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Abstract. Despite turbulence being a fundamental transport process in the boundary layer, the capability of current numerical

models to represent it is undermined by the limits of the adopted assumptions, notably that of local equilibrium. Here we

leverage the potential of extensive observations in determining the variability of turbulence dissipation rate (ε). These observa-

tions can provide insights towards the understanding of the scales at which the major assumption of local equilibrium between

generation and dissipation of turbulence is invalid. Typically, observations of ε require time- and labor-intensive measurements5

from sonic and/or hot-wire anemometers. We explore the capability of wind Doppler lidars to provide measurements of ε. We

refine and extend an existing method to accommodate different atmospheric stability conditions. To validate our approach, we

estimate ε from four wind Doppler lidars during the 3-month XPIA campaign at the Boulder Atmospheric Observatory (Col-

orado), and we assess the uncertainty of the proposed method by data inter-comparison with sonic anemometer measurements

of ε. Our analysis of this extensive dataset provides understanding of the climatology of turbulence dissipation over the course10

of the campaign. Further, the variability of ε with atmospheric stability, height, and wind speed is also assessed. Finally, we

present how ε increases as nocturnal turbulence is generated during low-level jet events.

1 Introduction

Turbulence within the atmospheric boundary layer is critically important to transfer heat, momentum and moisture between the

surface and the upper atmosphere (Sobel and Neelin, 2006). Hence, global and regional models need an accurate representation15

of turbulence to produce precise atmospheric predictions of winds, temperature and moisture in the boundary layer. An accurate

forecast of these quantities has a critical impact on a variety of socio-economic activities, such as pollutant dispersion and air

quality forecasting (Huang et al., 2013) and forest fires prediction and management (Coen et al., 2013). Wind energy production

is also highly affected by turbulence in the boundary layer, as a lower power is generated when turbulence intensity is high

(Wharton and Lundquist, 2012), and turbulence also reduces the lifetime of wind turbines (Kelley et al., 2006).20

The production of turbulence kinetic energy in the boundary layer mainly takes place at large scales (Tennekes and Lumley,

1972). These large eddies then decay in smaller and smaller eddies through a "turbulence energy cascade" in the inertial
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sub-range (Kolmogorov, 1941), until the length scales are small enough that molecular diffusion is capable of dissipating the

kinetic energy into heat in the viscous sub-range. Current models assume that the generation of turbulence within a grid cell

(local production) is balanced by the dissipation ε of turbulence kinetic energy in the same grid cell (local dissipation). This

assumption of local equilibrium is appropriate for stationary and homogeneous flow (Albertson et al., 1997), and therefore it

can be applied at coarse scales (Lundquist and Chan, 2007; Mirocha et al., 2010). However, at finer scales, the fundamental5

assumptions of turbulence closures are broken (Nakanishi and Niino, 2006; Hong and Dudhia, 2012). Therefore, when using

models at fine horizontal resolution, the assumption of local equilibrium between generation and dissipation of turbulence is

not valid anymore: turbulence produced in one grid cell can be advected downwind before being dissipated.

Hence, improved turbulence parametrizations are crucially needed to refine the accuracy of model results at fine horizon-

tal scales. Yang et al. (2017) showed that, when testing the turbine-height wind speed sensitivity to different parameters in10

the Mellor–Yamada–Nakanishi–Niino (MYNN) planetary boundary-layer scheme (Nakanishi and Niino, 2009) and the MM5

surface-layer scheme (Grell et al., 1994) of the Weather Research and Forecasting model (Skamarock et al., 2005) in a complex

terrain region, roughly half of the wind speed variance was due to the accuracy of the parametrization of the turbulence dissi-

pation rate. ε also controls the evolution of several boundary layer processes, such as cyclone formation and dissipation (Zhang

et al., 2009), the formation of frontal structures (Chapman and Browning, 2001; Piper and Lundquist, 2004), and the flow in15

urban areas and other canopies (Baik and Kim, 1999; Lundquist and Chan, 2007). Moreover, dissipation in aircraft vortices

has a primary importance in aviation meteorology and air-traffic control (Gerz et al., 2005). Therefore, a correct representation

of ε would improve the quality of numerical weather prediction. However, in order to improve turbulence parameterizations,

the spatio-temporal variability of ε in the boundary layer needs to be studied in detail, as well as the dependence of ε with

atmospheric stability, orography, and turbulence itself.20

Estimates of turbulence dissipation rate have been calculated from sonic anemometers on meteorological towers in the

past (Champagne et al., 1977; Muñoz-Esparza et al., 2017) and hot-wire anemometers suspended on tethered lifting systems

(Frehlich et al., 2006; Lundquist and Bariteau, 2014) with the inertial sub-range energy spectrum method (Oncley et al., 1996)

and the second-order structure function method (Frehlich and Sharman, 2004). Wind profiling radars have also been used to

estimate ε (McCaffrey et al., 2017a), with the spectral width method. Wind Doppler lidars can also provide an extensive network25

of measurements of ε at different locations and at heights which are not accessible to traditional mast measurements. Four main

methods are currently known to derive ε from lidar measurements, depending on the lidar scanning mode and measurement

frequency: width of the Doppler spectra (Smalikho, 1995; Banakh et al., 1995), line-of-sight velocity spectrum (Banakh et al.,

1995; Drobinski et al., 2000; O’Connor et al., 2010), line-of-sight velocity longitudinal structure function (Frehlich, 1994;

Banakh and Smalikho, 1997; Smalikho et al., 2005), and line-of-sight velocity azimuthal structure function (Banakh et al.,30

1996; Frehlich et al., 2006).

In this study, we prove the capability of wind Doppler lidars to provide precise estimates of ε by refining the approach proposed

in O’Connor et al. (2010) to estimate ε from lidar line-of-sight velocity spectra. We assess the uncertainty of this method, and

present an extensive analysis of the variability of ε in the atmospheric boundary layer. We estimate turbulence dissipation rate

from the 3-month period of the eXperimental Planetary boundary layer Instrumentation Assessment (XPIA) field campaign35
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Figure 1. Map of the topography of the region where the XPIA field campaign took place. Contours in the right panel show elevation in m

ASL.

(Lundquist et al., 2017), described in Section 2, from sonic anemometers and vertical profiling lidars, with the approach

summarized in Section 3. The refinement of the method to derive ε from lidar to accommodate different stability conditions,

and the quantification of its uncertainty are presented in Section 4. In Section 5 we assess the variability of ε with atmospheric

stability, wind speed, and height, thus creating a climatology of turbulence dissipation. We finally focus, as a case study, on

how turbulence dissipation rate varies during a nocturnal low-level jet event.5

2 Data

To analyze the variability of turbulence dissipation rate, we use data from the meteorological tower and wind Doppler lidars

deployed during the XPIA field campaign, summarized in Lundquist et al. (2017). The XPIA campaign, which took place

at the Boulder Atmospheric Observatory (BAO) in northern Colorado between 2 March and 31 May 2015, was designed to

explore the capabilities of multiple instruments to characterize different flow conditions in the boundary layer. As shown in the10

map in Figure 1, the region of the XPIA campaign is characterized by relatively flat terrain, with a few gentle hills south of the

meteorological tower. The average elevation of the area is 1,584 MSL. Grass and low-crops fields surround the observatory,

with some scattered trees and compact buildings.

