
Dear Reviewer 1, 
 
We would like to offer our sincere thanks for spending your time in the review of our work and helping us 
to significantly improve the quality and clarity of the manuscript with your very detailed comments and 
suggestions.  Each of your comments is listed below in black text, followed by our response and edits in 
blue text.   
 
Review 1 Comments: 
 
Overview:  In Casey et al., the authors investigated the performance of calibration models developed for 
ambient O3 and CO2 across time and space using field deployments spanning 2014 – 2017 as case studies. 
Specifically, they looked at the impact of post-deployment calibration vs pre- and post- calibration, and the 
impact of applying a calibration model developed in one location on U-Pods deployed in other locations. 
Calibration models investigated included linear models and artificial neural networks. The size and scope 
of the study is impressive, and I believe there is a significant quantity of insightful information within this 
paper.  
 
However, in general, I found the narrative of the paper to be confusing (it is hard to effectively distill such 
a breadth of research) and the take home points could be made considerably clearer.  
 
Additionally, I think this paper would benefit with a few more analyses of general model performance 
implications and a closer look at the impact of relative humidity.  Following these corrections to comments 
identified below, I believe the publication is suitable to be published in Atmospheric Measurement 
Techniques.  
 
Response:  We have carefully addressed each of the comments below and carried out the analyses 
suggested by the reviewer to investigate the implications and impact of relative humidity and sensor drift in 
time.   We have also worked to significantly improve and clarify the narrative of the paper as well as 
clarified and outlined take home points. 
 
GENERAL COMMENTS  
 
Comment:		In general, I found this manuscript a little hard to read, because I felt like a cohesive narrative 
was missing. A lot of information is presented in a rapid-fire manner such that the results and discussion 
section reads more like a results section, with limited discussion. Although there is no straight forward 
solution to this problem, I would suggest that the authors think about the three to five key messages they 
wish to convey in the manuscript and that they tune and streamline the text to support this narrative.  
Response:	Thanks	very	much	to	the	Reviewer	for	helping	point	out	a	way	for	us	to	improve	a	
cohesive	and	clear	narrative	in	this	work.			
Edits:		We	have	added	the	following	five	key	points	to	the	conclusion	as	well	as	supporting	edits	in	
the	abstract	and	throughout	the	results	and	discussion	section:			
	
“The	following	findings	from	this	work,	and	associated	recommendations,	are	made	to	help	inform	
the	logistics	of	future	studies	that	employ	field	calibration	methods	of	low-cost	gas	sensors.	
	

1. Finding:	For	O3	models,	LMs	perform	better	than	ANNs	when	the	chemical	composition	of	
local	emissions	sources	is	significantly	different	in	the	model-training	location	relative	to	the	
model-application	location.		We	found	that	when	models	were	trained	in	an	urban	area	with	
significant	mobile	sources,	then	tested	in	a	peri-urban	area,	more	strongly	influenced	by	oil	
and	gas	 emissions,	 the	differences	 in	 local	 sources	of	pollution	were	 significantly	different	
enough	 that	LMs	outperformed	ANNs.	 	Alternatively,	when	models	were	 trained	 in	one	oil	
and	gas	production	region	and	tested	in	another	the	different	composition	of	local	emissions	
(lighter	vs.	heavier	hydrocarbons)	was	not	significant	enough	for	LM	performance	to	surpass	
the	 performance	 of	 ANNs,	 though	 some	 positive	 bias	 was	 evident	 in	 predicted	 O3	 mole	
fractions.			



Explanation:		ANNs	are	very	effective	at	compensating	for	the	influence	of	interfering	gas	
species	through	pattern	recognition	of	a	training	dataset.		However,	if	different	patterns,	in	
terms	of	the	relative	abundance	of	various	oxidizing	and	reducing	compounds	in	the	air,	are	
present	in	the	testing	location	relative	to	the	training	location,	ANNs	may	not	able	to	
compensate	for	the	influence	of	interfering	gas	species	as	effectively.			The	relative	
abundance	of	interfering	oxidizing	and	reducing	compounds	are	not	included	as	model	
parameters,	but	ANN	performance	is	challenged	by	these	circumstances.		
Recommendation:	When	measuring	O3	or	other	gas	species	with	a	metal	oxide	type	sensor,	
if	the	nature	of	dominant	emissions	sources	at	the	model	training	location	is	significantly	
different	than	the	nature	of	dominant	emissions	sources	in	the	model	application	location,	us	
an	LM	instead	of	an	ANN.		For	the	best	performance,	try	to	train	models	in	locations	with	
similar	emissions	sources	to	a	desired	sampling	location.		If	the	nature	of	dominant	
emissions	sources	at	the	model	training	and	application	locations	are	similar,	signals	from	
an	array	of	multiple	unique	metal	oxide	sensors	will	likely	augment	model	performance.	

	
2. Finding:	 	 For	 CO2	 models,	 LMs	 perform	 better	 than	 ANNs	 when	 model	 training	 occurs	

significantly	 (more	 than	 several	months)	 prior	 to	 or	 subsequent	 to	 the	model	 application	
period.																														
Explanation:	 	 CO2	 sensors	 drift	 over	 time	 in	 terms	 of	 sensitivity	 and	 baseline	 response.			
When	models	are	extrapolated	in	time	(when	training	takes	place	more	than	several	months	
prior	 or	 subsequent	 to	 the	 model	 application	 period),	 ANN	 performance	 can	 be	
compromised	to	a	greater	extent	than	LM	performance	because	ANNs	are	able	to	represent	
relationships	 during	 training	 very	 effectively,	 and	 with	 significant	 more	 complexity	 and	
nonlinear	 relationships	among	 time	and	other	model	 inputs	 than	LMs.	 	The	more	complex	
the	model,	the	less	likely	it	can	be	extrapolate	effectively.		LMs,	with	no	interaction	terms	like	
we	employ	in	this	work,	are	not	able	to	fit	data	and	potentially	complex	patterns	inherent	in	
sensor	 drift	 over	 time	 during	 training	 as	 closely	 as	 an	 ANN,	 but	 the	 simple	 linear	
relationships	 they	 represent	between	 the	 time	 input	and	 the	 target	gas	mole	 fraction	over	
the	course	of	training	are	more	likely	to	hold	prior	or	subsequent	to	the	training	period.	
Recommendation:	When	measuring	CO2	with	a	NDIR	sensor,	if	model-training	data	is	only	
available	more	than	several	months	prior	or	subsequent	to	the	model	application	period,	use	
a	LM	instead	of	an	ANN.		For	the	best	model	performance,	use	training	data	that	is	collected	
directly	pre	or	post	of	the	model	application	period,	and	preferably	data	from	both	pre	and	
post	of	the	model	application	period.		Training	models	using	data	from	both	pre	and	post	of	a	
given	model	application	period	helps	models	to	encompass	sensor	drift	over	time	as	well	as	
increases	the	likelihood	of	covering	the	full	range	of	environmental	parameter	space	that	
occurs	during	the	model	application	period	so	that	extrapolation	of	these	parameters	is	
avoided.			

	
3. Finding:	 	 Extrapolation	 of	 an	 O3	 or	 CO2	 model	 in	 time,	 and	 especially	 significant	

extrapolation	in	time,	can	change	both	the	type	of	model	that	is	most	effective,	as	well	as	the	
specific	model	input	signals	that	are	most	effective.		
Explanation:		Low-cost	sensors	change	over	time,	both	in	terms	of	their	baseline	response	
and	in	terms	of	their	sensitivity	to	target	and	interfering	gas	species.		Different	sensor	types	
drift	due	to	different	physical	phenomenon	so	further	a	generalization	across	sensor	types	is	
difficult.	
Recommendation:	Use	training	data	collected	directly	pre	and	post	of	the	model	application	
period	in	order	to	implement	a	‘best	performing	model’	for	each	gas	species	that	can	be	
applied	using	data	from	different	model	training	and	application	pairs.	

	
4. Finding:	ANNs	yield	less	bias	and	more	accurate	gas	mole	fraction	quantification	than	LMs,	

even	when	transferred	to	a	new	location	under	the	following	circumstances:		when	
extrapolation	of	training	parameters	is	avoided	during	the	model	application	period,	when	
training	takes	place	for	several	weeks	to	a	month	prior	and	subsequent	to	the	model	



application	period,	and	when	the	dominant	local	emissions	sources	are	similar	in	the	model	
training	and	application	locations.			
Explanation:		Our	previous	study	and	multiple	other	ambient	and	laboratory	based	
experiments	have	shown,	arrays	of	low-cost	sensors	in	combination	with	ANN	regression	
models	can	support	useful	quantification	of	gases	in	mixtures	and	in	the	ambient	
environment	because	ANNs	can	more	effectively	represent	complex	nonlinear	relationships	
among	environmental	variables	and	signals	in	a	sensor	system	like	a	U-Pod	than	LMs.		With	
this	work,	we	have	explored	limitations	associated	with	these	methods	when	challenged	in	
different	ways,	as	we	present	with	a	number	of	case	studies.			
Recommendation:		If	minimizing	error	and	bias	in	measurements	of	gas	mole	fractions	
using	low-cost	sensors	systems	is	a	primary	goal,	design	sensor	system	training	and	field	
deployment	experiments	so	that	extrapolation	of	model	training	parameters	is	avoided	
during	the	model	application	period,	so	that	training	takes	place	for	several	weeks	to	a	
month	directly	prior	and	directly	subsequent	to	the	model	application	period,	and	so	that	the	
dominant	local	emissions	sources	are	similar	in	the	model	training	and	application	locations.		
When	these	conditions	are	satisfied,	ANNs	can	be	robustly	implemented,	with	better	
performance	than	LMs.	
	
