the impact of the neglect of the error terms depending on the degree of error correlation between X and Z.15

The assumed normalized random error model for X is given by

Xerr = random[−1.7,1.7] ·STD (8)

STD = 0.1 + 0.00042 · (1000− p) (9)

where random[–1.7, 1.7] is a random number between –1.7 and 1.7, and the standard deviation STD increases linearly with

decreasing pressure p from a value of 0.1 (10 %) at 1000 hPa to a value of 0.436 (43.6 %) at 200 hPa. In the estimated error20

calculations below, the normalized Xerr is expressed as a % error and the variance is expressed as %2.

The error model is created based on error estimates of specific humidity from several studies (e.g. Kursinski et al., 1997;

Collard and Healy, 2003; von Engeln and Nedoluha, 2005; Wang et al., 2013). For example, Collard and Healy (2003) found

that, for tropical conditions, the percentage errors for RO specific humidity varied from approximately 10 % near the surface

to about 70 % near 300 hPa. Other studies show the errors varying from about 10 % near the surface to 100 % in the upper25

troposphere (about 200 hPa). In our error model, we specified the STD to roughly approximate the STD of RO or RS data at

Minamidaitojima, Japan (Anthes and Rieckh, 2018; Rieckh et al., 2018). The assumed STD of normalized q (percent error)

given by Eq. (9) is consistent with the above empirical error estimates. Thus the error model is a reasonable one in terms of

its magnitude and increase with height. Since it is intended to show the sensitivity of the 3CH and 2CH methods to varying

degrees of correlation between two of the data sets used in the comparison, it is not necessary that the error model be a close30

replication of any particular observing system, just that the magnitude of the assumed errors and their vertical distribution be

reasonable.
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Figure 1. (a) One set of error profiles with the unnormalized Xerr (dotted line), Qerr (solid lime green line) and Zerr (various solid lines for

different values of correlation parameter a). Qerr is uncorrelated with Xerr. For a = 0, Zerr = Qerr and Zerr and Xerr are uncorrelated. As a

increases, Zerr is increasingly correlated with Xerr and looks less like Qerr and more like Xerr. For very large a (a = 100), Zerr (light blue

solid line) is almost equal to Xerr (dotted line). (b) 1460 profiles of the unnormalized data set Z with zero correlation with X (a = 0).

3.1 Calculation of correlated errors

In the calculation of the correlated errors, we first generate the random error profiles Xerr, Yerr, and Qerr. All of these error

profiles are uncorrelated. In general all three error profiles Xerr, Yerr, and Qerr may have different standard deviations, but for

these tests we assume all standard deviations vary according to Eq. (9) for simplicity. We now generate the error profile Zerr as

a linear combination of Xerr and Qerr:5

Zerr =
a ·Xerr + Qerr

1 + a
(10)

where a is a specified constant parameter that determines the degree of correlation between Zerr and Xerr. If a= 0, Zerr = Qerr

and the errors of X, Y and Z are all uncorrelated. If a is not equal 0, the errors of Z are correlated with the errors of X. Figure 1a

shows one set of simulated error profiles for the unnormalized X, Q, and several Z for different values of a. The transition of

Zerr from Qerr to Xerr can be seen easily between 700 and 800 hPa. Qerr (bright green line) is positive (around 1 g kg−1)10

and Zerr for a= 0 is identical to that. For a= 0.1, Zerr has a slightly smaller positive value, and Zerr becomes negative as a

increases, becoming practically identical with Xerr (dotted line) for a= 100.

Figure 1b shows the mean and standard deviation for the unnormalized Z specific humidity profiles for a= 0. Since the Zerr

are created by combining the two random errors Qerr and Xerr, the Zerr are overall closer to zero. This will result in a smaller

standard deviation of Z if 0 < a <∞ (especially for values of a close to 1), and will also decrease the true error variance of Z.15
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3.2 Relationship of correlation, error variance, and error covariance terms

The correlation coefficient r between the Xerr and Zerr is given by

r =
1

n

∑ (Xerr−Xerr)(Zerr−Zerr)

σXerr
σZerr

(11)

where Xerr and Zerr are the mean values of Xerr and Zerr respectively (zero in our error model) and σXerr
and σZerr

are the

standard deviations of Xerr and Zerr given by5

σXerr
=
√

1
n

∑
X2

err ≡ (VARerr(X))1/2 using Eq. (1)

σZerr
=
√

1
n

∑
Z2
err ≡ (VARerr(Z))1/2 using Eq. (1)

The relationship between the correlation coefficient and covariance between Xerr and Zerr is therefore

10

COV(Xerr, Zerr) = r σXerrσZerr ≡ COVerr(X, Z) using Eq. (2).

