
Dear Reviewer 2, 
 
We would like to offer our sincere thanks for spending your time in the review of our work and helping us 
to significantly improve the quality and clarity of the manuscript with your very detailed comments and 
suggestions.  Each of your comments is listed below in black text, followed by our response and edits in 
blue text.   
	
Review	2	Comments:	
	
Overview:		Casey	and	Hannigan	explore	the	spatial	and	temporal	transferability	of	field	calibration	
models	(specifically	linear	models	(LMs)	and	artificial	neural	networks	(ANNs))	for	two	sensors,	O3	
(e2vO3)	and	CO2	(eltCO2),	reported	by	the	integrated	U-POD	sensor	package.	By	‘spatial/temporal	
transferability’	they	mean	a	determination	as	to	whether	a	calibration	model	trained	from	sensor	
colocation	(with	reference	instrumentation	measuring	target	species)	at	one	location	works	
effectively	when	that	same	sensor	system	is	then	deployed	at	a	different	location.	As	the	authors	
point	out,	changing	the	micro-environment	(and	local	air	pollution	source	contributions	to	that	
unique	environment)	may	pose	additional	complications/challenges	when	trying	to	reconcile	
quantitative	measurements	with	low-cost	sensors.	The	authors	make	some	attempt	to	separately	
describe	temporal	and	spatial	extension	to	better	understand	whether	time-alone	undermines	the	
accuracy	of	the	calibration	models	or	change	of	location.			
	
While	the	topic	of	sensor	calibration	and	extension	of	calibration	models	across	a	diverse	set	of	
deployment	scenarios	is	of	fundamental	importance	to	the	field	of	low-cost	AQ	sensing,	the	paper,	as	
written,	largely	fails	to	pull	together	a	coherent	narrative	from	which	active	participants	in	the	low-
cost	AQ	measurement	space	could	easily	glean	useful,	actionable	information.	To	be	clear,	the	topic	of	
sensor	quantification	is	inherently	complex,	and	the	authors	undertake	an	ambitious	analysis	
spanning	3	years	of	data	from	10	U-POD	systems	deployed	across	4	micro-environments.	There	are	
important	lessons	to	be	learned	from	their	efforts,	but	at	present	these	lessons	are	not	brought	to	the	
fore	of	the	paper	and	as	a	result	are	easily	lost	to	the	reader.			
Response:		Owing	to	Reviewer	comments	and	through	careful	reconstruction,	we	think	the	updated	
version	of	the	paper	does	a	much	better	job	of	pulling	together	a	coherent	narrative	that	will	be	
useful	for	others	in	the	field	of	low-cost	AQ	sensing,	in	terms	of	useful,	actionable	information.		We	
hope	the	Reviewer	and	the	editor	will	find	that	important	elements	of	the	paper	and	take-away	
lessons	are	now	brought	to	the	fore	of	the	paper	so	that	readers	can	more	easily	note	and	make	use	
of	our	findings.			
Edits:		We	have	clarified	and	added	significant	detail	to	the	methods	section.		We	have	added	more	
context,	explanation,	and	discussion	of	specific	findings	in	the	results	and	discussions	section,	and	we	
have	explicitly	highlighted	a	number	of	take	away	points	and	recommendations	connected	to	specific	
findings	in	the	conclusions,	as	well	as	highlighted	these	points	in	the	abstract.			
	
	
Comment:		Throughout	the	manuscript	the	authors	refer	back	to	their	published	work	(Casey	et	al.,	
2017).	In	the	vast	majority	of	instances	in	which	this	reference	is	provided,	there	is	little	to	no	
contextual	detail	explicitly	drawing	the	lines	of	connectivity	between	the	current	work	and	the	
previous	work.			Seeking	out	the	exact	evidence	that	exists	in	the	earlier	work	and	relating	its	
relevance	to	the	current	work	is	left	entirely	up	to	the	reader.	Overall,	this	referencing	needs	to	be	
done	in	a	manner	that	is	not	vague	and	does	not	require	that	the	reader	be	intimately	familiar	with	
the	previous	work.		
Response:	Thanks	very	much	to	the	Reviewer	for	this	helpful	comment	highlighting	confusion	
between	the	contributions	and	citations	of	our	previous	work	and	the	unique	contributions	of	the	
current	work.			
Edits:		In	each	instance	that	we	have	cited	our	previous	work,	we	have	added	text	to	provide	
contextual	detail	explicitly	drawing	the	lines	of	connectivity	between	the	current	work	and	the	
previous	work.	
	



Comment:		The	paper	would	also	be	strengthened	if	the	unique	and	novel	insights	that	result	from	
the	current	work	were	more	clearly	differentiated	from	the	Casey	et	al.,	2017	effort.	
Response:	Thanks	very	much	to	the	Reviewer	for	this	very	helpful	comment	and	suggestion.			
Edits:		We	have	added	text	to	the	conclusions	section	explicitly	summarizing	unique	and	novel	
insights	that	result	form	the	current	work	so	that	current	findings	are	clearly	differentiated	form	our	
current	work.			
	
Comment:		There	are	seemingly	contradictory	statements	throughout	the	text.	These	tend	to	
originate	from	the	authors’	desire	to	provide	a	clear-cut	answer	as	to	whether	or	not	a	given	model	
‘worked’	in	a	given	case	study	under	a	given	environmental	sampling	condition.	The	fact	of	the	
matter	is,	low-cost	AQ	sensor	quantification	is	extremely	convoluted	and	often	times	the	validity	of	
data	can	be	somewhat	ambiguous.		Faced	with	this	level	of	complexity,	the	current	manuscript	fails	to	
provide	a	succinct	and	systematic	evaluation/reporting	approach,	and	as	such	main	(and	important)	
take-home	lessons	from	their	work	are	lost.	
Response:		Thanks	very	much	to	the	Reviewer	for	this	helpful	feedback.		Many	of	the	specific	
comments	below	have	helped	us	to	clarify	what	previously	appeared	to	be	contradictory	statements	
throughout	the	text.			
Edits:		Throughout	the	manuscript,	we	have	made	edits	to	clarify	what	could	have	been	perceived	as	
contradictory	statements.		We	have	added	significant	detail	to	better	match	the	level	of	complexity	in	
the	findings	we	present	and	have	attempted	to	more	systematically	and	succinctly	report	these	
findings	and	associated	take	away	messages	for	readers.			
	
Specific	comments:	

	
Comment:		L9.	Avoid	ending	sentence	with	‘to’	
Response:		Thank	you	for	catching	this	mistake.	
Edits:	We	changed	the	sentence	structure	accordingly.		“We	also	explored	the	sensitivity	of	these	
methods	in	response	to	the	timing	of	field	calibrations	relative	to	deployments	periods.”	
	
Comment:		L13:	this	is	one	of	the	core	conclusions:	the	resilience	of	a	given	calibration	model	
depends	on	the	circumstances	of	the	deployment	for	that	same	sensor	system.	As	such,	the	paper	
would	be	strengthened	if	the	authors	focused	the	narrative	on	succinctly	describing	such	
dependences	and	circumstances	relating	these	factors	back	to	the	sensitivity,	selectivity,	and	stability	
of	each	sensor	system	and	sensor	type.		
Response:	Thanks	very	much	to	the	Reviewer	for	this	helpful	comment.	
Edits:		Throughout	the	paper,	we	have	added	text	to	help	focus	the	narrative	in	the	context	of	relative	
circumstances	present	in	individual	case	studies,	and	how	model	performance	in	each	case	study	
relates	to	sensor	sensitivity,	selectivity,	and	stability.	
	



Comment:		This	language	is	far	too	vague,	especially	for	an	abstract.	What	circumstances?	
Response:		Thank	you	for	noting	how	we	can	make	the	abstract	more	informative	and	less	vague.	
Edits:		We	have	added	descriptions	of	specific	circumstances:		“We	found	that	the	best	performing	
model	inputs	and	model	type	depended	on	circumstances	associated	with	individual	case	studies,	
such	as	differing	characteristics	of	local	dominant	emissions	sources,	relative	timing	of	model	
training	and	application,	and	the	extent	of	extrapolation	outside	of	parameter	space	encompassed	by	
model	training.	“	
	
Comment:		L15:	‘a	number’	-	again,	this	is	too	vague.	Define	exactly	how	many	of	the	case	studies	
were	characterized	has	having	superior	AAN	models	and	how	many	were	just	as	well	served	with	an	
LM	model	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	added	the	following	detail	to	the	abstract:		“Among	models	that	were	tailored	to	
cases	studies	on	an	individual	basis,	O3	ANNs	performed	better	than	O3	LMs	in	6	out	of	7	case	studies,	
while	CO2	ANNs	performed	better	than	CO2	LMs	in	3	out	of	5	case	studies.”	
	
Comment:		L16:	This	line	suggests	that	people	should	model	CO2	with	ANNs	not	LMs.	The	more	
detailed	discussion	in	the	body	of	the	paper	contradicts	this	assertion.	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		After	further	consideration,	we	determined	that	this	statement	was	an	oversimplification	and	
so	have	removed	it	from	the	abstract.	
	
Comment:		L19:	subscript	O3	
Response:		Thanks	to	the	Reviewer	for	catching	this.			
Edits:		O3	subscripted:		O3	

	
		
Comment:		L11:	What	is	the	difference	between	supervised	learning	methods	and	ANNs?	This	
warrants	a	more	detailed	description	/	definition.			
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	added	the	following	text	to	help	clarify	that	ANNs	are	an	example	of	a	supervised	
learning	method,	as	are	random	forests:		“supervised	learning	methods	(including	ANNs	and	random	
forests)”	
	
Comment:	L15:	This	sentence	(bracketed	in	red)	-	is	very	important,	but	also	very	wordy	and	hard	to	
follow.		
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			



Edits:		We	have	simplified	and	clarified	the	sentence	accordingly:		“In	practice	though,	the	reason	
multiple	gas	sensors	are	able	to	improve	the	performance	of	calibration	models	may	be	in	part	the	
result	of	correlation	between	mole	fractions	of	target	gases	themselves	that	hold	for	one	model	
training	location,	but	might	not	remain	effective	at	alternative	sampling	sites	or	during	other	time	
periods.”	
	
Comment:		Related	to	this	assertion,	it	is	not	clear	how	the	authors	disentangle	the	temporal	and	
spatial	domain	from	one	another,	particularly	the	temporal	domain.	Time-decay	patterns	in	the	data	
are	going	to	be	present	whether	or	not	the	sensor	system	has	been	moved	to	a	different	location.	
How	would	one	ascribe	difference	in	that	case	to	a	spatial	domain	and	not	temporal	domain?	
Response:		In	this	work,	we	attempt	to	disentangle	the	temporal	and	spatial	domain	by	including	
some	case	studies	where	models	were	only	extended	outside	of	their	training	spatial	domain	or	only	
extended	outside	of	their	temporal	domain,	but	not	both.		We	attempt	to	represent	time-decay	
patterns	effectively	in	models	by	using	pre/post	training	data	for	some	case	studies.			
Edits:		We	have	clarified	this	strategy	by	more	clearly	defining	what	is	meant	by	‘extrapolation	in	
time’,	and	by	more	clearly	identifying	which	case	studies	were	subject	to	extrapolation	in	time.		We	
have	added	the	following	text	to	section	2.3	accordingly:		“A	model	was	extrapolated	in	time	when	
ever	training	data	does	not	take	place	both	before	and	after	a	given	test	deployment	period.		In	
several	case	studies	we	present,	model	training	only	took	place	after	the	test	deployment	period,	
comprising	a	‘post	only’	calibration.		In	Colorado,	and	more	broadly	in	the	western	United	States,	
ambient	temperatures	change	significantly	across	the	seasons	throughout	the	year,	so	if	a	model	is	
extrapolated	in	time,	extrapolation	in	temperature	often	results	as	well.”		
	
	
Comment:		‘hold	up’	this	language	is	too	casual	and	used	throughout	the	text.	Consider	re-wording.	
Response:		Thank	you	for	the	feedback.	
Edits:		We	have	replaced	‘hold	up’	with	‘remain	effective’.	
	
Section	1.2	
	
Comment:		L28:	‘A	number	of	enclosures..’	define	the	number.	
Response:		Thank	you	for	the	feedback	and	helping	us	to	clarify	how	many	U-Pods	were	included	in	
each	case	study	and	in	our	previous	work.	
Edits:		In	section	1.3	(previously	section	1.2)	we	have	added	the	following	text:	“The	study	tested	and	
compared	calibration	models	using	data	from	two	U-Pod	sensor	systems”.		We	have	also	updated	the	
text	in	the	methods	section	and	Fig.	2	(previously	Fig.1)	to	explicitly	list	the	number	of	U-Pods	
included	in	each	case	study.			
	
Comment:		If	Casey	et	al.,	2017	demonstrated	the	ANN	results	for	CO2	and	O3	in	the	Spring	of	2017	
in	Greeley,	CO;	is	that	same	data	being	presented	as	a	portion	of	this	paper	(as	Figure	1	suggests).	
Response:		Yes,	it	is	the	same	data.		Thank	you	for	pointing	out	that	this	needs	clarity.	
Edits:		We	have	clarified	this,	adding	sub	subsections	within	section	2.2	describing	each	case	study	
individually,	including	our	previous	study	in	section	2.2.7:		“We	include	findings	from	our	previous	
work	as	a	case	study	in	order	to	provide	context.		Models	for	CO2	and	O3	were	tested	using	data	from	
two	U-Pods	collected	over	the	course	of	approximately	one	month	at	the	GRET	site	in	the	spring	of	
2017.		Data	from	two	U-Pods	during	approximately	month-long	periods	pre	and	post	of	the	test	
period	were	used	to	train	O3	and	CO2	models.		This	case	study	provides	another	example	of	model	
performance	when	training	took	place	both	pre	and	post	of	the	test	period,	and	testing	took	place	in	
the	same	location	as	training.”	
	
Comment:		The	concluding	sentences	of	this	section	nicely	frame	the	motivation/need	for	the	
current	work,	consider	bringing	this	to	the	fore	of	the	paper	/	abstract,	etc.	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	augmented	the	abstract	with	this	piece	of	motivation	by	adding	the	following	text:		
“This	was	motivated	by	a	previous	study	(Casey	et	al.,	2017)	which	highlighted	the	importance	of	



determining	the	extent	to	which	field	calibration	regression	models	could	be	aided	by	relationships	
among	atmospheric	trace	gases	at	a	given	training	location,	which	may	not	hold	if	a	model	is	applied	
to	data	collected	in	a	new	location.		We	also	explored	the	sensitivity	of	these	methods	in	response	to	
the	timing	of	field	calibrations	relative	to	deployments	periods.”	
	
