
Dear Reviewer 1, 
 
We would like to offer our sincere thanks for spending your time in the review of our work and helping us 
to significantly improve the quality and clarity of the manuscript with your very detailed comments and 
suggestions.  Each of your comments is listed below in black text, followed by our response and edits in 
blue text.   
 
Review 1 Comments: 
 
Overview:  In Casey et al., the authors investigated the performance of calibration models developed for 
ambient O3 and CO2 across time and space using field deployments spanning 2014 – 2017 as case studies. 
Specifically, they looked at the impact of post-deployment calibration vs pre- and post- calibration, and the 
impact of applying a calibration model developed in one location on U-Pods deployed in other locations. 
Calibration models investigated included linear models and artificial neural networks. The size and scope 
of the study is impressive, and I believe there is a significant quantity of insightful information within this 
paper.  
 
However, in general, I found the narrative of the paper to be confusing (it is hard to effectively distill such 
a breadth of research) and the take home points could be made considerably clearer.  
 
Additionally, I think this paper would benefit with a few more analyses of general model performance 
implications and a closer look at the impact of relative humidity.  Following these corrections to comments 
identified below, I believe the publication is suitable to be published in Atmospheric Measurement 
Techniques.  
 
Response:  We have carefully addressed each of the comments below and carried out the analyses 
suggested by the reviewer to investigate the implications and impact of relative humidity and sensor drift in 
time.   We have also worked to significantly improve and clarify the narrative of the paper as well as 
clarified and outlined take home points. 
 
GENERAL COMMENTS  
 
Comment:		In general, I found this manuscript a little hard to read, because I felt like a cohesive narrative 
was missing. A lot of information is presented in a rapid-fire manner such that the results and discussion 
section reads more like a results section, with limited discussion. Although there is no straight forward 
solution to this problem, I would suggest that the authors think about the three to five key messages they 
wish to convey in the manuscript and that they tune and streamline the text to support this narrative.  
Response:	Thanks	very	much	to	the	Reviewer	for	helping	point	out	a	way	for	us	to	improve	a	
cohesive	and	clear	narrative	in	this	work.			
Edits:		We	have	added	the	following	five	key	points	to	the	conclusion	as	well	as	supporting	edits	in	
the	abstract	and	throughout	the	results	and	discussion	section:			
	
“The	following	findings	from	this	work,	and	associated	recommendations,	are	made	to	help	inform	
the	logistics	of	future	studies	that	employ	field	calibration	methods	of	low-cost	gas	sensors.	
	

1. Finding:	For	O3	models,	LMs	perform	better	than	ANNs	when	the	chemical	composition	of	
local	emissions	sources	is	significantly	different	in	the	model-training	location	relative	to	the	
model-application	location.		We	found	that	when	models	were	trained	in	an	urban	area	with	
significant	mobile	sources,	then	tested	in	a	peri-urban	area,	more	strongly	influenced	by	oil	
and	gas	 emissions,	 the	differences	 in	 local	 sources	of	pollution	were	 significantly	different	
enough	 that	LMs	outperformed	ANNs.	 	Alternatively,	when	models	were	 trained	 in	one	oil	
and	gas	production	region	and	tested	in	another	the	different	composition	of	local	emissions	
(lighter	vs.	heavier	hydrocarbons)	was	not	significant	enough	for	LM	performance	to	surpass	
the	 performance	 of	 ANNs,	 though	 some	 positive	 bias	 was	 evident	 in	 predicted	 O3	 mole	
fractions.			



Explanation:		ANNs	are	very	effective	at	compensating	for	the	influence	of	interfering	gas	
species	through	pattern	recognition	of	a	training	dataset.		However,	if	different	patterns,	in	
terms	of	the	relative	abundance	of	various	oxidizing	and	reducing	compounds	in	the	air,	are	
present	in	the	testing	location	relative	to	the	training	location,	ANNs	may	not	able	to	
compensate	for	the	influence	of	interfering	gas	species	as	effectively.			The	relative	
abundance	of	interfering	oxidizing	and	reducing	compounds	are	not	included	as	model	
parameters,	but	ANN	performance	is	challenged	by	these	circumstances.		
Recommendation:	When	measuring	O3	or	other	gas	species	with	a	metal	oxide	type	sensor,	
if	the	nature	of	dominant	emissions	sources	at	the	model	training	location	is	significantly	
different	than	the	nature	of	dominant	emissions	sources	in	the	model	application	location,	us	
an	LM	instead	of	an	ANN.		For	the	best	performance,	try	to	train	models	in	locations	with	
similar	emissions	sources	to	a	desired	sampling	location.		If	the	nature	of	dominant	
emissions	sources	at	the	model	training	and	application	locations	are	similar,	signals	from	
an	array	of	multiple	unique	metal	oxide	sensors	will	likely	augment	model	performance.	

	
2. Finding:	 	 For	 CO2	 models,	 LMs	 perform	 better	 than	 ANNs	 when	 model	 training	 occurs	

significantly	 (more	 than	 several	months)	 prior	 to	 or	 subsequent	 to	 the	model	 application	
period.																														
Explanation:	 	 CO2	 sensors	 drift	 over	 time	 in	 terms	 of	 sensitivity	 and	 baseline	 response.			
When	models	are	extrapolated	in	time	(when	training	takes	place	more	than	several	months	
prior	 or	 subsequent	 to	 the	 model	 application	 period),	 ANN	 performance	 can	 be	
compromised	to	a	greater	extent	than	LM	performance	because	ANNs	are	able	to	represent	
relationships	 during	 training	 very	 effectively,	 and	 with	 significant	 more	 complexity	 and	
nonlinear	 relationships	among	 time	and	other	model	 inputs	 than	LMs.	 	The	more	complex	
the	model,	the	less	likely	it	can	be	extrapolate	effectively.		LMs,	with	no	interaction	terms	like	
we	employ	in	this	work,	are	not	able	to	fit	data	and	potentially	complex	patterns	inherent	in	
sensor	 drift	 over	 time	 during	 training	 as	 closely	 as	 an	 ANN,	 but	 the	 simple	 linear	
relationships	 they	 represent	between	 the	 time	 input	and	 the	 target	gas	mole	 fraction	over	
the	course	of	training	are	more	likely	to	hold	prior	or	subsequent	to	the	training	period.	
Recommendation:	When	measuring	CO2	with	a	NDIR	sensor,	if	model-training	data	is	only	
available	more	than	several	months	prior	or	subsequent	to	the	model	application	period,	use	
a	LM	instead	of	an	ANN.		For	the	best	model	performance,	use	training	data	that	is	collected	
directly	pre	or	post	of	the	model	application	period,	and	preferably	data	from	both	pre	and	
post	of	the	model	application	period.		Training	models	using	data	from	both	pre	and	post	of	a	
given	model	application	period	helps	models	to	encompass	sensor	drift	over	time	as	well	as	
increases	the	likelihood	of	covering	the	full	range	of	environmental	parameter	space	that	
occurs	during	the	model	application	period	so	that	extrapolation	of	these	parameters	is	
avoided.			

	
3. Finding:	 	 Extrapolation	 of	 an	 O3	 or	 CO2	 model	 in	 time,	 and	 especially	 significant	

extrapolation	in	time,	can	change	both	the	type	of	model	that	is	most	effective,	as	well	as	the	
specific	model	input	signals	that	are	most	effective.		
Explanation:		Low-cost	sensors	change	over	time,	both	in	terms	of	their	baseline	response	
and	in	terms	of	their	sensitivity	to	target	and	interfering	gas	species.		Different	sensor	types	
drift	due	to	different	physical	phenomenon	so	further	a	generalization	across	sensor	types	is	
difficult.	
Recommendation:	Use	training	data	collected	directly	pre	and	post	of	the	model	application	
period	in	order	to	implement	a	‘best	performing	model’	for	each	gas	species	that	can	be	
applied	using	data	from	different	model	training	and	application	pairs.	

	
4. Finding:	ANNs	yield	less	bias	and	more	accurate	gas	mole	fraction	quantification	than	LMs,	

even	when	transferred	to	a	new	location	under	the	following	circumstances:		when	
extrapolation	of	training	parameters	is	avoided	during	the	model	application	period,	when	
training	takes	place	for	several	weeks	to	a	month	prior	and	subsequent	to	the	model	



application	period,	and	when	the	dominant	local	emissions	sources	are	similar	in	the	model	
training	and	application	locations.			
Explanation:		Our	previous	study	and	multiple	other	ambient	and	laboratory	based	
experiments	have	shown,	arrays	of	low-cost	sensors	in	combination	with	ANN	regression	
models	can	support	useful	quantification	of	gases	in	mixtures	and	in	the	ambient	
environment	because	ANNs	can	more	effectively	represent	complex	nonlinear	relationships	
among	environmental	variables	and	signals	in	a	sensor	system	like	a	U-Pod	than	LMs.		With	
this	work,	we	have	explored	limitations	associated	with	these	methods	when	challenged	in	
different	ways,	as	we	present	with	a	number	of	case	studies.			
Recommendation:		If	minimizing	error	and	bias	in	measurements	of	gas	mole	fractions	
using	low-cost	sensors	systems	is	a	primary	goal,	design	sensor	system	training	and	field	
deployment	experiments	so	that	extrapolation	of	model	training	parameters	is	avoided	
during	the	model	application	period,	so	that	training	takes	place	for	several	weeks	to	a	
month	directly	prior	and	directly	subsequent	to	the	model	application	period,	and	so	that	the	
dominant	local	emissions	sources	are	similar	in	the	model	training	and	application	locations.		
When	these	conditions	are	satisfied,	ANNs	can	be	robustly	implemented,	with	better	
performance	than	LMs.	
	
It	is	also	imperative	that	sensor	users	keep	in	mind	the	primary	importance	of	minimizing	
extrapolation	of	temperature,	humidity	and	sensor	signal	from	model	training	to	
application.”					

 
Comment:		Many of the figures are needlessly complicated by an overload of case studies, unintelligible 
sensor signal labels, and colours. If there is any way of summarizing this data more cohesively, it would 
significantly improve the paper.  
Response:	Thank	you	very	much	for	the	feedback	and	helping	us	to	simplify	and	clarify	figures.	
Edits:		According	to	the	specific	comments	below,	we	have	split	what	was	previously	Figure	8	into	
two	figures	(now	Figure	10	and	11)	in	order	to	simplify	the	graphics	and	highlight	the	content	of	
each	and	simplified	and	clarified	Figure	9	(now	Figure	12).		We	have	added	definitions	for	the	sensor	
inputs	in	the	Figure	captions	for	what	were	Figures	8	and	9	(now	Figures	10,	11,	and	12).		We	have	
also	updated	Figure	1	(now	Figure	2)	in	order	to	clarify	model	training	and	test	periods	for	each	case	
study,	as	well	as	how	many	U-Pods	were	included	in	each	case	study.			
	