It can be shown that for this particular error model

r =
a

(1 + a2)1/2
(12)

VARerr(Z) =
(1 + a2)

(1 + a)2
VARerr(X) (13)15

COVerr(X, Z) =
a

(1 + a)
VARerr(X) (14)

The correlation between X and Z errors can be varied according to Eq. (12) by varying the parameter a, as shown in Table 1.

Note that VARerr(Z)≤ VARerr(X) and that the maximum difference between VARerr(X) and VARerr(Z) occurs for a = 1 when

VARerr(Z) = 0.5 VARerr(X) (σZerr
= 0.707 σXerr

).

3.3 Summary of generation of True data set and simulated data sets with random and systematic errors20

– We use 2007 ERA-Interim specific humidity q profiles for a location near Minamidaitojima (hereafter Mina), Japan,

which is located on Okinawa at 25.6◦N 131.5◦W. There are four model data profiles per day or n = 1460 profiles.

– Assume each vertical profile of q has no error, and normalize the q at each level by the sample mean (q̄) at that level.

This is the True data set.

– Generate three different and independent random error profiles Xerr, Yerr and Qerr from Eqs. (8) and (9).25

– Generate Zerr for various specified values of a to control correlation using Eq. (10).

– Add Xerr, Yerr and Zerr to True to obtain X, Y and Z, the 1460 simulated normalized profiles of q.

– Compute the normalized estimated error variance profiles of X, Y and Z for the 3CH and 2CH methods according to

Eqs. (3a)–(7a) (which have neglected all COV terms) and compare with the true error variances, which can be computed
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Table 1. Relationship between normalized error variances and standard deviations of data sets X and Z for different values of a.

a r σZerr/σXerr VARerr(Z) (%2) COVerr(X, Z) (%2)

0.0 0.0 1.0 1.00 VARerr(X) 0.0

0.1 0.0995 0.9136 0.84 VARerr(X) 0.0909 VARerr(X)

0.3 0.287 0.803 0.65 VARerr(X) 0.230 VARerr(X)

0.5 0.447 0.745 0.55 VARerr(X) 0.333 VARerr(X)

1.0 0.707 0.707 0.50 VARerr(X) 0.500 VARerr(X)

2.0 0.894 0.745 0.55 VARerr(X) 0.666 VARerr(X)

10.0 0.995 0.913 0.83 VARerr(X) 0.908 VARerr(X)

100.0 0.99995 0.9901 0.98 VARerr(X) 0.990 VARerr(X)

∞ 1.0 1.0 1.00 VARerr(X) 1.0 VARerr(X)

exactly from the full Eqs. (3)–(7) including the known values of the covariance terms. A value of a= 0 should give the

most accurate estimation of error variances because all covariance terms will be close to zero (they won’t be exactly zero

because the sample size n is finite).

4 Effect of error correlations on estimated error variances

We now derive expressions for the estimated values of the error variances for X, Y and Z for this error model and show how the5

correlations between Xerr and Zerr affect the approximate values using the 3CH and 2CH methods. This will give some insight

into how correlations between actual observed data sets will affect estimates of their error variances and standard deviations.

To make results more readily comparable to previous studies, instead of showing the error variance, we show the square root

of the error variance, or the error standard deviation, in most figures.