2.1 Meteorological tower measurements

During XPIA, the 300-m BAO meteorological tower (Kaimal and Gaynor, 1983) had two 3D sonic anemometers (Campbell15

CSAT3) at each of six levels (50, 100, 150, 200, 250, and 300 m AGL), providing measurements with a frequency of 20Hz.

The measurement accuracy was generally less than 1 · 10−3m s−1 in the horizontal and 5 · 10−4m s−1 in the vertical. At each

level, the two sonic anemometers were mounted pointing northwest (334◦) and southeast (154◦). In order to avoid tower
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wake effects, data from the northwest sonics are discarded when the wind direction was between 111◦ and 197◦, while wind

directions between 299◦ and 20◦ exclude data recorded by the southeast sonic (McCaffrey et al., 2017b). Data have been

tilt-corrected according to the planar fit method described in Wilczak et al. (2001). An additional sonic anemometer was

mounted on a 5-m AGL surface flux station located 200m south-west of the BAO tower over natural arid grassland. The sonic

anemometer (Campbell CSAT3A) at this location operated with a frequency of 10Hz.5

We quantify atmospheric stability from the 5-m tower data in terms of the Obukhov length L, defined as:

L=− θv ·u3∗
k · g ·w′θ′v

(1)

where θv is the virtual potential temperature (K), calculated from the sonic anemometer virtual temperature data Tv and

the measured pressure p as θv = Tv

(
p0
p

)R/cp
with p0 = 1000 hPa, and R/cp ≈ 0.286; k = 0.4 is the von Kármán constant;

g = 9.81 m s-2 is the gravity acceleration; u∗ = (u′w′
2

+ v′w′
2
)1/4 is the friction velocity (m s-1); and w′θ′v is the kinematic10

sensible heat flux (Wm−2). The turbulent quantities have been separated in average and fluctuating parts using the Reynolds

decomposition with an averaging time of 30 minutes. This time scale is a common choice (De Franceschi and Zardi, 2003;

Babić et al., 2012) when studying boundary layer processes, since it is generally longer than the turbulence time scales, but also

shorter than the mean flow unsteadiness time-scales. For atmospheric stability, we classify neutral conditions as L≤−500m

and L > 500m; unstable conditions as −500m< L≤ 0m; and stable conditions as 0m< L≤ 500m (Muñoz-Esparza et al.,15

2012). Neutral conditions were rarely detected (less than 5% of the times) during the period of the campaign.

At the base of the BAO tower, a tipping-bucket rain gauge was used to measure precipitation. We have excluded from

our analysis the times within one hour from precipitation events (∼ 8% of the times), as during these cases the measurement

accuracy of both sonic anemometers and wind Doppler lidars drops.

2.2 Wind Doppler lidar measurements20

Several vertical profiling and scanning wind Doppler lidars were deployed at XPIA. In this study, we focus on three vertical

profiling lidars and one scanning lidar mainly used in vertical staring mode. All these instruments were co-located approxi-

mately 100m south of the BAO tower (Figure 1).

A WINDCUBE version 2 (v2) profiling lidar was deployed by the University of Colorado Boulder from 12 March to 8 June

2015. This lidar samples line-of-sight velocity in four cardinal directions with a nominal 28◦ zenith angle, followed by a fifth25

vertical beam. Range gates were centered on 40, 50, 60, 80, 100, 120, 140, 150, 160, 180, and 200m AGL. The retrieval of

the actual wind speed from this measurement approach assumes horizontal homogeneity across the cone defined by the laser

beams during the ∼ 4s required to complete a sequence of measurements across the five beams.

Two WINDCUBE version 1 (v1) profiling lidars (Aitken et al., 2012; Rhodes and Lundquist, 2013) were deployed by the

University of Colorado Boulder and the National Center for Atmospheric Research from 1 and 4 March 2015 past the end of30

the experiment. These instruments measure line-of-sight velocity in four cardinal directions (nominal 28◦ zenith angle), with a

range resolution of 20m, from 40 to 220 m AGL. The assumption of horizontal homogeneity of the flow in the sampling volume
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Table 1. Main technical specifications of the lidars at XPIA used in this study.

WINDCUBE v2 WINDCUBE v1 (61 & 68) Halo Streamline

Wavelength 1.54 µm 1.54 µm 1.548 µm

Receiver bandwidth ±57.5 MHz ±55 MHz ±25 MHz

Nyquist velocity (B) ±44 m s−1 ±42.3 m s−1 ±19.4 m s−1

Signal spectral width (∆ν) 2.65 m s−1 3.39 m s−1 1.5 m s−1

Pulses averaged (n) 20000 10000 20000

Points per range gate (M ) 32 25 10

Range-gate resolution 10− 20 m 20 m 30 m

Minimum range gate 40 m 40 m 15 m

Number of range gates 11 10 200

Pulse width 175 ns 200 ns 150 ns

Time resolution ∼ 1Hz ∼ 1 Hz ∼ 1 Hz

is again necessary to retrieve the actual wind vector. These instruments will be identified in the remainder of the analysis with

their serial numbers, 61 and 68.

Finally, a Halo Photonics Streamline Doppler scanning lidar (Pearson et al., 2009) from the U.S. Department of Energy

Office of Science Atmospheric Radiation Measurement program was deployed from 6 March to 16 April 2015. This lidar used

a range gate resolution of 30m, with 200 total range gates. However, the maximum range gate with an acceptable number5

(> 30%) of valid measurements (SNR >−20dB) was at about 800m AGL. This scanning lidar was mainly used in a vertical

staring mode. The scan strategy also included a 40-s plan-position-indicator (PPI) scan at an elevation angle of 60◦ once every

12min (from which the derivation of the horizontal wind speed is possible), a 10-min tower stare once per hour, and a target

sector scan once per day to confirm heading relative to the tower (Newsom et al., 2017).