	



	
Figure	10:		Target	diagrams	demonstrating	performance	of	a	previously	determined	best-performing	
model	across	all	new	test	datasets.		(a)	CO2	and	(b)	O3	LM	performance	when	only	the	primary	gas	
sensor,	temperature	and	humidity	are	inputs.		(c)	CO2	and	(d)	O3	ANN	performance	with	inputs	that	
were	found	to	perform	best	at	the	GRET	site	in	the	spring	of	2017	(Casey	et	al.,	2017).		Model	input	
definitions:		eltCO2	(ELT	S300	CO2	sensor),	e2vO3	(e2v	MiCs-2611	sensor),	temp	(temperature)	,	and	
absHum	(absolute	humidity).	
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Figure	11:		Target	diagrams	demonstrating	performance	of	a	previously	determined	best-performing	
model	across	all	new	test	datasets	(a)	CO2	and	(b)	O3	ANN	performance	with	inputs	that	were	found	to	
perform	best	at	the	GRET	site	in	the	spring	of	2017	(Casey	et	al.,	2017).		Model	input	definitions:		eltCO2	
(ELT	S300	CO2	sensor),	e2vCO	(e2v	MiCs-5525	sensor),	e2vVOC	(e2v	MiCs-5521	sensor),	e2vO3	(e2v	
MiCs-2611	sensor),	figCH4	(Figaro	TGS	2600	sensor),	figCxHy	(Figaro	TGS	2602	sensor),	temp	
(temperature)	,	and	absHum	(absolute	humidity).	
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Figure	12:		Target	diagrams	for	(a)	CO2	and	(b)	O3	calibration	model	performance	for	the	best	
performing	model	for	each	particular	case	when	tested	on	data	from	a	number	of	field	deployments.		
Model	input	definitions:		eltCO2	(ELT	S300	CO2	sensor),	e2vCO	(e2v	MiCs-5525	sensor),	e2vVOC	(e2v	
MiCs-5521	sensor),	e2vO3	(e2v	MiCs-2611	sensor),	figCH4	(Figaro	TGS	2600	sensor),	figCxHy	(Figaro	
TGS	2602	sensor),		alphaCO	(Alphasense	CO-B4	sensor)	temp	(temperature),	absHum	(absolute	
humidity),	rh	(relative	humidity),	and	time	(absolute	time).			

	
 
Comment:		It would be good if the authors could elaborate on which U-Pods were where over all these 
campaigns. Given that temporal degradation / time was investigated in detail in this paper, some assessment 
of UPod changes over the three years of campaigns would be helpful if possible.  
Response:	Thanks	very	much	to	the	reviewer	for	this	helpful	comment.	
Edits:		Figure	2	(previously	Figure	1)	has	been	updated	to	clearly	state	the	number	of	U-Pods	
included	in	each	case	study,	for	both	O3	and	CO2,	as	well	as	names	of	the	specific	U-Pods	that	were	
used	during	each	case	study.		We	have	also	performed	an	assessment	of	U-Pod	sensor	drift	from	the	
summer	of	2015	through	the	summer	of	2017,	shown	below	in	Figure	s26,	that	we	have	added	to	the	
Supplemental	Materials.		Figure	s26	had	been	sited	in	section	3.2.2	of	the	manuscript,	and	described	
in	the	following	text:		“While	we	did	not	measure	and	record	metal	oxide	sensor	heater	resistance	for	
sensors	included	in	U-Pods,	we	have	investigated	eltCO2	and	e2vO3	sensor	signal	drift	from	the	
summer	of	2015	through	the	summer	of	2017.		These	data	are	presented	in	Fig.	S26.		Systematic	



downward	drift	in	all	eltCO2	sensor	signals	is	apparent	over	this	time	frame.		A	clear	and	consistent	
pattern	of	systematic	drift	over	this	time	period	is	less	apparent	for	e2vO3	sensors.		Since	the	
training	data	was	collected	immediately	after,	the	test	data	period,	and	since	the	test	data	period	was	
relatively	short	(approximately	one	month)	sensor	drift	could	be	negligible	across	the	combined	
training/testing	time	frame.”			
	

	
Figure	2:	(a)	ANN	and	LM	training	and	test	deployment	timelines.		The	Dawson,	BAO,	and	GRET	sampling	
sites	are	all	located	in	the	DJ	Basin.		Model	training	periods	for	each	test	deployment	are	shown	in	blue,	
and	model	test	periods	are	shown	in	magenta.		For	the	BAO	Summer	2016	case	study,	the	period	
outlined	in	blue	shows	data	that	was	used	to	train	O3	model,	but	not	CO2	models	since	CO2	reference	data	
was	not	available	during	winter	months.	(b)	Information	about	each	of	the	case	studies	presented	in	the	
above	timelines,	including	model	training	and	testing	locations,	as	well	as	the	number	and	names	of	U-
Pods	included	in	each	case	study	for	both	O3	and	CO2	models.		The	U-Pods	with	names	shown	in	grey	
were	constructed	and	deployed	starting	in	May	of	2014.		The	U-Pods	with	names	shown	in	black	were	
constructed	and	deployed	starting	in	April	of	2015.			

 

(b) 

(a) 



 
Figure S26 U-Pod sensor drift from 2015 – 2017 for (a) e2v MiCs-2611 O3 sensors and (b) ELT S300 
CO2 sensors.  Data presented are from 23-day periods when U-Pods were co-located together from 
the summers of 2015, 2016, and 2017.  Raw ADC sensor signals were smoothed with rolling hourly 
medians during these periods, in order to track representative sensor responses across this time 
period, without the influence of exceptional events.  Measurements from summer each year were 
used to capture sensor response under similar weather conditions.   
 
 
Comment:		Also, when comparing sensor performance spatially, are the U-Pods that are compared the 
same age?  
Response:	Thanks	to	the	Reviewer	for	bringing	up	this	important	point.			
Edits:		We	have	added	the	following	text	accordingly:	“Some	U-Pods	used	included	in	these	case	
studies	(indicated	in	grey	font	in	Fig.	2)	were	constructed,	populated	with	sensors,	and	deployed	at	
field	sites	in	the	spring	of	2014,	approximately	a	year	before	the	rest	of	the	U-Pods	were	constructed,	
populated	with	sensors,	and	deployed	at	field	sites	in	the	spring	of	2015.		The	relative	age	of	sensor	
systems	included	in	some	case	study	comparisons	could	have	contributed	to	some	discrepancy	in	
model	performance,	though	systematic	differences	based	on	U-Pod	age	is	not	apparent.”	
 

(b) 

(a) 



Comment:		Directly addressing the size of the training and testing windows should be included. It is hard 
to make generalizable conclusions from the study when there is so much variability in training and testing 
window size. Is there a reason why some training windows are shorter than others? This should be directly 
addressed in the manuscript.  
Response:	Thanks	to	the	Reviewer	for	the	helpful	feedback.			
Edits:		We	have	added	the	following	explanatory	text	accordingly:	“As	available	data	from	each	case	
study	allowed,	we	used	approximately	one	month	of	training	data	before	and	after	(pre	and	post	of)	a	
given	approximately	month-long	test	period.	When	training	data	was	not	available	within	several	
months	of	a	test	period,	significantly	longer	training	datasets	were	used	in	order	to	attempt	capture	
and	effectively	represent	trends	in	sensor	drift	over	time,	as	well	as	to	avoid	extrapolation	of	model	
parameters	(particularly	temperature)	during	the	test	data	period.		As	a	result,	model-training	
durations	varied	across	case	studies	and	sometimes	significantly	exceeded	model-testing	durations.		
Each	case	study	is	similar	in	representing	approximately	one	month-long	deployment	of	sensor	
systems.		This	study	design	serves	a	primary	goal	of	this	work,	which	is	to	help	support	the	
quantification	atmospheric	trace	gases	from	low-cost	gas	sensor	data	in	new	locations,	relative	to	
model	training	locations,	for	periods	of	approximately	one	month	at	a	time.”			
	
		
 
Comment:		I found the discussion of ANN and LM model building to be significantly under-developed, 
especially considering that this is a measurement techniques journal. This paper relies too heavily on the 
prior 2017 study, and has too much assumed knowledge that should be summarized in Section 2.4. The 
resulting LM and coefficients should be provided. As well as some mention of model performance metrics 
like MAE or r2.   
Response:	Thanks	very	much	to	the	Reviewer	for	this	helpful	feedback.		We	have	developed	the	
discussion	of	ANN	and	LM	model	building	significantly,	through	the	addition	of	the	following	text	in	
section	2.4	and	have	added	a	new	subsection	2.5	describing	the	calibration	model	evaluation	and	
testing	we	implemented	in	this	work.		We	have	also	added	a	table	summarizing	model	performance	
metrics	for	our	previous	work,	as	a	case	study,	among	other	case	studies.		Since	LM	coefficients	are	
unique	to	individual	case	studies,	and	within	those	groups,	unique	to	gas	sensors	in	individual	U-
Pods,	and	since	we	carried	out	an	analysis	of	model	sensitivity	to	inputs	in	our	previous	work,	we	
have	not	included	LM	coefficients	in	this	work.				
	
Edits:		“As	in	[1],	direct	LMs	and	ANNs	were	trained	with	a	number	of	different	sensor	input	sets	to	
map	those	inputs	to	target	gas	mole	fractions	measured	by	reference	instruments.	Direct	LMs	
implemented	were	multiple	linear	regression	models	given	by		
	 	 	 ! =  !! +  !!!! +  !!!!+. . .+!!!!!!	 	 (1)	
where	r	is	the	target	gas	mole	fraction	(measured	by	a	reference	instrument)	s1	–	sn-1	are	sensor	
signals	from	U-Pods	that	are	included	as	model	predictor	variables,	and	p1	–	pn	are	corresponding	
predictor	coefficients.		ANNs	designed	for	regression	tasks,	like	those	employed	in	this	work,	
generally	consist	of	artificial	neuron	nodes	that	are	connected	with	weights.		Weights	are	initiated	
with	randomly	assigned	values.		An	optimization	algorithm	is	then	employed	to	map	a	given	set	input	
values	to	one	or	more	corresponding	target	values.		An	example	of	a	very	simple	feed	forward	neural	
network,	and	how	weights	are	propagated	through	it	are	depicted	in	Fig.	3.		In	this	work,	ANNs	were	
designed	by	assigning	U-Pod	sensor	signals	to	artificial	neurons	in	an	input	layer	and	assigning	target	
gas	mole	fractions	for	an	individual	gas	species,	measured	by	a	reference	instrument	to	a	single	
output	neuron.		Nonlinear,	tansig,	artificial	neurons	in	one	or	two	hidden	layers	and	a	layer	of	linear	
neurons	were	then	added	between	input	layer	and	the	network	output	neuron.		Additionally,	bias	
neurons,	each	assigned	a	value	of	1,	were	connected	to	neurons	in	the	hidden	layer(s)	so	that	
individual	connecting	weights	could	be	activated	or	deactivated	during	the	optimization	process.		
The	number	of	neurons	in	each	hidden	layer	was	set	equal	to	the	number	of	inputs	included	in	a	
given	ANN.			
	
For	ANN	training	we	employed	the	Levenberg	Marquardt	optimization	algorithm	with	Bayesian	
Regularization	[2].		The	Levenberg-Marquardt	algorithm	provides	a	combination	of	Gauss-Newton	



and	Gradient	Decent	methods,	towards	incremental	minimization	of	a	cost	function	(the	summed	
squared	error	between	the	ANN	output	and	target	values	as	a	function	of	all	of	the	weights	in	the	
network).		Training	begins	according	to	the	Gauss-Newton	method,	in	which	the	Hessian	matrix	(the	
second	order	Taylor	series	representation	of	the	error	surface)	is	approximated	as	a	function	of	the	
Jacobian	matrix	and	its	transpose,	significantly	reducing	required	training	time.		Network	weights	are	
adjusted	accordingly	each	training	step	to	reduce	error.		If	the	cost	function	is	not	reduced	in	a	given	
training	step,	an	algorithm	parameter	is	adjusted	so	that	optimization	more	closely	approximates	the	
gradient	decent	method	(a	first	order	Taylor	series	representation	of	the	cost	function),	providing	a	
guarantee	of	convergence	on	a	cost	function	minimum.	Since	local	minima	may	exist	across	the	error	
surface,	it	is	important	to	train	the	same	network	multiple	times	(with	different	randomly	assigned	
starting	weights),	in	order	to	access	the	stability	of	ANN	performance.		In	this	work	each	ANN	was	
trained	5	times.		Fig.	4	shows	a	diagram	of	an	ANN	architecture	employed	in	this	work,	when	there	
were	five	inputs.			
	