We	have	also	augmented	the	for	of	the	paper	by	added	the	following	text	to	the	end	of	the	first	
paragraph	in	the	introduction:		“ANNs,	as	powerful	pattern	recognition	tools,	were	found	to	perform	
better	than	both	inverted	and	direct	LMs	in	our	previous	study,	but	concerns	arose	when	findings	
suggested	that	the	performance	of	ANNs	was	being	augmented	by	the	relationships	among	gas	mole	
fractions	in	the	atmosphere	at	a	given	location.	Low-cost	gas	sensor	systems	have	the	potential	to	
inform	spatial	and	temporal	variability	of	pollution,	when	calibration	equations	for	each	sensor	
system	are	generated	in	one	location	based	on	co-located	measurements	with	reference	instruments,	
then	moving	the	sensor	systems	into	a	spatially	distributed	network.		Since	the	relationships	among	
gas	mole	fractions	at	different	sampling	sites	across	a	spatially	distributed	network,	calibration	
models	may	not	hold	at	new	sampling	sites.		In	this	work,	we	test	calibration	model	performance	
when	extended	to	new	locations.”	
	
Section	1.3	
	
Comment:		Final	sentence:	It’s	unclear	why,	if	all	of	the	U-POD	sensor	systems	were	equipped	to	
measure	CO	and	CH4	alongside	CO2	and	O3,	analogous	training/test	matrix	pairs	are	unavailable	for	
these	other	species.	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	clarified	that	while	the	sensors	for	CO	and	CH4	were	included	in	the	U-Pods	during	
all	the	presented	case	studies,	reference	measurements	for	these	species	were	not	available:		“In	
previous	work	(Casey	et	al.,	2017)	we	have	additionally	addressed	the	quantification	of	CO	and	CH4	
using	arrays	of	low-cost	sensors	together	with	field	normalization	methods,	but	these	species	are	not	
included	in	the	present	analysis	because	reference	data	for	model	training	and	testing	deployment	
pairs,	diverging	in	location	and	timing	and	analogous	to	those	we	present	for	O3	and	CO2,	were	not	
available	CO	and	CH4.”	
	
Section	1.4	
	
Comment:	L20:	‘Very	high	levels	of	ozone’	–	specify	the	actual	concentration	or	concentration	range	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	replaced	‘Very	high	levels	of	ozone’	with	‘Mole	fractions	of	ozone	in	as	high	as	140	
ppb	and	117	ppb	during	winter	months	have	also	been	observed	and	attributed	directly	to	oil	and	
gas	production	emissions	in	the	Upper	Green	River	Basin	of	Wyoming	and	Utah’s	Uinta	Basin,	
respectively”	
	
Comment:		L23:	‘a	modeling	study’	–	is	there	really	only	one	modeling	study	that	shows	this?	
Response:	Thanks	for	this	comment.		This	is	the	only	modeling	study	we	know	of	that	was	focused	
on	the	effects	of	oil	and	gas	production	emissions	on	ozone,	with	potentially	high	spatial	near	
emissions	sources.	
	
Comment:		Final	sentence:	‘pooling’	avoid	using	words	with	common	association	different	from	the	
intended	meaning.	Consider	re-wording.	‘accumulating’?		
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	replaced	‘pooling’	with	accumulation’	
	
Section	2.1	
	
Comment:		L5:	“with	a	number	of	low-cost	gas	sensors”	–	specify	the	actual	number	of	sensors	
integrated	in	each	U-POD.		The	authors	identify	that	10	U-POD	systems	were	used	in	the	previous	and	
current	work,	but	the	vast	majority	of	case	studies	(outlined	in	Figure	1.)	utilize	just	2	U-PODs	at	each	



location.	The	authors	need	to	more	clearly	describe	in	the	text	how	the	U-PODs	were	distributed	
throughout	the	work	and	whether	all	10	U-PODs	used	in	the	current	work	had	the	same	
characteristic	O3	and	CO2	response	when	measuring	the	same	air.		
	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	replaced	added	subsections	to	section	2.2	describing	each	case	study,	including	how	
many	U-Pods	were	included	in	each:	
“2.2.1	Dawson	Summer	2014	
The	first	distributed	measurement	campaign	took	place	during	the	summer	of	2014	when	five	U-
Pods	were	sited	at	locations	around	Boulder	County,	with	four	distributed	along	the	eastern	
boundary	of	the	county,	adjacent	to	Weld	County	where	dense	oil	and	gas	production	activities	were	
underway.		A	background	site,	further	from	oil	and	gas	production	activities	was	also	included	to	the	
west,	near	a	busy	traffic	intersection	on	the	north	end	of	the	City	of	Boulder.	Co-locations	with	
reference	measurements	that	were	used	for	field	calibration	of	sensors	took	place	at	the	Continuous	
Ambient	Monitoring	Program	(CAMP)	Colorado	Department	of	Health	and	Environment	(CDPHE)	air	
quality	monitoring	site	in	downtown	Denver.	One	of	the	distributed	sampling	sites,	Dawson	School,	
was	also	equipped	with	an	O3	reference	instrument	(a	Thermo	Electron	49)	,operated	by	Detlev	
Helmig’s	research	group	from	the	Institute	for	Artic	and	Alpine	Research	(INSTAAR).	In	this	work,	a	
case	study	is	developed	using	data	from	one	U-Pod	located	at	the	CAMP	site	in	downtown	Denver	for	
O3	model	training,	and	data	from	one	U-Pod,	located	at	the	Dawson	School	for	O3	model	testing.	This	
case	study	is	used	to	test	model	performance	when	extrapolated	in	terms	of	O3	mole	fractions	and	
applied	in	a	new	location,	transferred	from	an	urban	to	a	peri-urban	environment.	
2.2.2	SJ	Basin	Spring	2015	
In	the	spring	of	2015	we	augmented	our	original	fleet	of	five	U-Pods	(BA,	BB,	BD,	BE,	and	BF)	with	
five	more	(BC,	BG,	BH,	BI,	and	BJ)	and	deployed	these	sensor	systems	in	the	SJ	Basin	while	a	targeted	
field	campaign	was	underway	to	understand	more	about	a	CH4	‘hot	spot’	that	was	discovered	from	
satellite	based	remote	sensing	measurements	(Frankenberg	et	al.,	2016;	Kort	et	al.,	2014).		The	
primary	goal	of	this	sensor	deployment	was	to	inform	spatial	and	temporal	patterns	in	atmospheric	
trace	gases	like	CH4,	O3,	CO,	and	CO2	across	the	SJ	Basin.		Most	U-Pods	were	located	at	existing	air	
quality	monitoring	sites	operated	by	the	New	Mexico	Air	Quality	Bureau	(NM	AQB),	the	Southern	Ute	
Indian	Tribe	Air	Quality	Program	(SUIT	AQP),	and	the	Navajo	Environmental	Protection	Agency	
(NEPA),	which	supported	validation	of	sensor	measurements	for	O3	After	this	deployment	period,	all	
U-Pods	were	moved	to	the	BAO	site	in	the	DJ	Basin	for	approximately	one	month,	and	were	co-
located	with	reference	instruments	there	that	were	operated	by	National	Oceanic	and	Atmospheric	
Administration	(NOAA)	researchers.		A	case	study	is	developed	with	data	from	the	BAO	site	to	train	
O3	models	for	four	U-Pods,	and	data	from	SJ	Basin	sites	to	test	O3	models	for	four	U-Pods.		This	case	
study	is	used	to	test	model	performance	when	extrapolated	in	temperature	and	time,	and	extended	
to	a	new	location,	extended	from	one	oil	and	gas	production	basin	to	another	across	Colorado	
2.2.3	SJ	Basin	Summer	2015	
In	the	summer	of	2015,	after	an	approximately	month-long	co-location	with	reference	instruments	at	
the	BAO	site,	seven	U-Pods	were	deployed	again	at	existing	regulatory	monitoring	sites	for	
approximately	one	month,	after	which	they	were	moved	back	to	the	BAO	site	for	another	month	of	
co-location	with	reference	instruments	there.		We	equipped	two	of	the	regulatory	monitoring	sites	in	
the	SJ	Basin	with	LI-COR	LI-840A	CO2	analysers	to	provide	reference	measurements	for	CO2.		A	case	
study	is	developed	with	data	from	the	BAO	site,	pre	and	post	of	the	SJ	Basin	summer	2015	
deployment	to	train	models,	and	data	from	SJ	Basin	sites	during	the	summer	deployment	period,	to	
test	models.		Data	from	seven	U-Pods	were	used	to	train	and	test	O3	models	and	data	from	two	U-
Pods	were	used	to	train	and	test	CO2	models.		This	case	study	is	used	to	test	model	performance	
when	training	took	place	both	pre	and	post	of	the	test	period,	and	when	extended	to	a	new	location,	
from	one	oil	and	gas	production	basin	to	another	across	Colorado	
2.2.4	BAO	Summer	2015	
During	the	SJ	Basin	Summer	2015	deployment	period,	two	U-Pods	remained	at	the	BAO	site.	A	case	
study	is	developed	using	data	from	two	U-Pods	the	BAO	site,	pre	and	post	of	the	summer	2015	
deployment	to	train	models	for	O3	and	CO2,	and	data	from	two	U-Pods	the	BAO	site	during	the	
summer	deployment	period	to	test	models	for	O3	and	CO2.		This	case	study	is	used	to	test	model	



performance	when	training	took	place	both	pre	and	post	of	the	test	period,	and	when	the	model	was	
tested	on	data	that	was	collected	in	the	same	location	as	model	training.	
2.2.5	BAO	Summer	2016	
U-Pods	were	deployed	at	the	BAO	site	again	in	2016	for	several	months	during	the	summer.	In	
August	of	2016	the	U-Pods	were	moved	to	the	Greeley	Tower	(GRET)	CDPHE	air	quality	monitoring	
site	in	Greeley,	Colorado,	a	location	which,	like	the	BAO	site,	is	also	strongly	influenced	by	DJ	Basin	oil	
and	gas	production	activities;	the	U-Pods	remained	there	for	a	year.		For	the	GRET	co-location	period,	
CDPHE	shared	reference	measurements	for	O3.		Additionally,	Jeffrey	Collett	and	Katherine	Benedict	
of	Colorado	State	University	(CSU)	shared	CO2	reference	measurements	from	an	instrument	they	
operated	at	the	site	before	October	1st	in	2016	and	after	March	7th	in	2017,	when	the	instrument	was	
located	at	the	GRET	site.		A	case	study	is	developed	using	data	from	two	U-Pods	during	the	yearlong	
deployment	at	the	GRET	site	to	train	models	for	O3,	and	data	from	two	U-Pods	during	the	BAO	
summer	2016	deployment	to	test	models	for	O3.		Because	reference	data	for	CO2	was	not	available	at	
the	GRET	site	during	winter	months,	data	from	two	U-Pods	during	eight	months	at	the	GRET	site	was	
used	to	train	models	for	CO2,	and	data	from	two	U-Pods	during	the	BAO	summer	2016	deployment	
was	used	to	test	models	for	CO2.		A	significantly	longer	training	duration	is	implemented	in	this	case	
study	because	the	training	period	took	place	more	than	several	months	after	the	model	testing	
period.		We	reasoned	that	a	longer	training	duration	would	be	better	able	to	represent	patterns	in	
sensor	drift	over	time,	as	well	as	encompass	the	temperature	range	of	test	dataset	period.		This	case	
study	is	used	to	test	model	performance	when	extrapolated	significantly	(more	than	several	months)	
in	time	and	extended	to	a	new	location,	from	one	location	in	DJ	oil	and	gas	production	basin	to	
another.	
2.2.6	GRET	Fall	2016	
In	order	to	test	model	performance,	under	similar	circumstances	in	terms	of	relative	model	training	
and	testing	durations	and	timing,	to	the	BAO	Summer	2016	case	study,	but	with	no	extension	of	
models	to	a	new	location,	we	developed	another	case	study.		This	time,	models	for	O3	and	CO2	were	
trained	using	data	from	two	U-Pods	at	GRET	over	the	course	of	eight	months	and	models	for	O3	and	
CO2	were	tested	using	data	from	two	U-Pods	at	GRET	over	the	course	of	approximately	a	month	in	
the	fall	of	2016.		This	case	study	is	used	to	test	model	performance	when	extrapolated	significantly	
(more	than	several	months)	in	time	and	applied	in	the	same	location	as	training	took	place.		
2.2.7	GRET	Spring	2017	
We	include	findings	from	our	previous	work	as	a	case	study	in	order	to	provide	context.		Models	for	
CO2	and	O3	were	tested	using	data	from	two	U-Pods	collected	over	the	course	of	approximately	one	
month	at	the	GRET	site	in	the	spring	of	2017.		Data	from	two	U-Pods	during	approximately	month-
long	periods	pre	and	post	of	the	test	period	were	used	to	train	O3	and	CO2	models.		This	case	study	
provides	another	example	of	model	performance	when	training	took	place	both	pre	and	post	of	the	
test	period,	and	testing	took	place	in	the	same	location	as	training.”	
	



	
	
Comment:		The	sensor	system	age	(time	since	manufacture	date)	and	environmental-hysteresis	
(lifetime	environmental	exposure	of	a	given	UPOD	system)	is	not	mentioned	anywhere	in	the	text.	Do	
these	factors	not	matter	when	analyzing	the	temporal	extension	of	a	given	calibration	model?	When	
considering	the	fundamental	measurement	principles	of	these	particular	gas	sensors,	does	
degradation	occur	due	to	gradual	(or	rapid)	deposition	of	material	onto	active	catalytic	sites	within	
the	sensors?	If	so,	then	the	age	of	a	given	sensor	and	what’s	it’s	been	exposed	to	over	its	lifetime,	
ought	to	factor	in..	or	at	least	deserve	a	mention.	
Response:		We	agree	with	the	importance	and	relevance	of	sensor	challenges	highlighted	in	this	
comment.	
Edits:		We	have	added	the	following	text	in	section	2.2	accordingly:	“Making	quantitative	
measurements	of	atmospheric	trace	gases	with	low-cost	sensors	is	challenged	by	unique	variations	
in	individual	sensor	responses	associated	with	variations	in	the	manufacturing	process,	sensor	age,	
and	sensor	exposure	history.		For	these	reasons,	we	generated	unique	calibration	models	using	data	
from	sensors	in	each	individual	U-Pod	sensor	system.		The	closest	available	data	prior	and	or	
subsequent	to	a	test	data	period	was	used	for	model	training	to	avoid	complications	associated	with	
significant	sensor	drift	and	degradation	in	sensor	sensitivity	to	target	gas	species	over	time	if	
possible.”	
	