It	is	also	imperative	that	sensor	users	keep	in	mind	the	primary	importance	of	minimizing	
extrapolation	of	temperature,	humidity	and	sensor	signal	from	model	training	to	
application.”					

 
Comment:		Many of the figures are needlessly complicated by an overload of case studies, unintelligible 
sensor signal labels, and colours. If there is any way of summarizing this data more cohesively, it would 
significantly improve the paper.  
Response:	Thank	you	very	much	for	the	feedback	and	helping	us	to	simplify	and	clarify	figures.	
Edits:		According	to	the	specific	comments	below,	we	have	split	what	was	previously	Figure	8	into	
two	figures	(now	Figure	10	and	11)	in	order	to	simplify	the	graphics	and	highlight	the	content	of	
each	and	simplified	and	clarified	Figure	9	(now	Figure	12).		We	have	added	definitions	for	the	sensor	
inputs	in	the	Figure	captions	for	what	were	Figures	8	and	9	(now	Figures	10,	11,	and	12).		We	have	
also	updated	Figure	1	(now	Figure	2)	in	order	to	clarify	model	training	and	test	periods	for	each	case	
study,	as	well	as	how	many	U-Pods	were	included	in	each	case	study.			
	
	



	
Figure	10:		Target	diagrams	demonstrating	performance	of	a	previously	determined	best-performing	
model	across	all	new	test	datasets.		(a)	CO2	and	(b)	O3	LM	performance	when	only	the	primary	gas	
sensor,	temperature	and	humidity	are	inputs.		(c)	CO2	and	(d)	O3	ANN	performance	with	inputs	that	
were	found	to	perform	best	at	the	GRET	site	in	the	spring	of	2017	(Casey	et	al.,	2017).		Model	input	
definitions:		eltCO2	(ELT	S300	CO2	sensor),	e2vO3	(e2v	MiCs-2611	sensor),	temp	(temperature)	,	and	
absHum	(absolute	humidity).	
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Figure	11:		Target	diagrams	demonstrating	performance	of	a	previously	determined	best-performing	
model	across	all	new	test	datasets	(a)	CO2	and	(b)	O3	ANN	performance	with	inputs	that	were	found	to	
perform	best	at	the	GRET	site	in	the	spring	of	2017	(Casey	et	al.,	2017).		Model	input	definitions:		eltCO2	
(ELT	S300	CO2	sensor),	e2vCO	(e2v	MiCs-5525	sensor),	e2vVOC	(e2v	MiCs-5521	sensor),	e2vO3	(e2v	
MiCs-2611	sensor),	figCH4	(Figaro	TGS	2600	sensor),	figCxHy	(Figaro	TGS	2602	sensor),	temp	
(temperature)	,	and	absHum	(absolute	humidity).	
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Figure	12:		Target	diagrams	for	(a)	CO2	and	(b)	O3	calibration	model	performance	for	the	best	
performing	model	for	each	particular	case	when	tested	on	data	from	a	number	of	field	deployments.		
Model	input	definitions:		eltCO2	(ELT	S300	CO2	sensor),	e2vCO	(e2v	MiCs-5525	sensor),	e2vVOC	(e2v	
MiCs-5521	sensor),	e2vO3	(e2v	MiCs-2611	sensor),	figCH4	(Figaro	TGS	2600	sensor),	figCxHy	(Figaro	
TGS	2602	sensor),		alphaCO	(Alphasense	CO-B4	sensor)	temp	(temperature),	absHum	(absolute	
humidity),	rh	(relative	humidity),	and	time	(absolute	time).			

	
 
Comment:		It would be good if the authors could elaborate on which U-Pods were where over all these 
campaigns. Given that temporal degradation / time was investigated in detail in this paper, some assessment 
of UPod changes over the three years of campaigns would be helpful if possible.  
Response:	Thanks	very	much	to	the	reviewer	for	this	helpful	comment.	
Edits:		Figure	2	(previously	Figure	1)	has	been	updated	to	clearly	state	the	number	of	U-Pods	
included	in	each	case	study,	for	both	O3	and	CO2,	as	well	as	names	of	the	specific	U-Pods	that	were	
used	during	each	case	study.		We	have	also	performed	an	assessment	of	U-Pod	sensor	drift	from	the	
summer	of	2015	through	the	summer	of	2017,	shown	below	in	Figure	s26,	that	we	have	added	to	the	
Supplemental	Materials.		Figure	s26	had	been	sited	in	section	3.2.2	of	the	manuscript,	and	described	
in	the	following	text:		“While	we	did	not	measure	and	record	metal	oxide	sensor	heater	resistance	for	
sensors	included	in	U-Pods,	we	have	investigated	eltCO2	and	e2vO3	sensor	signal	drift	from	the	
summer	of	2015	through	the	summer	of	2017.		These	data	are	presented	in	Fig.	S26.		Systematic	



downward	drift	in	all	eltCO2	sensor	signals	is	apparent	over	this	time	frame.		A	clear	and	consistent	
pattern	of	systematic	drift	over	this	time	period	is	less	apparent	for	e2vO3	sensors.		Since	the	
training	data	was	collected	immediately	after,	the	test	data	period,	and	since	the	test	data	period	was	
relatively	short	(approximately	one	month)	sensor	drift	could	be	negligible	across	the	combined	
training/testing	time	frame.”			
	

	
Figure	2:	(a)	ANN	and	LM	training	and	test	deployment	timelines.		The	Dawson,	BAO,	and	GRET	sampling	
sites	are	all	located	in	the	DJ	Basin.		Model	training	periods	for	each	test	deployment	are	shown	in	blue,	
and	model	test	periods	are	shown	in	magenta.		For	the	BAO	Summer	2016	case	study,	the	period	
outlined	in	blue	shows	data	that	was	used	to	train	O3	model,	but	not	CO2	models	since	CO2	reference	data	
was	not	available	during	winter	months.	(b)	Information	about	each	of	the	case	studies	presented	in	the	
above	timelines,	including	model	training	and	testing	locations,	as	well	as	the	number	and	names	of	U-
Pods	included	in	each	case	study	for	both	O3	and	CO2	models.		The	U-Pods	with	names	shown	in	grey	
were	constructed	and	deployed	starting	in	May	of	2014.		The	U-Pods	with	names	shown	in	black	were	
constructed	and	deployed	starting	in	April	of	2015.			

 

(b) 

(a) 



 
Figure S26 U-Pod sensor drift from 2015 – 2017 for (a) e2v MiCs-2611 O3 sensors and (b) ELT S300 
CO2 sensors.  Data presented are from 23-day periods when U-Pods were co-located together from 
the summers of 2015, 2016, and 2017.  Raw ADC sensor signals were smoothed with rolling hourly 
medians during these periods, in order to track representative sensor responses across this time 
period, without the influence of exceptional events.  Measurements from summer each year were 
used to capture sensor response under similar weather conditions.   
 
 
Comment:		Also, when comparing sensor performance spatially, are the U-Pods that are compared the 
same age?  
Response:	Thanks	to	the	Reviewer	for	bringing	up	this	important	point.			
Edits:		We	have	added	the	following	text	accordingly:	“Some	U-Pods	used	included	in	these	case	
studies	(indicated	in	grey	font	in	Fig.	2)	were	constructed,	populated	with	sensors,	and	deployed	at	
field	sites	in	the	spring	of	2014,	approximately	a	year	before	the	rest	of	the	U-Pods	were	constructed,	
populated	with	sensors,	and	deployed	at	field	sites	in	the	spring	of	2015.		The	relative	age	of	sensor	
systems	included	in	some	case	study	comparisons	could	have	contributed	to	some	discrepancy	in	
model	performance,	though	systematic	differences	based	on	U-Pod	age	is	not	apparent.”	
 

(b) 

(a) 



Comment:		Directly addressing the size of the training and testing windows should be included. It is hard 
to make generalizable conclusions from the study when there is so much variability in training and testing 
window size. Is there a reason why some training windows are shorter than others? This should be directly 
addressed in the manuscript.  
Response:	Thanks	to	the	Reviewer	for	the	helpful	feedback.			
Edits:		We	have	added	the	following	explanatory	text	accordingly:	“As	available	data	from	each	case	
study	allowed,	we	used	approximately	one	month	of	training	data	before	and	after	(pre	and	post	of)	a	
given	approximately	month-long	test	period.	When	training	data	was	not	available	within	several	
months	of	a	test	period,	significantly	longer	training	datasets	were	used	in	order	to	attempt	capture	
and	effectively	represent	trends	in	sensor	drift	over	time,	as	well	as	to	avoid	extrapolation	of	model	
parameters	(particularly	temperature)	during	the	test	data	period.		As	a	result,	model-training	
durations	varied	across	case	studies	and	sometimes	significantly	exceeded	model-testing	durations.		
Each	case	study	is	similar	in	representing	approximately	one	month-long	deployment	of	sensor	
systems.		This	study	design	serves	a	primary	goal	of	this	work,	which	is	to	help	support	the	
quantification	atmospheric	trace	gases	from	low-cost	gas	sensor	data	in	new	locations,	relative	to	
model	training	locations,	for	periods	of	approximately	one	month	at	a	time.”			
	
		
 
Comment:		I found the discussion of ANN and LM model building to be significantly under-developed, 
especially considering that this is a measurement techniques journal. This paper relies too heavily on the 
prior 2017 study, and has too much assumed knowledge that should be summarized in Section 2.4. The 
resulting LM and coefficients should be provided. As well as some mention of model performance metrics 
like MAE or r2.   
Response:	Thanks	very	much	to	the	Reviewer	for	this	helpful	feedback.		We	have	developed	the	
discussion	of	ANN	and	LM	model	building	significantly,	through	the	addition	of	the	following	text	in	
section	2.4	and	have	added	a	new	subsection	2.5	describing	the	calibration	model	evaluation	and	
testing	we	implemented	in	this	work.		We	have	also	added	a	table	summarizing	model	performance	
metrics	for	our	previous	work,	as	a	case	study,	among	other	case	studies.		Since	LM	coefficients	are	
unique	to	individual	case	studies,	and	within	those	groups,	unique	to	gas	sensors	in	individual	U-
Pods,	and	since	we	carried	out	an	analysis	of	model	sensitivity	to	inputs	in	our	previous	work,	we	
have	not	included	LM	coefficients	in	this	work.				
	