In	the	implementation	of	Bayesian	Regularization,	a	term	is	added	to	the	sum	of	squared	error	cost	
function	as	a	penalty	for	increased	network	complexity	in	order	to	guard	against	over	fitting.		A	two	
level	Bayesian	inference	framework	is	employed,	operating	on	the	assumptions	the	noise	in	the	
training	data	is	independent,	normally	distributed,	and	also	that	all	of	the	weights	in	the	ANN	are	
small,	normally	distributed,	and	unbiased	[2].	In	preliminary	ANN	tests	we	found	that	over	fitting	
occurred	even	when	Bayesian	Regularization	was	used,	so	we	additionally	implemented	early	
stopping,	which	proved	to	be	effective	in	the	reduction	of	over	fitting.		To	implement	early	stopping,	a	
portion	of	training	data	is	set	aside	as	validation	dataset,	and	during	training,	an	ANN	is	applied	to	
this	validation	data	after	each	training	step.		Training	continues	so	long	as	the	error	associated	with	
the	validation	dataset	is	reduced.	When	the	error	associated	with	the	validation	dataset	is	no	longer	
being	reduced,	training	stops	early.	For	ANNs,	training	datasets	were	divided	in	half	on	an	alternating	
24-hr	basis,	with	half	used	for	training	and	half	used	as	validation	data	for	early	stopping.		ANNs	with	
two	hidden	layers	were	used	for	CO2	and	ANNs	with	one	hidden	layer	were	used	for	O3,	in	
accordance	with	our	earlier	findings	for	each	target	gas	species	[1].	Input	signals	for	both	LMs	and	
ANNs	were	normalized	so	that	they	ranged	in	magnitude	from	-1	to	1	since	this	practice	is	
recommended	for	the	ANN	optimization	algorithm	used	[2].				
	
Calibration	Model	Evaluation	and	Testing	
LM	and	ANN	performance	was	evaluated	on	test	datasets.	To	evaluate	the	performance	of	each	of	the	
ANN	and	LM	models	that	were	generated	using	training	data	then	applied	to	test	datasets,	we	used	
residuals,	the	coefficient	of	determination	(r2),	root	mean	squared	error	(RMSE),	mean	bias	error	
(MBE),	and	centered	root	mean	squared	error	(CRMSE).		The	CRMSE	is	an	indicator	of	the	
distribution	of	errors	about	the	mean,	or	the	random	component	of	the	error.		The	MBE,	
alternatively,	is	an	indicator	of	the	systematic	component	of	the	error.		The	sum	of	the	squares	of	the	
CRMSE	and	the	MBE	is	equal	to	the	square	of	the	total	error,	the	square	root	of	which	is	defined	by	
the	RMSE.			
	
First,	we	generated	and	applied	the	best	performing	model,	as	determined	in	our	previous	work	
(presented	in	Table	4),	to	data	from	each	new	case	study.		Each	new	case	study	was	selected	to	
challenge	models	in	different	ways	in	order	to	evaluate	the	resiliency	of	the	findings	from	our	
previous	study	when	challenged	by	different	circumstances.			
	
Next,	we	generated,	applied,	and	evaluated	the	performance	of	a	number	of		LMs	and	ANNs	with	
different	sets	of	inputs	for	each	case	study	in	order	to	see	which	specific	model	performed	the	best	
for	each	individual	case	study.		The	r2,	RMSE,	and	MBE	for	each	of	these	alternative	models	when	
applied	to	test	data	are	presented	in	the	supplemental	materials	(SM)	in	Fig.	S2	through	Fig.	S7,	along	
with	representative	scatter	plots	and	time	series	comparing	the	performance	LMs	and	ANNs	for	a	
given	set	of	inputs.		In	Fig.	S2	through	Fig.	S7,	the	best	performing	model	inputs	for	each	train/test	
data	pair	are	shaded	in	purple.		The	type	of	model	that	performed	the	best	(ANN	vs.	LM)	is	indicated	
in	the	caption	of	each	figure.		We	discuss	both	the	performance	of	the	previously	determined	best	
fitting	model	(generated	using	data	from	the	GRET	Spring	2017	case	study)	when	applied	and	



generated	to	data	from	new	case	studies,	and	the	performance	of	models	that	were	tuned	to	perform	
the	best	for	each	individual	case	study.		From	these	comparisons,	we	draw	insight	into	circumstances	
that	challenge	model	performance	in	terms	of	relative	local	emissions	characteristics,	location,	and	
timing	between	model	training	and	testing	pairs.”	
	
“For	each	of	the	case	studies,	we	present	the	performance	three	groups	of	models.		The	first	of	these	
are	linear	models	with	only	the	primary	gas	sensor	signal,	along	with	temperature,	and	absolute	
humidity	as	inputs.		The	next	group	of	models	includes	those	that	were	found	to	perform	best	in	our	
previous	work.		The	third	group	of	models	tested	for	each	case	study	includes	models	that	were	
optimized	specifically	for	each	case	study.		Tables	5	and	6	show	the	mean	and	standard	deviation	of	
model	performance	metrics	for	each	of	the	case	studies	presented.”	
	
Table	5:	O3	model	performance	metrics.			

Case	Study	 N	 R2	 RMSE		
(ppb)	

MBE	
(ppb)	

Standard	
Deviation	

R2	

Standard	
Deviation	
RMSE	

Standard	
Deviatio
n	MBE	

	 O3	Models	
Best	O3	Model	(Casey	et	al.,	2017)	

ANN	with	inputs:		e2vO3	temp	absHum	e2vVOC	e2vCO	FigCH4	FigCxHy	

Dawson	Summer	
2014	

1	
0.83	 6.46	 -0.91	 0.00	 0.00	 0.00	

SJ	Basin	Spring	
2015	

4	
0.86	 7.74	 3.69	 0.05	 3.82	 5.78	

SJ	Basin	Summer	
2015	

7	
0.85	 7.03	 4.89	 0.10	 1.10	 1.73	

BAO	Summer	2015	 2	 0.93	 4.26	 1.45	 0.00	 0.31	 0.07	
BAO	Summer	2016	 2	 0.92	 12.21	 -11.14	 0.00	 0.31	 0.07	
GRET	Fall	2016	 2	 0.96	 12.87	 12.02	 0.01	 2.30	 2.35	

GRET	Spring	2017	 2	 0.98	 2.59	 1.49	 0.00	 0.69	 1.02	
Simple	Model	(Single	Gas	Sensor)	

LM	with	inputs:		e2vO3	temp	absHum	
Dawson	Summer	

2014	
1	

0.95	 3.59	 -0.46	 0.00	 0.00	 0.00	
SJ	Basin	Spring	

2015	
4	

0.83	 17.95	 16.09	 0.06	 6.10	 5.83	
SJ	Basin	Summer	

2015	
7	

0.86	 6.30	 3.53	 0.06	 1.40	 2.06	
BAO	Summer	2015	 2	 0.87	 5.50	 0.94	 0.00	 0.78	 1.56	
BAO	Summer	2016	 2	 0.89	 5.78	 -2.71	 0.00	 0.78	 1.56	
GRET	Fall	2016	 2	 0.93	 12.73	 11.92	 0.01	 0.62	 0.88	

GRET	Spring	2017	 2	 0.89	 6.00	 -3.19	 0.00	 0.73	 1.38	
Models	Optimized	For	Case	Studies	

Dawson	Summer	
2014	

1	
0.95	 3.59	 -0.46	 0.00	 0.00	 0.00	



SJ	Basin	Spring	
2015	

4	
0.86	 7.74	 3.69	 0.05	 3.82	 5.78	

SJ	Basin	Summer	
2015	

7	
0.85	 7.03	 4.89	 0.10	 1.10	 1.73	

BAO	Summer	2015	 2	 0.93	 4.26	 1.45	 0.02	 0.51	 1.54	
BAO	Summer	2016	 2	 0.87	 6.25	 -0.20	 0.02	 0.51	 1.54	
GRET	Fall	2016	 2	 0.95	 3.99	 2.14	 0.00	 0.28	 0.89	

GRET	Spring	2017	 2	 0.98	 2.59	 1.49	 0.00	 0.69	 1.02	
	

Table	6:	CO2	model	performance	metrics.	

Case	Study	 N	 R2	 RMSE		
(ppm)	

MBE	
(ppm)	

Standard	
Deviation	

R2	

Standard	
Deviation	
RMSE	

Standard	
Deviatio
n	MBE	

	 CO2	Models	
Best	CO2	Model	from	(Casey	et	al.,	2017)							
ANN	with	inputs:		eltCO2	temp	absHum	

SJ	Basin	Summer	
2015	

2	
0.65	 8.42	 -0.62	 0.00	 1.81	 1.41	

BAO	Summer	2015	 2	 0.75	 9.98	 -2.60	 0.05	 13.00	 13.89	
BAO	Summer	2016	 2	 0.69	 54.38	 48.37	 0.05	 13.00	 13.89	
GRET	Fall	2016	 2	 0.74	 42.37	 39.58	 0.02	 2.44	 2.57	

GRET	Spring	2017	 2	 0.83	 6.31	 0.59	 0.03	 0.13	 2.61	
Simple	Model	(Single	Gas	Sensor)	

LM	with	inputs:		eltCO2	temp	absHum	
SJ	Basin	Summer	

2015	
2	

0.71	 7.84	 0.27	 0.01	 1.43	 0.42	
BAO	Summer	2015	 2	 0.69	 10.62	 -1.26	 0.06	 1.52	 10.67	
BAO	Summer	2016	 2	 0.73	 11.82	 0.73	 0.06	 1.52	 10.67	
GRET	Fall	2016	 2	 0.82	 8.62	 -3.46	 0.00	 0.69	 1.45	

GRET	Spring	2017	 2	 0.55	 9.88	 -0.33	 0.03	 0.29	 1.91	
Models	Optimized	For	Case	Studies	

SJ	Basin	Summer	
2015	

2	
0.72	 7.45	 -0.11	 0.04	 2.06	 0.31	

BAO	Summer	2015	 2	 0.80	 8.85	 -2.29	 0.10	 6.47	 7.08	
BAO	Summer	2016	 2	 0.73	 11.82	 0.73	 0.06	 1.52	 10.67	
GRET	Fall	2016	 2	 0.82	 8.62	 -3.46	 0.00	 0.69	 1.45	

GRET	Spring	2017	 2	 0.83	 6.31	 0.59	 0.03	 0.13	 2.61	
	
 



Comment:		It would be good to include an explicit discussion of % reduction in error by using established 
models vs. “best fit” models. Can we generalize? What is the quantitative impact of using your prior 
models vs making a new model every time. My interpretation from this paper is that we need a new model 
for every U-Pod for every deployment – is there any way around this? I feel there is a significantly missed 
opportunity to be quantitative here. Section 3.3 could be substantially enhanced using some sort of 
summary figure/table (other than a target diagram) that gives percent change in bias, random error, r2, mae 
etc. by switching from pre/post to just post, or by switching location. Given that there are many pairs of 
sensors looking at impact of pre/post vs. just post or impact of location switching, you could show average 
% change in model fitting statistics as well as confidence intervals or standard deviations to show the 
spread across the case studies. This might be a helpful way of streamlining the paper. 
Response:	Thanks	very	much	to	the	Reviewer	for	this	helpful	comment,	which	will	help	us	be	more	
quantitative	as	well	as	clarify	and	focus	the	narrative	and	results	we	present.			
Edits:		Accordingly,	we	have	added	a	table	showing	the	percent	change	in	R2,	RMSE,	and	MBE,	when	
one	set	of	models	is	used	instead	of	another,	as	well	as	the	following	text:	“Table	7	shows	the	percent	
change	in	model	performance	metrics	when	one	model-training	paradigm	is	used	in	place	of	another,	
highlighting	relative	benefits	associated	with	the	implementation	of	different	models	for	O3	and	CO2.”	
	