We	have	additionally	added	the	following	text	has	been	added	to	section	3.2.2:		“Gas	sensor	
manufactures	don’t	clearly	define	sensor	lifetimes,	but	sensors	are	generally	expected	to	loose	
sensitivity	over	time.		For	example,	Alphasense	CO-B4	electrochemical	sensors	are	expected	to	have	
50%	of	their	original	sensitivity	after	two	years	(Alphasense,	2015).			The	heater	resistance	in	a	give	
metal	oxide	type	sensor	is	expected	to	drift	over	time,	influencing	sensor	measurements	(e2v	
Technologies	Ltd.,	2007).		Masson	and	colleagues	observed	a	significant	drift	in	a	metal	oxide	sensor	
heater	resistance	over	the	course	of	a	250	day	sampling	period	in	a	laboratory	setting	(Masson	et	al.,	
2015).		While	we	did	not	measure	and	record	metal	oxide	sensor	heater	resistance	for	sensors	
included	in	U-Pods,	we	have	investigated	eltCO2	and	e2vO3	sensor	signal	drift	from	the	summer	of	



2015	through	the	summer	of	2017.		These	data	are	presented	in	Fig.	S26.		Systematic	downward	drift	
in	all	eltCO2	sensor	signals	is	apparent	over	this	time	frame.		A	clear	and	consistent	pattern	of	
systematic	drift	over	this	time	period	is	less	apparent	for	e2vO3	sensors.		Since	the	training	data	was	
collected	immediately	after,	the	test	data	period,	and	since	the	test	data	period	was	relatively	short	
(approximately	one	month)	sensor	drift	could	be	negligible	across	the	combined	training/testing	
time	frame.	“	
	
Comment:		The	explanation	of	the	training	vs	test	sampling	periods	is	confusing	as	written.	Given	the	
nature	of	the	experiment,	doesn’t	each	UPOD	system	have	to	be	co-located	with	reference	
instrumentation	for	the	full	duration	of	the	period	of	study?	It	sounds	as	though	the	authors	aimed	to	
bookend	the	distributed	network	measurements	(‘testing	period’	with	a	period	of	colocation	at	a	
reference	site	in	the	general	vicinity	of	the	deployment	(‘training	period’)	–	but	in	order	evaluate	
their	models,	they	would	have	to	retain	a	co-located	reference	measurement	of	O3	and	CO2	at	all	
times	in	all	locations.		
Response:		Yes,	we	present	data,	opportunistically,	from	test	periods	when	sensor	systems	were	co-
located	with	O3	and	CO2	reference	instruments.			
Edits:		We	have	added	text	to	section	2.2	to	try	to	clarify	these	details:			“Five	to	ten	U-Pods	were	
deployed	at	sampling	sites	in	and	around	the	DJ	and	SJ	Basins	over	the	course	of	several	years,	from	
2014	-	2017.	Deployments	generally	consisted	of	co-location	with	reference	measurements	prior	to	
and	following	approximately	one-month	periods	of	spatially	distributed	measurements.		During	
some	of	the	distributed	measurement	periods,	a	subset	of	U-Pods	remained	co-located	with	reference	
instruments	where	the	field	calibrations	took	place.		As	well,	during	some	distributed	measurement	
periods,	some	U-Pods	were	deployed	in	new	locations	that	were	equipped	with	reference	
measurements.		In	between	periods	of	distributed	sensor	system	deployments,	sensor	systems	were	
co-located	with	reference	instruments	for	as	long	as	possible,	as	logistics,	and	coordination	with	
other	regulatory	agencies	and	researchers	would	allow.		In	this	way,	we	hoped	to	maximize	our	
ability	to	encompass	full	ranges	of	temperature,	humidity,	and	trace	gases	that	occur	across	seasons,	
in	order	to	minimize	extrapolation	with	respect	to	these	parameters	when	models	were	applied	to	
measurements	from	distributed	deployment	periods.		The	locations	where	all	or	a	subset	of	U-Pods	
were	co-located	with	reference	instruments	are	indicated	in	Fig.	1.		In	this	exploratory	study,	we	
opportunistically	employ	data	from	these	sensor	deployments,	treating	them	as	case	studies	in	order	
to	characterize	the	performance	of	field	calibration	models	when	they	are	extended	to	new	locations.	
For	each	case	study,	described	below,	data	was	divided	into	training	and	test	periods.		Timelines	for	
these	dataset	pairs	detailed	in	Fig.	2.		Some	U-Pods	used	included	in	these	case	studies	(indicated	in	
grey	font	in	Fig.	2)	were	constructed,	populated	with	sensors,	and	deployed	at	field	sites	in	the	spring	
of	2014,	approximately	a	year	before	the	rest	of	the	U-Pods	were	constructed,	populated	with	
sensors,	and	deployed	at	field	sites	in	the	spring	of	2015.		The	relative	age	of	sensor	systems	included	
in	some	case	study	comparisons	could	have	contributed	to	some	discrepancy	in	model	performance,	
though	systematic	differences	based	on	U-Pod	age	is	not	apparent.		
	
As	available	data	from	each	case	study	allowed,	we	used	approximately	one	month	of	training	data	
before	and	after	(pre	and	post	of)	a	given	approximately	month-long	test	period.	When	training	data	
was	not	available	within	several	months	of	a	test	period,	significantly	longer	training	datasets	were	
used	in	order	to	attempt	capture	and	effectively	represent	trends	in	sensor	drift	over	time,	as	well	as	
to	avoid	extrapolation	of	model	parameters	(particularly	temperature)	during	the	test	data	period.		
As	a	result,	model-training	durations	varied	across	case	studies	and	sometimes	significantly	
exceeded	model-testing	durations.		Each	case	study	is	similar	in	representing	approximately	one	
month-long	deployment	of	sensor	systems.		This	study	design	serves	a	primary	goal	of	this	work,	
which	is	to	help	support	the	quantification	atmospheric	trace	gases	from	low-cost	gas	sensor	data	in	
new	locations,	relative	to	model	training	locations,	for	periods	of	approximately	one	month	at	a	time.			
	
Making	quantitative	measurements	of	atmospheric	trace	gases	with	low-cost	sensors	is	challenged	
by	unique	variations	in	individual	sensor	responses	associated	with	variations	in	the	manufacturing	
process,	sensor	age,	and	sensor	exposure	history.		For	these	reasons,	we	generated	unique	
calibration	models	using	data	from	sensors	in	each	individual	U-Pod	sensor	system.		The	closest	



available	data	prior	and	or	subsequent	to	a	test	data	period	was	used	for	model	training	to	avoid	
complications	associated	with	significant	sensor	drift	and	degradation	in	sensor	sensitivity	to	target	
gas	species	over	time	if	possible.		Table	2	lists	the	O3	and	CO2	reference	instruments	that	were	co-
located	with	U-Pods	at	each	sampling	site,	along	with	instrument	operators,	calibration	procedures,	
and	reference	data	time	resolution.		The	selected	case	studies,	described	in	sections	2.2.1	through	
2.2.7	below	are	aimed	at	supporting	methods	to	quantify	atmospheric	trace	gases	during	the	
distributed	deployments	we	carried	out	from	2014	through	2017	as	well	as	future	distributed	sensor	
network	measurements.		Fig.	1	shows	sampling	site	locations	in	context	with	urban	areas	and	oil	and	
gas	production	wells.	Fig.	2	shows	the	timeline	of	each	of	these	deployments,	highlighting	the	
training	and	testing	periods	defined	for	both	O3	and	CO2.”	
	
Comment:		Looking	at	the	deployment	timelines	displayed	in	Figure	1,	it	is	also	evident	from	the	
Figure	(but	not	from	the	text)	that	the	vast	majority	(~75%	or	greater)	of	the	total	deployment	time	
was	used	to	train	the	nodes	not	test	the	resultant	calibration	models	(~25%	of	the	total	time).	These	
train-to-test	ratios	appear	to	undermine	the	general	applicability	of	the	models	to	longer	duration,	
distributed	sensor	measurements	in	which	no	co-located	reference	measurements	are	available.	The	
authors	should	make	an	effort	to	bridge	the	gap	between	how	they	were	able	to	execute	their	
experiments	and	how	distributed	low-cost	AQ	sensor	systems	will	ultimately	be	deployed.	
Response:	Thank	you	for	helping	us	clarify	why	varying	and	sometime	long	durations	of	training	
data	were	used	for	each	case	study,	and	how	we	hope	this	study	design	can	help	support	future	
sensor	measurement	efforts.			
Edits:		We	have	added	the	following	text	to	section	2.2	toward	this	end:	
“In	between	periods	of	distributed	sensor	system	deployments,	sensor	systems	were	co-located	with	
reference	instruments	for	as	long	as	possible,	as	logistics,	and	coordination	with	other	regulatory	
agencies	and	researchers	would	allow.		In	this	way,	we	hoped	to	maximize	our	ability	to	encompass	
full	ranges	of	ambient	temperature,	humidity,	and	trace	gases	that	occur	across	seasons,	in	order	to	
minimize	extrapolation	with	respect	to	these	parameters	when	models	were	applied	to	
measurements	from	distributed	deployment	periods.”	
	
“In	an	effort	to	fully	encompass	the	parameter	space	present	and	during	each	individual	test	
deployment	case	study,	as	well	as	sensor	drift	over	time,	model-training	durations	varied	across	case	
studies	and	sometimes	significantly	exceeded	model-testing	durations.		Each	case	study	is	similar	in	
representing	approximately	one	month-long	deployment	of	sensor	systems.		This	study	design	serves	
a	primary	goal	of	this	work,	which	is	to	help	support	the	quantification	atmospheric	trace	gases	from	
low-cost	gas	sensor	data	in	new	locations,	relative	to	model	training	locations,	for	periods	of	
approximately	one	month	at	a	time.”			
	
From	section	2.2.5:		“A	significantly	longer	training	duration	is	implemented	in	this	case	study	
because	the	training	period	took	place	more	than	several	months	after	the	model	testing	period.		We	
reasoned	that	a	longer	training	duration	would	be	better	able	to	represent	patterns	in	sensor	drift	
over	time,	as	well	as	encompass	the	temperature	range	of	test	dataset	period.		Significantly	less	
training	time	is	needed	when	training	occurs	directly	pre	and/or	post	of	a	given	model	application	
period.			
	
	
Highlighted	in	passage	above:	
	
Comment:		L10:	define	the	number	of	sampling	sites.	Eliminate	vague	language	in	the	text.		L15:	
same	comment.	
Response:		The	number	of	sampling	sites	during	each	case	study	varied,	so	to	help	clarify	we	directly	
reference	the	map	showing	each	of	the	sampling	sites	included	in	the	study.			
Edits:		We	have	renamed	this	‘Figure	1’	and	renamed	the	timeline	‘Figure	2’	accordingly.			

	
Comment:		L21:	5	UPOD	systems	are	purportedly	used	in	the	Boulder	/	CAMP	2014	work.	Figure	1	
lists	1	UPOD	system	as	being	active	during	that	test.	Reconcile	this.	



Response:	Thank	you	for	helping	us	clarify	that	while	5	U-Pods	were	deployed	during	the	Boulder	
County	study,	only	one	of	the	U-Pods	was	deployed	at	a	location	that	had	co-located	reference	
measurements	for	O3.			
Edits:		The	number	of	U-Pods	used	in	the	Dawson	Summer	2014	case	study	and	others	has	been	
clearly	updated	in	sections	2.2.1	–	2.2.7.	

	
Comment:		L27:	Identify	the	actual	ref.	O3	measurement	in	the	text	here	
Response:	Thank	you,	we	agree	indicating	the	specific	instrument	used	would	be	useful	to	the	
reader.			
Edits:	“Thermo	Electron	49”	

	
Comment:		Last	sentence:	is	this	relevant	to	the	current	paper/study?	Not	clear	what	‘study’	the	
authors	are	referring	to	in	this	sentence.		
Response:	We	agree	this	sentence	lacked	specific	relevance	to	the	current	study.	
Edits:		We	have	removed	this	sentence.		
	

	



	
	
Comment:		L9:	The	authors	claim	that	the	SJ	Basin	network	was	similarly	executed	for	the	DJ	Basin.	
DJ	Basin	is	absent	from	Figure	1.,	replaced	presumably	by	BAO.	It	is	unclear	how	many	UPODs	were	
deployed	to	the	DJ	Basin.	It’s	very	confusing	trying	to	track	in	time	and	location	the	distribution	of	
the	10	UPODs.	If	I	try	and	decipher	the	information	in	Figure	1,	either	2	or	4	UPOD	units	were	
deployed	to	the	DJ	Basin,	which	on	the	face	of	it,	does	not	constitute	a	similar	network	deployment	of	
10x	UPODs	deployed	to	the	SJ	Basin	(although,	it	seems	that	only	4	and/or	7	UPOD	units	were	
deployed	to	the	SJ	Basin.	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	added	the	to	the	caption	of	Figure	2	(previously	Figure	1)	to	help	clarify	that	all	
sampling	sites	outside	of	the	SJ	Basin	group	were	in	the	DJ	Basin.		“The	Dawson,	BAO,	and	GRET	
sampling	sites	are	all	located	in	the	DJ	Basin.”		
	
	
Comment:		L13:	The	authors	identify	the	BAO	site	as	the	relevant	co-location	site	for	the	DJ	Basin-
deployed	UPODS,	but	then	point	out	that	there	were	NO	co-located	reference	instrumentation	
accessible	for	any	of	the	distributed	sampling	sites.	What	does	this	mean	for	evaluating	/	testing	their	
models	in	the	distributed	network	application?	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	made	significant	edits	in	section	2.2,	more	clearly	defining	which	data	is	included	in	
this	work	and	in	each	case	study.		All	discussion	about	the	distributed	deployment	sites	that	did	not	
have	reference	measurements	has	been	removed	from	the	text,	since	these	deployments	helped	to	
motivate,	but	are	not	directly	relevant	to	the	present	work.		
	



Comment:		L14-16:	The	authors	state	the	GRET	site	housed	all	10x	UPOD	systems	for	a	year,	but	
Figure	1	indicates	that	only	2-6?	UPOD	systems	were	used	at	this	location	and	only	for	shorter	
periods	of	time.	Again,	the	text	is	extremely	hard	to	follow	and	the	information	in	Figure	1	does	not	
make	it	any	clearer.	
Response:	Thanks	very	much	to	the	Reviewer	for	pointing	out	the	confusing	nature	of	how	the	
information	is	presented.		
Edits:		We	have	updated	Figure	2	(previously	Figure	1)	to	help	clarify	which	U-Pods	were	included	in	
each	case	study.		