Table 1 includes the main technical characteristics of the three commercial lidar models considered in our analysis.10

3 Methods to estimate turbulence dissipation rate ε

3.1 Turbulence dissipation from sonic anemometer

Sonic anemometers data can be used to calculate turbulence dissipation rate with two different methods: the inertial sub-range

energy spectra method and the second-order structure function method. Muñoz-Esparza et al. (2017) analyzed data at XPIA

and showed that the second-order structure function method has a lower error in estimating ε compared to the inertial sub-range15

energy spectra method, even when shorter overlapping temporal sub-windows are used to obtain a more regular pattern in the

spectra. Therefore, we also apply the second-order structure function method to estimate ε from sonic anemometer measure-

ments every 30s, for the 3-month period of XPIA.
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According to Kolmogorov’s hypothesis, within the inertial sub-range the velocity increments, expressed as second-order struc-

ture function DU of the horizontal velocity U , can be related to ε as:

DU (r)≡< [U(x+ r)−U(x)]2 >=
1

a
ε2/3r2/3 (2)

where < ·> denotes an ensemble average, and a is the Kolmogorov constant. We assume a= 0.52, which is consistent with

the range of values present in the literature (Paquin and Pond, 1971; Sreenivasan, 1995). The spatial separations r, which5

must be within the inertial sub-range, can be expressed as temporal velocity increments by invoking Taylor’s frozen turbulence

hypothesis (Taylor, 1935), so that ε can be determined as:

ε=
1

Uτ
[aDU (τ)]

3/2 (3)

where DU (τ) is the second-order structure function of the horizontal velocity U calculated over temporal increments τ . For

every ε calculation (i.e. every 30s), the second-order structure function was calculated with a 2-min window for τ , centered at10

the nominal time at which ε is calculated. Then, the fitting to the theoretical model only used the time range between τ = 0.1s

and τ = 2s. Such a short temporal separation in the data is expected to lie well within the inertial sub-range, therefore excluding

the undesired contributions from the outer scales which would undermine Kolmogorov’s fundamental assumptions. Moreover,

despite the reduced size of the chosen time range, the high temporal resolution of the sonic anemometers still guarantees an

adequate number of data points to allow a robust estimation of the structure function. Data inspection confirms that the desired15

theoretical τ2/3 slope is observed in the chosen range for τ (example shown in the Supplement).

As already mentioned, data were excluded for wind directions waked by the tower. When neither of the two anemometers

is affected by tower wakes, ε is defined as the average between the two independent values obtained from the two sonics at

each height. To quantify the uncertainty in turbulence dissipation rate measurements from the sonic anemometers, we have

compared ε from the two sonics at each level when neither one was influenced by the tower wake. For each tower boom20

direction (northwest and southeast), we calculate the median absolute error (MAE) between ε from the sonic anemometers

mounted on the considered boom direction and the correspondent average value from the two sonics:

MAE = median

(
|εsingle− εaverage|

εaverage

)
· 100 (4)

In calculating the error, we consider data from all heights, as no significant difference was noticed at different levels. For both

the boom directions, we find very similar results, with MAE = 19%, which is reduced to 14% when a 30-min running mean25

is applied to the ε time series. The distributions of the errors are included in the Supplementary Material. No bias was detected

between the retrievals from the sonic anemometers on the two boom directions.

3.2 Dissipation from Doppler lidar

Wind Doppler lidars can provide a great improvement of our understanding of the variability of turbulence dissipation thanks

to the ease of their deployment in different locations and the long measurement range allowed by several commercial models.30

To do so, robust methods to estimate ε with lidars are necessary, and their uncertainty has to be assessed. For this purpose, we
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Figure 2. Turbulence energy spectrum according to Kolmogorov’s hypothesis.

follow and refine the approach described in O’Connor et al. (2010) to estimate ε from vertical profiling lidars or scanning lidars

used in vertical staring mode. For homogeneous and isotropic turbulence, within the inertial sub-range, the turbulent energy

spectrum (Figure 2) can be expressed according to the Kolmogorov (1941) hypothesis in terms of wavenumber k as:

S(k) = aε2/3k−5/3 (5)

where a' 0.52 is the one-dimensional Kolmogorov constant. The wavenumber k can be written in terms of a length scale5

L= 2π/k by invoking Taylor’s frozen turbulence hypothesis (Taylor, 1935). By integrating (5) over the wavenumber space,

starting from the wavenumber k1 correspondent to a single lidar sample, the variance σ2
v of the de-trended observed line-of-

sight velocity from N samples can be obtained:

σ2
v =

k1∫
k

S(k)dk =−3

2
aε2/3

(
k
−2/3
1 − k−2/3

)
= (6)

=
3a

2

( ε

2π

)2/3(
L
2/3
N −L2/3

1

)
(7)10

and therefore if the length scales are properly chosen (and consistent with how σv is computed) then ε can be calculated without

the need of systematically computing turbulence energy spectra. In (7), the length scale L1 for a single sample interval is given

by:

L1 = Ut+ 2z sin

(
θ

2

)
(8)

where U is the horizontal wind speed, t is the dwell time, θ the half-angle divergence of the lidar beam, and z the height15

AGL. Since Doppler lidars generally have a very small θ (< 0.1 mrad), the second term in (8) is typically negligible. For N

samples, the length scale becomes LN =NUt. For the WINDCUBE lidars, the variance of the observed line-of-sight velocity

σ2
v can be calculated as average from all the beams. In doing so, we include turbulence contributions from both the horizontal

and vertical dimensions, and we make the limiting (Kaimal et al., 1972; Mann, 1994) assumption of isotropic turbulence. For
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the Halo Streamline lidar, which operated in a vertical stare mode, σ2
v is calculated from the vertically pointing beam, and

therefore ε will strictly include turbulence contributions only in the vertical dimension, thus possibly determining different

values compared to what is retrieved from the WINDCUBE lidars. Another difference due to the different scan patterns used

by the considered lidars is related to the determination of the horizontal wind speed U . For the WINDCUBE lidars, U can be

derived from the line-of-sight velocity measurements from the different beams, with the assumption of horizontal homogeneity5

of the flow over the probed volume. In the case of the Halo Streamline, no information about the horizontal wind can be derived

from the measurements in the vertical staring mode, which only measures the vertical component of the wind speed. U is then

retrieved from a sine-wave fitting from the VAD scans that are performed every 12min. The heights at which the measurements

are taken during the tilted VAD scans are not the same as the heights sampled in the vertical staring mode. Therefore, for each

considered level in the vertical staring mode, U is determined from a linear interpolation of the wind speed retrieved at the two10

closest heights during the VAD scans. Considerations about the error introduced by this procedure on the estimation of ε will

be discussed in Section 4.