4.1 Effect of error correlations on 3CH method10

In the 3CH method, three covariance terms are neglected. These terms are zero for an infinite sample size for uncorrelated

errors between the data sets. Correlation between the errors of two data sets will lead to a non-zero covariance term, which

becomes larger for larger correlations. The error covariances COVerr(X, Z), COVerr(X, Y) and COVerr(Y, Z) are shown in Fig. 2

for a= 0 and 0.5. Note that all error covariances oscillate around zero (and are zero for an infinitely large sample size) for

a= 0 (Fig. 2a). For a= 0.5, the COVerr(X, Z) term increases with decreasing pressure, reaching a magnitude of about 800 %215

at 100 hPa (Fig. 2b).

For our model (error correlation of X and Z) and an infinite sample size, COVerr(X, Z) is the only non-zero neglected term

in Eq. (3a). Therefore Eq. (3a) can also be expressed as

VARerr(X)est = VARerr(X)−COVerr(X, Z) (2b)
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Figure 2. Vertical profiles of normalized error covariances (X, Y), (Y, Z) and (X, Z) for: (a) a = 0 and (b) a = 0.5.

Figure 3. (a) Estimated standard deviation of Xerr for values of a = 0, 0.3, 0.5, 1.0 and 100 computed from Eq. (3a)–(5a). Exact STD

computed from data set X (solid black profile). (b) Same as (a) except for estimated STD of Yerr. (c) Same as (a) except for estimated STD

of Zerr. Note that for different values of a, the exact STD of Xerr and Yerr are always the same. The exact STD of Zerr decreases as a

increases for 0< a < 1.0. For a > 1.0, the exact STD of Zerr increases as a increases, becoming equal to the STD of Xerr for a=∞ due to

the way our error model is defined (see also Table 1). For a= 100 the correlation between X and Z errors is 0.99995 (Table 1; black dotted

line for a= 100 almost identical to black solid line for a= 0).

Using Eq. (14) for this error model yields

VARerr(X)est = [1/(1 + a)]VARerr(X). (2c)

Hence for a > 0 the estimated error variance of X is always less than the true value, as seen in Fig. 3a.

We next consider the effect of the X and Z error correlation on the estimate for Y error variance. For our error model, Eq. (4a)

can be expressed as5

VARerr(Y)est = VARerr(Y) + COVerr(X, Z). (3b)
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Substituting for the COV term from Eq. (14) and noting that, for our error model, VARerr(X) = VARerr(Y) we obtain

VARerr(Y)est = [(1 + 2a)/(1 + a)]VARerr(Y) (3c)

Thus the estimated error variance for Y is always greater that the true value for a > 0, which is seen in Fig. 3b.

Lastly, we consider the effect of the X and Z correlation on the estimate for the Z error variance. Eq. (5a) can be expressed

as5

VARerr(Z)est = VARerr(Z)−COVerr(X, Z). (4b)

Substituting for the COV term from Eq. (14) and using Eq. (13) we obtain

VARerr(Z)est = [(1− a)/(1 + a2)]VARerr(Z) (4c)

so that the estimated error variance for Z is less than the true value for a >0, which is illustrated in Fig. 3c. Finally, for a >1,

Eq. (4c) shows that the estimated error variance of Z is negative and the STD is undefined. For a = 1.0, the estimated error10

variance of Z is zero for an infinite data set, but oscillates around zero because of our finite data set. Thus the estimated STD

of Zerr is undefined at some levels (Fig. 3c).

4.2 Summary of error correlations on 3CH method

For the 3CH method, correlation between the data sets X and Z has the following affect on their computed error variances

(when covariance terms are neglected):15

VARerr(X)est < VARerr(X)true

VARerr(Y)est > VARerr(Y)true

VARerr(Z)est < VARerr(Z)true

Figure 4 shows the ratios of the approximate error variances and standard deviations to the true values for a ranging from

0 to 1 for the 3CH method. As the correlation parameter a increases from 0, the differences between the estimated and true20

error variances increase. For a modest value of a= 0.2 (correlation coefficient between X and Z errors of 0.196), the errors

in the STD estimates are –9 % for X, +8 % for Y and –12 % for Z. As the correlation between the X and Z error reach 0.5,

the percentage errors for the X, Y and Z estimates reach –18 %, +14.5 % and –37 % respectively. To the extent that this error

model gives an idea of the effect of the correlation between the errors of two of the three data sets, estimates of error standard

deviations using a large sample of real data should be accurate to within approximately 10 % for correlation coefficients25

between data errors of 0.2 or below, and within 25 % for correlation coefficients of around 0.3. The effect of the correlation

between Z and X errors on the estimated error variance is greatest on the estimated Z error variance.
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Figure 4. Ratio of estimated (a) error variances to true variances and (b) estimated STD to true STD for the 3CH method for values of error

correlation parameter a ranging from 0 to 1.0.