Table	7:	Relative	benefits	associated	with	the	implementation	of	different	models	for	O3	and	CO2.			

Case	Study	

Mean	%	
Increase	
in	R2	

Mean	%	
Decrease	
in	RMSE		

Mean	%	
Decrease	
in	MBE	

Mean	%	
Increase	
in	R2	

Mean	%	
Decrease	
in	RMSE		

Mean	%	
Decrease	in	

MBE	

	 CO2	Models	 O3	Models	

Benefit	of	Models	Optimized	For	Case	Studies	Over	The	Best	Models	from	(Casey	et	al.,	2017)	

Dawson	Summer	2014	 	 	 	 14.51	 44.42	 50.00	
SJ	Basin	Spring	2015	 	 	 	 0.00	 0.00	 0.00	
SJ	Basin	Summer	2015	 10.56	 11.52	 82.60	 0.00	 0.00	 0.00	
BAO	Summer	2015	 5.84	 11.27	 11.95	 0.00	 0.00	 0.00	
BAO	Summer	2016	 5.72	 78.27	 98.49	 -5.01	 48.82	 98.19	
GRET	Fall	2016	 11.17	 79.66	 108.73	 -0.54	 68.99	 82.22	

GRET	Spring	2017	 0.00	 0.00	 0.00	 0.00	 0.00	 0.00	
Benefit	of	The	Best	Models	from	(Casey	et	al.,	2017)	Over	Simple	Linear	Models		

Dawson	Summer	2014	 	 	 	 -12.67	 -79.92	 -99.99	
SJ	Basin	Spring	2015	 	 	 	 3.20	 56.88	 77.09	
SJ	Basin	Summer	2015	 -8.41	 -7.29	 331.39	 -1.34	 -11.53	 -38.41	
BAO	Summer	2015	 8.70	 6.05	 -106.48	 6.79	 22.48	 -53.85	
BAO	Summer	2016	 -5.41	 -360.09	 -6543.84	 2.57	 -111.22	 -310.71	
GRET	Fall	2016	 -10.05	 -391.73	 1244.99	 2.88	 -1.12	 -0.86	

GRET	Spring	2017	 51.92	 36.13	 278.55	 10.00	 56.90	 146.65	
Benefit	of	Models	Optimized	For	Case	Studies	Over	Simple	Linear	Models	

Dawson	Summer	2014	 	 	 	 0.00	 0.00	 0.00	
SJ	Basin	Spring	2015	 	 	 	 3.20	 56.88	 77.09	
SJ	Basin	Summer	2015	 1.26	 5.06	 140.25	 -1.34	 -11.53	 -38.41	
BAO	Summer	2015	 15.04	 16.64	 -81.80	 6.79	 22.48	 -53.85	
BAO	Summer	2016	 0.00	 0.00	 0.00	 -2.57	 -8.10	 92.59	



GRET	Fall	2016	 0.00	 0.00	 0.00	 2.33	 68.64	 82.07	
GRET	Spring	2017	 51.92	 36.13	 278.55	 10.00	 56.90	 146.65	

 
Comment:		This is mentioned in the specific comments, but I would like to see a quantitative assessment 
of the impact of swapping out RH data if a U-Pod failed. You could accomplish this by taking a U-Pod 
with valid RH data, replacing it with the Picarro or nearby station RH data, and quantitatively assessing the 
impact on model performance. That way, you could transition from hypotheticals about the impact of this 
data swapping to some actual numbers.  
Response:	Thanks	very	much	to	the	reviewer	for	helping	us	to	be	less	hypothetical	about	the	impact	
of	this	data	swapping.		We	have	carried	out	a	dummy	experiment,	testing	the	effect	of	this	humidity	
data	swapping	on	data	collected	during	the	GRET	Spring	2017	case	study.		A	figure,	showing	the	
relative	performance	of	models	when	the	humidity	data	was	taken	from	the	U-Pods	directly	and	
replaced	with	measurements	from	the	Picarro	CRDS,	has	been	added	to	the	Supplemental	Materials.		
This	figure,	and	associated	implication	have	been	cited	in	the	main	text.				
Edits:		“In	our	previous	work,	we	showed	that	O3	models	were	very	sensitive	to	the	humidity	signal	
input		(Casey	et	al.,	2017).		In	this	case	study,	it	seems	that	replacing	actual	humidity	signals	with	
closely	approximated	humidity	signals,	negatively	influenced	model	performance.		In	order	to	
investigate	this	observation	further,	we	tested	the	influence	of	replacing	humidity	data	in	the	same	
manner,	using	mixing	ratios	from	the	same	co-located	Picarro,	on	test	data	from	the	GRET	Spring	
2017	case	study.		A	comparison	of	model	performance	under	normal	and	this	‘borrowed	RH’	
circumstance	are	presented	in	Fig.	S27	in	the	SM.		O3	model	performance	was	negatively	impacted	
when	‘borrowed’	RH	values	based	on	Picarro	data	replaced	U-Pod	RH	sensor	signals.		From	these	
findings,	it	seems	likely	that	the	inclusion	of	multiple	metal	oxide	type	sensors	as	inputs	in	the	model,	
which	all	respond	strongly	to	humidity	fluctuations,	helped	the	ANN	to	effectively	represent	the	
influence	of	humidity	in	the	system,	more	so	than	including	a	‘borrowed	RH’	signal	from	another	
instrument.		We	tested	models	with	multiple	gas	sensor	signals	and	no	humidity	signal	as	inputs	for	a	
number	of	other	case	studies	as	well	(as	seen	in	Fig.	S2,	Fig.	S4,	and	Fig.	S5),	when	good	humidity	
data	from	U-Pod	enclosures	was	available,	but	they	did	not	turn	out	to	be	the	best	performing	model	
in	any	of	these	other	tests.”	



 
Figure S27 A comparison of model performance when humidity inputs are taken from sensor 

measurements collected within a given U-Pod sensor system enclosure, vs the performance of models 
when humidity inputs are replaced using data from a Picarro CRDS for (a) O3	(b)	CO2 

	
 
SPECIFIC COMMENTS  
Comment:		P1 - L13-14: Seems like an oxymoron to say “Generally” if the circumstances for best model 
performance are case study specific. Recommendation to remove the word “generally”.  
Response:		Thank	you	for	the	helpful	feedback.	
Edits:		We	have	removed	the	word	‘Generally’.	
 
Comment:		P3 - L19-24: Please discuss why ozone is elevated near O&G production.  

(b) 

(a) 



Response:	Thank	you	for	helping	us	clarify	why	ozone	can	be	elevated	near	oil	and	gas	production	
activities.			
Edits:		We	have	added	the	following	text	to	augment	this	discussion:	“NOX	and	VOC	emissions,	
including	those	from	oil	and	gas	production	activities,	react	in	the	atmosphere	in	the	presence	of	
sunlight	to	form	tropospheric	O3.”					
“Emissions	of	industry	related	air	pollutants,	including	O3	precursors,	NOX	and	VOCs	are	expected	to	
occur	on	spatially	distributed	scales,	across	multiple	individual	components	on	individual	well	pads,	
transmission	lines,	transportation	routes,	and	gathering	stations	that	are	each	distributed	
throughout	production	basins	(Litovitz	et	al.	2013;	Mitchell	et	al.	2015;	Allen	et	al.	2013).		Spatially	
distributed	networks	of	low-cost	sensors	have	the	potential	to	better	inform	spatial	variability	of	air	
quality	than	existing	Regulatory	air	quality	monitoring	stations	which	feasibly	cover	such	spatially	
resolved	measurements	continuously,	and	may	not	be	representative	of	air	quality	across	smaller	
spatial	scales	(Bart	et	al.,	2014;	Jiao	et	al.,	2016;	Moltchanov	et	al.,	2015).”	
 
Comment:		P3 – L27: Can you quantify “small spatial scales” in this context? Is well pad combustion and 
diesel traffic really contributing so much that it is universally increasing ozone?  Most of the construction 
traffic would occur during active drilling and less so during production when well pad sites are very quiet. I 
think some further thinking or elaboration on this train of thought it warranted.  
Response:	Thank	you	for	the	helpful	comment.			
Edits:		We	have	added	the	following	detail,	regarding	spatial	scales	that	ozone	may	be	influcened	
near	oil	and	gas	emissions	sources:	“	a	modeling	study	concluded	that	oil	and	gas	production	
activities	could	significantly	impact	ozone	near	emissions	sources,	beginning	2	and	8	km	downwind	
of	compressor	engine	and	flaring	activities,	respectively	[3].”	
We	have	also	added	the	following	text	to	address	how	emissions	may	change	across	the	lifetime	of	a	
given	oil	and	gas	production	well:		“While	emissions	from	truck	traffic	(and	in	some	cases	drilling	rig	
generators),	at	a	given	well	pad	are	highest	during	the	drilling,	stimulation,	and	completion	phases,	
industry	truck	traffic	often	persists	as	produced	water	and	condensate	tanks	are	collected	from	
storage	tanks	on	a	well	pad	throughout	the	life	a	the	well,	as	do	emissions	from	flaring	and	
compressor	engines.”	
 
Comment:		P4 – L1-2: What do you mean by “pooling” of compounds - I am not sure I understand this 
sentence.  
Response:	Thank	you	for	helping	us	clarify	this	statement.	
Edits:		We	have	made	the	following	edits	accordingly:		“While	elevated	ambient	CO2	levels	are	not	
directly	harmful	to	human	health,	continuous	CO2	measurement	can	provide	information	about	
nearby	combustion-related	pollution	and	atmospheric	dynamics	that	lead	to	the	accumulation	of	
potentially	harmful	compounds	associated	with	the	oil	and	gas	production	industry	during	periods	of	
atmospheric	stability.”			
 
Comment:		P4 – L5-8: I think some short discussion of the operating principles of the sensors would be 
helpful here.  
Response:	Thank	you	for	the	helpful	feedback.	
Edits:		We	have	added	a	discussion	of	the	operating	principles	of	the	sensors		to	section	1.1	
accordingly:			
“While	low-cost	sensors	have	been	emerging	on	the	market	with	sufficient	sensitivity	to	resolve	
variations	in	ambient	mole	fractions	of	target	gases	of	interest,	they	are	also	sensitive	to	temperature	
and	humidity	variations	that	occur	in	the	ambient	environment.		NDIR	sensors,	like	the	ELT	s300	CO2	
sensor	employed	in	this	study,	have	good	selectivity,	but,	since	pressure	and	temperature	are	not	
controlled	in	the	optical	cavity	of	ELT	s300	CO2	sensors,	the	influence	of	temperature	on	sensor	
signals	plays	an	important	role.		The	influence	of	humidity	is	also	important	to	address	because	
changes	in	water	vapor	are	known	to	influence	NDIR	measurements	of	CO2	in	terms	of	spectral	cross-
sensitivity	due	to	absorption	band	broadening	(Licor,	2010).			
	