	
Figure	2:	(a)	ANN	and	LM	training	and	test	deployment	timelines.		The	Dawson,	BAO,	and	GRET	sampling	
sites	are	all	located	in	the	DJ	Basin.		Model	training	periods	for	each	test	deployment	are	shown	in	blue,	
and	model	test	periods	are	shown	in	magenta.		For	the	BAO	Summer	2016	case	study,	the	period	
outlined	in	blue	shows	data	that	was	used	to	train	O3	model,	but	not	CO2	models	since	CO2	reference	data	
was	not	available	during	winter	months.	(b)	Information	about	each	of	the	case	studies	presented	in	the	
above	timelines,	including	model	training	and	testing	locations,	as	well	as	the	number	and	names	of	U-
Pods	included	in	each	case	study	for	both	O3	and	CO2	models.		The	U-Pods	with	names	shown	in	grey	
were	constructed	and	deployed	starting	in	May	of	2014.		The	U-Pods	with	names	shown	in	black	were	
constructed	and	deployed	starting	in	April	of	2015.			

Comment:		L26:	The	only	metal	oxide	sensor	that’s	relevant	to	the	current	work	is	the	e2vO3	sensor.	
The	operational	fundamentals	of	this	sensor	should	be	described:	the	raw	signal	processing,	circuitry		
considerations,	and	known	theoretical	operational	conditions	that	undermine	the	sensitivity,	
selectivity,	and/or	stability	of	the	e2vO3	metal	oxide	sensor.	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		Since	models	in	this	work	included	signals	from	multiple	gas	sensors,	we	have	added	a	
discussion	of	the	operating	principles	of	metal	oxide,	electrochemical,	NDIR	the	sensors	accordingly,	

(b) 

(a) 



as	well	ad	discuss	these	sensor	properties	in	context	with	model	development	in	section	1.1,	and	1.2.	
Additionally,	we	discuss	these	sensor	considerations	in	context	with	unique	challenges	associated	
with	measurements	in	oil	and	gas	production	basins	in	section	1.5:			
	
“While	low-cost	sensors	have	been	emerging	on	the	market	with	sufficient	sensitivity	to	resolve	
variations	in	ambient	mole	fractions	of	target	gases	of	interest,	they	are	also	sensitive	to	temperature	
and	humidity	variations	that	occur	in	the	ambient	environment.		NDIR	sensors,	like	the	ELT	s300	CO2	
sensor	employed	in	this	study,	have	good	selectivity,	but,	since	pressure	and	temperature	are	not	
controlled	in	the	optical	cavity	of	ELT	s300	CO2	sensors,	the	influence	of	temperature	on	sensor	
signals	plays	an	important	role.		The	influence	of	humidity	is	also	important	to	address	because	
changes	in	water	vapor	are	known	to	influence	NDIR	measurements	of	CO2	in	terms	of	spectral	cross-
sensitivity	due	to	absorption	band	broadening	(Licor,	2010).			
	
Both	metal	oxide	and	electrochemical	type	sensors	operate	on	the	principle	of	oxidizing	or	reducing	
reactions	at	sensor	surfaces.		For	electrochemical	sensors,	like	the	Alphasense	CO-B4	sensor	
employed	in	this	study,	oxidizing	or	reducing	compounds	react	at	the	working	electrode,	resulting	in	
the	transfer	of	ions	across	an	electrolyte	solution	from	the	working	electrode	to	the	counter	
electrode,	balanced	by	the	flow	of	electrons	across	the	circuit	connecting	the	working	electrode	to	
the	counter	electrode.		A	linear	relationship	is	expected	between	this	current	and	the	target	gas	mole	
fraction.			Electrochemical	sensors	can	be	tuned	to	respond	more	or	less	strongly	to	specific	gases	by	
adjusting	the	materials	properties	of	the	working	electrode.	A	membrane	is	located	between	the	
working	electrode	and	the	exterior	of	the	sensor	in	order	to	control	redox	reaction	rates.		Gases	
diffusion	through	the	membrane	to	reach	the	working	electrode	and	the	electron	transfer	rates	have	
been	shown	to	increase	at	higher	temperatures	(Xiong	and	Compton,	2014),	and	since	chemical	
reaction	rates	are	also	influenced	by	temperature,	electrochemical	sensor	responses	can	be	
influenced	by	sensor	operating	temperature.		Changes	in	ambient	humidity	levels	can	cause	sensors	
to	loose	or	gain	of	the	electrolyte	solution,	by	mass,	also	influencing	electrochemical	sensor	response	
(Xiong	and	Compton,	2014).	
	
For	metal	oxide	sensors,	and	to	a	lesser	extent	for	electrochemical	sensors,	resolving	the	response	of	
a	sensor	attributable	to	the	target	gas	species	can	also	pose	a	challenge	in	the	presence	of	interfering	
gas	species.		Metal	oxide	sensors,	like	those	used	in	this	study,	have	a	resistive	heater	circuit	that	
warms	up	the	sensor	surface,	causing	O2	molecules	to	adsorb	to	the	sensor	surface,	which	leads	to	
increased	resistance	across	the	surface	of	the	sensor.		In	the	presence	of	an	oxidizing	compound,	like	
O3,	more	oxygen	molecules	are	adsorbed	to	the	sensor	surface	and	the	resistance	across	the	sensor	
surface	in	increased	further.		In	the	presence	of	a	reducing	compound,	like	CO,	oxygen	molecules	are	
removed	from	the	sensor	surface,	allowing	electrons	to	flow	more	freely,	resulting	in	decreased	
resistance	across	the	sensor	surface.	For	metal	oxide	sensors,	the	resistance	across	the	sensor	
surface	can	then	be	used	to	determine	the	mole	fraction	of	a	given	oxidizing	or	reducing	compound,	
often	according	to	a	nonlinear	relationship.		Exposure	to	humidity	has	been	shown	to	significantly	
lower	the	sensitivity	of	metal	oxide	gas	sensors	making	it	an	important	parameter	to	address	in	a	gas	
quantification	model	(Wang	et	al.,	2010).		Metal	oxide	sensor	operating	temperature	has	also	been	
shown	to	strongly	influence	sensor	sensitivity	and	selectivity	to	different	gas	species	(Wang	et	al.,	
2010).		Metal	oxide	type	sensors	can	be	tuned	to	respond	differently	from	one	another	to	oxidizing	
and	reducing	gas	species	by	using	different	metal	oxide	materials	and	doping	agents	for	the	sensor	
surface,	but	selectivity	is	difficult	to	achieve.			
	
1.2		Low-Cost	Air	Quality	Sensor	Quantification	
	
Because	low-cost	gas	sensor	signals	are	influenced,	sometimes	significantly,	by	interfering	gas	
species	and	changing	weather	conditions	in	the	ambient	environment,	field	normalization	methods	
to	quantify	atmospheric	trace	gases	using	low-cost	sensors	have	been	found	to	be	more	effective	than	
lab	calibration	(Cross	et	al.,	2017;	Piedrahita	et	al.,	2014;	Sun	et	al.,	2016).		Our	previous	study	and	
several	others	have	compared	the	efficacy	field	calibration	models	generated	using	LMs	(simple	and	
multiple	linear	regression)	relative	to	supervised	learning	methods	(including	ANNs	and	random	



forests),	all	finding	that	ANNs	(Casey	et	al.,	2017;	Spinelle	et	al.,	2015,	2017)	and	random	forests	
(Zimmerman	et	al.,	2017)	outperformed	LMs	in	the	ambient	field	calibration	of	low-cost	sensors.		
Like	earlier	laboratory	based	studies	(Brudzewski,	1999;	Gulbag	and	Temurtas,	2006;	Huyberechts	
and	Szeco,	1997;	Martín	et	al.,	2001;	Niebling,	1994;	Niebling	and	Schlachter,	1995;	Penza	and	
Cassano,	2003;	Reza	Nadafi	et	al.,	2010;	Srivastava,	2003;	Sundgren	et	al.,	1991),	ANN-based	
calibration	models,	incorporating	signals	from	an	array	of	gas	sensors	with	overlapping	sensitivity	as	
inputs,	have	been	able	to	effectively	compensate	for	the	influence	of	interfering	gas	species	and	
resolve	the	target	gas	mole	fraction.			
	
ANNs	are	known	to	be	able	to	very	effectively	represent	complex,	nonlinear,	and	collinear	
relationships	among	input	and	output	variables	in	a	system	(Larasati	et	al.,	2011).		ANNs	are	useful	in	
the	field	calibration	of	low-cost	sensors	because,	through	pattern	recognition	of	a	training	dataset,	
they	are	able	to	effectively	represent	the	complex	processes	and	relationships	among	sensors	and	the	
ambient	environment	that	would	be	very	challenging	to	represent	analytically	or	based	on	empirical	
representation	of	individual	driving	relationships.		In	practice	though,	the	reason	multiple	gas	
sensors	are	able	to	improve	the	performance	of	calibration	models	may	be	in	part	the	result	of	
correlation	between	mole	fractions	of	target	gases	themselves	that	hold	for	one	model	training	
location,	but	might	not	remain	effective	at	alternative	sampling	sites	or	during	other	time	periods.”	
	
“In	this	work,	we	present	and	compare	models	designed	to	address	the	unique	challenges	that	come	
with	using	low-cost	sensors,	in	the	quantification	of	atmospheric	trace	gases	of	interest	in	oil	and	gas	
production	basins,	where	ambient	hydrocarbon	mole	fractions	are	potentially	elevated,	exerting	
uniquely	cofounding	influence	on	low-cost	gas	sensors.	We	investigate	how	well	models	can	be	
transferred	from	one	microenvironment	to	another,	with	different	dominant	local	emissions	source	
characteristics,	and	different	relative	abundance	of	oxidizing	and	reducing	compounds.		
Microenvironments	explored	in	this	work	include	an	oil	and	gas	basin	where	both	natural	gas	and	
heavier	hydrocarbons	are	produced	(the	DJ	Basin),	and	an	oil	and	gas	production	basin	where	
prominently	natural	gas	is	produced	(the	SJ	Basin),	with	much	smaller	proportional	emissions	of	
heavier	hydrocarbons,	and	in	tern,	lower	atmospheric	concentrations	of	alkanes.	Within	and	
bordering	the	DJ	Basin,	additional	microenvironments	include	an	urban	location,	with	significant	
mobile	sources	emissions	(NOX,	CO,	and	VOCs),	and	a	peri-urban	site	with	fewer	mobile	emissions	
and	closer	proximity	to	oil	and	gas	production	activities.		We	explore	how	robust	model	performance	
is	when	a	model	is	trained	in	one	microenvironment	and	transferred	to	another;	challenged	by	
different	relative	abundance	of	oxidizing	and	reducing	gas	species.		Additionally	we	test	how	well	
models	can	represent	and	address	sensor	stability	over	time	and	the	potential	for	drift.	“		
	
	
Comment:		L29:	‘in	a	few’	Quantify	the	number	of	UPODs	with	faulty	RH	sensors	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	replaced	‘in	a	few’	with	‘in	four’.	
	
Comment:		L31:	‘nearby’:	Define	the	exact	position	relative	to	the	faulty	UPOD	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	updated	this	passage	to	include	specific	information	about	the	relative	positions	of	
U-Pods	when	faulty	humidity	signals	were	replaced:	“The	closest	U-Pod	with	good	humidity	sensors	
ranged	from	several	feet,	when	U-Pods	were	co-located	during	deployments	in	the	DJ	Basin,	to	
approximately	fifty	miles	during	deployments	in	the	San	Juan	Basin.”	



	
	
Comment:		Did	the	implementation	of	radio	communication	for	the	UPODs	have	any	impact	on	any	
of	the	other	measurements	in	the	system,	beyond	RH?	
Response:	We	have	added	the	following	text	to	help	address	this	question	for	the	Reviewer	and	
other	readers.			
Edits:	“No	other	impacts	to	sensor	systems	were	observed	in	connection	with	radio	
communications.”	
	
Comment:		At	the	beginning	of	the	paragraph,	the	authors	state	that	the	radio	communication	was	
active	until	November,	but	the	substitute	RH	values	from	the	Picarro	were	only	applied	up	to	October	
1	(later	part	of	the	paragraph).	This	is	confusing.	
Response:		Thank	you	for	catching	this	conflict.			
Edits:		We	have	corrected	it	by	changing	“November”	to	“October”	in	the	first	instance.			
	
Comment:		Generally	speaking,	faulty	or	absent	RH	measurements	on-board	the	UPOD	(or	any	low-
cost	AQ	sensor	system	that	suffers	from	environmental	interference)	is	a	potentially	widespread	
issue	across	the	emerging	field.	I	think	the	authors	missed	an	opportunity	to	discuss	their	work-
around	in	more	detail	and	comment	on	the	importance	of	maintaining	stable	RH	measurements	
within	any	given	low-cost	AQ	sensor	system.	
Response:		Thanks	to	the	reviewer	for	this	helpful	comment.		We	added	to	the	text	to	help	clarify	the	
work	around	that	we	implemented	for	faulty	RH	sensor	data.		Over	the	course	of	multiple	field	
deployments	of	U-Pod	sensor	systems,	including	those	described	in	this	work,	RHT03	sensors	signals	
were	found	to	drift	down	over	time,	and	“bottom	out”	in	some	cases.		Following	this	observation,	we	
have	since	upgraded	to	Sensirion	AG	SHT25	sensors	which	appear	to	be	more	robust	and	consistent	
over	the	course	of	long-term	field	deployments.	Hopefully	this	information	will	be	as	helpful	to	
readers	as	the	more	through	discussion	of	the	work	around	we	have	added.			
Edits:		We	have	added	the	following	text	accordingly:		
	“Over	the	course	of	multiple	field	deployments,	relative	humidity	sensors	in	four	of	the	U-Pods	
drifted	down,	causing	the	lower	humidity	levels	to	be	cut	off	or	‘bottomed	out’.		RH	sensors	were	not	
replaced	during	field	deployments	in	order	to	preserve	consistency	across	different	deployment	



periods,	allowing	for	the	possibility	of	a	single	comprehensive	model	to	apply	to	all	data	from	a	single	
U-Pod.		After	some	experimentation	in	generating	a	‘master	model’	that	could	be	applied	to	data	from	
a	given	U-Pod	for	all	collected	field	measurements,	across	several	years,	we	determined	that	
individual	models	for	each	deployment	would	be	more	effective,	and	replacing	RH	sensors	that	had	
drifted	down	would	have	been	appropriate	in	support	of	the	methods	presented	here.		We	have	since	
upgraded	to	Sensirion	AG	SHT25	sensors,	which	appear	to	be	more	robust	and	consistent	over	the	
course	of	long-term	field	deployments.”	
	