Lidar measurements are inherently affected by signal noise as well as possible variations of the aerosol fall speeds, which

provide additional contributions to the observed variance. By assuming that the contribution of all atmospheric flows to the

observed line-of-sight variance within the considered short time scales can be regarded as of turbulent nature, the variance σ2
v15

in (7) can be written as the sum of three different terms, which can be considered to be independent of one other (Doviak et al.,

1993):

σ2
v = σ2

w +σ2
e +σ2

d (9)

σ2
w is the desired net contribution from atmospheric turbulence at the scales that can be measured by the lidar (Brugger et al.,

2016), from which the estimation of ε can be made. The additional contributions to the variance are due to the instrumental20

noise (σ2
e ) and the variation in the aerosol terminal fall speeds within the measurement volume from different sample intervals

(σ2
d), which however can safely be neglected since the particle fall speed is typically < 1 cm s−1. For a heterodyne Doppler

lidar, Pearson et al. (2009) provides the following expression for the noise contribution to the variance, as a function of the

signal-to-noise ratio (SNR):

σ2
e =

∆ν2
√

8

αNp

(
1 +

α√
2π

)2

(10)25

where Np is the accumulated photon count:

Np = SNRnM. (11)

In this expression, n is the number of lidar pulses which are averaged to get a profile, and M is the number of points sampled

within a single range gate to get a velocity estimate. α is the ratio of the lidar photon count to the speckle count (Rye, 1979):

α=
SNR√

2π

B

∆ν
(12)30

where B is the bandwidth, equivalent to twice the Nyquist velocity, and ∆ν is the signal spectral width. For the WINDCUBE

lidars, σ2
e is calculated as average from all the beams.
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The noise contribution to the observed variance determines an additional area below the turbulence spectrum in its high-

frequency region (Frehlich, 2001) which, if not removed, would induce an overestimation of ε. Therefore, the turbulence

dissipation rate can be estimated as:

ε= 2π

(
2

3a

)3/2
(

σ2
v −σ2

e

L
2/3
N −L2/3

1

)3/2

(13)

This method relies on the assumption that both length scales L1 and LN are within the inertial sub-range. Therefore, the5

choice of the number of samples N to use should be carefully addressed, since only the turbulence contributions in the inertial

sub-range should be included in the calculation. We discuss in detail this choice and its relationship with different atmospheric

stability conditions and heights in the next section.

4 Error in turbulence dissipation rate estimates from lidar measurements

Although promising, the method to calculate ε from lidar data presented in the last section needs to be carefully analyzed in10

relation to its fundamental assumptions and its uncertainty, especially given the limited temporal resolution of lidar measure-

ments. In this section we refine the method to derive ε from lidar data by discussing, in relationship with different heights and

atmospheric conditions, the choice of the number of samples N to use for the calculation of the variance of the de-trended

line-of-sight velocity and corresponding length scales. Moreover, we assess the uncertainty of this method by systematically

comparing ε values from lidar measurements with what is obtained from the sonic anemometers, and we discuss how the15

estimation error changes with height in the boundary layer.

While the high temporal resolution of sonic anemometers facilitates the identification of sizable samples within the inertial

sub-range, for lidars, the length of the samples used to estimate the variance of the line-of-sight velocity should be accurately

chosen. In fact, the shorter the sampling time, the higher the measurement error in the estimate of the variance of line-of-sight

velocity would be, because of both higher measurement uncertainty which impacts its representativeness (Lenschow et al.,20

1994) and a higher relative contribution of the instrumental noise. According to the formulation in Lenschow et al. (2000), the

measurement error ∆σ2
w in the turbulence contribution to the observed variance σ2

w can be estimated as:

∆σ2
w ' σ2

w

√
4σ2

e

Nσ2
w

(14)

so it therefore decreases as the number of samples N increases, with the hypothesis that the noise contribution σ2
e to the

variance of each velocity sample used to estimate ε is similar to the ensemble mean error.25

On the other hand, if the sampling time is too long, the variance will incorporate undesired contributions from the large-

scale processes, which would cause a severe underestimation of ε. Figure 3 shows how the estimated value of ε varies with the

sample length used in the calculation, for a case using the WINDCUBE v2 data at 100m AGL. As long as the sample length

stays within the inertial sub-range (up to ∼ 45s in the case shown), ε stays approximately constant. However, the estimate

of ε decreases by up to an order of magnitude when the contributions from the outer scales are erroneously included in the30
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Figure 3. Example of the dependence of ε on the sample length used in the calculation. Data from the WINDCUBE v2 lidar at 100m AGL,

30 March 2015, 14:20 UTC.

calculation, which uses expressions that are valid strictly only within the inertial sub-range.

Moreover, since different atmospheric stability conditions are inherently characterized by different turbulence scales (Kaimal

et al., 1972), the transition from the inertial sub-range to the outer scales occurs for different sample lengths, depending on the

atmospheric stability. Figure 4 shows examples of turbulence spectra calculated over 15-min intervals for data measured by

the WINDCUBE v2 lidar at 100m AGL in different stability conditions. For stable conditions (panel a), the transition from the5

inertial sub-range (which can be identified by comparing the slope of the spectrum with the theoretical −5/3 value shown by

the dashed line) to the outer scales occurs at a higher frequency compared to the unstable case (panel b). Therefore, the choice

of the number of samples N to use in the calculation should change accordingly. As a general rule, we expect shorter time

scales to be adequate for stable conditions, when the turbulent eddies in the boundary layer are smaller, while longer scales

would be more suitable during unstable conditions, characterized by larger convective eddies that can be fully captured only10

when using larger scales. Moreover, different altitudes can also impact the extension of the inertial sub-range, with a wider

development expected at higher heights, as the integral length scale of turbulence increases (Wang et al., 2016).

To estimate the appropriate time scales which best balance these competing factors, we calculate ε, at each height from

each of the considered lidars, using several values for the number of samples N used in the calculation. At the heights where

there is correspondence between lidar and sonic anemometer measurements, we then compare the ε values from the lidars15

with the corresponding ε calculated at the meteorological tower. The estimates of ε from sonic anemometers and lidars have

been calculated at slightly different time stamps, given the unavoidable difference in the nominal measurement time stamps

of instruments operating with different temporal resolutions. Given the inherent turbulent nature of ε and its remarkable range

of variability, the comparison between the time series from sonic anemometers and lidars could be flawed by the effect of the

turbulent high-frequency variability of ε. Moreover, since this analysis is focused on the assessment of the appropriate time20
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Figure 4. Turbulence energy spectrum for a stable case (panel a - 2 April 2015, 03:00 UTC), and an unstable case (panel b - 3 April 2015,

22:15 UTC), calculated from 15 minutes of data measured by the WINDCUBE v2 at 100m AGL. The dashed lines represent the theoretical

−5/3 slope expected in the inertial sub-range. To calculate ε for these cases, the optimal sample length from comparison with the sonic

anemometers corresponds to frequencies greater than 0.04s−1 for stable conditions, greater than 0.01s−1 for unstable conditions.
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Figure 5. Median absolute error between ε estimates (smoothed with a 30-min running mean) from sonic anemometer and WINDCUBE v2

lidar data at 100m AGL during the whole period of the XPIA campaign, as a function of the sample length used to estimate ε from lidar data.

scales for different stability conditions, consistency with the time scale used to calculate turbulent fluxes for the determination

of the Obukhov Length L is advisable. Therefore, a 30-min running mean is applied to the time series of ε from both sonic

anemometers and lidars before comparing the estimates from the different instruments.