4.3 Effect of error correlations on 2CH method

We next examine how error correlations in our error model affect the 2CH method. To estimate the error variance of X using

Eq. (6a), we calculate examples of the error terms for a= 0 and a= 0.5. The COVerr(X, Z) term was already shown in Fig. 2,

and is the same in the 2CH method as in the 3CH method. Figures 5 and 6 show profiles of the other two terms for an error

correlation between X and Z of a= 0 and 0.5. In our error model Xerr and Zerr are uncorrelated with True, so the non-zero5

values in Figs. 5–6 are a result of the finite data set (1460 in this example). The COVerr(X, Z) (Fig. 2) increases as a increases,

reaching a maximum value in the upper troposphere of about 800 %2 for a= 0.5. The terms involving True and the errors in

X,Y and Z in Figs. 5 and 6 do not change in magnitude with an increasing value of a, but they increase in amplitude with

height and are significantly large (∼300 %2) compared to the COVerr(X, Z). These results indicate that a large sample size

is especially important in the 2CH method; even with a sample size of 1460 the random errors caused by the neglect of the10

covariance terms involving True and the errors in X and Z can be significant.

Figure 7 shows the exact and estimated error STD of X, Y, and Z for various combinations of the data sets and values

of a. The estimated error STD for X, Y, and Z vary around the exact solutions (black lines) for all values of a if data sets

with uncorrelated errors are combined: (a) STDerr(X) computed with Y, (b) STDerr(Y) computed with X, and (c) STDerr(Z)

computed with Y, and (e) STDerr(Y) using Z. Note in (c) the exact STDerr(Z) decreases with a increasing from 0 to 1, as15

described previously. Figs. 7(d) and (f) show how correlated errors between the data sets affect the estimated error variances.

Both the estimated STDerr(X) and STDerr(Z) become too small when the data sets X and Z are combined and the value of a is

increased. The exact solutions for all values of a in (f) are in black.
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Figure 5. Terms involving products of True and (Xerr + Zerr), (Xerr + Yerr), and (Yerr + Zerr) for (a) a= 0 and (b) a= 0.5. Note that the

magnitudes of True and (Xerr + Yerr) and True and (Yerr + Zerr) do not depend on the correlation between Xerr and Zerr. All error terms are

normalized.

Figure 6. Mean of products of True and Xerr, Yerr, and Zerr for (a) a= 0 and (b) a= 0.5. All error terms are normalized.

4.4 Comparison of 3CH and 2CH methods using the error model

4.4.1 Effect of random errors

Figure 8 compares the normalized error estimates from the 3CH and 2CH methods for a= 0.5. In Fig. 8a (3CH) the solid lines

denote exact error STD of X, Y and Z. The exact error STD are the same for X and Y, and are smaller for Z as discussed earlier.

The estimated error STD (dashed lines) are less than the exact values for X and Z and greater than the exact values for Y,5

also as discussed earlier. In Fig. 8b (2CH), solid lines denote a combination of data sets with uncorrelated errors (where error

terms are neglected, but are non-zero due to a finite sample size), while dashed lines indicate combinations of data sets with

correlated errors and neglected error terms. We see that for the 3CH method and 2CH method all estimates are similar, with

the exception of STDerr(Y), which is affected in the 3CH method by correlation of Xerr and Zerr. However, the profiles of the

12



Figure 7. Two 2CH results each for the normalized error STD for X (a and d), Y (b and e) and Z (c and f), depending on the second data set.

Profiles corresponding to several values of correlation parameter a are included. The solid black profile is the exact error STD profile for X

and Y for all values of a, and for Z when a= 0.