Comment:		The	completely	unusable	radio	communication	RH	values	and	the	drifting	RH	values	
mentioned	in	section	2.3	beg	the	question	–	do	the	authors	think	this	is	a	failure	on	the	RHT	
component	itself	or	the	circuitry	of	the	UPODs.	Again,	if	the	evidence	suggests	the	former,	that	is	
useful	empirical	data	for	others	in	the	field.			
Response:		Thanks	to	the	Reviewer	for	bringing	up	this	important	question.		We	have	not	yet	
determined	whether	the	failure	of	the	RHT	sensor	signals	during	periods	of	active	radio	
communications	were	connected	to	the	sensors	themselves	or	to	the	circuitry	of	the	UPODs.		This	will	
be	important	to	determine	for	the	sensor	community	and	before	we	try	to	implement	radio	
communications	again.		As	indicated	in	the	previous	comment,	the	drift	of	RHT03	sensors	over	time	
appeared	to	be	an	issue	associated	with	the	sensor	model	itself.		

	
Comment:		Where	is	RH	measured	specifically	within	each	UPOD.	Is	the	measurement	internal	to	the	
box	or	positioned	in	a	manner	to	provide	a	true	ambient	RH	measurement?	What	are	the	
implications	of	using	alternative	RH	data	sources	that	are	not	on-board	the	same	UPOD?	
Response:	RH	is	measured	within	each	U-Pod	enclosure,	in	the	microenvironment	where	the	gas	
sensors	are	located.		Using	an	alternative	source	for	RH	data	that	are	not	onboard	and	individual	U-
Pod	has	the	potential	to	increase	uncertainty	of	quantified	gas	mole	fractions.			
Edits:		We	have	added	the	following	text	accordingly:		“Temperature	and	RH	sensor	measurements	
are	usually	collected	from	within	each	U-Pod	sensor	system,	in	order	to	gain	representative	
information	about	the	environment	the	gas	sensors	are	being	operated	in.		Using	an	alternative	
source	for	RH	data	that	are	not	onboard	and	individual	U-Pod	has	the	potential	to	increase	
uncertainty	of	quantified	gas	mole	fractions.		We	used	replacement	RH	data	from	the	closest	available	
U-Pod	instead	of	ambient	measurements	in	order	to	more	closely	match	operating	temperature	
within	a	U-Pod	enclosure.”	
	
Comment:		If	median	values	were	used	for	the	co-located	reference	instruments,	but	the	data	from	
those	instruments	was	1-min	averages,	how	did	the	authors	obtain	reference	measurement	medians	
at	1-	min	(the	vast	majority	of	temporal	resolution	used	in	the	current	work).	
Response:		Thank	you	for	pointing	out	that	this	passage	was	confusing.		We	have	changed	the	text	to	
help	clarify.		
Edits:		“In	order	to	test	models	using	the	same	time	resolution	they	were	trained	with,	the	time	
resolution	of	reference	and	sensor	measurements	for	corresponding	training/testing	datasets	were	
matched,	if	necessary,	by	taking	medians	of	the	dataset	with	higher	time	resolution	to	match	the	data	
with	the	longer	time	resolution.”	
	
Comment:		L19:	What	%	of	the	total	data	used	in	training/testing	each	UPOD	was	removed	due	to	
this	5-min	null	data	condition?	
Response:	We	agree	this	information	is	useful	for	readers.	
Edits:		Accordingly,	we	have	added	the	following	text:		“During	a	given	deployment,	the	data	removed	
to	avoid	sensor	warm-up	transients	constituted	less	than	1%.”	
	
Section	2.4	
	
Comment:		L32	‘using	methods	described	previously’,	given	the	importance	of	the	LMs	and	ANNs	in	
the	current	work,	each	model	should	be	described	in	more	detail	in	the	manuscript.	
Response:	Thanks	to	the	Reviewer	for	the	feedback.		We	are	happy	to	provide	more	detail.	



Edits:		Two	useful	figures	from	our	previous	paper,	showing	ANN	architecture,	have	been	added	and	
cited	(now	Figures	2	and	3)	to	help	clarify.		The	following	text	has	also	been	added:			
	
“.		As	in	(Casey	et	al.,	2017),	direct	LMs	and	ANNs	were	trained	with	a	number	of	different	sensor	
input	sets	to	map	those	inputs	to	target	gas	mole	fractions	measured	by	reference	instruments.	
Direct	LMs	implemented	were	multiple	linear	regression	models	given	by		
	 	 	 𝑟 =  𝑝! +  𝑝!𝑠! +  𝑝!𝑠!+. . .+𝑝!𝑠!!!	 	 	 (1)	
where	r	is	the	target	gas	mole	fraction	(measured	by	a	reference	instrument)	s1	–	sn-1	are	sensor	
signals	from	U-Pods	that	are	included	as	model	predictor	variables,	and	p1	–	pn	are	corresponding	
predictor	coefficients.			
	
ANNs	designed	for	regression	tasks,	like	those	employed	in	this	work,	generally	consist	of	artificial	
neuron	nodes	that	are	connected	with	weights.		Weights	are	initiated	with	randomly	assigned	values.		
An	optimization	algorithm	is	then	employed	to	map	a	given	set	input	values	to	corresponding	target	
values.		An	example	of	a	very	simple	feed	forward	neural	network,	and	how	weights	are	propagated	
through	it	are	depicted	in	Fig.	3.			
	

	
Figure	3.		Example	of	a	simple	feed	forward	neural	network,	showing	how	inputs	are	propagated	
through	the	network	during	each	of	the	training	iterations	(Casey	et	al.,	2017)	
	
In	this	work,	ANNs	were	designed	by	assigning	U-Pod	sensor	signals	to	artificial	neurons	in	an	input	
layer	and	assigning	target	gas	mole	fractions	for	an	individual	gas	species,	measured	by	a	reference	
instrument	to	a	single	output	neuron.		Nonlinear,	tansig,	artificial	neurons	in	one	hidden	layer	for	O3	
or	two	hidden	layers	for	CO2	(accordance	with	our	earlier	findings	for	each	target	gas	species	(Casey	
et	al.,	2017))	were	then	added	between	input	layer	and	the	network	output	neuron.		Additionally,	
bias	neurons,	each	assigned	a	value	of	1,	were	connected	to	neurons	in	the	hidden	layer(s)	so	that	
individual	connecting	weights	could	be	activated	or	deactivated	during	the	optimization	process.		
The	number	of	neurons	in	each	hidden	layer	was	set	equal	to	the	number	of	inputs	included	in	a	
given	ANN.		Fig.	4	shows	a	diagram	of	an	ANN	architecture	employed	in	this	work,	when	there	were	
five	inputs.	
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Figure	4.	Diagram	of	an	example	ANN	with	the	same	color-coded	components	as	are	presented	in	Figure	
SM3	in	section	2.2	of	the	SM.		This	ANN	has	5	inputs,	1	hidden	layer	with	5	tansig	hidden	neurons,	and	1	
linear	output	layer	leading	to	1	output.		The	network	is	fully	connected	with	weights	and	biases	(Casey	et	
al.,	2017).	
	
	
For	ANN	training	we	employed	the	Levenberg	Marquardt	optimization	algorithm	with	Bayesian	
Regularization	(Hagan	et	al.,	1997).		The	Levenberg-Marquardt	algorithm	combines	the	Gauss-
Newton	and	Gradient	Decent	methods,	towards	incremental	minimization	of	a	cost	function	(the	
summed	squared	error	between	the	ANN	output	and	target	values	as	a	function	of	all	of	the	weights	
in	the	network).		Training	begins	according	to	the	Gauss-Newton	method,	in	which	the	Hessian	
matrix	(the	second	order	Taylor	series	representation	of	the	error	surface)	is	approximated	as	a	
function	of	the	Jacobian	matrix	and	its	transpose,	significantly	reducing	required	training	time.		
Network	weights	are	adjusted	accordingly	each	training	step	to	reduce	error.		If	the	cost	function	is	
not	reduced	in	a	given	training	step,	an	algorithm	parameter	is	adjusted	so	that	optimization	more	
closely	approximates	the	gradient	decent	method	(a	first	order	Taylor	series	representation	of	the	
cost	function),	providing	a	guarantee	of	convergence	on	a	cost	function	minimum.	Since	local	minima	
may	exist	across	the	error	surface,	it	is	important	to	train	the	same	network	multiple	times	(with	
different	randomly	assigned	starting	weights),	in	order	to	access	the	stability	of	ANN	performance.		
In	this	work	each	ANN	was	trained	5	times.”	
	
Comment:		P7L6	–	need	reference	for	Bayesian	Regularization	
Response:	We	agree	this	would	be	useful	for	readers.	
Edits:		Test	added:		“In	the	implementation	of	Bayesian	Regularization,	a	term	is	added	to	the	sum	of	
squared	error	cost	function	as	a	penalty	for	increased	network	complexity	in	order	to	guard	against	
over	fitting.		A	two	level	Bayesian	inference	framework	is	employed,	operating	on	the	assumptions	
the	noise	in	the	training	data	is	independent,	normally	distributed,	and	also	that	all	of	the	weights	in	
the	ANN	are	small,	normally	distributed,	and	unbiased	(Hagan	et	al.,	1997).”	
	
Comment:		The	concepts	of	early	stopping,	hidden	neurons,	and	hidden	layers	need	to	be	described	
Response:	Thanks	for	this	useful	comment.		Hidden	neurons	and	hidden	layers	have	been	depicted	
in	diagrams	and	described	in	more	detail,	embedded	in	the	new	text	describing	ANNs	in	general	cited	
two	comments	above.			
Edits:		We	have	added	some	text	to	describe	the	concept	of	early	stopping:		“In	preliminary	ANN	tests	
we	found	that	over	fitting	occurred	even	when	Bayesian	Regularization	was	used,	so	we	additionally	
implemented	early	stopping,	which	proved	to	be	effective	in	the	reduction	of	over	fitting.		To	
implement	early	stopping,	a	portion	of	training	data	is	set	aside	as	validation	dataset,	and	during	
training,	an	ANN	is	applied	to	this	validation	data	after	each	training	step.		Training	continues	so	long	
as	the	error	associated	with	the	validation	dataset	is	reduced.	When	the	error	associated	with	the	
validation	dataset	is	no	longer	being	reduced,	training	stops	early.	For	ANNs,	training	datasets	were	
divided	in	half	on	an	alternating	24-hr	basis,	with	half	used	for	training	and	half	used	as	validation	
data	for	early	stopping.”	
	



	
	
Comment:		Highlighted	sentence	is	confusing	as	written.	How	can	there	be	multiple	‘best’	
preforming	models?	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.	
Edits:		We	have	added	section	2.5	entitled	“Calibration	Model	Evaluation	and	Testing	in	order	to	help	
clarify:			
	
“To	evaluate	the	performance	of	each	of	the	ANN	and	LM	models	that	were	generated	using	training	
data	then	applied	to	test	datasets,	we	used	residuals,	the	coefficient	of	determination	(r2),	root	mean	
squared	error	(RMSE),	mean	bias	error	(MBE),	and	centered	root	mean	squared	error	(CRMSE).		The	
CRMSE	is	an	indicator	of	the	distribution	of	errors	about	the	mean,	or	the	random	component	of	the	
error.		The	MBE,	alternatively,	is	an	indicator	of	the	systematic	component	of	the	error.		The	sum	of	
the	squares	of	the	CRMSE	and	the	MBE	is	equal	to	the	square	of	the	total	error,	the	square	root	of	
which	is	defined	by	the	RMSE.			
	
First,	we	generated	and	applied	the	best	performing	model,	as	determined	in	our	previous	work	
(presented	in	Table	3),	to	data	from	each	new	case	study.		Each	new	case	study	was	selected	to	
challenge	models	in	different	ways	in	order	to	evaluate	the	resiliency	of	the	findings	from	our	
previous	study	when	challenged	by	different	circumstances.		Next	we	tested	LMs	for	CO2	and	O3	that	
contained	only	the	primary	target	gas	sensor	for	each	species,	as	well	as	temperature	and	absolute	
humidity	as	inputs.		Finally,	we	generated,	applied,	and	evaluated	the	performance	of	a	number	of	
LMs	and	ANNs	with	different	sets	of	inputs	for	each	case	study	in	order	to	see	which	specific	model	
performed	the	best	for	each	individual	case	study.		The	r2,	RMSE,	and	MBE	for	each	of	these	
alternative	models	when	applied	to	test	data	are	presented	in	the	supplemental	materials	(SM)	in	Fig.	
S2	through	Fig.	S7,	along	with	representative	scatter	plots	and	time	series	comparing	the	
performance	LMs	and	ANNs	for	a	given	set	of	inputs.		In	Fig.	S2	through	Fig.	S7,	the	best	performing	
model	inputs	for	each	train/test	data	pair	are	shaded	in	purple.		The	type	of	model	that	performed	
the	best	(ANN	vs.	LM)	is	indicated	in	the	caption	of	each	figure.		We	discuss	both	the	performance	of	
the	previously	determined	best	fitting	model	(generated	using	data	from	the	GRET	Spring	2017	case	
study)	when	applied	and	generated	to	data	from	new	case	studies,	and	the	performance	of	models	
that	were	tuned	to	perform	the	best	for	each	individual	case	study.		From	these	comparisons,	we	
draw	insight	into	circumstances	that	challenge	model	performance	in	terms	of	relative	local	
emissions	characteristics,	location,	and	timing	between	model	training	and	testing	pairs.		Table	4	lists	
the	relative	timing	and	parameter	coverage	between	model	training	and	testing	periods	for	dataset	
pairs,	highlighting	instances	of	incomplete	coverage	during	training	that	led	to	model	extrapolation	
during	testing.”	
	
	



	
Comment:		Does	section	2.2	really	succinctly	describe	each	training/testing	dataset	pair?	This	is	the	
first	place	in	the	text	of	the	manuscript	where	the	limited	extent	of	co-location	upon	distributed	field	
deployment	is	described	and	how	the	10	UPODs	are	reconciled	against	such	limitations.	
Response:	Thanks	so	much	for	pointing	out	that	this	is	needed.		Instead	of	describing	why	
measurements	were	planned	and	carried	out,	we	change	the	focus	in	section	2.2	to	describe	
measurements	and	how	they	are	used	in	this	work.		
Edits:		We	have	added	subsections	to	section	2.2,	in	which	we	describe	each	case	study	
(training/testing	dataset	pair)	in	the	context	of	the	work	presented	here.	
	
Section	3.1	
	
Comment:		For	the	purposes	of	the	current	study,	if	there	is	no	co-location	with	reference,	is	it	still	a	
relevant	data	point?	Can	the	authors	effectively	‘test’	their	model	under	these	circumstances?		
Response:	Thanks	to	the	reviewer	for	pointing	out	this	confusion.		We	only	have	the	ability	to	
evaluate	models	when	we	have	co-located	reference	instruments,	and	we	only	include	data	in	this	
work	that	had	co-located	reference	instruments.			
Edits:		We	have	added	details	in	section	2.2	about	how	many	U-Pods	are	included	in	each	case	study	
presented	and	which	reference	instruments	were	co-located	with	each.	
	