Edits:		“As	in	[1],	direct	LMs	and	ANNs	were	trained	with	a	number	of	different	sensor	input	sets	to	
map	those	inputs	to	target	gas	mole	fractions	measured	by	reference	instruments.	Direct	LMs	
implemented	were	multiple	linear	regression	models	given	by		
	 	 	 𝑟 =  𝑝! +  𝑝!𝑠! +  𝑝!𝑠!+. . .+𝑝!𝑠!!!	 	 (1)	
where	r	is	the	target	gas	mole	fraction	(measured	by	a	reference	instrument)	s1	–	sn-1	are	sensor	
signals	from	U-Pods	that	are	included	as	model	predictor	variables,	and	p1	–	pn	are	corresponding	
predictor	coefficients.		ANNs	designed	for	regression	tasks,	like	those	employed	in	this	work,	
generally	consist	of	artificial	neuron	nodes	that	are	connected	with	weights.		Weights	are	initiated	
with	randomly	assigned	values.		An	optimization	algorithm	is	then	employed	to	map	a	given	set	input	
values	to	one	or	more	corresponding	target	values.		An	example	of	a	very	simple	feed	forward	neural	
network,	and	how	weights	are	propagated	through	it	are	depicted	in	Fig.	3.		In	this	work,	ANNs	were	
designed	by	assigning	U-Pod	sensor	signals	to	artificial	neurons	in	an	input	layer	and	assigning	target	
gas	mole	fractions	for	an	individual	gas	species,	measured	by	a	reference	instrument	to	a	single	
output	neuron.		Nonlinear,	tansig,	artificial	neurons	in	one	or	two	hidden	layers	and	a	layer	of	linear	
neurons	were	then	added	between	input	layer	and	the	network	output	neuron.		Additionally,	bias	
neurons,	each	assigned	a	value	of	1,	were	connected	to	neurons	in	the	hidden	layer(s)	so	that	
individual	connecting	weights	could	be	activated	or	deactivated	during	the	optimization	process.		
The	number	of	neurons	in	each	hidden	layer	was	set	equal	to	the	number	of	inputs	included	in	a	
given	ANN.			
	
For	ANN	training	we	employed	the	Levenberg	Marquardt	optimization	algorithm	with	Bayesian	
Regularization	[2].		The	Levenberg-Marquardt	algorithm	provides	a	combination	of	Gauss-Newton	



and	Gradient	Decent	methods,	towards	incremental	minimization	of	a	cost	function	(the	summed	
squared	error	between	the	ANN	output	and	target	values	as	a	function	of	all	of	the	weights	in	the	
network).		Training	begins	according	to	the	Gauss-Newton	method,	in	which	the	Hessian	matrix	(the	
second	order	Taylor	series	representation	of	the	error	surface)	is	approximated	as	a	function	of	the	
Jacobian	matrix	and	its	transpose,	significantly	reducing	required	training	time.		Network	weights	are	
adjusted	accordingly	each	training	step	to	reduce	error.		If	the	cost	function	is	not	reduced	in	a	given	
training	step,	an	algorithm	parameter	is	adjusted	so	that	optimization	more	closely	approximates	the	
gradient	decent	method	(a	first	order	Taylor	series	representation	of	the	cost	function),	providing	a	
guarantee	of	convergence	on	a	cost	function	minimum.	Since	local	minima	may	exist	across	the	error	
surface,	it	is	important	to	train	the	same	network	multiple	times	(with	different	randomly	assigned	
starting	weights),	in	order	to	access	the	stability	of	ANN	performance.		In	this	work	each	ANN	was	
trained	5	times.		Fig.	4	shows	a	diagram	of	an	ANN	architecture	employed	in	this	work,	when	there	
were	five	inputs.			
	
In	the	implementation	of	Bayesian	Regularization,	a	term	is	added	to	the	sum	of	squared	error	cost	
function	as	a	penalty	for	increased	network	complexity	in	order	to	guard	against	over	fitting.		A	two	
level	Bayesian	inference	framework	is	employed,	operating	on	the	assumptions	the	noise	in	the	
training	data	is	independent,	normally	distributed,	and	also	that	all	of	the	weights	in	the	ANN	are	
small,	normally	distributed,	and	unbiased	[2].	In	preliminary	ANN	tests	we	found	that	over	fitting	
occurred	even	when	Bayesian	Regularization	was	used,	so	we	additionally	implemented	early	
stopping,	which	proved	to	be	effective	in	the	reduction	of	over	fitting.		To	implement	early	stopping,	a	
portion	of	training	data	is	set	aside	as	validation	dataset,	and	during	training,	an	ANN	is	applied	to	
this	validation	data	after	each	training	step.		Training	continues	so	long	as	the	error	associated	with	
the	validation	dataset	is	reduced.	When	the	error	associated	with	the	validation	dataset	is	no	longer	
being	reduced,	training	stops	early.	For	ANNs,	training	datasets	were	divided	in	half	on	an	alternating	
24-hr	basis,	with	half	used	for	training	and	half	used	as	validation	data	for	early	stopping.		ANNs	with	
two	hidden	layers	were	used	for	CO2	and	ANNs	with	one	hidden	layer	were	used	for	O3,	in	
accordance	with	our	earlier	findings	for	each	target	gas	species	[1].	Input	signals	for	both	LMs	and	
ANNs	were	normalized	so	that	they	ranged	in	magnitude	from	-1	to	1	since	this	practice	is	
recommended	for	the	ANN	optimization	algorithm	used	[2].				
	
Calibration	Model	Evaluation	and	Testing	
LM	and	ANN	performance	was	evaluated	on	test	datasets.	To	evaluate	the	performance	of	each	of	the	
ANN	and	LM	models	that	were	generated	using	training	data	then	applied	to	test	datasets,	we	used	
residuals,	the	coefficient	of	determination	(r2),	root	mean	squared	error	(RMSE),	mean	bias	error	
(MBE),	and	centered	root	mean	squared	error	(CRMSE).		The	CRMSE	is	an	indicator	of	the	
distribution	of	errors	about	the	mean,	or	the	random	component	of	the	error.		The	MBE,	
alternatively,	is	an	indicator	of	the	systematic	component	of	the	error.		The	sum	of	the	squares	of	the	
CRMSE	and	the	MBE	is	equal	to	the	square	of	the	total	error,	the	square	root	of	which	is	defined	by	
the	RMSE.			
	
First,	we	generated	and	applied	the	best	performing	model,	as	determined	in	our	previous	work	
(presented	in	Table	4),	to	data	from	each	new	case	study.		Each	new	case	study	was	selected	to	
challenge	models	in	different	ways	in	order	to	evaluate	the	resiliency	of	the	findings	from	our	
previous	study	when	challenged	by	different	circumstances.			
	
Next,	we	generated,	applied,	and	evaluated	the	performance	of	a	number	of		LMs	and	ANNs	with	
different	sets	of	inputs	for	each	case	study	in	order	to	see	which	specific	model	performed	the	best	
for	each	individual	case	study.		The	r2,	RMSE,	and	MBE	for	each	of	these	alternative	models	when	
applied	to	test	data	are	presented	in	the	supplemental	materials	(SM)	in	Fig.	S2	through	Fig.	S7,	along	
with	representative	scatter	plots	and	time	series	comparing	the	performance	LMs	and	ANNs	for	a	
given	set	of	inputs.		In	Fig.	S2	through	Fig.	S7,	the	best	performing	model	inputs	for	each	train/test	
data	pair	are	shaded	in	purple.		The	type	of	model	that	performed	the	best	(ANN	vs.	LM)	is	indicated	
in	the	caption	of	each	figure.		We	discuss	both	the	performance	of	the	previously	determined	best	
fitting	model	(generated	using	data	from	the	GRET	Spring	2017	case	study)	when	applied	and	



generated	to	data	from	new	case	studies,	and	the	performance	of	models	that	were	tuned	to	perform	
the	best	for	each	individual	case	study.		From	these	comparisons,	we	draw	insight	into	circumstances	
that	challenge	model	performance	in	terms	of	relative	local	emissions	characteristics,	location,	and	
timing	between	model	training	and	testing	pairs.”	
	
“For	each	of	the	case	studies,	we	present	the	performance	three	groups	of	models.		The	first	of	these	
are	linear	models	with	only	the	primary	gas	sensor	signal,	along	with	temperature,	and	absolute	
humidity	as	inputs.		The	next	group	of	models	includes	those	that	were	found	to	perform	best	in	our	
previous	work.		The	third	group	of	models	tested	for	each	case	study	includes	models	that	were	
optimized	specifically	for	each	case	study.		Tables	5	and	6	show	the	mean	and	standard	deviation	of	
model	performance	metrics	for	each	of	the	case	studies	presented.”	
	
Table	5:	O3	model	performance	metrics.			