To quantify the difference between sonic and lidar estimates of ε, we use the median absolute error (MAE), defined as:

MAE = median

(
|εlidar − εsonic|

εsonic

)
· 100 (15)5

The result of this comparison is reported in Figure 5, which shows how the MAE varies with the time scale (calculated as Nt,

where t is the dwell time of the considered lidar) used to estimate ε for the WINDCUBE v2 lidar, for different atmospheric
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Table 2. Time scales which minimize the median absolute error (MAE) in the comparison between ε from sonic anemometers and lidars

at 100m AGL for stable and unstable conditions. Results for neutral conditions are not shown since these were rarely detected during the

campaign.

Stable conditions Unstable conditions

Time scale MAE Time scale MAE

WINDCUBE v2 24s 44% 88s 27%

WINDCUBE v1 - 61 24s 49% 96s 28%

WINDCUBE v1 - 68 32s 49% 72s 26%

Halo Streamline 28s 62% 73s 37%

Average 27s 51% 82s 29%

stability conditions, at 100m AGL. As the used sample length increases, the average error in ε estimated from lidar initially

decreases from the high values related to the strong noise contribution at short time scales. Then, a minimum in the error

is reached. As the size of the sample further increases, the average error rises again, due to the incorporation of undesired

contributions from the outer scales. Moreover, as expected, the minimum error for stable (and neutral) conditions is found to

be at shorter time scales than unstable conditions. Also, the minimum error in stable conditions is higher than minimum error5

for unstable conditions, since the need of using a shorter time scale implies a higher relative contribution of the instrumental

noise to the error. The same qualitative pattern is found for all the considered lidars, at all heights. At each height, for each lidar

and for each stability classification, we select the time scale that produces the lowest median absolute error compared to the

sonic anemometer estimates of ε: this can be interpreted as the longest time scale that does not include substantial contributions

from the undesired outer scales. Table 2 summarizes the selected time scales for the considered lidars for the different stability10

conditions (neutral conditions are not shown because they occurred less than 5% of the time), as well as the average from all

the instruments, at 100m AGL. As expected, the larger eddies which characterize unstable conditions determine the need for

a longer time scale to capture the influence of all the scales included in the inertial sub-range, while for stable conditions a

shorter time scale is more appropriate. The median error is higher during stable conditions (average: MAE = 51%) compared

to unstable conditions (average: MAE = 29%), as expected and as observed in other studies (Smalikho and Banakh, 2017).15

Looking at the variability of the results with height, we find that the optimal time scales increase with height. At those

heights < 300m AGL where lidar measurements do not match the level of any sonic anemometer on the meteorological

tower, the adopted time scales are chosen as averages between the scales at the closest levels covered by sonics. For the Halo

Streamline lidar, whose measurements are considered up to 800m AGL in this study, we determine the appropriate sample

sizes by linearly extrapolating aloft, for each stability condition, the sequence of the chosen scales at the lower levels, where20

a comparison with the meteorological tower data is possible. The linear trend matches well the observed results up to 300m,

with R2 > 0.9 for all stability conditions (plot shown in the Supplementary Materials). Moreover, the rationality of the chosen
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Figure 6. Variability of the minimum median absolute error (calculated for the optimized number of samples at each height for each atmo-

spheric stability conditions) between lidar and sonic anemometer estimates of ε (smoothed with a 30-min running mean) with height, for the

four considered lidars.

scales at high altitudes has been confirmed after inspecting the extension of the inertial sub-range in turbulence spectra from

the Halo Streamline lidar data (figure not shown).

Once the appropriate time scales have been identified at each height, considerations about how the error in lidar estimates of

ε varies with height can be made. Figure 6 shows how the median absolute error between lidar and sonic estimates of ε changes

with height, for all the levels at which sonic anemometers were mounted on the BAO tower. When a match between the height5

of lidar measurements and the level of the sonics was not present, the median error shown in the plot has been estimated as

the average between the errors at the two closest lidar range gates. For the WINDCUBE v1-68, data at 50m AGL are not

available because of measurement contamination due to hard strikes with the guy wires of the meteorological tower. The same

issue invalidates measurements at 140m AGL from the WINDCUBE v1-61, so the comparison with the sonic anemometer at

150m AGL has been performed using only this lidar’s data measured at 160m AGL. For the Halo Streamline, measurements10

below 105m AGL show a high percentage of low SNR data and therefore are not reported. For the WINDCUBE lidars,

the median absolute error slightly increases with height, likely because of the severe reduction of the number of acceptable

measurements at higher levels, and it always stays below 50%. For the Halo Streamline lidar, the median error stays almost

constant in the considered portion of the boundary layer. It is reasonable to explain the higher error (∼+10%) of the Halo

Streamline compared to the WINDCUBE lidars at 100m AGL as a consequence of the differences in the spatial dimensions15

that are samples by the two lidars. While the lidar beams of the WINDCUBE are tilted, and they therefore include turbulence

contributions in the horizontal dimension (which is the only contribution considered in the determination of ε from the sonic

anemometers), ε from the Halo Streamline is only retrieved using information from the vertically pointing beams. Moreover, the

necessary approximations adopted in the determination of the horizontal velocity U for the Halo Streamline lidar, as explained
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Figure 7. Time series from 6 April 2015 00 UTC to 10 April 2015 00 UTC comparing ε from sonic anemometers and all the considered

lidars at 100m AGL. Data have been smoothed with a 30-min running mean.

in Section 3.2, likely contributes an additional error for this lidar. However, the magnitude of this additional error due to the

reduced frequency in determining U for the Halo Streamline is comparable with the additional uncertainty related to the drop of

instrumental performance that the WINDCUBE show at higher levels. Therefore, the estimates of ε from the Halo Streamline

can be considered physically robust in the lowest few hundred meters of the boundary layer.

Possible sources for the discrepancy found between ε from sonic anemometers and lidars might arise from the different5

temporal resolution and sampling volumes of the various instruments, as well as the 100m spatial separation between the lidar

site and the BAO meteorological tower. In any case, given the wide range of variability of ε, which can span ∼ 6 orders of

magnitude during its typical diurnal cycle (Section 5), and the inherent uncertainty in the sonic anemometers’ retrievals of ε

(Section 3.1), the obtained magnitudes of the error prove that the refined method to retrieve ε from lidar measurements gives

robust estimates of turbulence dissipation rate. The accommodation for different stability conditions in the choice of the time10

scales used in the method considerably reduces, especially for stable conditions, the magnitude of the errors (obtained through

propagation of errors) found in the original study (O’Connor et al., 2010). To visualize the good agreement between sonic

anemometer and lidar estimates of ε, Figure 7 shows the time series for a portion of the XPIA campaign, with values from

all the considered instruments at 100m AGL. A clear diurnal pattern is revealed, with higher values of turbulence dissipation

during the day, and differences of several orders of magnitude between daytime and nighttime values of ε. These results15

will be explored in more detail in Section 5. A systematic comparison between ε estimates from sonic anemometers and

the WINDCUBE v2 lidar at 100m AGL is shown by the density histograms in Figure 8, for the whole period of the XPIA

campaign, for different stability conditions and smoothing. The coefficient of determinations R2 are also reported in the plots.
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Figure 8. Correlation between ε values from sonic anemometer and WINDCUBE v2 lidar at 100m AGL for the whole period of the XPIA

campaign, using the selected time scales for the estimation of ε from lidar data. The color scales represent the probability of occurrence in

percentage, and the dark dashed lines show perfect correlation. (a) All stability conditions, raw data (MAE = 62%); (b) all stability conditions,

30-min running mean applied (MAE = 34%); (c) stable conditions, raw data (MAE = 67%); (d) stable conditions, 30-min running mean

applied (MAE = 44%); (e) unstable conditions, raw data (MAE = 58%); (f) unstable conditions, 30-min running mean applied (MAE =

27%).