Comment:		This	section	P8L3	is	also	the	first	mention	of	reducing/oxidizing	interfering	gas	species	–	
this	potential	deserves	a	more	detailed	explanation	in	the	context	of	the	specific	micro-environment	
source	contributions	
Response:	Thanks	for	this	important	comment.			
Edits:		We	have	added	a	discussion	of	the	operating	principles	of	the	sensors	to	section	2.1	
accordingly,	detailed	in	response	to	an	earlier	comment	above.				
	
Comment:		The	overall	discussion	of	factors	impacting	differences	between	the	two	Basin	
depolyments	is	fairly	scattered.	It	would	be	more	beneficial	to	the	reader	if	the	authors	could	draw	
more	specific	lines	of	connectivity	between	environmental	or	pollution	source	contributions	and	the	
robustness	(or	lack	of	robustness)	in	the	model.	
Response:	Thanks	very	much	to	the	Reviewer	for	this	helpful	comment.			
Edits:		We	have	improved	the	manuscript	by	describing	differences	between	the	gas	basins	in	more	
detail,	and	in	the	context	of	sensor	sensitivity	and	selectivity.		Here	is	text	from	one	place	in	the	
manuscript	where	we	have	made	these	improvements:				“In	this	work,	we	present	and	compare	
models	designed	to	address	the	unique	challenges	that	come	with	using	low-cost	sensors,	in	the	
quantification	of	atmospheric	trace	gases	of	interest	in	oil	and	gas	production	basins,	where	ambient	
hydrocarbon	mole	fractions	are	potentially	elevated,	exerting	uniquely	cofounding	influence	on	low-
cost	gas	sensors.	We	investigate	how	well	models	can	be	transferred	from	one	microenvironment	to	
another,	with	different	dominant	local	emissions	source	characteristics,	and	different	relative	
abundance	of	oxidizing	and	reducing	compounds.		Microenvironments	explored	in	this	work	include	
an	oil	and	gas	basin	where	both	natural	gas	and	heavier	hydrocarbons	are	produced	(the	DJ	Basin),	
and	an	oil	and	gas	production	basin	where	prominently	natural	gas	is	produced	(the	SJ	Basin),	with	
much	smaller	proportional	emissions	of	heavier	hydrocarbons,	and	in	tern,	lower	atmospheric	
concentrations	of	alkanes.	Within	and	bordering	the	DJ	Basin,	additional	microenvironments	include	
an	urban	location,	with	significant	mobile	sources	emissions	(NOX,	CO,	and	VOCs),	and	a	peri-urban	
site	with	fewer	mobile	emissions	and	closer	proximity	to	oil	and	gas	production	activities.		We	
explore	how	robust	model	performance	is	when	a	model	is	trained	in	one	microenvironment	and	
transferred	to	another;	challenged	by	different	relative	abundance	of	oxidizing	and	reducing	gas	
species.		Additionally	we	test	how	well	models	can	represent	and	address	sensor	stability	over	time	
and	the	potential	for	drift.”		
	
	



	
Comment:		eltCO2,	temp,	absHum	should	be	human	readable,	this	is	the	first	time	these	parameters	
appear	in	the	text.	I	understand	that	they	were	listed	in	the	table	describing	UPOD	guts,	but	they	
should	be	spelled	out	here.	
Response:	Thank	you	for	the	feedback.	
Edits:		Descriptions	added	here	and	at	the	first	mention	of	other	model	input	codes	in	the	manuscript	
in	the	text:	“eltCO2	(ELT	S300	CO2	sensor)	,	temp	(temperature)	,	and	absHum	(absolute	humidity)”	
	
Comment:		L18:	it	is	unclear	to	what	extent	the	current	work	and	the	previous	work	are	duplicated	
here?		Does	the	previous	work	form	the	basis	for	determining	the	optimal	set	of	input	parameters	to	
train	the	ANN	model	and	those	same	set	of	input	parameters	were	found	to	be	optimal	again	in	this	
second	application	or	are	the	actual	applications	overlapping	and	therefore	the	result	is	redundant?	
This	is	an	example	where	I	find	the	self-referential	context	to	Casey	et	al.,	2017	confusing	(and	
lacking	specific	differentiating	information).	
Response:	Thank	you	for	the	useful	comment.		We	applied	the	model	that	we	found	to	perform	best	
in	our	previous	work	to	new	data.		The	application	circumstances	did	not	overlap	and	are	not	
redundant.		
Edits:		We	have	added	the	following	text	to	help	clarify:		“We	began	by	testing	the	best-performing	
CO2	model,	as	determined	in	our	previous	work	(Casey	et	al.,	2017),	on	this	data,	collected	under	a	
different	set	of	circumstances,	during	the	summer	of	2015.”	
	
Comment:		The	under-prediction	/	over-prediction	behavior	of	all	four	UPODs	warrants	more	
discussion.		What	environmental	conditions	are	pushing	the	model	beyond	its	limits?	What	is	the	
fundamental	(under-the-hood)	reason	for	the	interference	in	the	first	place	(based	on	sensor	
fundamentals)?	
Response:	Thank	you	for	this	interesting	comment.		After	analysis	and	careful	consideration,	we	
have	added	the	following	text:	
Edits:		“Upon	examination	of	overlaid	histograms	showing	distributions	of	parameters	during	model	
testing	and	training	periods,	in	Fig.	S12,	and	model	time	series	and	residuals	plots	in	Fig.	S3,	there	is	
no	indication	of	model	extrapolation	at	the	BAO	site,	and	no	significant	trends	of	concern	with	
respect	to	residuals.		Bias	introduced	to	mole	fraction	estimates	are	likely	attributable	to	differences	
in	hydrocarbon	mixtures	in	the	SJ	Basin	relative	to	the	DJ	Basin.”	



	
Comment:		Why	did	the	majority	of	UPODs	stop	logging	data	during	the	deployment?	Did	the	system	
overheat?	What	fraction	of	the	total	possible	sample	time	was	missed?		
Response:	Thank	you	for	the	comment	and	helping	us	to	improve	the	details	of	the	study.	
Edits:		The	following	text	has	been	added	accordingly:		“Periods	of	missed	data	during	the	month-
long	deployment	included	approximately	1	day	at	the	Shiprock	site,	2	days	at	the	Bloomfield	site,	4	
days	at	the	Sub	Station	site,	9	days	at	the	Fort	Lewis	site,	and	17	days	at	the	Navajo	Dam	site.		We	
carried	out	frequent	sampling	site	visits	(on	a	weekly	or	biweekly	basis	as	logistics	and	travel	to	
remote	locations	in	some	cases	allowed)	in	order	to	identify	and	fix	problems	as	they	arose	during	
field	deployments.		Operational	issues	were	predominantly	attributable	to	power	supply	problems	
associated	with	BNC	bulkhead	fittings	and	corrupted	micro	SD	cards.”			
	
Section	3.1	continued..	
	

	

	
	
Highlighted	above:	
	
Comment:		L6-9:	Discussion	is	confusing	and	language	is	too	casual:	“did	not	make	a	big	difference”	–	
too	vague.	Quantify	based	on	the	statistical	analysis	of	the	model	test	data.	When	considering	the	



benefit	of	including	extra	sensor	inputs	in	the	training	matrix	for	their	models,	again	the	Authors	are	
drawing	comparisons	to	their	earlier	work	(Casey	et	al,	2017)	but	it’s	not	really	clear	how	this	
improves/informs	the	current	work	–	besides	stating	that	the	inclusion	of	the	parameters	didn’t	
make	the	data	product	worse.	
Response:		Thank	you	for	this	useful	comment.		With	this	work,	we	are	testing	methods	that	we	
developed	in	our	previous	work	under	new	circumstances	that	have	the	potential	to	challenge	and	
degrade	model	performance.		The	finding	we	are	highlighting	in	this	instance	is	that	in	the	current	
work,	two	additional	sensor	signals	result	in	improved	performance	of	a	model	under	different	
circumstances,	relative	to	our	previous	work.		Since	the	addition	of	these	two	signals	do	not	reduce	
the	performance	of	models	in	our	previous	work,	the	addition	of	these	two	sensor	signals	in	models	
for	the	quantification	of	CO2	may	be	warranted	more	broadly.	
Edits:		We	have	changed	‘did	not	make	a	big	difference’	to	‘did	not	have	a	measurable	affect’.			
Additionally	we	have	added	the	following	text:		“so	including	these	sensor	signals	may	be	appropriate	
as	a	general	rule,	in	areas	that	are	strongly	influenced	by	oil	and	gas	production	activities.”	
	
Comment:		L10	e2vCO2	does	not	exist	as	a	sensor	metric	in	the	UPODs.	
Response:	Thanks	so	much	to	the	Reviewer	for	catching	this	mistake.	It	should	be	e2vCO.	
Edits:		We	have	changed	‘e2vCO2’	to	‘e2vCO’.	
	
Comment:		L15:	‘all	the	UPODS’	how	many	is	this	again?		
Response:	Thank	for	the	clarifying	comment.	
Edits:		The	following	edits	have	been	made:		“O3	was	quantified	for	the	2	U-Pods	deployed	at	BAO	
and	7	of	the	U-Pods	deployed	at	SJ	Basin	sampling	sites”	
	
Comment:		L19:	‘For	a	number	of	UPODs’:	state	the	number.	
Response:	Thanks	to	the	reviewer	for	helping	us	clarify.	
Edits:		The	text	has	been	edited	accordingly:		“Interestingly	though,	LMs	with	this	same	set	of	inputs	
performed	competitively	well	for	3	of	the	7	U-Pods	in	the	SJ	Basin	in	terms	of	RMSE	and	r2”	
	
Comment:		L21:	‘for	some	of	the	sites..’:	which	sites?	
Response:	Thanks	to	the	Reviewer	for	helping	us	clarify.	
Edits:		The	following	edits	have	been	made	to	the	text:		“When	the	BAO	trained	U-Pods	field	
calibrations	for	O3	were	extended	to	sites	in	the	SJ	Basin,	we	found	that	U-Pods	at	the	Bloomfield,	
Bondad,	Shiprock	and	Ignacio	sites	performed	better	than	others	across	all	models	that	were	tested,	
as	seen	in	Fig.	S2.”	
	
Comment:		L15-22:	this	paragraph	seems	to	say	that	the	ANN	training	matrix	determined	to	be	
optimal	in	Casey	et	al.,	2017	was	also	found	to	be	optimal	in	the	current	work,	with	inclusion	of	all	
peripheral	sensors	to	the	input	training	matrix	for	O3.	But	they	also	state	that	the	LMs	data	products	
were	just	as	good	(or	better)	when	compared	to	the	ANN	models.	This	result	seems	important,	but	
not	really	discussed	further.	The	results	are	left	vague.	Conclusions	as	to	why	this	might	be	the	case	
are	absent.	
Response:	Thank	you	very	much	for	helping	us	to	make	our	conclusions	more	detailed	and	less	
vague.			
Edits:		We	have	added	the	following	text	accordingly:		“The	observation	that	LMs	performed	
competitively	well	at	a	subset	of	SJ	Basin	sites	is	likely	connected	to	the	relative	abundance	of	
hydrocarbons	and	other	potentially	interfering	oxidizing	and	reducing	gas	species	at	individual	
sampling	sites,	diverging	from	conditions	present	during	model	training	at	the	BAO	site.		ANNs	can	
better	represent	the	influence	of	these	interfering	species	than	LMs	during	training,	but	appear	to	
have	lost	their	ability	to	do	so	for	this	subset	of	microenvironments	in	the	SJ	Basin.”	
	
Comment:		L27:	‘had	bad	RH	data’	–	as	noted	in	a	section	that	doesn’t	exist.	What	is	bad	RH	data?		
L29:	‘relatively	far	away’	–	how	far?	Again.	These	details	matter.	
	



Response:	Thank	you	for	helping	us	clarify	the	text	and	catching	the	error	regarding	the	section	
referenced.			
Edits:		We	have	made	the	following	edits	to	the	text:		“As	noted	earlier,	U-Pods	at	the	Navajo	Dam	and	
Sub	Station	sites	had	faulty	relative	humidity	sensor	data,	so	humidity	from	the	U-Pod	located	at	the	
Ignacio	site	was	used	in	place	of	their	humidity	signals.		Since	the	Ignacio	site	was	located	
approximately	twenty-two	and	fifty	miles	away	from	the	Navajo	Dam	and	Sub	Station	sites	
respectively,	this	could	have	introduced	some	additional	error	into	the	application	of	a	calibration	
equation,	particularly	since	we	showed	earlier	that	O3	ANNs	like	the	ones	we	employed	here	are	very	
sensitive	to	humidity	inputs	(Casey	et	al.,	2017).		Spatial	variability	in	humidity	across	tens	of	miles	
could	be	significant	as	isolated	storms	(which	are	on	average	15	miles	in	diameter)	propagate	
throughout	the	region	in	the	summer.”	
	
Comment:		L30-31:	Apparently	one	of	the	major	results	from	Casey	et	al.,	2017	is	an	extreme	
sensitivity	to	RH	when	using	ANN’s	to	quantify	O3.	Given	the	failure	of	the	RH	sensor	throughout	
much	of	the	work	presented	in	the	current	work,	it	seems	critically	important	that	this	RHsensitivity	
be	discussed	in	much	greater	detail	in	the	current	work,	not	simply	stated	in	an	off—handed	matter	
with	a	reference	to	the	prior	work.	
Response:		Thanks	very	much	to	the	Reviewer	for	this	helpful	comment.		We	have	added	significant	
detail	throughout	the	text	describing	humidity	influences	on	sensors	in	the	context	of	model	
development	and	testing.	
Edits:		Here	is	an	example	of	some	text	we	have	added	accordingly	in	section	3.2:		“In	our	previous	
work,	we	showed	that	O3	models	were	very	sensitive	to	the	humidity	signal	input		(Casey	et	al.,	
2017).		In	this	case	study,	it	seems	that	replacing	actual	humidity	signals	with	closely	approximated	
humidity	signals,	negatively	influenced	model	performance.		In	order	to	investigate	this	observation	
further,	we	tested	the	influence	of	replacing	humidity	data	in	the	same	manner,	using	mixing	ratios	
from	the	same	co-located	Picarro,	on	test	data	from	the	GRET	Spring	2017	case	study.		A	comparison	
of	model	performance	under	normal	and	this	‘borrowed	RH’	circumstance	are	presented	in	Fig.	S27	
in	the	SM.		O3	model	performance	was	negatively	impacted	when	‘borrowed’	RH	values	based	on	
Picarro	data	replaced	U-Pod	RH	sensor	signals.		From	these	findings,	it	seems	likely	that	the	inclusion	
of	multiple	metal	oxide	type	sensors	as	inputs	in	the	model,	which	all	respond	strongly	to	humidity	
fluctuations,	helped	the	ANN	to	effectively	represent	the	influence	of	humidity	in	the	system,	more	so	
than	including	a	‘borrowed	RH’	signal	from	another	instrument.		We	tested	models	with	multiple	gas	
sensor	signals	and	no	humidity	signal	as	inputs	for	a	number	of	other	case	studies	as	well	(as	seen	in	
Fig.	S2,	Fig.	S4,	and	Fig.	S5),	when	good	humidity	data	from	U-Pod	enclosures	was	available,	but	they	
did	not	turn	out	to	be	the	best	performing	model	in	any	of	these	other	tests.”	
	