Case	Study	 N	 R2	 RMSE		
(ppb)	

MBE	
(ppb)	

Standard	
Deviation	

R2	

Standard	
Deviation	
RMSE	

Standard	
Deviatio
n	MBE	

	 O3	Models	
Best	O3	Model	(Casey	et	al.,	2017)	

ANN	with	inputs:		e2vO3	temp	absHum	e2vVOC	e2vCO	FigCH4	FigCxHy	
Dawson	Summer	

2014	
1	

0.83	 6.46	 -0.91	 0.00	 0.00	 0.00	
SJ	Basin	Spring	

2015	
4	

0.86	 7.74	 3.69	 0.05	 3.82	 5.78	
SJ	Basin	Summer	

2015	
7	

0.85	 7.03	 4.89	 0.10	 1.10	 1.73	
BAO	Summer	2015	 2	 0.93	 4.26	 1.45	 0.00	 0.31	 0.07	
BAO	Summer	2016	 2	 0.92	 12.21	 -11.14	 0.00	 0.31	 0.07	
GRET	Fall	2016	 2	 0.96	 12.87	 12.02	 0.01	 2.30	 2.35	

GRET	Spring	2017	 2	 0.98	 2.59	 1.49	 0.00	 0.69	 1.02	
Simple	Model	(Single	Gas	Sensor)	

LM	with	inputs:		e2vO3	temp	absHum	
Dawson	Summer	

2014	
1	

0.95	 3.59	 -0.46	 0.00	 0.00	 0.00	
SJ	Basin	Spring	

2015	
4	

0.83	 17.95	 16.09	 0.06	 6.10	 5.83	
SJ	Basin	Summer	

2015	
7	

0.86	 6.30	 3.53	 0.06	 1.40	 2.06	
BAO	Summer	2015	 2	 0.87	 5.50	 0.94	 0.00	 0.78	 1.56	
BAO	Summer	2016	 2	 0.89	 5.78	 -2.71	 0.00	 0.78	 1.56	
GRET	Fall	2016	 2	 0.93	 12.73	 11.92	 0.01	 0.62	 0.88	

GRET	Spring	2017	 2	 0.89	 6.00	 -3.19	 0.00	 0.73	 1.38	
Models	Optimized	For	Case	Studies	

Dawson	Summer	
2014	

1	
0.95	 3.59	 -0.46	 0.00	 0.00	 0.00	



SJ	Basin	Spring	
2015	

4	
0.86	 7.74	 3.69	 0.05	 3.82	 5.78	

SJ	Basin	Summer	
2015	

7	
0.85	 7.03	 4.89	 0.10	 1.10	 1.73	

BAO	Summer	2015	 2	 0.93	 4.26	 1.45	 0.02	 0.51	 1.54	
BAO	Summer	2016	 2	 0.87	 6.25	 -0.20	 0.02	 0.51	 1.54	
GRET	Fall	2016	 2	 0.95	 3.99	 2.14	 0.00	 0.28	 0.89	

GRET	Spring	2017	 2	 0.98	 2.59	 1.49	 0.00	 0.69	 1.02	
	

Table	6:	CO2	model	performance	metrics.	

Case	Study	 N	 R2	 RMSE		
(ppm)	

MBE	
(ppm)	

Standard	
Deviation	

R2	

Standard	
Deviation	
RMSE	

Standard	
Deviatio
n	MBE	

	 CO2	Models	
Best	CO2	Model	from	(Casey	et	al.,	2017)							
ANN	with	inputs:		eltCO2	temp	absHum	

SJ	Basin	Summer	
2015	

2	
0.65	 8.42	 -0.62	 0.00	 1.81	 1.41	

BAO	Summer	2015	 2	 0.75	 9.98	 -2.60	 0.05	 13.00	 13.89	
BAO	Summer	2016	 2	 0.69	 54.38	 48.37	 0.05	 13.00	 13.89	
GRET	Fall	2016	 2	 0.74	 42.37	 39.58	 0.02	 2.44	 2.57	

GRET	Spring	2017	 2	 0.83	 6.31	 0.59	 0.03	 0.13	 2.61	
Simple	Model	(Single	Gas	Sensor)	

LM	with	inputs:		eltCO2	temp	absHum	
SJ	Basin	Summer	

2015	
2	

0.71	 7.84	 0.27	 0.01	 1.43	 0.42	
BAO	Summer	2015	 2	 0.69	 10.62	 -1.26	 0.06	 1.52	 10.67	
BAO	Summer	2016	 2	 0.73	 11.82	 0.73	 0.06	 1.52	 10.67	
GRET	Fall	2016	 2	 0.82	 8.62	 -3.46	 0.00	 0.69	 1.45	

GRET	Spring	2017	 2	 0.55	 9.88	 -0.33	 0.03	 0.29	 1.91	
Models	Optimized	For	Case	Studies	

SJ	Basin	Summer	
2015	

2	
0.72	 7.45	 -0.11	 0.04	 2.06	 0.31	

BAO	Summer	2015	 2	 0.80	 8.85	 -2.29	 0.10	 6.47	 7.08	
BAO	Summer	2016	 2	 0.73	 11.82	 0.73	 0.06	 1.52	 10.67	
GRET	Fall	2016	 2	 0.82	 8.62	 -3.46	 0.00	 0.69	 1.45	

GRET	Spring	2017	 2	 0.83	 6.31	 0.59	 0.03	 0.13	 2.61	
	
 



Comment:		It would be good to include an explicit discussion of % reduction in error by using established 
models vs. “best fit” models. Can we generalize? What is the quantitative impact of using your prior 
models vs making a new model every time. My interpretation from this paper is that we need a new model 
for every U-Pod for every deployment – is there any way around this? I feel there is a significantly missed 
opportunity to be quantitative here. Section 3.3 could be substantially enhanced using some sort of 
summary figure/table (other than a target diagram) that gives percent change in bias, random error, r2, mae 
etc. by switching from pre/post to just post, or by switching location. Given that there are many pairs of 
sensors looking at impact of pre/post vs. just post or impact of location switching, you could show average 
% change in model fitting statistics as well as confidence intervals or standard deviations to show the 
spread across the case studies. This might be a helpful way of streamlining the paper. 
Response:	Thanks	very	much	to	the	Reviewer	for	this	helpful	comment,	which	will	help	us	be	more	
quantitative	as	well	as	clarify	and	focus	the	narrative	and	results	we	present.			
Edits:		Accordingly,	we	have	added	a	table	showing	the	percent	change	in	R2,	RMSE,	and	MBE,	when	
one	set	of	models	is	used	instead	of	another,	as	well	as	the	following	text:	“Table	7	shows	the	percent	
change	in	model	performance	metrics	when	one	model-training	paradigm	is	used	in	place	of	another,	
highlighting	relative	benefits	associated	with	the	implementation	of	different	models	for	O3	and	CO2.”	
	
Table	7:	Relative	benefits	associated	with	the	implementation	of	different	models	for	O3	and	CO2.			

Case	Study	

Mean	%	
Increase	
in	R2	

Mean	%	
Decrease	
in	RMSE		

Mean	%	
Decrease	
in	MBE	

Mean	%	
Increase	
in	R2	

Mean	%	
Decrease	
in	RMSE		

Mean	%	
Decrease	in	

MBE	

	 CO2	Models	 O3	Models	

Benefit	of	Models	Optimized	For	Case	Studies	Over	The	Best	Models	from	(Casey	et	al.,	2017)	
Dawson	Summer	2014	 	 	 	 14.51	 44.42	 50.00	
SJ	Basin	Spring	2015	 	 	 	 0.00	 0.00	 0.00	
SJ	Basin	Summer	2015	 10.56	 11.52	 82.60	 0.00	 0.00	 0.00	
BAO	Summer	2015	 5.84	 11.27	 11.95	 0.00	 0.00	 0.00	
BAO	Summer	2016	 5.72	 78.27	 98.49	 -5.01	 48.82	 98.19	
GRET	Fall	2016	 11.17	 79.66	 108.73	 -0.54	 68.99	 82.22	

GRET	Spring	2017	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	
Benefit	of	The	Best	Models	from	(Casey	et	al.,	2017)	Over	Simple	Linear	Models		

Dawson	Summer	2014	 	 	 	 -12.67	 -79.92	 -99.99	
SJ	Basin	Spring	2015	 	 	 	 3.20	 56.88	 77.09	
SJ	Basin	Summer	2015	 -8.41	 -7.29	 331.39	 -1.34	 -11.53	 -38.41	
BAO	Summer	2015	 8.70	 6.05	 -106.48	 6.79	 22.48	 -53.85	
BAO	Summer	2016	 -5.41	 -360.09	 -6543.84	 2.57	 -111.22	 -310.71	
GRET	Fall	2016	 -10.05	 -391.73	 1244.99	 2.88	 -1.12	 -0.86	

GRET	Spring	2017	 51.92	 36.13	 278.55	 10.00	 56.90	 146.65	
Benefit	of	Models	Optimized	For	Case	Studies	Over	Simple	Linear	Models	

Dawson	Summer	2014	 	 	 	 0.00	 0.00	 0.00	
SJ	Basin	Spring	2015	 	 	 	 3.20	 56.88	 77.09	
SJ	Basin	Summer	2015	 1.26	 5.06	 140.25	 -1.34	 -11.53	 -38.41	
BAO	Summer	2015	 15.04	 16.64	 -81.80	 6.79	 22.48	 -53.85	
BAO	Summer	2016	 0.00	 0.00	 0.00	 -2.57	 -8.10	 92.59	



GRET	Fall	2016	 0.00	 0.00	 0.00	 2.33	 68.64	 82.07	
GRET	Spring	2017	 51.92	 36.13	 278.55	 10.00	 56.90	 146.65	