2CH estimates show considerably more noise than those of the 3CH estimates, which is a consequence of the larger magnitude

of the neglected error terms in the 2CH method (see Sects. 2.3 and 4 above).

We next consider the effect of the sample size on the error estimates from the 3CH and 2CH methods. We repeat the

calculations from both methods by using a subset of the 1460 samples used in the above calculations. We created the subset by

selecting every tenth sample from the complete set, giving a sample size of 146.5

Figure 9 shows the same estimates as those in Fig. 8, except for the much smaller sample size of 146. For the smaller sample

size, the noise increases for both methods. However, the effect on the 3CH method is less than on the 2CH method, and the

differences in the estimates are still clearly visible in the 3CH method. For some of our comparison data sets using real data

(Anthes and Rieckh, 2018), the sample size n is less than 100 in the lower and upper troposphere; hence the noise due to small

sampling size is likely to be significant in the estimates for these regions.10

4.4.2 Effect of bias errors

To investigate the effect of both random and systematic errors, we add a known bias ε to data set Z.

For the 3CH method, Eq. (3a) becomes

VARerr(X)est = 1/2[MS(X – Y) + MS(X – (Z+ε)) – MS(Y – (Z+ε))] (15)
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Figure 8. Estimated and exact normalized error standard deviations for 3CH method (a) and 2CH method (b) for a correlation of Z and X

errors of 0.45 (a= 0.5). (a) Exact STD errors for X, Y and Z given by blue, red and orange solid lines respectively. Estimated error STD

error given by dashed lines of same color. (b) Exact error STD of Z given by solid black line. Estimated error STD of X using Z and Y given

by blue lines, estimated error STD of Y using X and Z given by red lines, and estimated error STD of Z using X and Y given by orange lines.

For all colored lines, error terms are neglected. Solid lines indicate estimates from combinations of data sets with uncorrelated errors, dashed

lines indicate estimates from combinations of data sets with correlated errors and hence larger error terms.

Figure 9. Same as Fig. 8 except for a smaller sample size of 146. All profiles become much noisier, with the 2CH method showing signifi-

cantly more noise than the 3CH method.

which may be expanded to

VARerr(X)est = 1/2[MS(X – Y) + MS(X – Z) – MS(Y – Z)] + εM[(Yerr−Xerr)] (16)

which is equal to Eq. (3a) plus the bias term. For random errors and a large sample size the means of Xerr and Yerr will be

very small and the difference of the mean errors will also be small. Thus the bias term will tend toward zero as the sample size

increases and the effect of a bias error in Z is minimal in the 3CH method.5

This is not the case in the 2CH method, as shown below. Equation (6a) becomes

VARerr(X)est = MS(X) – 1/4 [ MS(X + (Z+ε)) – MS(X – (Z+ε))] (17)
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Figure 10. Effect of adding a constant bias of 10 % to Z for the 3CH (a) and 2CH (b) methods, for no correlation between X and Z errors

(i.e. a= 0). The 3CH method yields reasonable estimates for all variables, while the estimated error variances from the 2CH method are

erroneously large for Z (orange) and erroneously low X and Y (blue and red).

which can be expanded to

VARerr(X)est = MS(X) – 1/4 [MS(X + Z) – MS(X – Z)]− εM(X) (18)

which is equal to Eq. (6a) plus a bias term.

As noted above, the bias term in the 3CH method can be close to zero and therefore not affect the computed VARerr(X)

significantly. The bias term of the 2CH method will stabilize with higher sample sizes around the product of the bias (ε) and5

the M(X) and will significantly influence the estimated error variance. A positive bias in the data set Z will cause a negative

error in VARerr(X), and a negative bias in the data set Z will cause a positive error in VARerr(X).