The good agreement between data from sonic anemometer and lidars is confirmed, with unstable conditions showing a better

performance (R2 = 0.89 for the smoothed time series) compared to stable conditions (R2 = 0.74). Moreover, the plots show

the effect of the choice of applying the 30-min running mean before comparing ε values from the different instruments. In the

figure, the panels on the left compare ε without any temporal filter (one value every ∼ 4s), while the panels on the right show
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the comparison between time series after the 30-min running mean has been applied. The application of the 30-min running

mean to the ε time series increases the correlation between the different time series. In any case, even for the raw time series,

the values of the coefficient of determination are always greater than 0.6.

4.1 Determination of the optimal time scales to retrieve ε from lidars in absence of co-located sonic anemometers

The availability of multiple sonic anemometers co-located with the lidars at XPIA has allowed for a direct comparison between5

ε estimates from different instruments to determine the optimal length scales, in different stability conditions, to use when

retrieving ε from Doppler lidar measurements. This approach does not require the direct calculation of spectra from the line-

of-sight velocity measured by the lidars, and therefore it represents a time-efficient technique. However, the proposed method

is only viable when sonic anemometers are deployed in the near vicinity of a lidar, and when measures of atmospheric stability

are available.10

When a comparison with sonic anemometer data is not possible, the appropriate time scale to use in the lidar retrieval

of ε can be determined by finding the maximum wavelength within the inertial sub-range in the velocity spectra from the

lidar measurements. To do so, spectral models can be fit to the observed spectra. Several models have been proposed for

turbulence spectra in different stability conditions (Kaimal et al., 1972; Panofsky, 1978; Olesen et al., 1984). We test the

spectral model proposed by Kristensen et al. (1989), which proposes expressions for both the cases of an isotropic and an15

anisotropic horizontally homogeneous flow, without assumptions on the stability condition. To validate our results and test this

alternative approach to derive ε from lidar measurements, we use data from the Halo Streamline lidar to estimate the maximum

wavelength λz within the inertial subrange. Since the Halo mainly operated in a vertical stare mode during XPIA, we consider

the following expression for the turbulence spectrum of the vertical component of the wind speed, assuming an anisotropic

horizontally homogeneous flow:20

S(k) =
σ2
z lz
2π

1 + 8
3

(
lzk
a(µ)

)2µ
[
1 +

(
lzk
a(µ)

)2µ]5/(6µ)+1
(16)

where k is the wavenumber, σz is the standard deviation of the vertical component of the wind speed used to compute the

spectrum, lz is the integral scale of the vertical velocity along the horizontal flow trajectory, and the parameter µ controls

the curvature of the spectrum. We use µ= 1.5, which provides a good match with our experimental spectra, as also found in

previous studies (Lothon et al., 2009; Tonttila et al., 2015). The parameter a can be expressed as a function of µ as:25

a(µ) = π
µΓ
(

5
6µ

)
Γ
(

1
2µ

)
Γ
(

1
3µ

) (17)

We calculate spectra using 10-min consecutive data, and we fit the spectral model to the experimental data, leaving out fre-

quencies greater than 0.2Hz, which are affected by instrumental noise (Frehlich, 2001), not modeled here. An example of a

measured spectrum and the fit resulting from the model are shown in Figure 9. The transition wavelength λz between the
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Figure 9. Example of power spectral density of the vertical component of the wind speed as measured by the Halo Streamline lidar on 11

March 2015 18:05 UTC. The red line represents the fit according to the spectral model from Eq. (16), the orange dotted line shows the

theoretical slope.

inertial sub-range and the outer scales can be expressed as a function of the integral scale lz and the parameter µ:

λz =

[
5

3

√
µ2 +

6

5
µ+ 1−

(
5

3
µ+ 1

)]1/(2µ)
2π

a(µ)
lz (18)

Following the approach in Tonttila et al. (2015), we estimate the timescale corresponding to this transition wavelength by

dividing λz by the collocated wind speed derived from the closest PPI scan performed by the Halo Streamline lidar.

To compare the results from this approach with what we obtain from the comparison with dissipation rates from the sonic5

anemometer data, we apply this technique to the data from the Halo Streamline for the whole period of XPIA, and calculate the

average timescales for different stability conditions at 100m AGL. We obtain an average time scale of 32s in stable conditions,

and 73s in unstable conditions. Both these values compare well with what is found with the more time-efficient comparison

with the sonic anemometer retrievals (values in Table 2), thus confirming that the use of spectral models can be considered a

valid alternative for the determination of the optimal sample lenghts to retrieve ε from lidar data.10

The use of spectral models to determine the appropriate sample size to use when retrieving ε from lidars can also be applied

when information about atmospheric stability are not available or accurate. In these cases, instead of calculating an average

optimal sample size for each stability condition, an appropriate time scale can be determined at each time ε is retrieved from

lidar measurements, from a single spectrum. We compare ε values from the sonic anemometers and from the Halo Streamline

lidar, with the optimal time scales obtained from both the proposed approaches (comparison with the sonic anemometer data15

and analysis of instantaneous spectra) in Figure 10, for the same time period shown in Figure 7. The use of spectral models

to determine the extension of the inertial sub-range in the lidar spectra produces valid estimates of ε: for this case we obtain a

MAE= 40%, and a correlation coefficient R2 = 0.78.
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Figure 10. Time series from 6 April 2015 00 UTC to 10 April 2015 00 UTC comparing ε from sonic anemometers and the Halo Streamline

lidars at 100m AGL, where the time scales for the lidars have been determined with both the proposed approaches (comparison with ε from

sonic anemometers and fit with spectral models). Data have been smoothed with a 30-min running mean.

5 Variability of turbulence dissipation rate

Once the capability of the method to provide accurate estimates of ε from lidar data has been tested, the variability of turbulence

in the boundary layer can be assessed, using data from the various instruments deployed at XPIA.