	
Comment:		L32:	‘had	a	different	reference	instrument’	what	was	the	instrument	and	why	do	the	
authors	think	that	this	particular	reference	instrument	was	in	error,	subsequently	disrupting	the	
validity	of	their	calibration	model?	
Response:	Thank	you	for	the	useful	comment.		We	only	want	to	acknowledge	that	discrepancies	
among	different	reference	instruments	that	are	operated	according	to	different	protocols	and	by	
different	agencies	are	possible.	
Edits:		The	following	text	has	been	added	to	help	clarify:		“At the Fort Lewis site, a 2b Technologies 
model 202 O3 analyser was employed as a reference instrument, differing from the Thermo Scientific 49i, 
Thermo Scientific 49is, and Teledyne API T400 instruments utilized for reference measurements, 
elsewhere in the SJ Basin, and the Thermo Scientific 49c that was operated at the BAO site and used for 
model training.  Of all the reference instruments, only the 2b Technologies model 202 O3 at the Fort Lewis 
site was operated in a room that was not temperature controlled.  Some bias may have been introduced to 
the Fort Lewis O3 reference measurements as the temperature in the room it was housed in varied. Different 
instruments, operators, calibration and data quality checking procedures could have contributed to observed 
discrepancies.  It is also possible that the microenvironment at each of these three sites contributed lower 
model performance.”	
	



Comment:		L34	–	carried	into	highlighted	passage	below:	The	authors	indicate	that	the	sampling	
sites	or	the	circumstances	discussed	previously	are	the	reason	for	the	poor	model	performance,	not	
the	sensors	comprising	the	UPODs.	First,	WHAT	circumstances	specifically,	and	what	specifically	
about	the	sampling	sites?	This	level	of	non-explanation	is	unacceptable.		
Response:	Thanks	to	the	Reviewer	for	helping	us	clarify.	
Edits:		The	following	edits	have	been	made	to	the	text:		“therefore,	the	incongruous	field	calibration	
performance	phenomena	we	observed	seems	to	be	connected	to	unique	characteristics	associated	
with	individual	sampling	sites;	possibly	the	relative	abundance	of	oxidizing	and	reducing	molecules	
in	the	local	atmosphere,	which	could	interfere	with	sensor	responses	to	their	target	gas	species,	as	
opposed	to	the	quality	of	individual	sensors	in	each	of	those	U-Pods.”			
	

	
	
Comment:		L22:	brief	excursions	of	high	humidity	–	how	brief?	How	high?	
Response:	Thank	you	for	helping	us	improve	clarity.	
Edits:		The	following	details	have	been	added:		“Brief	excursions,	lasting	approximately	2	–	4	hours,	
of	high	humidity	(up	to	0.025	kg/kg,	relative	to	the	upper	bound	of	absolute	humidity	observed	at	
other	sampling	sites	of	0.013	kg/kg)	may	be	connected	to	some	of	the	large	short-term	residuals	
observed	at	these	two	sampling	sites.”	
	
Comment:		Can	the	authors	comment	on	the	role	that	humidity	transients	play	in	fundamental	
sensor	response?	The	description	of	the	high	and	low	bias	resulting	from	the	models	at	different	
locations	and	different	times	of	day	is	difficult	to	follow.	What	are	the	common	response	
characteristics	and	failings	of	the	model	that	manifest	across	the	case	studies	featured	here?	What	
are	the	lessons	learned	and	how	can	these	lessons	better	inform	ANN	model	development	moving	
forward?	
Response:		Thanks	very	much	to	the	Reviewer	for	this	helpful	comment.			
Edits:		We	have	added	the	following	details	about	fundamental	sensor	response	in	section	2.1,	
including	the	role	that	humidity	transients	play.	
	



Section	3.2.1	
	
Comment:		Extrapolation	of	the	ANN	and	LM	models	is	problematic.	Why?	If	the	full-span	of	O3	(or	
CO2)	concentration	encountered	in	the	field	deployment	is	not	covered	in	the	training	set	for	the	
model,	is	the	model	incapable	of	reasonably	extrapolating?	
Response:	Yes,	thank	you	for	the	helpful	comment.		The	Dawson	Summer	2014	case	study	suggested	
that,	when	a	model	is	transferred	to	a	new	location,	with	different	dominant	local	emission	sources,	
both	ANNs	and	LMs	fail	to	extrapolate	effectively	with	respect	to	high	O3	mole	fractions.			
Edits:		We	have	added	the	following	text	has	been	added	accordingly:		“Across	applications,	ANNs	
have	been	found	to	be	unreliable	when	extrapolated,	due	to	the	nonlinear	nature	and	complexity	of	
the	relationships	they	represent.		Though	they	are	generally	expected	to	be	more	robust	to	
extrapolation	that	ANNs,	increased	uncertainty	in	measurements	can	also	be	introduced	to	LMs	
when	parameters	are	extrapolated.		In	order	to	have	high	confidence	in	measurements	of	
uncommonly	high	mole	fractions	of	a	target	gas,	the	model	-raining	period	has	to	encompass	the	full	
possible	range.		Combining	both	field	calibration	and	lab	calibration	data	together	in	a	training	
dataset	could	accomplish	this	type	of	coverage.		If	extrapolation	is	expected	to	occur	with	respect	to	
the	target	gas	mole	fraction,	as	in	this	case	study,	the	use	of	an	inverted	LM	may	yield	better	results	
than	LMs	or	ANNs.		We	describe	inverted	LMs	and	their	potential	advantages	in	our	previous	work	
(Casey	et	al.,	2017).”	
	
Section	3.2.2	
	
Comment:		L15:	post-test	deployment	co-locations:	It’s	unclear	what	is	meant	by	‘post-test’,	please	
clarify.	
Response:	We	are	happy	to	clarify	this	concept.			
Edits:		The	following	text	has	been	added	to	the	end	of	section	2.3:		“A	model	was	extrapolated	in	
time	when	ever	training	data	does	not	take	place	both	before	and	after	a	given	test	deployment	
period.		In	several	case	studies	we	present,	model	training	only	took	place	after	the	test	deployment	
period,	comprising	a	‘post	only’	calibration.		In	Colorado,	and	more	broadly	in	the	western	United	
States,	ambient	temperatures	change	significantly	across	the	seasons	throughout	the	year,	so	if	a	
model	is	extrapolated	in	time,	extrapolation	in	temperature	often	results	as	well.”	
	
Comment:		L16:	state	the	#	of	UPODs	
Response:	Thank	you	for	helping	us	to	add	clarity.	
Edits:		The	following	edits	have	been	carried	out:		“We	present	data	from	four	U-Pods	that	were	co-
located	with	reference	instruments	in	the	SJ	Basin	in	the	spring	of	2015,	at	the	Navajo	Dam,	Sub	
Station,	and	Bloomfield	sites.		Two	U-Pods	at	the	Bloomfield	site	provide	a	set	of	duplicate	measures.”	
	
Comment:		The	concept	of	extrapolation	in	time	is	confusing.	Please	clarify	what	is	meant	by	this?		
Generating	a	model	at	time	X	and	then	applying	that	same	model	to	time	X-Y?	
Response:	Thank	you	for	helping	us	to	clarify	what	is	meant	by	extrapolation	in	time.			
Edits:		The	edits	have	been	made	in	the	manuscript	in	section	2.3:		“A	model	is	extrapolated	in	time	
when	ever	training	data	does	not	take	place	both	before	and	after	a	given	test	deployment	period.		In	
this	case	study,	model	training	only	took	place	after	the	test	deployment	period,	comprising	a	‘post	
only’	calibration.		In	Colorado,	and	more	broadly	in	the	western	United	States,	ambient	temperatures	
change	significantly	across	the	seasons	throughout	the	year,	so	if	a	model	is	extrapolated	in	time,	
extrapolation	in	temperature	often	results	as	well.”			
	
Comment:		The	authors	identify	coal-fired	power	plants	as	an	important	near-field	(‘close-by’)	
pollutant	source	that	could	contribute	a	specific	(unique)	pollutant	signature	that	could	render	the	
utility	of	the	Figaro	sensor	useless.	Did	the	CO2	response	of	the	UPODs	or	reference	instruments	or	
CO		response	of	the	sensor	measurements	indicate	a	near-field	power	plant	plume	across	the	
deployment	area?	



Response:	Thanks	to	the	Reviewer	for	this	useful	comment.		We	did	observe	evidence	of	a	near-field	
power	plant	plume	in	the	raw	CO2	and	CO	sensor	signals	as	well	as	the	NO	and	NO2	reference	
measurements	(the	site	was	not	equipped	with	a	CO	reference	instrument).	
Edits:		We	have	added	the	following	text	accordingly:		“Several-hour	long	enhancements	or	spikes	
are	apparent	in	the	raw	eltCO2	and	alphaCO	sensor	signals	in	the	U-Pod	deployed	at	the	Sub	Station	
site,	indicating	the	presence	of	a	near-by	combustion-related	emissions	source.		Another	indication	of	
indicate	a	near-field	power	plant	plume	across	the	deployment	area	is	apparent,	in	the	form	of	
several-hour	long	enhancements	reference	measurements	of	NO	and	NO2	at	the	site.”			
	
Section	3.2.3	
	
Comment:		How	specifically	was	‘time’	included	as	a	raw	input	vector	in	the	training	matrix?	
Absolute	time?	Time	since	start	of	deployment?	Time	since	calibration?	Time	since	sensor	
manufacture?	
Response:	Thank	you	for	the	helpful	comment.	 	
Edits:		We	have	added	the	following	text	to	the	end	of	section	2.3	to	help	clarify,	since	the	time	model	
input	is	discussed	there	first:		“When	time	was	included	in	a	model	as	an	input,	the	absolute	time	was	
used.		Specifically,	we	used	the	datenum	value	from	the	MATLAB	environment,	which	is	defined	by	
the	number	of	days	that	have	elapsed	since	the	start	of	January	1st,	in	the	year	0000.”	
	
Comment:		L11-12:	“…LMs	outperformed	ANNs	with	notable	instability	associated	with	the	
performance	of	ANNs	when	time	was	included	as	an	input.”	In	the	previous	sentence	the	authors	
stated	that	time	was	useful	predictor	of	CO2..	but	the	last	sentence	appears	to	contradict	this	
assertion.	The	fact	that	LMs	outperformed	ANNs	for	CO2	also	contradicts	general	assertions	made	in	
the	abstract.	
Response:	Thanks	very	much	to	the	Reviewer	for	making	these	important	points.			
Edits:		We	have	added	the	following	text	to	section	3.2.3	to	help	clarify:		“In	the	case	of	CO2,	LMs	
outperformed	ANNs,	which	could	be	largely	attributable	to	notable	instability	associated	with	the	
performance	of	ANNs	when	time	was	included	as	an	input.”	
	
We	have	also	added	the	following	text	to	the	abstract	to	help	clarify:		“For	CO2	models,	exceptions	
included,	case	studies	in	which	training	data	used	took	place	more	than	several	months	subsequent	
to	the	test	data	period.		For	O3	models,	exceptions	included	studies	in	which	the	characteristics	of	
dominant	local	emissions	sources	(oil	and	gas	vs.	urban)	were	significantly	different	at	model	
training	and	testing	locations.”	
	
Comment:		The	authors	should	comment	on	the	notion	that	time-sensitive	response	patterns	in	
sensors	indicates	that	some	level	of	time-decay.	Is	this	the	case	with	the	CO2	sensor	and	that’s	why	
time	as	a	input	parameter	in	the	model	makes	such	a	big	difference?	Is	there	some	fundamental	
reason	why	the	ANNs	would	be	poorly	suited	to	model	time-decay	patterns	in	the	sensors?	
Response:	Thanks	very	much	to	the	reviewer	for	this	suggestion	as	well	as	interesting	and	relevant	
questions.			
Edits:		We	have	added	the	following	text	to	address	each:		“For	CO2,	we	expected	the	inclusion	of	time	
as	an	input	to	be	a	useful	to	model	performance	across	this	time	frame,	owing	to	observed	trends	of	
decreased	CO2	sensor	sensitivity	in	time.		To	keep	the	power	requirements	for	the	U-Pod	sensor	
systems	low,	and	to	keep	systems	quiet,	fans	were	used	to	exchange	air	in	the	enclosures	as	opposed	
to	pumps.		As	a	result,	the	air	entering	the	enclosures	was	not	filtered,	and	sensors	were	exposed	to	
some	dust	over	time.		This	dust	exposure	is	likely	largely	responsible	for	observed	decreases	in	CO2	
sensors	sensitivity	over	time,	shown	in	Fig.	S26.		Decreases	in	infrared	lamp	intensity	over	time	may	
also	play	a	role.		In	the	case	of	CO2	sensors,	the	implementation	of	pumps	to	draw	new,	filtered	air	
into	sensor	enclosures	could	likely	significantly	reduce	lose	rates	in	the	sensitivity	of	an	individual	
sensor	over	periods	of	continuous	deployment	in	ambient	environment.		While	we	are	not	sure	why	
ANN	performance	tended	not	to	benefit	from	the	addition	of	a	time	input,	while	LM	performance	did,	
it	is	likely	attributable	to	the	extrapolation	of	the	time	input,	since	only	data	that	was	collected	
significantly	subsequent	to	the	test	data	period	was	used	for	training.		ANNs	are	expected	to	be	able	



to	better	represent	time	decay	trends	if	data	from	measurements	both	prior	and	subsequent	to	the	
test	period	are	used	in	training,	so	that	there	is	no	extrapolation	with	respect	to	the	time	input.”	
	