 
Comment:		This is mentioned in the specific comments, but I would like to see a quantitative assessment 
of the impact of swapping out RH data if a U-Pod failed. You could accomplish this by taking a U-Pod 
with valid RH data, replacing it with the Picarro or nearby station RH data, and quantitatively assessing the 
impact on model performance. That way, you could transition from hypotheticals about the impact of this 
data swapping to some actual numbers.  
Response:	Thanks	very	much	to	the	reviewer	for	helping	us	to	be	less	hypothetical	about	the	impact	
of	this	data	swapping.		We	have	carried	out	a	dummy	experiment,	testing	the	effect	of	this	humidity	
data	swapping	on	data	collected	during	the	GRET	Spring	2017	case	study.		A	figure,	showing	the	
relative	performance	of	models	when	the	humidity	data	was	taken	from	the	U-Pods	directly	and	
replaced	with	measurements	from	the	Picarro	CRDS,	has	been	added	to	the	Supplemental	Materials.		
This	figure,	and	associated	implication	have	been	cited	in	the	main	text.				
Edits:		“In	our	previous	work,	we	showed	that	O3	models	were	very	sensitive	to	the	humidity	signal	
input		(Casey	et	al.,	2017).		In	this	case	study,	it	seems	that	replacing	actual	humidity	signals	with	
closely	approximated	humidity	signals,	negatively	influenced	model	performance.		In	order	to	
investigate	this	observation	further,	we	tested	the	influence	of	replacing	humidity	data	in	the	same	
manner,	using	mixing	ratios	from	the	same	co-located	Picarro,	on	test	data	from	the	GRET	Spring	
2017	case	study.		A	comparison	of	model	performance	under	normal	and	this	‘borrowed	RH’	
circumstance	are	presented	in	Fig.	S27	in	the	SM.		O3	model	performance	was	negatively	impacted	
when	‘borrowed’	RH	values	based	on	Picarro	data	replaced	U-Pod	RH	sensor	signals.		From	these	
findings,	it	seems	likely	that	the	inclusion	of	multiple	metal	oxide	type	sensors	as	inputs	in	the	model,	
which	all	respond	strongly	to	humidity	fluctuations,	helped	the	ANN	to	effectively	represent	the	
influence	of	humidity	in	the	system,	more	so	than	including	a	‘borrowed	RH’	signal	from	another	
instrument.		We	tested	models	with	multiple	gas	sensor	signals	and	no	humidity	signal	as	inputs	for	a	
number	of	other	case	studies	as	well	(as	seen	in	Fig.	S2,	Fig.	S4,	and	Fig.	S5),	when	good	humidity	
data	from	U-Pod	enclosures	was	available,	but	they	did	not	turn	out	to	be	the	best	performing	model	
in	any	of	these	other	tests.”	



 
Figure S27 A comparison of model performance when humidity inputs are taken from sensor 

measurements collected within a given U-Pod sensor system enclosure, vs the performance of models 
when humidity inputs are replaced using data from a Picarro CRDS for (a) O3	(b)	CO2 

	
 
SPECIFIC COMMENTS  
Comment:		P1 - L13-14: Seems like an oxymoron to say “Generally” if the circumstances for best model 
performance are case study specific. Recommendation to remove the word “generally”.  
Response:		Thank	you	for	the	helpful	feedback.	
Edits:		We	have	removed	the	word	‘Generally’.	
 
Comment:		P3 - L19-24: Please discuss why ozone is elevated near O&G production.  

(b) 

(a) 



Response:	Thank	you	for	helping	us	clarify	why	ozone	can	be	elevated	near	oil	and	gas	production	
activities.			
Edits:		We	have	added	the	following	text	to	augment	this	discussion:	“NOX	and	VOC	emissions,	
including	those	from	oil	and	gas	production	activities,	react	in	the	atmosphere	in	the	presence	of	
sunlight	to	form	tropospheric	O3.”					
“Emissions	of	industry	related	air	pollutants,	including	O3	precursors,	NOX	and	VOCs	are	expected	to	
occur	on	spatially	distributed	scales,	across	multiple	individual	components	on	individual	well	pads,	
transmission	lines,	transportation	routes,	and	gathering	stations	that	are	each	distributed	
throughout	production	basins	(Litovitz	et	al.	2013;	Mitchell	et	al.	2015;	Allen	et	al.	2013).		Spatially	
distributed	networks	of	low-cost	sensors	have	the	potential	to	better	inform	spatial	variability	of	air	
quality	than	existing	Regulatory	air	quality	monitoring	stations	which	feasibly	cover	such	spatially	
resolved	measurements	continuously,	and	may	not	be	representative	of	air	quality	across	smaller	
spatial	scales	(Bart	et	al.,	2014;	Jiao	et	al.,	2016;	Moltchanov	et	al.,	2015).”	
 
Comment:		P3 – L27: Can you quantify “small spatial scales” in this context? Is well pad combustion and 
diesel traffic really contributing so much that it is universally increasing ozone?  Most of the construction 
traffic would occur during active drilling and less so during production when well pad sites are very quiet. I 
think some further thinking or elaboration on this train of thought it warranted.  
Response:	Thank	you	for	the	helpful	comment.			
Edits:		We	have	added	the	following	detail,	regarding	spatial	scales	that	ozone	may	be	influcened	
near	oil	and	gas	emissions	sources:	“	a	modeling	study	concluded	that	oil	and	gas	production	
activities	could	significantly	impact	ozone	near	emissions	sources,	beginning	2	and	8	km	downwind	
of	compressor	engine	and	flaring	activities,	respectively	[3].”	
We	have	also	added	the	following	text	to	address	how	emissions	may	change	across	the	lifetime	of	a	
given	oil	and	gas	production	well:		“While	emissions	from	truck	traffic	(and	in	some	cases	drilling	rig	
generators),	at	a	given	well	pad	are	highest	during	the	drilling,	stimulation,	and	completion	phases,	
industry	truck	traffic	often	persists	as	produced	water	and	condensate	tanks	are	collected	from	
storage	tanks	on	a	well	pad	throughout	the	life	a	the	well,	as	do	emissions	from	flaring	and	
compressor	engines.”	
 
Comment:		P4 – L1-2: What do you mean by “pooling” of compounds - I am not sure I understand this 
sentence.  
Response:	Thank	you	for	helping	us	clarify	this	statement.	
Edits:		We	have	made	the	following	edits	accordingly:		“While	elevated	ambient	CO2	levels	are	not	
directly	harmful	to	human	health,	continuous	CO2	measurement	can	provide	information	about	
nearby	combustion-related	pollution	and	atmospheric	dynamics	that	lead	to	the	accumulation	of	
potentially	harmful	compounds	associated	with	the	oil	and	gas	production	industry	during	periods	of	
atmospheric	stability.”			
 
Comment:		P4 – L5-8: I think some short discussion of the operating principles of the sensors would be 
helpful here.  
Response:	Thank	you	for	the	helpful	feedback.	
Edits:		We	have	added	a	discussion	of	the	operating	principles	of	the	sensors		to	section	1.1	
accordingly:			
“While	low-cost	sensors	have	been	emerging	on	the	market	with	sufficient	sensitivity	to	resolve	
variations	in	ambient	mole	fractions	of	target	gases	of	interest,	they	are	also	sensitive	to	temperature	
and	humidity	variations	that	occur	in	the	ambient	environment.		NDIR	sensors,	like	the	ELT	s300	CO2	
sensor	employed	in	this	study,	have	good	selectivity,	but,	since	pressure	and	temperature	are	not	
controlled	in	the	optical	cavity	of	ELT	s300	CO2	sensors,	the	influence	of	temperature	on	sensor	
signals	plays	an	important	role.		The	influence	of	humidity	is	also	important	to	address	because	
changes	in	water	vapor	are	known	to	influence	NDIR	measurements	of	CO2	in	terms	of	spectral	cross-
sensitivity	due	to	absorption	band	broadening	(Licor,	2010).			
	
Both	metal	oxide	and	electrochemical	type	sensors	operate	on	the	principle	of	oxidizing	or	reducing	
reactions	at	sensor	surfaces.		For	electrochemical	sensors,	like	the	Alphasense	CO-B4	sensor	



employed	in	this	study,	oxidizing	or	reducing	compounds	react	at	the	working	electrode,	resulting	in	
the	transfer	of	ions	across	an	electrolyte	solution	from	the	working	electrode	to	the	counter	
electrode,	balanced	by	the	flow	of	electrons	across	the	circuit	connecting	the	working	electrode	to	
the	counter	electrode.		A	linear	relationship	is	expected	between	this	current	and	the	target	gas	mole	
fraction.			Electrochemical	sensors	can	be	tuned	to	respond	more	or	less	strongly	to	specific	gases	by	
adjusting	the	materials	properties	of	the	working	electrode.	A	membrane	is	located	between	the	
working	electrode	and	the	exterior	of	the	sensor	in	order	to	control	redox	reaction	rates.		Gases	
diffusion	through	the	membrane	to	reach	the	working	electrode	and	the	electron	transfer	rates	have	
been	shown	to	increase	at	higher	temperatures	(Xiong	and	Compton,	2014),	and	since	chemical	
reaction	rates	are	also	influenced	by	temperature,	electrochemical	sensor	responses	can	be	
influenced	by	sensor	operating	temperature.		Changes	in	ambient	humidity	levels	can	cause	sensors	
to	loose	or	gain	of	the	electrolyte	solution,	by	mass,	also	influencing	electrochemical	sensor	response	
(Xiong	and	Compton,	2014).	
	