The time series of ε shown in the previous section revealed that, during the course of the day, ε changes by several orders

of magnitude. To better explore this diurnal variability, Figure 11 shows the daily climatology of turbulence dissipation rate,5

calculated as median of the data from the sonic anemometer, WINDCUBE v2 lidar and Halo Streamline lidar. Plots for the two

WINDCUBE v1 lidars are shown in the Supplementary Materials, and are similar to the results from the WINDCUBE v2. A

general good agreement between the climatology from sonic anemometers and lidars can be observed. A definite diurnal pattern

is evident from each panel. As expected, the mainly quiescent conditions at night determine low values of turbulence dissipation

rate (ε∼ 10−5−10−4 m2s−3), while daytime convection increases the median turbulence dissipation in the boundary layer by10

several orders of magnitude (ε∼ 10−2 m2s−3). During nighttime, however, the median values of ε show more variability than

during daytime conditions, as traces of intermittent bursts of ε can be detected in the climatology. We will investigate these

changes in ε in more detail, by relating the variability of ε with wind speed, especially in the case of nocturnal low-level jets.

Also, the study of the climatology of ε can give insights on how ε changes with height. The analysis of the climatology from

the sonic anemometers (right panel in Figure 11), which allow measurements of ε at 5m AGL, shows how ε is higher close to15

the surface throughout the day, while above 50m AGL the change of ε with height is less noticeable. A similar result can be

found from lidars, which provide ε measurements starting at 40m AGL for the WINDCUBE v2, and 75m AGL for the Halo

18



Figure 11. Daily climatology of turbulence dissipation rate derived from raw values from the Halo Streamline (left), the WINDCUBE v2

lidar (center), and sonic anemometers (right). Results from the two WINDCUBE v1s are included in the Supplementary Material.

Streamline, with reduced variability of ε with height in the majority of the sampled height range. The slight increase of ε above

∼ 600m AGL at night for the Halo Streamline lidar (left panel in Figure 11) can be explained as due to more random errors

in the line-of-sight velocity measured by the lidar at high altitudes but also as effect of the higher frequency of good-quality

measurements at higher levels during high wind speed events, which determine higher turbulence, as will be shown later in this

section. A systematic analysis of how turbulence dissipation rate varies with height is shown in Figure 12. For each instrument,5

the percentage difference in ε is shown, and it is calculated by taking as reference value the ε value closest in time from the

sonic anemometer at 5m AGL, so that a common reference level is identified for all the instruments. The continuous line in the

plot shows the median value at each height, while the shaded band represents the 1st and 3rd quartiles of the data distribution.

The plot confirms that turbulence dissipation rate shows most of its variability with height close to the surface, as also found

by Balsley et al. (2006). A 75% decrease in the median ε value is observed moving from 5m AGL to 50m AGL for the sonic10

anemometer data. We expect this large reduction in ε to be due to a rapid decrease in shear production with height close to

the surface, as it has been shown (Nilsson et al., 2016) that shear production has a strong connection with dissipation close to

the surface. An additional increase of height determines a lower rate of average reduction of ε with height, with the median ε

values for the sonics experiencing an additional 15% reduction (compared to the reference 5m AGL level) between 50m AGL

and 300m AGL. Variations of comparable magnitude are also found for the lidar data, for both the WINDCUBE v2 and the15

Halo Streamline. In any case, the spread around the median value is quite extensive at all the considered heights for all the

instruments.

The effect of different atmospheric stability conditions on turbulence dissipation can be investigated in more detail by relating

ε with the correspondent Obukhov length (L) values, which is used here as a measurement of stability. Figure 13 shows the

relationship between turbulence dissipation rate and the absolute value of L, for the sonic anemometers, the WINDCUBE20

v2, and the Halo Streamline, at 100m AGL. For each instrument, we sort ε based on L. Then, we sub-divide the ε data in

correspondence of equally-spaced (in the logarithmic space) L bins. The median ε in each group is shown by the continuous

line in the plot. The shaded area shows the range between the 1st and 3rd quartiles. Results from raw ε data (i.e. without

the application of the 30-min running mean) are shown in the plot. However, no substantial differences arise from the use of
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Figure 12. Turbulence dissipation rate (raw values) as a function of height for different instruments. The variability with height is expressed as

percentage change assuming as reference level 5m AGL. The continuous line in the plot represents the median value for different instruments,

while the shaded area creates a band corresponding to the 1st and 3rd quartiles of the values.

Sonic anemometer

WINDCUBE v2

Halo Streamline

0.5 1 5 10 50 100 50010-6

10-5

10-4

0.001

0.010

Absolute value of Obukhov length [m]

ϵ
[m

2 s
-3
]

Unstable conditions

Stable conditions

Figure 13. Turbulence dissipation rate (raw values at 100m AGL) as a function of the absolute value of the Obukhov Length L. The thick

lines in the plot represent the median value for the different instruments, while the shaded area creates a band corresponding to the 1st and 3rd

quartiles of the distributions. Continuous (dashed) lines for unstable (stable) conditions. Results from the two WINDCUBE v1s are included

in the Supplementary Material.

the smoothed time series. The Supplementary Material includes the plot for the WINDCUBE v1s, which provide results very

similar to what shown here. Different stability conditions systematically change the magnitude of turbulence dissipation rate,
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Figure 14. Turbulence dissipation rate (raw values) as a function of the 2-min average wind speed, as measured at 100m AGL. The thick

lines in the plot represent the median value for the different instruments, while the shaded area creates a band corresponding to the 1st and 3rd

quartiles of the distributions. Continuous (dashed) lines for unstable (stable) conditions. Results from the two WINDCUBE v1s are included

in the Supplementary Material.

with median ε values during strong stable conditions (L > 0m) generally two orders of magnitude lower than what is found for

strongly unstable conditions (L < 0m). Moreover, as the atmospheric stability conditions become less strong, with an increase

in the absolute value of L, the median ε values tend to converge to a common value, with ε in stable conditions recording a

higher increase compared to the change in ε for different values of L in unstable conditions. Results from neutral conditions

|L|> 500m are not shown as they rarely occurred at the site during the field campaign.5

Different wind speed regimes can also have a strong impact on the development and subsequent dissipation of turbulence.