For the simulated data set, Eq. (10) becomes

Zerr =
a ·Xerr + Qerr

1 + a
+ ε, (19)

while Xerr and Yerr stay the same.10

Figure 10 shows the effect of adding a constant bias of 10 % to Z for the 3CH and 2CH methods for no correlation of random

errors (a= 0). For the 3CH method (Figure 10a), results still look reasonable, and the estimated and exact solutions overlap

well. For the 2CH method (Figure 10b), a bias of 10 % strongly impacts the estimated error variances. For Z, they are much

too high, and for X and Y they are much too low. Recalling that the variables X, Y, Z and ε are all normalized by the sample

mean q̄, M(X) in Eq. (18) is approximately 100 %, so the term ε M(X) is approximately 100 ε%2. For ε= 10%, this term is15

1000 %2, which is the offset we see for X, Y, and Z in Fig. 10b.
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4.4.3 General expression for effect of biases in all three data sets

More generally, we can derive expressions for the effect of biases of all three data sets with respect to True as follows (Sergey

Sokolovskiy, 2018, personal communication): Let

X = True + Xerr + εX (20)

Y = True + Yerr + εY (21)5

Z = True + Zerr + εZ (22)

where εX, εY, and εZ are biases of X, Y, and Z, respectively. Substituting these expressions into Eq. (3a) for the 3CH method

and Eq. (6a) for the 2CH method, we find that the difference ∆ between the error estimates for X with biases and those without

biases is

∆2CH = (M(True) + εX)(εX− εY) (23)10

∆3CH = εX · (εY − εZ) + εYεZ (24)

The first term of Eq. (23) is a first order term while all the other terms are second order; thus in general biases will have a larger

effect in the 2CH method compared to the 3CH method. We note that this expression is valid only for an infinite data set.

5 Estimates of error variances using 3CH and 2CH methods and real observations

Anthes and Rieckh (2018) showed a large number of error variance estimates using real data and the 3CH method at four15

radiosonde (RS) locations in the Pacific Ocean region. Here we show a few examples of how the 2CH method compares with

these 3CH estimates.

We use co-located data of radio occultation (RO), RS, and ERA-Interim (ERA) at Minamidaitojima (Mina), which is located

on Okinawa at 25.6◦N 131.5◦W, and is one of the four RS stations studied by Anthes and Rieckh (2018) and Rieckh et al.

(2018). We use the RO-Direct method for computing RO specific humidity (uses NCEP Global Forecast System temperature20

to compute specific humidity q from observed RO refractivity). Details about the co-location criteria and specific humidity

retrieval are described by Rieckh et al. (2018).

To compute error variances using the 2CH method, Eq. (6a) is applied for various combinations of the four data sets. Data

pairs at each level are only used if data are available for all four data sets. All data sets are interpolated to a common 25 hPa

grid. Figure 11a shows the number of co-located profiles per pressure level. Figure 11b shows the normalized RS specific25

humidity values for these profiles.

The two model and the RO data sets are representative of similar horizontal scales (∼100 km), while the radiosonde data

are in-situ point measurements and therefore represent a much smaller horizontal scale. However, many studies (e.g. Ho et al.,

2010a, b; Kuo et al., 2004; Chen et al., 2011) have used radiosonde data as correlative data for verifying models, RO, and other

data sets without applying corrections for representativeness errors. These results indicate that the different representative30
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Figure 11. (a) Number of co-located measurements (data pairs) per pressure level for RO, RS, and ERA. (b) Normalized q values for

radiosondes (RS) at Mina, 2007. The normalized q values are computed as 100·q/q̄ where q̄ is the annual mean value of q for 2007. Profiles

cut off at 250 hPa because RS data are not reported at higher levels. At the bottom, co-located profiles thin out since RO penetration depth

varies and only very few profiles are available at the lowest levels.

scales are not a significant source of error in the comparisons (unlike spatial and temporal sampling errors resulting from the

time and spatial differences between the data sets, which we correct for). However, any representativeness errors are included

in the error estimates using either the 2CH or 3CH method.

All four data sets have some degree of unknown bias for certain locations, altitudes, or atmospheric conditions; none of

them represent the ultimate “truth” and there is no standard atmospheric data set for calibration. However, they have all been5

compared to other models or observations to one degree or another. We investigated the effect of biases in the related paper

Anthes and Rieckh (2018) by calibrating the data sets to the ERA-Interim data set using the scaling coefficients as given by

Stoffelen (1998) and Vogelzang et al. (2011). The results using the calibrated data sets were very similar to those using the

uncalibrated data sets, confirming that the 3CH method is insensitive to small biases.