Both	metal	oxide	and	electrochemical	type	sensors	operate	on	the	principle	of	oxidizing	or	reducing	
reactions	at	sensor	surfaces.		For	electrochemical	sensors,	like	the	Alphasense	CO-B4	sensor	



employed	in	this	study,	oxidizing	or	reducing	compounds	react	at	the	working	electrode,	resulting	in	
the	transfer	of	ions	across	an	electrolyte	solution	from	the	working	electrode	to	the	counter	
electrode,	balanced	by	the	flow	of	electrons	across	the	circuit	connecting	the	working	electrode	to	
the	counter	electrode.		A	linear	relationship	is	expected	between	this	current	and	the	target	gas	mole	
fraction.			Electrochemical	sensors	can	be	tuned	to	respond	more	or	less	strongly	to	specific	gases	by	
adjusting	the	materials	properties	of	the	working	electrode.	A	membrane	is	located	between	the	
working	electrode	and	the	exterior	of	the	sensor	in	order	to	control	redox	reaction	rates.		Gases	
diffusion	through	the	membrane	to	reach	the	working	electrode	and	the	electron	transfer	rates	have	
been	shown	to	increase	at	higher	temperatures	(Xiong	and	Compton,	2014),	and	since	chemical	
reaction	rates	are	also	influenced	by	temperature,	electrochemical	sensor	responses	can	be	
influenced	by	sensor	operating	temperature.		Changes	in	ambient	humidity	levels	can	cause	sensors	
to	loose	or	gain	of	the	electrolyte	solution,	by	mass,	also	influencing	electrochemical	sensor	response	
(Xiong	and	Compton,	2014).	
	
For	metal	oxide	sensors,	and	to	a	lesser	extent	for	electrochemical	sensors,	resolving	the	response	of	
a	sensor	attributable	to	the	target	gas	species	can	also	pose	a	challenge	in	the	presence	of	interfering	
gas	species.		Metal	oxide	sensors,	like	those	used	in	this	study,	have	a	resistive	heater	circuit	that	
warms	up	the	sensor	surface,	causing	O2	molecules	to	adsorb	to	the	sensor	surface,	which	leads	to	
increased	resistance	across	the	surface	of	the	sensor.		In	the	presence	of	an	oxidizing	compound,	like	
O3,	more	oxygen	molecules	are	adsorbed	to	the	sensor	surface	and	the	resistance	across	the	sensor	
surface	in	increased	further.		In	the	presence	of	a	reducing	compound,	like	CO,	oxygen	molecules	are	
removed	from	the	sensor	surface,	allowing	electrons	to	flow	more	freely,	resulting	in	decreased	
resistance	across	the	sensor	surface.	For	metal	oxide	sensors,	the	resistance	across	the	sensor	
surface	can	then	be	used	to	determine	the	mole	fraction	of	a	given	oxidizing	or	reducing	compound,	
often	according	to	a	nonlinear	relationship.		Exposure	to	humidity	has	been	shown	to	significantly	
lower	the	sensitivity	of	metal	oxide	gas	sensors	making	it	an	important	parameter	to	address	in	a	gas	
quantification	model	(Wang	et	al.,	2010).		Metal	oxide	sensor	operating	temperature	has	also	been	
shown	to	strongly	influence	sensor	sensitivity	and	selectivity	to	different	gas	species	(Wang	et	al.,	
2010).		Metal	oxide	type	sensors	can	be	tuned	to	respond	differently	from	one	another	to	oxidizing	
and	reducing	gas	species	by	using	different	metal	oxide	materials	and	doping	agents	for	the	sensor	
surface,	but	selectivity	is	difficult	to	achieve.”		
		
We	have	also	added	a	section	to	the	introduction,	section	1.2,	entitled	“Low-Cost	Air	Quality	Sensor	
Quantification:		
	
“Because	low-cost	gas	sensor	signals	are	influenced,	sometimes	significantly,	by	interfering	gas	
species	and	changing	weather	conditions	in	the	ambient	environment,	field	normalization	methods	
to	quantify	atmospheric	trace	gases	using	low-cost	sensors	have	been	found	to	be	more	effective	than	
lab	calibration	(Cross	et	al.,	2017;	Piedrahita	et	al.,	2014;	Sun	et	al.,	2016).		Our	previous	study	and	
several	others	have	compared	the	efficacy	field	calibration	models	generated	using	LMs	(simple	and	
multiple	linear	regression)	relative	to	supervised	learning	methods	(including	ANNs	and	random	
forests),	all	finding	that	ANNs	(Casey	et	al.,	2017;	Spinelle	et	al.,	2015,	2017)	and	random	forests	
(Zimmerman	et	al.,	2017)	outperformed	LMs	in	the	ambient	field	calibration	of	low-cost	sensors.		
Like	earlier	laboratory	based	studies	(Brudzewski,	1999;	Gulbag	and	Temurtas,	2006;	Huyberechts	
and	Szeco,	1997;	Martín	et	al.,	2001;	Niebling,	1994;	Niebling	and	Schlachter,	1995;	Penza	and	
Cassano,	2003;	Reza	Nadafi	et	al.,	2010;	Srivastava,	2003;	Sundgren	et	al.,	1991),	ANN-based	
calibration	models,	incorporating	signals	from	an	array	of	gas	sensors	with	overlapping	sensitivity	as	
inputs,	have	been	able	to	effectively	compensate	for	the	influence	of	interfering	gas	species	and	
resolve	the	target	gas	mole	fraction.			
	
ANNs	are	known	to	be	able	to	very	effectively	represent	complex,	nonlinear,	and	collinear	
relationships	among	input	and	output	variables	in	a	system	(Larasati	et	al.,	2011).		ANNs	are	useful	in	
the	field	calibration	of	low-cost	sensors	because,	through	pattern	recognition	of	a	training	dataset,	
they	are	able	to	effectively	represent	the	complex	processes	and	relationships	among	sensors	and	the	
ambient	environment	that	would	be	very	challenging	to	represent	analytically	or	based	on	empirical	



representation	of	individual	driving	relationships.		In	practice	though,	the	reason	multiple	gas	
sensors	are	able	to	improve	the	performance	of	calibration	models	may	be	in	part	the	result	of	
correlation	between	mole	fractions	of	target	gases	themselves	that	hold	for	one	model	training	
location,	but	might	not	remain	effective	at	alternative	sampling	sites	or	during	other	time	periods.”	
	
 
Comment:		P4 – L25: Not sure what is meant by “toward” here  
Response:	Thank	you	for	the	helpful	feedback.	
Edits:		We	have	replaced	“toward”	with	“that	were	used	for”	
 
Comment:		P5 – L27: Is this “clean air” normalization done dynamically/in real-time in parallel with the 
actual measurement? Or is the clean air measurement established during some calibration/maintenance? 
Please clarify.  
Response:	Thank	you	for	helping	us	clarify.			
Edits:	We	have	added	the	following	text	accordingly:		“For	metal	oxide	type	sensors,	voltage	signals	
were	converted	into	resistance,	and	then	normalized	by	the	resistance	of	the	sensor	in	clean	air,	R0.	A	
single	value	for	R0	was	used	for	each	sensor	across	the	study	duration.	This	R0	value	was	taken	as	the	
resistance	of	each	sensor	at	the	GRET	field	deployment	site	when	the	target	pollutant	had	
approached	background	levels	(at	night	for	the	metal	oxide	O3	sensors	and	midday	for	all	other	metal	
oxide	sensors),	and	when	the	ambient	temperature	was	approximately	20°	C	and	relative	humidity	of	
approximately	25%.”	
 
Comment:		P5 – L30-32: Is there expected to be spatial variability of RH?  
Response:		Thank	you	for	helping	us	to	clarify.	
Edits:		We	have	added	the	following	text	to	section	2.3:		“The	closest	U-Pod	with	good	humidity	
sensors	ranged	from	several	feet,	when	U-Pods	were	co-located	during	deployments	in	the	DJ	Basin,	
to	approximately	fifty	miles	during	deployments	in	the	San	Juan	Basin.”	
	
In	Section	3.1	of	we	have	added	this	text	also:		“Since	the	Ignacio	site	was	located	approximately	
twenty-two	and	fifty	miles	away	from	the	Navajo	Dam	and	Sub	Station	sites	respectively,	this	could	
have	introduced	some	additional	error	into	the	application	of	a	calibration	equation,	particularly	
since	we	showed	earlier	that	O3	ANNs	like	the	ones	we	employed	here	are	very	sensitive	to	humidity	
inputs	(Casey	et	al.,	2017).		Spatial	variability	in	humidity	across	tens	of	miles	could	be	significant	as	
isolated	storms	(which	are	on	average	15	miles	in	diameter)	propagate	throughout	the	region	in	the	
summer.”	
 
Comment:		P5 – L30-32: Why not just replace the RH sensors directly?  
Response:	Good	question.	
Edits:		In	answer,	we	have	added	the	following	text:		“RH	sensors	were	not	replaced	during	field	
deployments	in	order	to	preserve	consistency	across	different	deployment	periods,	allowing	for	the	
possibility	of	a	single	comprehensive	model	to	apply	to	all	data	from	a	single	U-Pod.		After	some	
experimentation	in	generating	a	‘master	model’	that	could	be	applied	to	data	from	a	given	U-Pod	for	
all	collected	field	measurements,	across	several	years,	we	determined	that	individual	models	for	each	
deployment	would	be	more	effective,	and	replacing	RH	sensors	that	had	drifted	down	would	have	
been	appropriate	in	support	of	the	methods	presented	here.		We	have	since	upgraded	to	Sensirion	AG	
SHT25	sensors,	which	appear	to	be	more	robust	and	consistent	over	the	course	of	long-term	field	
deployments.”	
 
Comment:		P7 – Section 3.0 first paragraph – Are there some general conclusions from the SM that you 
can discuss here? Some discussion of model performance is warranted vs just describing what figures are in 
the SM.  
Response:	Thanks	very	much	for	the	feedback.		
Edits:		We	have	moved	the	paragraph	in	question	to	the	methods	section	and	have	added	the	
following	sentence,	letting	the	reader	know	that	these	plots	are	discussed	in	the	results	and	



discussion	section	in	context	with	each	case	study	presented:		“The	best-performing	model	for	each	
case	study	are	highlighted	below	in	the	Results	and	Discussion	section.”	
 
Comment:		P8 – L17: What is eltCO2?? Can you better define all the model parameter inputs? This comes 
up in Figure 9 as well.  
Response:	Yes,	thank	you	for	the	feedback.	
Edits:		Description	added	here	and	at	the	first	mention	of	other	model	input	codes	in	the	manuscript	
in	the	text:	“eltCO2	(ELT	S300	CO2	sensor)”	
We	have	also	defined	these	model	input	codes	in	the	caption	for	Figure	9	(now	Figure	12)	as	well	as	
Figure	8	(now	Figure	10	and	Figure	11):		“Model	input	definitions:		eltCO2	(ELT	S300	CO2	sensor),	
e2vCO	(e2v	MiCs-5525	sensor),	e2vVOC	(e2v	MiCs-5521	sensor),	e2vO3	(e2v	MiCs-2611	sensor),	
figCH4	(Figaro	TGS	2600	sensor),	figCxHy	(Figaro	TGS	2602	sensor),	alphaCO	(Alphasense	CO-B4	
sensor),	temp	(temperature),	absHum	(absolute	humidity),	rh	(relative	humidity),	and	time	(absolute	
time).”			
 