For	metal	oxide	sensors,	and	to	a	lesser	extent	for	electrochemical	sensors,	resolving	the	response	of	
a	sensor	attributable	to	the	target	gas	species	can	also	pose	a	challenge	in	the	presence	of	interfering	
gas	species.		Metal	oxide	sensors,	like	those	used	in	this	study,	have	a	resistive	heater	circuit	that	
warms	up	the	sensor	surface,	causing	O2	molecules	to	adsorb	to	the	sensor	surface,	which	leads	to	
increased	resistance	across	the	surface	of	the	sensor.		In	the	presence	of	an	oxidizing	compound,	like	
O3,	more	oxygen	molecules	are	adsorbed	to	the	sensor	surface	and	the	resistance	across	the	sensor	
surface	in	increased	further.		In	the	presence	of	a	reducing	compound,	like	CO,	oxygen	molecules	are	
removed	from	the	sensor	surface,	allowing	electrons	to	flow	more	freely,	resulting	in	decreased	
resistance	across	the	sensor	surface.	For	metal	oxide	sensors,	the	resistance	across	the	sensor	
surface	can	then	be	used	to	determine	the	mole	fraction	of	a	given	oxidizing	or	reducing	compound,	
often	according	to	a	nonlinear	relationship.		Exposure	to	humidity	has	been	shown	to	significantly	
lower	the	sensitivity	of	metal	oxide	gas	sensors	making	it	an	important	parameter	to	address	in	a	gas	
quantification	model	(Wang	et	al.,	2010).		Metal	oxide	sensor	operating	temperature	has	also	been	
shown	to	strongly	influence	sensor	sensitivity	and	selectivity	to	different	gas	species	(Wang	et	al.,	
2010).		Metal	oxide	type	sensors	can	be	tuned	to	respond	differently	from	one	another	to	oxidizing	
and	reducing	gas	species	by	using	different	metal	oxide	materials	and	doping	agents	for	the	sensor	
surface,	but	selectivity	is	difficult	to	achieve.”		
		
We	have	also	added	a	section	to	the	introduction,	section	1.2,	entitled	“Low-Cost	Air	Quality	Sensor	
Quantification:		
	
“Because	low-cost	gas	sensor	signals	are	influenced,	sometimes	significantly,	by	interfering	gas	
species	and	changing	weather	conditions	in	the	ambient	environment,	field	normalization	methods	
to	quantify	atmospheric	trace	gases	using	low-cost	sensors	have	been	found	to	be	more	effective	than	
lab	calibration	(Cross	et	al.,	2017;	Piedrahita	et	al.,	2014;	Sun	et	al.,	2016).		Our	previous	study	and	
several	others	have	compared	the	efficacy	field	calibration	models	generated	using	LMs	(simple	and	
multiple	linear	regression)	relative	to	supervised	learning	methods	(including	ANNs	and	random	
forests),	all	finding	that	ANNs	(Casey	et	al.,	2017;	Spinelle	et	al.,	2015,	2017)	and	random	forests	
(Zimmerman	et	al.,	2017)	outperformed	LMs	in	the	ambient	field	calibration	of	low-cost	sensors.		
Like	earlier	laboratory	based	studies	(Brudzewski,	1999;	Gulbag	and	Temurtas,	2006;	Huyberechts	
and	Szeco,	1997;	Martín	et	al.,	2001;	Niebling,	1994;	Niebling	and	Schlachter,	1995;	Penza	and	
Cassano,	2003;	Reza	Nadafi	et	al.,	2010;	Srivastava,	2003;	Sundgren	et	al.,	1991),	ANN-based	
calibration	models,	incorporating	signals	from	an	array	of	gas	sensors	with	overlapping	sensitivity	as	
inputs,	have	been	able	to	effectively	compensate	for	the	influence	of	interfering	gas	species	and	
resolve	the	target	gas	mole	fraction.			
	
ANNs	are	known	to	be	able	to	very	effectively	represent	complex,	nonlinear,	and	collinear	
relationships	among	input	and	output	variables	in	a	system	(Larasati	et	al.,	2011).		ANNs	are	useful	in	
the	field	calibration	of	low-cost	sensors	because,	through	pattern	recognition	of	a	training	dataset,	
they	are	able	to	effectively	represent	the	complex	processes	and	relationships	among	sensors	and	the	
ambient	environment	that	would	be	very	challenging	to	represent	analytically	or	based	on	empirical	



representation	of	individual	driving	relationships.		In	practice	though,	the	reason	multiple	gas	
sensors	are	able	to	improve	the	performance	of	calibration	models	may	be	in	part	the	result	of	
correlation	between	mole	fractions	of	target	gases	themselves	that	hold	for	one	model	training	
location,	but	might	not	remain	effective	at	alternative	sampling	sites	or	during	other	time	periods.”	
	
 
Comment:		P4 – L25: Not sure what is meant by “toward” here  
Response:	Thank	you	for	the	helpful	feedback.	
Edits:		We	have	replaced	“toward”	with	“that	were	used	for”	
 
Comment:		P5 – L27: Is this “clean air” normalization done dynamically/in real-time in parallel with the 
actual measurement? Or is the clean air measurement established during some calibration/maintenance? 
Please clarify.  
Response:	Thank	you	for	helping	us	clarify.			
Edits:	We	have	added	the	following	text	accordingly:		“For	metal	oxide	type	sensors,	voltage	signals	
were	converted	into	resistance,	and	then	normalized	by	the	resistance	of	the	sensor	in	clean	air,	R0.	A	
single	value	for	R0	was	used	for	each	sensor	across	the	study	duration.	This	R0	value	was	taken	as	the	
resistance	of	each	sensor	at	the	GRET	field	deployment	site	when	the	target	pollutant	had	
approached	background	levels	(at	night	for	the	metal	oxide	O3	sensors	and	midday	for	all	other	metal	
oxide	sensors),	and	when	the	ambient	temperature	was	approximately	20°	C	and	relative	humidity	of	
approximately	25%.”	
 
Comment:		P5 – L30-32: Is there expected to be spatial variability of RH?  
Response:		Thank	you	for	helping	us	to	clarify.	
Edits:		We	have	added	the	following	text	to	section	2.3:		“The	closest	U-Pod	with	good	humidity	
sensors	ranged	from	several	feet,	when	U-Pods	were	co-located	during	deployments	in	the	DJ	Basin,	
to	approximately	fifty	miles	during	deployments	in	the	San	Juan	Basin.”	
	
In	Section	3.1	of	we	have	added	this	text	also:		“Since	the	Ignacio	site	was	located	approximately	
twenty-two	and	fifty	miles	away	from	the	Navajo	Dam	and	Sub	Station	sites	respectively,	this	could	
have	introduced	some	additional	error	into	the	application	of	a	calibration	equation,	particularly	
since	we	showed	earlier	that	O3	ANNs	like	the	ones	we	employed	here	are	very	sensitive	to	humidity	
inputs	(Casey	et	al.,	2017).		Spatial	variability	in	humidity	across	tens	of	miles	could	be	significant	as	
isolated	storms	(which	are	on	average	15	miles	in	diameter)	propagate	throughout	the	region	in	the	
summer.”	
 
Comment:		P5 – L30-32: Why not just replace the RH sensors directly?  
Response:	Good	question.	
Edits:		In	answer,	we	have	added	the	following	text:		“RH	sensors	were	not	replaced	during	field	
deployments	in	order	to	preserve	consistency	across	different	deployment	periods,	allowing	for	the	
possibility	of	a	single	comprehensive	model	to	apply	to	all	data	from	a	single	U-Pod.		After	some	
experimentation	in	generating	a	‘master	model’	that	could	be	applied	to	data	from	a	given	U-Pod	for	
all	collected	field	measurements,	across	several	years,	we	determined	that	individual	models	for	each	
deployment	would	be	more	effective,	and	replacing	RH	sensors	that	had	drifted	down	would	have	
been	appropriate	in	support	of	the	methods	presented	here.		We	have	since	upgraded	to	Sensirion	AG	
SHT25	sensors,	which	appear	to	be	more	robust	and	consistent	over	the	course	of	long-term	field	
deployments.”	
 
Comment:		P7 – Section 3.0 first paragraph – Are there some general conclusions from the SM that you 
can discuss here? Some discussion of model performance is warranted vs just describing what figures are in 
the SM.  
Response:	Thanks	very	much	for	the	feedback.		
Edits:		We	have	moved	the	paragraph	in	question	to	the	methods	section	and	have	added	the	
following	sentence,	letting	the	reader	know	that	these	plots	are	discussed	in	the	results	and	



discussion	section	in	context	with	each	case	study	presented:		“The	best-performing	model	for	each	
case	study	are	highlighted	below	in	the	Results	and	Discussion	section.”	
 
Comment:		P8 – L17: What is eltCO2?? Can you better define all the model parameter inputs? This comes 
up in Figure 9 as well.  
Response:	Yes,	thank	you	for	the	feedback.	
Edits:		Description	added	here	and	at	the	first	mention	of	other	model	input	codes	in	the	manuscript	
in	the	text:	“eltCO2	(ELT	S300	CO2	sensor)”	
We	have	also	defined	these	model	input	codes	in	the	caption	for	Figure	9	(now	Figure	12)	as	well	as	
Figure	8	(now	Figure	10	and	Figure	11):		“Model	input	definitions:		eltCO2	(ELT	S300	CO2	sensor),	
e2vCO	(e2v	MiCs-5525	sensor),	e2vVOC	(e2v	MiCs-5521	sensor),	e2vO3	(e2v	MiCs-2611	sensor),	
figCH4	(Figaro	TGS	2600	sensor),	figCxHy	(Figaro	TGS	2602	sensor),	alphaCO	(Alphasense	CO-B4	
sensor),	temp	(temperature),	absHum	(absolute	humidity),	rh	(relative	humidity),	and	time	(absolute	
time).”			
 