We use our results from the 3CH method for real data (Anthes and Rieckh, 2018) to evaluate the results of the 2CH method.10

Figure 12a shows the 3CH estimated error variances for specific humidity for ERA, RS and RO using three independent

equations (Anthes and Rieckh, 2018). The mean value of the estimates is given by the solid line and the STD of the estimates

about the mean by the shading. The 3CH estimates are considered reasonably accurate for the reasons given in Anthes and

Rieckh (2018), namely that the magnitude and shape of the estimates for refractivity agree with other independent refractivity

error estimates (so we assume that the method works just as well for humidity as for refractivity), and that the results are15

consistent for the four different RS stations studied.

The other panels in Fig. 12 show the 2CH estimates of the error variance for ERA (b), RO (c) and RS (d) using various pairs

of observations. We consider the 2CH estimates unrealistic for these data sets. The magnitudes reach values that are negative

or up to five times the magnitudes of the 3CH method, which is considered unrealistically large. The profiles of the estimates

of error variances of ERA, RS and RO are also quite different depending on the pairs of observations used, unlike the 3CH20
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Figure 12. Estimated error variances for specific humidity: (a) results from the 3CH method for ERA (purple), RO (blue), and RS (orange).

Other three panels: 2CH method estimates for ERA (b), RO (c) and RS (d).

method is which all combinations of observations give similar profiles. Similar results were obtained for 2CH estimates of

refractivity (not shown).

Thus we find that the 2CH method produces estimates of the error variances for specific humidity that are quite different

from those of the 3CH method. We suspected that the cause for the different behavior using real data might lie in the different

treatment of bias errors in the 2CH and 3CH method. To investigate this hypothesis, we considered the effect of an empirically5

based bias in the simulated data.

5.1 Simulating the observed real data bias in the 2CH method

As shown in Sect. 4.4.2, even small bias errors in one of the data sets can cause large errors in the 2CH method. To see if a bias

in our real data could explain the very different estimates of the error variances shown in Figs. 12b–12d for the 2CH method,

we set up empirically based bias profiles in the simulated data. These match approximately the observed differences of RS and10

RO from ERA as found by Rieckh et al. (2018) in the real data sets (supplement, Figure S5 panel 4 for RS; Figure S6 panel 1

for RO). For the tests we consider ERA the truth. We computed the specific humidity annual mean biases of RO and RS for
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Figure 13. (a) Annual mean normalized profiles of RS – ERA, RO – ERA, and RS – RO. (b) same for RS – ERA and RO – ERA only (solid

lines), and their respective empirical bias profiles (dashed lines) based on the mean profiles.

each level as 100[Mean(RO) – Mean(ERA)]/Mean(ERA) and 100[Mean(RS) – Mean(ERA)]/Mean(ERA), respectively. We

used these results to create a simple additive bias for both Y and Z. The biases are depicted in Fig. 13 (dashed lines), along

with the real RS and RO annual mean biases (solid lines). More specifically, the bias used for Y (simulating the RO bias) varies

linearly between pressure levels as:

–5 to 2 % from 1000 to 800 hPa5

2 to –4 % from 800 to 650 hPa

–4 to 5 % from 650 to 500 hPa

5 to –11 % from 500 to 300 hPa

The bias used for Z (simulating the RS bias) varies linearly between pressure levels as:

3 to 1 % from 1000 to 700 hPa10

1 to –8 % from 700 to 500 hPa

–8 to -50 % from 500 to 300 hPa

The respective bias is added to both Y and Z when the data are created from the True profiles:

X = True + Xerr; corresponds to ERA

Y = True + Yerr; corresponds to RO15

Z = True + Zerr; corresponds to RS

We use these specified biased data sets to compute error variances via the 2CH method. Results are shown in Fig. 14, with

the results of the real data in the top row (a–c), and the results of the simulated bias data in the bottom row (d–f).

19



Figure 14. 2CH method error variances for ERA, RO, and RS (top row) and for simulated data using the specified empirical bias profiles

(bottom). Correlation between X and Z errors is zero for this experiment.