Comment:		P8 – L30-33: Is this early morning under prediction really true? Bloomfield doesn’t look like it 
is exhibiting any diurnal variation in residual error at all… I feel like given the small number of U-Pods, it 
is hard to make this conclusion definitively.  
Response:	We	agree,	thank	you	for	pointing	the	trend	in	Bloomfield	out.			
Edits:		We	have	edited	the	text	to	say	“three	of	four	U-Pods”	instead	of	“all	four	U-Pods”	
 
Comment:		P9 – L4-13: I am confused now – why did you use the model with three inputs (eltCO2, 
abshum, and temp) if the best performing model had more variables? I feel like the model selection 
discussion is substantially underdeveloped. There could be many good reasons to not choose a more 
complex model, but any discussion of this seems to be completely omitted, or the reasoning is too difficult 
to follow.  
Response:	Thank	you	for	the	feedback	and	for	helping	us	to	clarify.		You	have	helped	us	see	that	
some	important	details	were	missing	from	the	methods	section	regarding	model	selection	and	
testing	procedures.			
Edits:		We	have	added	a	subsection	2.5	to	the	end	of	the	methods	section	entitled	“Calibration	Model	
Evaluation	and	Testing”.		In	this	section,	we	first	define	the	r2,	RMSE,	MBE,	and	CRMSE	metrics	that	
are	used	to	evaluate	the	performance	of	a	given	model	when	it	is	applied	to	a	test	dataset.		Next	we	
added	a	paragraph	describing	how	we	first	tested	models	that	were	found	to	perform	best	for	each	
gas	species	in	our	previous	work,	and	then	evaluated	the	performance	of	the	best	model	for	each	
specific	case	study.		We	then	describe	the	methodology	behind	model	selection	and	testing	for	each	
case	study,	in	the	following	text	and	in	the	newly	added	Table	4:			
	
“First,	we	generated	and	applied	the	best	performing	model,	as	determined	in	our	previous	work	
(presented	in	Table	3),	to	data	from	each	new	case	study.		Each	new	case	study	was	selected	to	
challenge	models	in	different	ways	in	order	to	evaluate	the	resiliency	of	the	findings	from	our	
previous	study	when	challenged	by	different	circumstances.			
	
Table 3: Best performing models, as determined for each gas species, in the previous study (Casey et al., 2017) 

Gas	
Species	 Model	Type	 Sensor	Signal	Model	Inputs		

CO2	 ANN	
eltCO2											(ELT	S300	CO2	Sensor)	
temp														(temperature)	
absHum								(absolute	humidity)	

O3	 ANN	

e2vO3												(e2v	MiCs-2611)	
e2vCO												(e2v	MiCs-5525)	
e2vVOC									(e2v	MiCs-5521)	
figCH4											(Figaro	TGS	2600)	
figCxHy									(Figaro	TGS	2602)	



temp														(temperature)	
absHum								(absolute	humidity)	

	
Next	we	tested	LMs	for	CO2	and	O3	that	contained	only	the	primary	target	gas	sensor	for	each	
species,	as	well	as	temperature	and	absolute	humidity	as	inputs.		Finally,	we	generated,	applied,	and	
evaluated	the	performance	of	a	number	of	LMs	and	ANNs	with	different	sets	of	inputs	for	each	case	
study	in	order	to	see	which	specific	model	performed	the	best	for	each	individual	case	study.		The	r2,	
RMSE,	and	MBE	for	each	of	these	alternative	models	when	applied	to	test	data	are	presented	in	the	
supplemental	materials	(SM)	in	Fig.	S2	through	Fig.	S7,	along	with	representative	scatter	plots	and	
time	series	comparing	the	performance	LMs	and	ANNs	for	a	given	set	of	inputs.		In	Fig.	S2	through	
Fig.	S7,	the	best	performing	model	inputs	for	each	train/test	data	pair	are	shaded	in	purple.		The	type	
of	model	that	performed	the	best	(ANN	vs.	LM)	is	indicated	in	the	caption	of	each	figure.		We	discuss	
both	the	performance	of	the	previously	determined	best	fitting	model	(generated	using	data	from	the	
GRET	Spring	2017	case	study)	when	applied	and	generated	to	data	from	new	case	studies,	and	the	
performance	of	models	that	were	tuned	to	perform	the	best	for	each	individual	case	study.		From	
these	comparisons,	we	draw	insight	into	circumstances	that	challenge	model	performance	in	terms	
of	relative	local	emissions	characteristics,	location,	and	timing	between	model	training	and	testing	
pairs.		Table	4	lists	the	relative	timing	and	parameter	coverage	between	model	training	and	testing	
periods	for	dataset	pairs,	highlighting	instances	of	incomplete	coverage	during	training	that	led	to	
model	extrapolation	during	testing.”	
 
Comment:		P9 – L28-30: It would be good to do a more comprehensive assessment of the impact of 
replacing RH sensor signal on model performance. Could you conduct a dummy experiment where you 
replace RH data you actually logged with that of a nearby or alternate monitor and then quantify the impact 
on model outcome? Given that it seems that a) RH/abshum is an important variable and b) that you had 
significant data loss issues, I feel a more quantitative assessment of the impact of these data substitutions is 
needed.  
Response:	Thanks	very	much	to	the	reviewer	for	helping	us	to	be	less	hypothetical	about	the	impact	
of	this	data	swapping.		We	have	carried	out	a	dummy	experiment,	testing	the	effect	of	this	humidity	
data	swapping	on	data	collected	during	the	GRET	Spring	2017	case	study.		A	figure,	showing	the	
relative	performance	of	models	when	the	humidity	data	was	taken	from	the	U-Pods	directly	and	
replaced	with	measurements	from	the	Picarro	CRDS,	has	been	added	to	the	Supplemental	Materials.		
This	figure,	and	associated	implication	have	been	cited	in	the	main	text.				
Edits:		“The	fall	2016	GRET	test	period	coincided	with	the	time	period	U-Pod	absolute	humidity	was	
replaced	using	mixing	ratios	from	a	co-located	Picarro	due	to	missing	humidity	sensor	data.	
Interestingly,	when	this	‘borrowed’	humidity	signal	was	not	included	as	an	input,	the	model	
performance	markedly	increased	and	became	competitive	with	other	‘same	location’	test	
deployment	case	studies.		In	our	previous	work,	we	showed	that	O3	models	were	very	sensitive	to	the	
humidity	signal	input		(Casey	et	al.,	2017).		In	this	case	study,	it	seems	that	replacing	actual	humidity	
signals	with	closely	approximated	humidity	signals,	negatively	influenced	model	performance.		In	
order	to	investigate	this	observation	further,	we	tested	the	influence	of	replacing	humidity	data	in	
the	same	manner,	using	mixing	ratios	from	the	same	co-located	Picarro,	on	test	data	from	the	GRET	
Spring	2017	case	study.		A	comparison	of	model	performance	under	normal	and	this	‘borrowed	RH’	
circumstance	are	presented	in	Fig.	S27	in	the	SM.		O3	model	performance	was	negatively	impacted	
when	‘borrowed’	RH	values	based	on	Picarro	data	replaced	U-Pod	RH	sensor	signals.		From	these	
findings,	it	seems	likely	that	the	inclusion	of	multiple	metal	oxide	type	sensors	as	inputs	in	the	model,	
which	all	respond	strongly	to	humidity	fluctuations,	helped	the	ANN	to	effectively	represent	the	
influence	of	humidity	in	the	system,	more	so	than	including	a	‘borrowed	RH’	signal	from	another	
instrument.		We	tested	models	with	multiple	gas	sensor	signals	and	no	humidity	signal	as	inputs	for	a	
number	of	other	case	studies	as	well	(as	seen	in	Fig.	S2,	Fig.	S4,	and	Fig.	S5),	when	good	humidity	
data	from	U-Pod	enclosures	was	available,	but	they	did	not	turn	out	to	be	the	best	performing	model	
in	any	of	these	other	tests.”	



 
Figure S27 A comparison of model performance when humidity inputs are taken from sensor 

measurements collected within a given U-Pod sensor system enclosure, vs the performance of models 
when humidity inputs are replaced using data from a Picarro CRDS for (a) O3	(b)	CO2 

 
Comment:		P11 – L2-13: Can you comment on the quality of the fit at Dawson vs CAMP in addition to 
the ideal model. The discussion is fairly qualitative. Also, the LM should be much better at extrapolating vs 
the ANN (which cannot extrapolate I think…not sure) – can you comment on this difference? Does LM 
perform better because it can extrapolate?  
Response:	Thank	you	for	this	useful	comment.		We	agree	it	is	true	that	LMs	should	accommodate	
extrapolation	more	effectively	than	ANNs,	and	that	a	quantitative	description	of	model	performance	
is	warranted.			

(b) 

(a) 



Edits:		We	have	added	the	following	text,	accordingly:		“The	fact	that	LMs	performed	better	than	
ANNs	in	this	case	(with	an	r2	of	.95	and	RMSE	of	0.35	ppb	for	LMs,	as	opposed	to	an	r2	of	.9	and	an	
RMSE	of	5.1	ppb	for	ANNs)	may	have	to	do	with	the	general	expectation	that	LMs	be	more	resilient	to	
extrapolation	than	ANNs.”	
 
Comment:		P11 – Section 3.2.2: If the calibration is immediately after deployment, I am not surprised that 
there wasn’t much of an effect. Do you anticipate there should be a significant time effect on such short 
time scales? What is the lifespan of the U-Pods?  
Response:	Thank	you	for	the	useful	comment.		
Edits:		We	have	added	the	following	text	accordingly:		“Gas	sensor	manufactures	don’t	clearly	define	
sensor	lifetimes,	but	sensors	are	generally	expected	to	loose	sensitivity	over	time.		For	example,	
Alphasense	CO-B4	electrochemical	sensors	are	expected	to	have	50%	of	their	original	sensitivity	
after	two	years	(Alphasense,	2015).			The	heater	resistance	in	a	give	metal	oxide	type	sensor	is	
expected	to	drift	over	time,	influencing	sensor	measurements	(e2v	Technologies	Ltd.,	2007).		Masson	
and	colleagues	observed	a	significant	drift	in	a	metal	oxide	sensor	heater	resistance	over	the	course	
of	a	250	day	sampling	period	in	a	laboratory	setting	(Masson	et	al.,	2015).		While	we	did	not	measure	
and	record	metal	oxide	sensor	heater	resistance	for	sensors	included	in	U-Pods,	we	have	investigated	
eltCO2	and	e2vO3	sensor	signal	drift	from	the	summer	of	2015	through	the	summer	of	2017.		These	
data	are	presented	in	Fig.	S26.		Systematic	downward	drift	in	all	eltCO2	sensor	signals	is	apparent	
over	this	time	frame.		A	clear	and	consistent	pattern	of	systematic	drift	over	this	time	period	is	less	
apparent	for	e2vO3	sensors.		Since	the	training	data	was	collected	immediately	after,	the	test	data	
period,	and	since	the	test	data	period	was	relatively	short	(approximately	one	month)	sensor	drift	
could	be	negligible	across	the	combined	training/testing	time	frame.”	
 
Comment:		P11 – L25: I am confused by the introduction of discussion around figCxHy – should we 
expect this sensor to play an important role?  
Response:	Thank	very	much	to	the	reviewer	for	helping	us	to	clarify.	
Edits:		We	have	added	the	following	text:		“Again	the	model	for	O3	that	was	found	to	perform	best	in	
our	previous	(Casey	et	al.,	2017),		an	ANN	with	temp,	absHum	and	all	metal	oxide	sensor	signals	as	
inputs,	performed	the	best	at	sites	included	in	this	case	study,	with	one	exception.	At	the	Sub	Station	
site	the	inclusion	of	the	figCxHy	sensor	signal	decreased	model	performance.		Additionally,	the	
performance	of	all	models	tested	at	the	Sub	Station	site	during	the	SJ	Basin	Spring	2015	deployment	
was	significantly	worse	in	terms	of	MBE	than	model	performance	at	other	sites,	both	LMs	and	ANNs	
with	different	sets	of	inputs.		Since	this	sensor	signal	input	augmented	model	performance	at	the	
same	sampling	location	during	the	summer	deployment	period,	this	finding	could	be	attributable	to	
the	extrapolation	with	respect	to	temperature	that	occurred	during	the	test	period	of	this	case	study.		
As	discussed	in	the	introduction,	metal	oxide	sensor	sensitivity	to	different	gas	species	can	vary	along	
with	sensor	surface	temperature.		Models	were	trained	to	use	the	figCxHy	sensor	signal,	across	the	
ambient	temperatures	in	encompassed	by	the	training	data,	to	help	account	for	the	influence	of	
confounding	gas	species	at	the	BAO	site.		We	think	it	is	possible	that	the	different	temperatures	in	
combination	with	the	unique	mix	of	gas	species	present	at	the	Sub	Station	site,	which	the	figCxHy	
sensors	are	highly	sensitive	to,	caused	the	ANN	to	perform	worse.”		
 