Comment:		P8 – L30-33: Is this early morning under prediction really true? Bloomfield doesn’t look like it 
is exhibiting any diurnal variation in residual error at all… I feel like given the small number of U-Pods, it 
is hard to make this conclusion definitively.  
Response:	We	agree,	thank	you	for	pointing	the	trend	in	Bloomfield	out.			
Edits:		We	have	edited	the	text	to	say	“three	of	four	U-Pods”	instead	of	“all	four	U-Pods”	
 
Comment:		P9 – L4-13: I am confused now – why did you use the model with three inputs (eltCO2, 
abshum, and temp) if the best performing model had more variables? I feel like the model selection 
discussion is substantially underdeveloped. There could be many good reasons to not choose a more 
complex model, but any discussion of this seems to be completely omitted, or the reasoning is too difficult 
to follow.  
Response:	Thank	you	for	the	feedback	and	for	helping	us	to	clarify.		You	have	helped	us	see	that	
some	important	details	were	missing	from	the	methods	section	regarding	model	selection	and	
testing	procedures.			
Edits:		We	have	added	a	subsection	2.5	to	the	end	of	the	methods	section	entitled	“Calibration	Model	
Evaluation	and	Testing”.		In	this	section,	we	first	define	the	r2,	RMSE,	MBE,	and	CRMSE	metrics	that	
are	used	to	evaluate	the	performance	of	a	given	model	when	it	is	applied	to	a	test	dataset.		Next	we	
added	a	paragraph	describing	how	we	first	tested	models	that	were	found	to	perform	best	for	each	
gas	species	in	our	previous	work,	and	then	evaluated	the	performance	of	the	best	model	for	each	
specific	case	study.		We	then	describe	the	methodology	behind	model	selection	and	testing	for	each	
case	study,	in	the	following	text	and	in	the	newly	added	Table	4:			
	
“First,	we	generated	and	applied	the	best	performing	model,	as	determined	in	our	previous	work	
(presented	in	Table	3),	to	data	from	each	new	case	study.		Each	new	case	study	was	selected	to	
challenge	models	in	different	ways	in	order	to	evaluate	the	resiliency	of	the	findings	from	our	
previous	study	when	challenged	by	different	circumstances.			
	
Table 3: Best performing models, as determined for each gas species, in the previous study (Casey et al., 2017) 

Gas	
Species	

Model	Type	 Sensor	Signal	Model	Inputs		

CO2	 ANN	
eltCO2											(ELT	S300	CO2	Sensor)	
temp														(temperature)	
absHum								(absolute	humidity)	

O3	 ANN	

e2vO3												(e2v	MiCs-2611)	
e2vCO												(e2v	MiCs-5525)	
e2vVOC									(e2v	MiCs-5521)	
figCH4											(Figaro	TGS	2600)	
figCxHy									(Figaro	TGS	2602)	



temp														(temperature)	
absHum								(absolute	humidity)	

	
Next	we	tested	LMs	for	CO2	and	O3	that	contained	only	the	primary	target	gas	sensor	for	each	
species,	as	well	as	temperature	and	absolute	humidity	as	inputs.		Finally,	we	generated,	applied,	and	
evaluated	the	performance	of	a	number	of	LMs	and	ANNs	with	different	sets	of	inputs	for	each	case	
study	in	order	to	see	which	specific	model	performed	the	best	for	each	individual	case	study.		The	r2,	
RMSE,	and	MBE	for	each	of	these	alternative	models	when	applied	to	test	data	are	presented	in	the	
supplemental	materials	(SM)	in	Fig.	S2	through	Fig.	S7,	along	with	representative	scatter	plots	and	
time	series	comparing	the	performance	LMs	and	ANNs	for	a	given	set	of	inputs.		In	Fig.	S2	through	
Fig.	S7,	the	best	performing	model	inputs	for	each	train/test	data	pair	are	shaded	in	purple.		The	type	
of	model	that	performed	the	best	(ANN	vs.	LM)	is	indicated	in	the	caption	of	each	figure.		We	discuss	
both	the	performance	of	the	previously	determined	best	fitting	model	(generated	using	data	from	the	
GRET	Spring	2017	case	study)	when	applied	and	generated	to	data	from	new	case	studies,	and	the	
performance	of	models	that	were	tuned	to	perform	the	best	for	each	individual	case	study.		From	
these	comparisons,	we	draw	insight	into	circumstances	that	challenge	model	performance	in	terms	
of	relative	local	emissions	characteristics,	location,	and	timing	between	model	training	and	testing	
pairs.		Table	4	lists	the	relative	timing	and	parameter	coverage	between	model	training	and	testing	
periods	for	dataset	pairs,	highlighting	instances	of	incomplete	coverage	during	training	that	led	to	
model	extrapolation	during	testing.”	
 
Comment:		P9 – L28-30: It would be good to do a more comprehensive assessment of the impact of 
replacing RH sensor signal on model performance. Could you conduct a dummy experiment where you 
replace RH data you actually logged with that of a nearby or alternate monitor and then quantify the impact 
on model outcome? Given that it seems that a) RH/abshum is an important variable and b) that you had 
significant data loss issues, I feel a more quantitative assessment of the impact of these data substitutions is 
needed.  
Response:	Thanks	very	much	to	the	reviewer	for	helping	us	to	be	less	hypothetical	about	the	impact	
of	this	data	swapping.		We	have	carried	out	a	dummy	experiment,	testing	the	effect	of	this	humidity	
data	swapping	on	data	collected	during	the	GRET	Spring	2017	case	study.		A	figure,	showing	the	
relative	performance	of	models	when	the	humidity	data	was	taken	from	the	U-Pods	directly	and	
replaced	with	measurements	from	the	Picarro	CRDS,	has	been	added	to	the	Supplemental	Materials.		
This	figure,	and	associated	implication	have	been	cited	in	the	main	text.				
Edits:		“The	fall	2016	GRET	test	period	coincided	with	the	time	period	U-Pod	absolute	humidity	was	
replaced	using	mixing	ratios	from	a	co-located	Picarro	due	to	missing	humidity	sensor	data.	
Interestingly,	when	this	‘borrowed’	humidity	signal	was	not	included	as	an	input,	the	model	
performance	markedly	increased	and	became	competitive	with	other	‘same	location’	test	
deployment	case	studies.		In	our	previous	work,	we	showed	that	O3	models	were	very	sensitive	to	the	
humidity	signal	input		(Casey	et	al.,	2017).		In	this	case	study,	it	seems	that	replacing	actual	humidity	
signals	with	closely	approximated	humidity	signals,	negatively	influenced	model	performance.		In	
order	to	investigate	this	observation	further,	we	tested	the	influence	of	replacing	humidity	data	in	
the	same	manner,	using	mixing	ratios	from	the	same	co-located	Picarro,	on	test	data	from	the	GRET	
Spring	2017	case	study.		A	comparison	of	model	performance	under	normal	and	this	‘borrowed	RH’	
circumstance	are	presented	in	Fig.	S27	in	the	SM.		O3	model	performance	was	negatively	impacted	
when	‘borrowed’	RH	values	based	on	Picarro	data	replaced	U-Pod	RH	sensor	signals.		From	these	
findings,	it	seems	likely	that	the	inclusion	of	multiple	metal	oxide	type	sensors	as	inputs	in	the	model,	
which	all	respond	strongly	to	humidity	fluctuations,	helped	the	ANN	to	effectively	represent	the	
influence	of	humidity	in	the	system,	more	so	than	including	a	‘borrowed	RH’	signal	from	another	
instrument.		We	tested	models	with	multiple	gas	sensor	signals	and	no	humidity	signal	as	inputs	for	a	
number	of	other	case	studies	as	well	(as	seen	in	Fig.	S2,	Fig.	S4,	and	Fig.	S5),	when	good	humidity	
data	from	U-Pod	enclosures	was	available,	but	they	did	not	turn	out	to	be	the	best	performing	model	
in	any	of	these	other	tests.”	



 
Figure S27 A comparison of model performance when humidity inputs are taken from sensor 

measurements collected within a given U-Pod sensor system enclosure, vs the performance of models 
when humidity inputs are replaced using data from a Picarro CRDS for (a) O3	(b)	CO2 

 
Comment:		P11 – L2-13: Can you comment on the quality of the fit at Dawson vs CAMP in addition to 
the ideal model. The discussion is fairly qualitative. Also, the LM should be much better at extrapolating vs 
the ANN (which cannot extrapolate I think…not sure) – can you comment on this difference? Does LM 
perform better because it can extrapolate?  
Response:	Thank	you	for	this	useful	comment.		We	agree	it	is	true	that	LMs	should	accommodate	
extrapolation	more	effectively	than	ANNs,	and	that	a	quantitative	description	of	model	performance	
is	warranted.			

(b) 

(a) 



Edits:		We	have	added	the	following	text,	accordingly:		“The	fact	that	LMs	performed	better	than	
ANNs	in	this	case	(with	an	r2	of	.95	and	RMSE	of	0.35	ppb	for	LMs,	as	opposed	to	an	r2	of	.9	and	an	
RMSE	of	5.1	ppb	for	ANNs)	may	have	to	do	with	the	general	expectation	that	LMs	be	more	resilient	to	
extrapolation	than	ANNs.”	
 