The error variances of the simulated biased data sets (bottom row) are quite similar to the error variances estimated with the

real data (top row), indicating that biases are largely responsible for the results using real data and how they vary from the 3CH

method results.

6 Summary and conclusions

In this study we compared two methods for estimating the error variances of multiple data sets, the three-cornered hat (3CH)5

and two-cornered hat (2CH) methods. Using a simulated data set in which we could vary the degree of correlation between two

data sets as well as specifying bias errors, we examined the sensitivity of the 3CH and 2CH methods to random and bias errors.

For the error model, we added known random or bias errors to 1460 specific humidity profiles (considered truth) obtained from

the ERA-Interim reanalysis (ERA) over a subtropical radiosonde station in Japan. We compared the effect of neglecting various

error covariance and other error terms in the 3CH and 2CH methods on the estimated error variances and standard deviations.10

We also considered the effect of a finite sample size on the estimates by repeating the calculations using a subset of 146 of

the total 1460 profiles. We found that the 3CH method was less sensitive to the neglected error terms for various random error
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correlations than the 2CH method. We also showed that the effect of bias errors on one of the data sets had a relatively small

effect on the 3CH method, but produced much larger errors in the 2CH method.

We also compared the 3CH and 2CH methods using real radiosonde (RS), radio occultation (RO), and ERA data. We find

that the 3CH method produces more consistent and accurate results than the 2CH method when using real data. The 2CH

method produced very different estimates of the error variance of ERA depending on which observational data set (e.g. RS or5

RO) was used in the comparison. Using an empirical bias model based on observed RS and RO difference from ERA during

2007, we showed that these differences in error variance estimates were likely caused by different biases in the RS and RO

data. The effect of bias errors is shown to give unrealistic results using the 2CH method.

Code availability. Code will be made available by the author upon request.

Data availability. Data can be made available from authors upon request.10

Appendix A: Derivation of the 2CH method

In the 2CH method, sums and differences of two data sets X and Z are used to derive the error variances of X and Z.

X = True + Xerr (A1)

Z = True + Zerr (A2)

(X + Z)2 = 4True2 + 4True (Xerr + Zerr) + (Xerr + Zerr)
2 (A3)15

(A4)

Equation (A3) is summed over all the data pairs to get

1

n

∑
(X + Z)2 = 4

1

n

∑
True2 +

1

n

∑[
(Xerr + Zerr)

2 + 4True (Xerr + Zerr)
]

(A5)

Defining the following expressions:20

M(X) = 1
n

∑
X

M(X, Y) = M(X · Y) = 1
n

∑
XY

Eq. (A5) becomes

MS(X + Z) =4MS(True) + VARerr(X) + VARerr(Z)

+ 2COVerr(X, Z) + 4M(True, Xerr + Zerr)
(A6)25
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We then subtract Z from X and square the difference to get

MS(X – Z) = VARerr(X) + VARerr(Z)− 2COVerr(X, Z) (A7)

Finally, we solve for MS(True) by subtracting Eq. (A7) from Eq. (A6)

4MS(True) = MS(X + Z)−MS(X – Z)− 4COVerr(X, Z)− 4M(True, Xerr + Zerr) (A8)

By squaring the expression X = (True + Xerr) we get the exact expression for the VARerr(X)5

VARerr(X) = MS(X) – MS(True)− 2M(True, Xerr) (A9)

and substituting for MS(True) from Eq. (A8) gives

VARerr(X) =MS(X)− 1/4[MS(X + Z) – MS(X – Z)]

− 2M(True, Xerr) + COVerr(X, Z) + M(True, Xerr + Zerr)
(A10)

Similarly, we obtain

VARerr(Z) =MS(Z)− 1/4[MS(X + Z) – MS(X – Z)]

− 2M(True, Zerr) + COVerr(X, Z) + M(True, Xerr + Zerr)
(A11)10

We note that the top lines in Eqs. (A10) and (A11) may be written as VARerr(X)=MS(X)–M(XZ) and VARerr(Z)=MS(Z)–M(XZ),

which are the forms used by Stoffelen (1998) and Vogelzang et al. (2011).
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