Comment:		P12 – L5: How long is “so long”? This is related to my comment on  
Response:	Thank	you	for	helping	us	to	be	more	specific.	
Edits:		We	have	changed	“so	long”	to	“several	months”.	
 
P11 – Section 3.2.2.  
 
Comment:		P12 – L21-24: I am confused – did you switch to humidity measured by Picarro or omit 
humidity entirely? It is not clear to me what happened here.  
Response:	Thank	you	for	pointing	out	this	confusion.		
Edits:		We	have	more	clearly	described	the	humidity	replacement	process	(if	any)	for	each	individual	
case	study	dataset	pair	in	the	methods	section.		We	have	additionally	added	to	the	text	in	section	2.3	
as	follows:		“Water	mole	fractions	measured	by	the	Picarro	were	converted	into	mass-based	mixing	



ratios	to	match	the	units	of	the	absolute	humidity	signal	in	the	U-Pod	data.		We	applied	an	adjustment	
to	this	absolute	humidity	signal	so	that	it	matched	observations	in	U-Pods	during	the	following	
month	when	good	RH	sensor	data	was	available,	to	account	for	the	fact	that	temperatures	were	
higher	in	U-Pod	enclosures	than	the	ambient	environment.			We	then	replaced	the	relative	humidity	
signal	in	each	U-Pod	from	August	23rd	through	October	1st	in	2016	with	the	mixing	ratios	derived	
from	Picarro	measurements.		Using	the	temperature	and	pressure	logged	in	each	U-Pod	along	with	
the	absolute	humidity	from	the	Picarro,	relative	humidity	was	calculated	for	each	U-Pod	during	this	
period.”	
	
	
And	to	section	3.2.4:		“Interestingly,	when	humidity	this	‘borrowed	humidity	signal	was	not	included	
as	an	input,	the	model	performance	markedly	increased	and	became	competitive	with	other	‘same	
location’	test	deployment	case	studies.”	
 
Comment:		P13 – L13: I don’t really understand what is meant by “relative circumstances” – could you be 
more explicit about each of the case studies? Perhaps a table that outlines case study, with a one sentence 
description, and a column describing limitations would be more appropriate (and should be introduced at 
the beginning of the paper).  
Response:	Thank	you	for	the	feedback.	
Edits:		We	have	changed	“relative	circumstances”	to	“relative	timing	and	parameter	coverage”.		We	
have	also	adapted	Table	4	according	to	this	feedback	and	described	the	‘relative	circumstances’	
present	in	each	case	study	much	more	thoroughly	in	the	methods	section.			
 
Comment:		P13 – L18: What is meant by “extrapolated significantly?” Can you be specific?  
Response:	Sure,	thank	you	for	the	comment.	
Edits:		We	have	changed	“extrapolated	significantly”	to	“extrapolated	more	than	several	months”.	
 
Comment:		Table 1: I find Table 1 almost impossible to follow. It is not very clear which sensor measures 
which pollutant, as the input codes are frequently indecipherable. I am honestly not sure what I am 
supposed to get out of this table.  
Response:	Thank	you	for	this	useful	feedback	that	will	help	us	improve	the	quality	and	clarity	of	
Table	1.			
Edits:		We	have	added	a	row	at	the	top	of	the	table	indicating	the	target	gases	for	each	sensor.		We	
have	added	to	the	Table	caption	an	explanation	of	the	input	codes	for	the	sensors:		“Gas	sensors	
included	in	U-Pods	along	with	the	model	input	codes	we	assigned	each.		The	input	code	for	each	gas	
sensor	is	simply	an	abbreviation	for	the	make	of	the	sensor,	followed	by	the	target	gas	species(s).”	
	
 
Comment:		Table 3: I find it difficult to interpret this table. What do the black diamonds mean? What do 
you mean by “relative circumstances”??  
Response:	Thank	you	for	the	helpful	comment.			
Edits:		We	have	updated	Table	4	by	replacing	the	first	column	so	it	is	more	clearly	an	indication	of	
which	case	studies	covered	which	target	gases	(O3	and	CO2,	or	just	O3).		We	have	also	updated	the	
caption	of	Table	4	to	be	more	descriptive	and	informative,	and	less	confusing:		“Relative	timing	and	
parameter	coverage	between	model	training	and	test	deployment	dataset	pairs.		Incomplete	
coverage	of	time	occurred	if	training	only	took	place	before	or	after	the	test	data	period	and	not	
before	and	after	(pre	and	post).		Incomplete	coverage	of	location	occurred	when	training	took	place	
in	one	location	and	testing	took	place	in	another.		Incomplete	coverage	of	parameters,	including	the	
target	gas	mole	fraction,	temperature,	time,	and	pressure	occurred	when	the	values	observed	during	
training	did	not	encompass	the	values	observed	during	testing.”	
	
 
Comment:		Figure 8: There is way too much going on in this figure, it is almost difficult to look at. Is there 
a more streamlined way of presenting the findings that is less complicated? I feel there is valuable 
information in the Figure, but it’s hard to determine what that is, due to information overload. Ditto for  



Figure 9, though it isn’t as bad. Also you would do well to remind the reader what each variable represents.  
Response:	Thank	you	very	much	for	the	feedback	and	helping	us	to	simplify	and	clarify	figures.	
Edits:		We	have	split	what	was	previously	Figure	8	into	two	figures	(now	Figure	10	and	11)	in	order	
to	simplify	the	graphics	and	highlight	the	content	of	each.		We	have	also	added	definitions	for	the	
sensor	inputs	in	the	Figure	captions	for	what	were	Figures	8	and	9	(now	Figures	10,	11,	and	12).	
 
TECHNICAL CORRECTIONS  
 
Comment:		P1 – L18: “in time than to…” vs. in time that to  
Response:	Thanks	very	much	for	catching	this	typo.	
Edits:		We	have	changed	‘that’	to	‘than’	accordingly.			
 
Comment:		P2 – L18: change informal language “hold up” to something more scientific  
Response:		Thank	you	for	the	helpful	feedback.	
Edits:		We	have	replaced	‘hold	up’	with	‘remain	effective’.	
 
Comment:		P2 – L20: Delete word “Specifically”  
Response:	Thank	you	for	the	helpful	edit.	
Edits:		We	have	deleted	the	word	“Specifically”	
 
Comment:		P7 – L8: Rephrase “…showed successfully reduced over fitting”  
Response:	Thank	you	for	the	helpful	comment.	
Edits:		We	have	replaced	“…showed successfully reduced over fitting” with proved to be effective in the 
reduction of over fitting”	
 
Comment:		Figure 1: Enhance figure caption to explicitly state that blue is training, pink is testing 
Response:	Thank	you,	we	will	do	this.	
Edits:		“Model	training	periods	for	each	test	deployment	are	shown	in	blue,	and	model	test	periods	
are	shown	in	magenta.”	
 
 

	



Dear Reviewer 2, 
 
We would like to offer our sincere thanks for spending your time in the review of our work and helping us 
to significantly improve the quality and clarity of the manuscript with your very detailed comments and 
suggestions.  Each of your comments is listed below in black text, followed by our response and edits in 
blue text.   
	
Review	2	Comments:	
	
Overview:		Casey	and	Hannigan	explore	the	spatial	and	temporal	transferability	of	field	calibration	
models	(specifically	linear	models	(LMs)	and	artificial	neural	networks	(ANNs))	for	two	sensors,	O3	
(e2vO3)	and	CO2	(eltCO2),	reported	by	the	integrated	U-POD	sensor	package.	By	‘spatial/temporal	
transferability’	they	mean	a	determination	as	to	whether	a	calibration	model	trained	from	sensor	
colocation	(with	reference	instrumentation	measuring	target	species)	at	one	location	works	
effectively	when	that	same	sensor	system	is	then	deployed	at	a	different	location.	As	the	authors	
point	out,	changing	the	micro-environment	(and	local	air	pollution	source	contributions	to	that	
unique	environment)	may	pose	additional	complications/challenges	when	trying	to	reconcile	
quantitative	measurements	with	low-cost	sensors.	The	authors	make	some	attempt	to	separately	
describe	temporal	and	spatial	extension	to	better	understand	whether	time-alone	undermines	the	
accuracy	of	the	calibration	models	or	change	of	location.			
	
While	the	topic	of	sensor	calibration	and	extension	of	calibration	models	across	a	diverse	set	of	
deployment	scenarios	is	of	fundamental	importance	to	the	field	of	low-cost	AQ	sensing,	the	paper,	as	
written,	largely	fails	to	pull	together	a	coherent	narrative	from	which	active	participants	in	the	low-
cost	AQ	measurement	space	could	easily	glean	useful,	actionable	information.	To	be	clear,	the	topic	of	
sensor	quantification	is	inherently	complex,	and	the	authors	undertake	an	ambitious	analysis	
spanning	3	years	of	data	from	10	U-POD	systems	deployed	across	4	micro-environments.	There	are	
important	lessons	to	be	learned	from	their	efforts,	but	at	present	these	lessons	are	not	brought	to	the	
fore	of	the	paper	and	as	a	result	are	easily	lost	to	the	reader.			
Response:		Owing	to	Reviewer	comments	and	through	careful	reconstruction,	we	think	the	updated	
version	of	the	paper	does	a	much	better	job	of	pulling	together	a	coherent	narrative	that	will	be	
useful	for	others	in	the	field	of	low-cost	AQ	sensing,	in	terms	of	useful,	actionable	information.		We	
hope	the	Reviewer	and	the	editor	will	find	that	important	elements	of	the	paper	and	take-away	
lessons	are	now	brought	to	the	fore	of	the	paper	so	that	readers	can	more	easily	note	and	make	use	
of	our	findings.			
Edits:		We	have	clarified	and	added	significant	detail	to	the	methods	section.		We	have	added	more	
context,	explanation,	and	discussion	of	specific	findings	in	the	results	and	discussions	section,	and	we	
have	explicitly	highlighted	a	number	of	take	away	points	and	recommendations	connected	to	specific	
findings	in	the	conclusions,	as	well	as	highlighted	these	points	in	the	abstract.			
	
	
Comment:		Throughout	the	manuscript	the	authors	refer	back	to	their	published	work	(Casey	et	al.,	
2017).	In	the	vast	majority	of	instances	in	which	this	reference	is	provided,	there	is	little	to	no	
contextual	detail	explicitly	drawing	the	lines	of	connectivity	between	the	current	work	and	the	
previous	work.			Seeking	out	the	exact	evidence	that	exists	in	the	earlier	work	and	relating	its	
relevance	to	the	current	work	is	left	entirely	up	to	the	reader.	Overall,	this	referencing	needs	to	be	
done	in	a	manner	that	is	not	vague	and	does	not	require	that	the	reader	be	intimately	familiar	with	
the	previous	work.		
Response:	Thanks	very	much	to	the	Reviewer	for	this	helpful	comment	highlighting	confusion	
between	the	contributions	and	citations	of	our	previous	work	and	the	unique	contributions	of	the	
current	work.			
Edits:		In	each	instance	that	we	have	cited	our	previous	work,	we	have	added	text	to	provide	
contextual	detail	explicitly	drawing	the	lines	of	connectivity	between	the	current	work	and	the	
previous	work.	
	