Comment:		P11 – Section 3.2.2: If the calibration is immediately after deployment, I am not surprised that 
there wasn’t much of an effect. Do you anticipate there should be a significant time effect on such short 
time scales? What is the lifespan of the U-Pods?  
Response:	Thank	you	for	the	useful	comment.		
Edits:		We	have	added	the	following	text	accordingly:		“Gas	sensor	manufactures	don’t	clearly	define	
sensor	lifetimes,	but	sensors	are	generally	expected	to	loose	sensitivity	over	time.		For	example,	
Alphasense	CO-B4	electrochemical	sensors	are	expected	to	have	50%	of	their	original	sensitivity	
after	two	years	(Alphasense,	2015).			The	heater	resistance	in	a	give	metal	oxide	type	sensor	is	
expected	to	drift	over	time,	influencing	sensor	measurements	(e2v	Technologies	Ltd.,	2007).		Masson	
and	colleagues	observed	a	significant	drift	in	a	metal	oxide	sensor	heater	resistance	over	the	course	
of	a	250	day	sampling	period	in	a	laboratory	setting	(Masson	et	al.,	2015).		While	we	did	not	measure	
and	record	metal	oxide	sensor	heater	resistance	for	sensors	included	in	U-Pods,	we	have	investigated	
eltCO2	and	e2vO3	sensor	signal	drift	from	the	summer	of	2015	through	the	summer	of	2017.		These	
data	are	presented	in	Fig.	S26.		Systematic	downward	drift	in	all	eltCO2	sensor	signals	is	apparent	
over	this	time	frame.		A	clear	and	consistent	pattern	of	systematic	drift	over	this	time	period	is	less	
apparent	for	e2vO3	sensors.		Since	the	training	data	was	collected	immediately	after,	the	test	data	
period,	and	since	the	test	data	period	was	relatively	short	(approximately	one	month)	sensor	drift	
could	be	negligible	across	the	combined	training/testing	time	frame.”	
 
Comment:		P11 – L25: I am confused by the introduction of discussion around figCxHy – should we 
expect this sensor to play an important role?  
Response:	Thank	very	much	to	the	reviewer	for	helping	us	to	clarify.	
Edits:		We	have	added	the	following	text:		“Again	the	model	for	O3	that	was	found	to	perform	best	in	
our	previous	(Casey	et	al.,	2017),		an	ANN	with	temp,	absHum	and	all	metal	oxide	sensor	signals	as	
inputs,	performed	the	best	at	sites	included	in	this	case	study,	with	one	exception.	At	the	Sub	Station	
site	the	inclusion	of	the	figCxHy	sensor	signal	decreased	model	performance.		Additionally,	the	
performance	of	all	models	tested	at	the	Sub	Station	site	during	the	SJ	Basin	Spring	2015	deployment	
was	significantly	worse	in	terms	of	MBE	than	model	performance	at	other	sites,	both	LMs	and	ANNs	
with	different	sets	of	inputs.		Since	this	sensor	signal	input	augmented	model	performance	at	the	
same	sampling	location	during	the	summer	deployment	period,	this	finding	could	be	attributable	to	
the	extrapolation	with	respect	to	temperature	that	occurred	during	the	test	period	of	this	case	study.		
As	discussed	in	the	introduction,	metal	oxide	sensor	sensitivity	to	different	gas	species	can	vary	along	
with	sensor	surface	temperature.		Models	were	trained	to	use	the	figCxHy	sensor	signal,	across	the	
ambient	temperatures	in	encompassed	by	the	training	data,	to	help	account	for	the	influence	of	
confounding	gas	species	at	the	BAO	site.		We	think	it	is	possible	that	the	different	temperatures	in	
combination	with	the	unique	mix	of	gas	species	present	at	the	Sub	Station	site,	which	the	figCxHy	
sensors	are	highly	sensitive	to,	caused	the	ANN	to	perform	worse.”		
 
Comment:		P12 – L5: How long is “so long”? This is related to my comment on  
Response:	Thank	you	for	helping	us	to	be	more	specific.	
Edits:		We	have	changed	“so	long”	to	“several	months”.	
 
P11 – Section 3.2.2.  
 
Comment:		P12 – L21-24: I am confused – did you switch to humidity measured by Picarro or omit 
humidity entirely? It is not clear to me what happened here.  
Response:	Thank	you	for	pointing	out	this	confusion.		
Edits:		We	have	more	clearly	described	the	humidity	replacement	process	(if	any)	for	each	individual	
case	study	dataset	pair	in	the	methods	section.		We	have	additionally	added	to	the	text	in	section	2.3	
as	follows:		“Water	mole	fractions	measured	by	the	Picarro	were	converted	into	mass-based	mixing	



ratios	to	match	the	units	of	the	absolute	humidity	signal	in	the	U-Pod	data.		We	applied	an	adjustment	
to	this	absolute	humidity	signal	so	that	it	matched	observations	in	U-Pods	during	the	following	
month	when	good	RH	sensor	data	was	available,	to	account	for	the	fact	that	temperatures	were	
higher	in	U-Pod	enclosures	than	the	ambient	environment.			We	then	replaced	the	relative	humidity	
signal	in	each	U-Pod	from	August	23rd	through	October	1st	in	2016	with	the	mixing	ratios	derived	
from	Picarro	measurements.		Using	the	temperature	and	pressure	logged	in	each	U-Pod	along	with	
the	absolute	humidity	from	the	Picarro,	relative	humidity	was	calculated	for	each	U-Pod	during	this	
period.”	
	
	
And	to	section	3.2.4:		“Interestingly,	when	humidity	this	‘borrowed	humidity	signal	was	not	included	
as	an	input,	the	model	performance	markedly	increased	and	became	competitive	with	other	‘same	
location’	test	deployment	case	studies.”	
 
Comment:		P13 – L13: I don’t really understand what is meant by “relative circumstances” – could you be 
more explicit about each of the case studies? Perhaps a table that outlines case study, with a one sentence 
description, and a column describing limitations would be more appropriate (and should be introduced at 
the beginning of the paper).  
Response:	Thank	you	for	the	feedback.	
Edits:		We	have	changed	“relative	circumstances”	to	“relative	timing	and	parameter	coverage”.		We	
have	also	adapted	Table	4	according	to	this	feedback	and	described	the	‘relative	circumstances’	
present	in	each	case	study	much	more	thoroughly	in	the	methods	section.			
 
Comment:		P13 – L18: What is meant by “extrapolated significantly?” Can you be specific?  
Response:	Sure,	thank	you	for	the	comment.	
Edits:		We	have	changed	“extrapolated	significantly”	to	“extrapolated	more	than	several	months”.	
 
Comment:		Table 1: I find Table 1 almost impossible to follow. It is not very clear which sensor measures 
which pollutant, as the input codes are frequently indecipherable. I am honestly not sure what I am 
supposed to get out of this table.  
Response:	Thank	you	for	this	useful	feedback	that	will	help	us	improve	the	quality	and	clarity	of	
Table	1.			
Edits:		We	have	added	a	row	at	the	top	of	the	table	indicating	the	target	gases	for	each	sensor.		We	
have	added	to	the	Table	caption	an	explanation	of	the	input	codes	for	the	sensors:		“Gas	sensors	
included	in	U-Pods	along	with	the	model	input	codes	we	assigned	each.		The	input	code	for	each	gas	
sensor	is	simply	an	abbreviation	for	the	make	of	the	sensor,	followed	by	the	target	gas	species(s).”	
	
 
Comment:		Table 3: I find it difficult to interpret this table. What do the black diamonds mean? What do 
you mean by “relative circumstances”??  
Response:	Thank	you	for	the	helpful	comment.			
Edits:		We	have	updated	Table	4	by	replacing	the	first	column	so	it	is	more	clearly	an	indication	of	
which	case	studies	covered	which	target	gases	(O3	and	CO2,	or	just	O3).		We	have	also	updated	the	
caption	of	Table	4	to	be	more	descriptive	and	informative,	and	less	confusing:		“Relative	timing	and	
parameter	coverage	between	model	training	and	test	deployment	dataset	pairs.		Incomplete	
coverage	of	time	occurred	if	training	only	took	place	before	or	after	the	test	data	period	and	not	
before	and	after	(pre	and	post).		Incomplete	coverage	of	location	occurred	when	training	took	place	
in	one	location	and	testing	took	place	in	another.		Incomplete	coverage	of	parameters,	including	the	
target	gas	mole	fraction,	temperature,	time,	and	pressure	occurred	when	the	values	observed	during	
training	did	not	encompass	the	values	observed	during	testing.”	
	
 
Comment:		Figure 8: There is way too much going on in this figure, it is almost difficult to look at. Is there 
a more streamlined way of presenting the findings that is less complicated? I feel there is valuable 
information in the Figure, but it’s hard to determine what that is, due to information overload. Ditto for  



Figure 9, though it isn’t as bad. Also you would do well to remind the reader what each variable represents.  
Response:	Thank	you	very	much	for	the	feedback	and	helping	us	to	simplify	and	clarify	figures.	
Edits:		We	have	split	what	was	previously	Figure	8	into	two	figures	(now	Figure	10	and	11)	in	order	
to	simplify	the	graphics	and	highlight	the	content	of	each.		We	have	also	added	definitions	for	the	
sensor	inputs	in	the	Figure	captions	for	what	were	Figures	8	and	9	(now	Figures	10,	11,	and	12).	
 
TECHNICAL CORRECTIONS  
 
Comment:		P1 – L18: “in time than to…” vs. in time that to  
Response:	Thanks	very	much	for	catching	this	typo.	
Edits:		We	have	changed	‘that’	to	‘than’	accordingly.			
 
Comment:		P2 – L18: change informal language “hold up” to something more scientific  
Response:		Thank	you	for	the	helpful	feedback.	
Edits:		We	have	replaced	‘hold	up’	with	‘remain	effective’.	
 
Comment:		P2 – L20: Delete word “Specifically”  
Response:	Thank	you	for	the	helpful	edit.	
Edits:		We	have	deleted	the	word	“Specifically”	
 
Comment:		P7 – L8: Rephrase “…showed successfully reduced over fitting”  
Response:	Thank	you	for	the	helpful	comment.	
Edits:		We	have	replaced	“…showed successfully reduced over fitting” with proved to be effective in the 
reduction of over fitting”	
 
Comment:		Figure 1: Enhance figure caption to explicitly state that blue is training, pink is testing 
Response:	Thank	you,	we	will	do	this.	
Edits:		“Model	training	periods	for	each	test	deployment	are	shown	in	blue,	and	model	test	periods	
are	shown	in	magenta.”	
 
 

	