Figure 14 relates turbulence dissipation rate with 2-min average wind speed, for different stability conditions, at 100m AGL

(results for the WINDCUBE v1s are included in the Supplementary Material as very similar to what is found for the v2). The

same sampling technique described for Figure 13 to define median ε values, shown by the continuous line, has been applied

in this case. Data from the Halo Streamline are not included here since the reduced temporal availability of horizontal wind10

speed measurements (once every 12min) does not guarantee a precise estimation of the variability of ε with wind speed for

this instrument. For both the sonic anemometer and the WINDCUBE v2 lidar data, a strong dependence of ε on wind speed

can be observed. As wind speed increases, more turbulence is generated - and therefore dissipated - in the boundary layer. The

median εincreases of 1-2 orders of magnitude as wind speed intensifies from 1m s−1 to 15m s−1. This positive correlated trend

is found for both stable and unstable conditions, with ε in stable conditions being more subject to variations with wind speed15

compared to ε in unstable conditions. Also, the difference in ε during distinct stability conditions becomes less pronounced

as the wind speed increases. Therefore, high wind speeds seem to determine strong turbulence - and turbulence dissipation -

without any significant dependence on the stability condition.
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5.1 Turbulence dissipation rate during nocturnal low-level jet events

The accurate numerical representation of nocturnal low-level jets has a crucial importance. In fact, this sudden increase of wind

speed aloft at night has been shown to have a primary effect on turbulent transport (Prabha et al., 2007), clear-air turbulence

(Banta et al., 2002), storm formation (Curtis and Panofsky, 1958), forest fire propagation (Barad, 1961), and wind energy

resources (Vanderwende et al., 2015). In all these cases, turbulence represents an essential driving mechanism, and therefore5

turbulence dissipation needs to be represented with particular attention. During XPIA, nocturnal low-level jets have been

observed several times (Lundquist et al., 2017). As case study, Figure 15 shows how wind speed, wind direction, and turbulence

dissipation rate varied during the night between 6 - 7 April 2015, as measured by the Halo Streamline lidar. The analysis of

the weather maps for this period reveals no frontal passage during the LLJ event, while a quasi-stationary front likely occurred

at the end of the event (∼ 23 LT), as also confirmed by the shift in wind direction during this period, as shown in Figure 15b.10

No precipitation was recorded; and the analysis of ceilometer data reveals clear sky. A considerable increase in wind speed

(up to 14 m s−1, Figure 15a) can be observed between 21 and 23 LT. In correspondence to this jet, turbulence dissipation rate

(Figure 15c) increases by at least an order of magnitude throughout the considered vertical portion of the boundary layer, as

a consequence of an increase in wind speed variance, as observed in previous studies (Banta et al., 2006). ε reaches values of

∼ 10−2m2s−3 which are comparable to what is observed during daytime convection, as can be seen between 15 and 17 LT15

in the presented case. This abrupt increase of ε, which interrupts the normal decrease of ε due to the transition from daytime

convection to nocturnal quiescence, can also clearly be detected in the time series shown in Figure 7. After the end of the

low-level jet event, in combination with the development of the quasi-stationary front, the return to more quiescent conditions,

typical of the nighttime stable boundary layer, causes a considerable reduction of turbulence dissipation rate. Therefore, the

turbulence generated by the strong wind acceleration during nocturnal low-level jets can deeply modify the daytime climatology20

of ε, determining the temporary increases which have been detected in the analysis of the climatology in Figure 11.

6 Conclusions

Turbulence parametrizations currently used in numerical models have been proved (Yang et al., 2017) to have considerable

limitations which undermine the quality of representations of processes in the atmospheric boundary layer. A crucial parameter

in this regard is the turbulence dissipation rate (ε). Currently, most mesoscale planetary boundary layer models make the25

assumption of local equilibrium between production and dissipation of turbulence. In this study, we have demonstrated the

value of observations from both in situ and remote sensing instruments in providing insights on the variability of turbulence

dissipation rate, and we have assessed how ε changes with atmospheric stability, wind speed, and height in the boundary layer.

We have refined an approach to use wind Doppler lidars to quantify ε. Our analysis provides recommendations about the

choice of the length of sample of lidar measurements to calculate ε. In fact, the properties of the turbulence energy spectra for30

different atmospheric stability conditions have to be taken into account to balance the competing needs of keeping the sampled

scales within the inertial sub-range, while minimizing the impact of the instrumental noise. We found that longer time scales

are appropriate for unstable conditions, while shorter scales should be used in stable cases. Also, the choice of the appropriate
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sample size should consider the variability of turbulence spectra with height, with longer scales more suitable aloft. The choice

of the appropriate time scales can be made by either comparing lidar estimates of ε with sonic anemometer data in different

stability conditions and heights or by inspecting the properties of the turbulence spectra from lidar measurements with the use

of spectral models.

We have tested our methodology by calculating ε from four wind Doppler lidars deployed during the XPIA field campaign at5

the Boulder Atmospheric Observatory in Spring 2015. We have systematically compared the lidar estimates of ε with reference

data from sonic anemometer measurements to determine the appropriate time scales to use in the calculation. Considering that

ε spans several orders of magnitude throughout its diurnal cycle, our results reveal good agreement between lidar and sonic

anemometer estimates of ε, with median differences lower than 30% in unstable conditions, and lower than 50% in stable

conditions.10

This analysis reveals that different stability conditions have a considerable impact on determining the magnitude of ε. This

dual pattern determines the diurnal climatology of ε, with lower values during nighttime quiescent conditions and increased

turbulence during the daytime convection, as would reasonably be expected. However, the general pattern of the climatology of

ε strongly varies based on turbulence generation and dissipation due to the magnitude of wind speed. We have found that higher

wind speeds cause increased turbulence dissipation, with the gap between ε values in stable and unstable conditions becoming15

less pronounced as the wind speed increases. Therefore, important boundary layer processes such as nocturnal low-level jets

can induce a substantial increase of ε at night, with values which can reach those of daytime convective turbulence. Finally,

we have shown how most of the variability of ε occurs in the lowest part of the boundary layer, with a 75% reduction from 5m

AGL to 50m AGL.

The results from this dataset represent a significant progress towards the full understanding of how turbulence dissipation20

varies in the boundary layer. The promising results of the method we propose to retrieve ε from lidar measurements make a

considerable amount of data, measured in the recent years with vertical-profiling lidars, now potentially available to create an

extensive database of turbulence dissipation rate for different atmospheric and topographic conditions. Wide deployments of

lidars can in fact provide measurements in several different locations and at heights which are not accessible to traditional tower

measurements. Future work should include testing the capability of lidars to measure turbulence dissipation rate in complex25

terrain, with potential case studies including mountain waves phenomena and diurnal circulations, as well as during other spe-

cific boundary layer processes, such as horizontal rolls (Brooks and Rogers, 1997). A complete assessement of the variability

of ε in different terrains would in fact improve our understanding of the main drivers which determine the development and

dissipation of turbulence in various conditions. Once the variability of ε will be fully captured using different datasets, the

implementation of improvements to the turbulence parametrizations used in numerical models will be possible.30

Data availability. The data of the sonic anemometers and wind Doppler lidars at the XPIA field campaign are publicly available at https:

//a2e.energy.gov/data.
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Figure 15. Nocturnal low-level jet case study. (a) Variability of wind speed from 20 UTC, 6 April 2015, to 8 UTC, 7 April 2015, as measured

by the Halo Streamline lidar. (b) Wind direction at 116m AGL, during the same period of time. (c) Correspondent variability of turbulence

dissipation rate ε as derived from the Halo Streamline measurements.
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