Section	3.2.4	
	
Comment:		L23-24	–	final	sentence	in	this	section	is	very	important.	Where	the	faulty	RH	(and	
necessity	of	substituting	RH	from	alternate	sources)	degraded	the	models,	if	enough	RH	variability	
was	captured	with	the	suite	of	peripheral	metal	oxides	sensors,	the	RH-interference	could	be	
effectively	modeled	without	explicit	RH	inputs.	It	would	seem	important	to	emphasize	this	point	a	bit	
more	prominently	and	discuss	further	–	especially	in	the	context	of	overcoming	some	of	the	RH-
measurement	shortfalls	elsewhere	in	the	manuscript	through	similar	means.	
Response:	Thanks	very	much	for	this	helpful	comment.			We	found	this	to	be	an	interesting	result	
also.			
Edits:		We	have	added	the	following	text	accordingly:		“We	tested	models	with	multiple	gas	sensor	
singals	and	no	humidity	signal	as	inputs	for	a	number	of	other	case	studies	as	well	(as	seen	in	Figures	
S2,	S4,	and	S5),	when	good	humidity	data	from	U-Pod	enclosures	was	available,	but	they	did	not	turn	
out	to	be	the	best	performing	model	in	any	of	these	other	tests.”	
	
4.	Conclusions	
	
Comment:		Supervised	learning	techniques	–	generally,	the	manuscript	lacks	a	description	of	what	is	
meant	by	this	-	
Response:	Thanks	very	much	to	the	Reviewer	for	pointing	this	out.			
Edits:		We	have	added	the	following	text	to	the	introduction	and	the	conclusions	to	help	clarify	that	
ANNs	are	an	example	of	a	supervised	learning	method,	as	are	random	forests:		“We	investigated	how	
well	a	supervised	learning	technique	(ANNs)	hold	up	when	sensors	are	moved	to	a	new	location,	
different	from	where	calibration	model	training	took	place.”	
	
Comment:		L19-20	the	concepts	of	temporal	and	spatial	extension	are	still	a	bit	confusing	here.	
Earlier	statements	to	clarify	exactly	what	is	meant	by	each	condition	would	be	helpful.	
Response:	Thanks	to	the	Reviewer	for	pointing	out	this	confusion.			
Edits:		We	have	added	the	following	text,	early	in	the	manuscript,	at	the	end	of	section	1.4:		“In	the	
present	work,	we	test	model	performance	under	conditions	of	spatial	extension,	wherein	a	model	is	
trained	using	data	from	one	location	then	applied	to	a	test	dataset	using	data	from	a	new	location.		In	
testing	spatial	extension	of	a	model	we	investigate	how	well	the	field	calibration	of	low-cost	sensors	
can	inform	target	gas	mole	fractions	when	sensors	are	deployed	in	a	new	location	and	a	new	
microenvironment	of	oxidizing	and	reducing	compounds.		We	also	test	model	performance	under	
conditions	of	temporal	extension,	wherein	a	model	is	trained	using	data	that	was	collected	only	prior	
or	subsequent	to	the	model	application	period.		In	testing	temporal	extension	of	models,	we	
investigate	how	model	performance	is	influence	by	sensor	drift	over	time.”	
	
Comment:		L24:	how	does	one	move	something	in	terms	of	its	temporal	coverage?	
Response:	Thanks	to	the	Reviewer	for	pointing	out	that	this	statement	is	confusing	and	unclear.			
Edits:		We	have	updated	the	text	accordingly:		“While	ANNs	and	other	supervised	learning	
techniques	have	been	shown	to	consistently	out	perform	linear	models	in	previous	studies	when	
training	and	testing	took	place	in	the	same	location,	we	find	that	this	trend	does	not	always	hold	
when	field	calibration	models	are	applied	in	a	new	location,	with	significantly	different	local	
emissions	source	signatures	for	O3	models,	or	when	model	training	data	takes	more	than	several	
months	subsequent	to	the	model	application	period	for	CO2	models.”			
	
Comment:		L1-3P16:	LMs	appear	to	be	more	robust	when	applied	to	a	changing	deployment	
condition	–	but	then	the	authors	hedge	and	say	that	they	“…	were	not	able	to	fully	represent	some	of	
the	complex	nonlinear	response	behavior	exhibited	by	the	arrays	of	sensors.”	So	a	linear	model	can’t	
model	nonlinear	behavior?	The	statement	needs	to	be	more	specific.	



Response:	Thanks	to	the	Reviewer	for	pointing	out	the	vague	nature	of	the	statement.		After	some	
consideration,	we	realize	that	a	more	important	point	to	make	at	the	end	of	this	paragraph	has	less	to	
do	with	nonlinear	response	behavior,	and	more	to	do	with	extrapolation	of	observed	ozone	mole	
fraction.	
Edits:		We	have	updated	the	text	accordingly:		“While	these	LMs	seemed	to	be	more	stable	under	
circumstances	of	significant	extrapolation	in	terms	of	local	air	chemistry	and	timing,	we	found	that	
they	did	not	extrapolate	well	in	terms	of	the	O3	mole	fraction,	resulting	in	underproduction	of	O3	
values	during	the	test	period	that	exceeded	those	encompassed	in	the	training	data.”	
	
Comment:		L7:	“..data	is	almost	a	band	running	vertically	in	a	range	of	CRMSEs.”	Data	running	in	‘a	
band’	doesn’t	aid	in	the	interpretation	of	the	data.	Re-phrase	to	address	the	statistical	product	that	
results	from	the	bias	that	was	encountered.	
Response:		We	agree	re-phrasing	this	statement	in	terms	of	statistical	attributes	will	help	clarify.	
Edits:		The	text	has	been	updated	accordingly:		“As	seen	in	Fig.	12,	plot	markers	from	all	case	studies	
have	very	similar	CRMSE	values,	but	plot	markers	from	case	studies	in	which	models	were	tested	in	
new	locations	have	larger	MBE	values	than	models	that	were	tested	in	the	same	location	as	they	were	
trained.	“	
	
Comment:		Final	paragraph:	how	‘generalizable’	are	the	models	developed	here?	It	would	seem	that	
despite	having	done	an	exhaustive	amount	of	work,	each	individual	UPOD	system	still	required	its	
own	ANN	or	LM	based	on	co-located	data	and	raw	sensor	data	from	that	individual	sensor	system.	
While	the	input	matrix	of	raw	sensor	signals	may	be	more	generalizable,	the	models	themselves	
appear	to	be	very	much	node-specific,	at	least	in	so	far	as	what	has	been	shown	in	the	paper.	
Response:	Thanks	to	the	reviewer	for	highlighting	this	important	point.		We	have	added	text	to	help	
address	it.	
Edits:		Text	added:		“In	order	to	account	for	unique	variations	in	sensor	responses,	in	each	individual	
sensor	system,	due	to	variations	in	manufacturing	along	with	elapses	time	and	specific	exposure	
subsequent	to	manufacturing,	we	present	models	that	are	generated	for	each	sensor	system	on	an	
individual	basis.			Future	studies	exploring	the	potential	for	universal	calibration	models	would	be	
very	useful	to	the	field.”	
	
Comment:		It	is	unclear	how	the	extension	of	the	model	frameworks	discussed	in	the	current	paper	
can	be	used	in	the	context	of	low-cost	electrochemical	sensors	
Response:		Thanks	to	the	Reviewer	for	this	very	important	comment.	We	have	added	five	key	take	
away	points	from	this	work	and	associated	recommendations	that	we	hope	can	be	used	by	others	in	
the	field	of	low-cost	gas	sensors.	
Edits:	“The	following	findings	from	this	work,	and	associated	recommendations,	are	made	to	help	
inform	the	logistics	of	future	studies	that	employ	field	calibration	methods	of	low-cost	gas	sensors.	
	

1. Finding:	For	O3	models,	LMs	perform	better	than	ANNs	when	the	chemical	composition	of	
local	emissions	sources	is	significantly	different	in	the	model-training	location	relative	to	the	
model-application	location.		We	found	that	when	models	were	trained	in	an	urban	area	with	
significant	mobile	sources,	then	tested	in	a	peri-urban	area,	more	strongly	influenced	by	oil	
and	gas	 emissions,	 the	differences	 in	 local	 sources	of	pollution	were	 significantly	different	
enough	 that	LMs	outperformed	ANNs.	 	Alternatively,	when	models	were	 trained	 in	one	oil	
and	gas	production	region	and	tested	in	another	the	different	composition	of	local	emissions	
(lighter	vs.	heavier	hydrocarbons)	was	not	significant	enough	for	LM	performance	to	surpass	
the	 performance	 of	 ANNs,	 though	 some	 positive	 bias	 was	 evident	 in	 predicted	 O3	 mole	
fractions.			
Explanation:		ANNs	are	very	effective	at	compensating	for	the	influence	of	interfering	gas	
species	through	pattern	recognition	of	a	training	dataset.		However,	if	different	patterns,	in	
terms	of	the	relative	abundance	of	various	oxidizing	and	reducing	compounds	in	the	air,	are	
present	in	the	testing	location	relative	to	the	training	location,	ANNs	may	not	able	to	
compensate	for	the	influence	of	interfering	gas	species	as	effectively.			The	relative	



abundance	of	interfering	oxidizing	and	reducing	compounds	are	not	included	as	model	
parameters,	but	ANN	performance	is	challenged	by	these	circumstances.		
Recommendation:	When	measuring	O3	or	other	gas	species	with	a	metal	oxide	type	sensor,	
if	the	nature	of	dominant	emissions	sources	at	the	model	training	location	is	significantly	
different	than	the	nature	of	dominant	emissions	sources	in	the	model	application	location,	us	
an	LM	instead	of	an	ANN.		For	the	best	performance,	try	to	train	models	in	locations	with	
similar	emissions	sources	to	a	desired	sampling	location.		If	the	nature	of	dominant	
emissions	sources	at	the	model	training	and	application	locations	are	similar,	signals	from	
an	array	of	multiple	unique	metal	oxide	sensors	will	likely	augment	model	performance.	

	
2. Finding:	 	 For	 CO2	 models,	 LMs	 perform	 better	 than	 ANNs	 when	 model	 training	 occurs	

significantly	 (more	 than	 several	months)	 prior	 to	 or	 subsequent	 to	 the	model	 application	
period.																														
Explanation:	 	 CO2	 sensors	 drift	 over	 time	 in	 terms	 of	 sensitivity	 and	 baseline	 response.			
When	models	are	extrapolated	in	time	(when	training	takes	place	more	than	several	months	
prior	 or	 subsequent	 to	 the	 model	 application	 period),	 ANN	 performance	 can	 be	
compromised	to	a	greater	extent	than	LM	performance	because	ANNs	are	able	to	represent	
relationships	 during	 training	 very	 effectively,	 and	 with	 significant	 more	 complexity	 and	
nonlinear	 relationships	among	 time	and	other	model	 inputs	 than	LMs.	 	The	more	complex	
the	model,	the	less	likely	it	can	be	extrapolate	effectively.		LMs,	with	no	interaction	terms	like	
we	employ	in	this	work,	are	not	able	to	fit	data	and	potentially	complex	patterns	inherent	in	
sensor	 drift	 over	 time	 during	 training	 as	 closely	 as	 an	 ANN,	 but	 the	 simple	 linear	
relationships	 they	 represent	between	 the	 time	 input	and	 the	 target	gas	mole	 fraction	over	
the	course	of	training	are	more	likely	to	hold	prior	or	subsequent	to	the	training	period.	
Recommendation:	When	measuring	CO2	with	a	NDIR	sensor,	if	model-training	data	is	only	
available	more	than	several	months	prior	or	subsequent	to	the	model	application	period,	use	
a	LM	instead	of	an	ANN.		For	the	best	model	performance,	use	training	data	that	is	collected	
directly	pre	or	post	of	the	model	application	period,	and	preferably	data	from	both	pre	and	
post	of	the	model	application	period.		Training	models	using	data	from	both	pre	and	post	of	a	
given	model	application	period	helps	models	to	encompass	sensor	drift	over	time	as	well	as	
increases	the	likelihood	of	covering	the	full	range	of	environmental	parameter	space	that	
occurs	during	the	model	application	period	so	that	extrapolation	of	these	parameters	is	
avoided.			

	
3. Finding:	 	 Extrapolation	 of	 an	 O3	 or	 CO2	 model	 in	 time,	 and	 especially	 significant	

extrapolation	in	time,	can	change	both	the	type	of	model	that	is	most	effective,	as	well	as	the	
specific	model	input	signals	that	are	most	effective.		
Explanation:		Low-cost	sensors	change	over	time,	both	in	terms	of	their	baseline	response	
and	in	terms	of	their	sensitivity	to	target	and	interfering	gas	species.		Different	sensor	types	
drift	due	to	different	physical	phenomenon	so	further	a	generalization	across	sensor	types	is	
difficult.	
Recommendation:	Use	training	data	collected	directly	pre	and	post	of	the	model	application	
period	in	order	to	implement	a	‘best	performing	model’	for	each	gas	species	that	can	be	
applied	using	data	from	different	model	training	and	application	pairs.	

	
4. Finding:	ANNs	yield	less	bias	and	more	accurate	gas	mole	fraction	quantification	than	LMs,	

even	when	transferred	to	a	new	location	under	the	following	circumstances:		when	
extrapolation	of	training	parameters	is	avoided	during	the	model	application	period,	when	
training	takes	place	for	several	weeks	to	a	month	prior	and	subsequent	to	the	model	
application	period,	and	when	the	dominant	local	emissions	sources	are	similar	in	the	model	
training	and	application	locations.			
Explanation:		Our	previous	study	and	multiple	other	ambient	and	laboratory	based	
experiments	have	shown,	arrays	of	low-cost	sensors	in	combination	with	ANN	regression	
models	can	support	useful	quantification	of	gases	in	mixtures	and	in	the	ambient	
environment	because	ANNs	can	more	effectively	represent	complex	nonlinear	relationships	



among	environmental	variables	and	signals	in	a	sensor	system	like	a	U-Pod	than	LMs.		With	
this	work,	we	have	explored	limitations	associated	with	these	methods	when	challenged	in	
different	ways,	as	we	present	with	a	number	of	case	studies.			
Recommendation:		If	minimizing	error	and	bias	in	measurements	of	gas	mole	fractions	
using	low-cost	sensors	systems	is	a	primary	goal,	design	sensor	system	training	and	field	
deployment	experiments	so	that	extrapolation	of	model	training	parameters	is	avoided	
during	the	model	application	period,	so	that	training	takes	place	for	several	weeks	to	a	
month	directly	prior	and	directly	subsequent	to	the	model	application	period,	and	so	that	the	
dominant	local	emissions	sources	are	similar	in	the	model	training	and	application	locations.		
When	these	conditions	are	satisfied,	ANNs	can	be	robustly	implemented,	with	better	
performance	than	LMs.				
	

It	is	also	imperative	that	sensor	users	keep	in	mind	the	primary	importance	of	minimizing	
extrapolation	of	temperature,	humidity	and	sensor	signal	from	model	training	to	application.”					

	
	