Comment:		The	paper	would	also	be	strengthened	if	the	unique	and	novel	insights	that	result	from	
the	current	work	were	more	clearly	differentiated	from	the	Casey	et	al.,	2017	effort.	
Response:	Thanks	very	much	to	the	Reviewer	for	this	very	helpful	comment	and	suggestion.			
Edits:		We	have	added	text	to	the	conclusions	section	explicitly	summarizing	unique	and	novel	
insights	that	result	form	the	current	work	so	that	current	findings	are	clearly	differentiated	form	our	
current	work.			
	
Comment:		There	are	seemingly	contradictory	statements	throughout	the	text.	These	tend	to	
originate	from	the	authors’	desire	to	provide	a	clear-cut	answer	as	to	whether	or	not	a	given	model	
‘worked’	in	a	given	case	study	under	a	given	environmental	sampling	condition.	The	fact	of	the	
matter	is,	low-cost	AQ	sensor	quantification	is	extremely	convoluted	and	often	times	the	validity	of	
data	can	be	somewhat	ambiguous.		Faced	with	this	level	of	complexity,	the	current	manuscript	fails	to	
provide	a	succinct	and	systematic	evaluation/reporting	approach,	and	as	such	main	(and	important)	
take-home	lessons	from	their	work	are	lost.	
Response:		Thanks	very	much	to	the	Reviewer	for	this	helpful	feedback.		Many	of	the	specific	
comments	below	have	helped	us	to	clarify	what	previously	appeared	to	be	contradictory	statements	
throughout	the	text.			
Edits:		Throughout	the	manuscript,	we	have	made	edits	to	clarify	what	could	have	been	perceived	as	
contradictory	statements.		We	have	added	significant	detail	to	better	match	the	level	of	complexity	in	
the	findings	we	present	and	have	attempted	to	more	systematically	and	succinctly	report	these	
findings	and	associated	take	away	messages	for	readers.			
	
Specific	comments:	

	
Comment:		L9.	Avoid	ending	sentence	with	‘to’	
Response:		Thank	you	for	catching	this	mistake.	
Edits:	We	changed	the	sentence	structure	accordingly.		“We	also	explored	the	sensitivity	of	these	
methods	in	response	to	the	timing	of	field	calibrations	relative	to	deployments	periods.”	
	
Comment:		L13:	this	is	one	of	the	core	conclusions:	the	resilience	of	a	given	calibration	model	
depends	on	the	circumstances	of	the	deployment	for	that	same	sensor	system.	As	such,	the	paper	
would	be	strengthened	if	the	authors	focused	the	narrative	on	succinctly	describing	such	
dependences	and	circumstances	relating	these	factors	back	to	the	sensitivity,	selectivity,	and	stability	
of	each	sensor	system	and	sensor	type.		
Response:	Thanks	very	much	to	the	Reviewer	for	this	helpful	comment.	
Edits:		Throughout	the	paper,	we	have	added	text	to	help	focus	the	narrative	in	the	context	of	relative	
circumstances	present	in	individual	case	studies,	and	how	model	performance	in	each	case	study	
relates	to	sensor	sensitivity,	selectivity,	and	stability.	
	



Comment:		This	language	is	far	too	vague,	especially	for	an	abstract.	What	circumstances?	
Response:		Thank	you	for	noting	how	we	can	make	the	abstract	more	informative	and	less	vague.	
Edits:		We	have	added	descriptions	of	specific	circumstances:		“We	found	that	the	best	performing	
model	inputs	and	model	type	depended	on	circumstances	associated	with	individual	case	studies,	
such	as	differing	characteristics	of	local	dominant	emissions	sources,	relative	timing	of	model	
training	and	application,	and	the	extent	of	extrapolation	outside	of	parameter	space	encompassed	by	
model	training.	“	
	
Comment:		L15:	‘a	number’	-	again,	this	is	too	vague.	Define	exactly	how	many	of	the	case	studies	
were	characterized	has	having	superior	AAN	models	and	how	many	were	just	as	well	served	with	an	
LM	model	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	added	the	following	detail	to	the	abstract:		“Among	models	that	were	tailored	to	
cases	studies	on	an	individual	basis,	O3	ANNs	performed	better	than	O3	LMs	in	6	out	of	7	case	studies,	
while	CO2	ANNs	performed	better	than	CO2	LMs	in	3	out	of	5	case	studies.”	
	
Comment:		L16:	This	line	suggests	that	people	should	model	CO2	with	ANNs	not	LMs.	The	more	
detailed	discussion	in	the	body	of	the	paper	contradicts	this	assertion.	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		After	further	consideration,	we	determined	that	this	statement	was	an	oversimplification	and	
so	have	removed	it	from	the	abstract.	
	
Comment:		L19:	subscript	O3	
Response:		Thanks	to	the	Reviewer	for	catching	this.			
Edits:		O3	subscripted:		O3	

	
		
Comment:		L11:	What	is	the	difference	between	supervised	learning	methods	and	ANNs?	This	
warrants	a	more	detailed	description	/	definition.			
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	added	the	following	text	to	help	clarify	that	ANNs	are	an	example	of	a	supervised	
learning	method,	as	are	random	forests:		“supervised	learning	methods	(including	ANNs	and	random	
forests)”	
	
Comment:	L15:	This	sentence	(bracketed	in	red)	-	is	very	important,	but	also	very	wordy	and	hard	to	
follow.		
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			



Edits:		We	have	simplified	and	clarified	the	sentence	accordingly:		“In	practice	though,	the	reason	
multiple	gas	sensors	are	able	to	improve	the	performance	of	calibration	models	may	be	in	part	the	
result	of	correlation	between	mole	fractions	of	target	gases	themselves	that	hold	for	one	model	
training	location,	but	might	not	remain	effective	at	alternative	sampling	sites	or	during	other	time	
periods.”	
	
Comment:		Related	to	this	assertion,	it	is	not	clear	how	the	authors	disentangle	the	temporal	and	
spatial	domain	from	one	another,	particularly	the	temporal	domain.	Time-decay	patterns	in	the	data	
are	going	to	be	present	whether	or	not	the	sensor	system	has	been	moved	to	a	different	location.	
How	would	one	ascribe	difference	in	that	case	to	a	spatial	domain	and	not	temporal	domain?	
Response:		In	this	work,	we	attempt	to	disentangle	the	temporal	and	spatial	domain	by	including	
some	case	studies	where	models	were	only	extended	outside	of	their	training	spatial	domain	or	only	
extended	outside	of	their	temporal	domain,	but	not	both.		We	attempt	to	represent	time-decay	
patterns	effectively	in	models	by	using	pre/post	training	data	for	some	case	studies.			
Edits:		We	have	clarified	this	strategy	by	more	clearly	defining	what	is	meant	by	‘extrapolation	in	
time’,	and	by	more	clearly	identifying	which	case	studies	were	subject	to	extrapolation	in	time.		We	
have	added	the	following	text	to	section	2.3	accordingly:		“A	model	was	extrapolated	in	time	when	
ever	training	data	does	not	take	place	both	before	and	after	a	given	test	deployment	period.		In	
several	case	studies	we	present,	model	training	only	took	place	after	the	test	deployment	period,	
comprising	a	‘post	only’	calibration.		In	Colorado,	and	more	broadly	in	the	western	United	States,	
ambient	temperatures	change	significantly	across	the	seasons	throughout	the	year,	so	if	a	model	is	
extrapolated	in	time,	extrapolation	in	temperature	often	results	as	well.”		
	
	
Comment:		‘hold	up’	this	language	is	too	casual	and	used	throughout	the	text.	Consider	re-wording.	
Response:		Thank	you	for	the	feedback.	
Edits:		We	have	replaced	‘hold	up’	with	‘remain	effective’.	
	
Section	1.2	
	
Comment:		L28:	‘A	number	of	enclosures..’	define	the	number.	
Response:		Thank	you	for	the	feedback	and	helping	us	to	clarify	how	many	U-Pods	were	included	in	
each	case	study	and	in	our	previous	work.	
Edits:		In	section	1.3	(previously	section	1.2)	we	have	added	the	following	text:	“The	study	tested	and	
compared	calibration	models	using	data	from	two	U-Pod	sensor	systems”.		We	have	also	updated	the	
text	in	the	methods	section	and	Fig.	2	(previously	Fig.1)	to	explicitly	list	the	number	of	U-Pods	
included	in	each	case	study.			
	
Comment:		If	Casey	et	al.,	2017	demonstrated	the	ANN	results	for	CO2	and	O3	in	the	Spring	of	2017	
in	Greeley,	CO;	is	that	same	data	being	presented	as	a	portion	of	this	paper	(as	Figure	1	suggests).	
Response:		Yes,	it	is	the	same	data.		Thank	you	for	pointing	out	that	this	needs	clarity.	
Edits:		We	have	clarified	this,	adding	sub	subsections	within	section	2.2	describing	each	case	study	
individually,	including	our	previous	study	in	section	2.2.7:		“We	include	findings	from	our	previous	
work	as	a	case	study	in	order	to	provide	context.		Models	for	CO2	and	O3	were	tested	using	data	from	
two	U-Pods	collected	over	the	course	of	approximately	one	month	at	the	GRET	site	in	the	spring	of	
2017.		Data	from	two	U-Pods	during	approximately	month-long	periods	pre	and	post	of	the	test	
period	were	used	to	train	O3	and	CO2	models.		This	case	study	provides	another	example	of	model	
performance	when	training	took	place	both	pre	and	post	of	the	test	period,	and	testing	took	place	in	
the	same	location	as	training.”	
	
Comment:		The	concluding	sentences	of	this	section	nicely	frame	the	motivation/need	for	the	
current	work,	consider	bringing	this	to	the	fore	of	the	paper	/	abstract,	etc.	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	augmented	the	abstract	with	this	piece	of	motivation	by	adding	the	following	text:		
“This	was	motivated	by	a	previous	study	(Casey	et	al.,	2017)	which	highlighted	the	importance	of	



determining	the	extent	to	which	field	calibration	regression	models	could	be	aided	by	relationships	
among	atmospheric	trace	gases	at	a	given	training	location,	which	may	not	hold	if	a	model	is	applied	
to	data	collected	in	a	new	location.		We	also	explored	the	sensitivity	of	these	methods	in	response	to	
the	timing	of	field	calibrations	relative	to	deployments	periods.”	
	
We	have	also	augmented	the	for	of	the	paper	by	added	the	following	text	to	the	end	of	the	first	
paragraph	in	the	introduction:		“ANNs,	as	powerful	pattern	recognition	tools,	were	found	to	perform	
better	than	both	inverted	and	direct	LMs	in	our	previous	study,	but	concerns	arose	when	findings	
suggested	that	the	performance	of	ANNs	was	being	augmented	by	the	relationships	among	gas	mole	
fractions	in	the	atmosphere	at	a	given	location.	Low-cost	gas	sensor	systems	have	the	potential	to	
inform	spatial	and	temporal	variability	of	pollution,	when	calibration	equations	for	each	sensor	
system	are	generated	in	one	location	based	on	co-located	measurements	with	reference	instruments,	
then	moving	the	sensor	systems	into	a	spatially	distributed	network.		Since	the	relationships	among	
gas	mole	fractions	at	different	sampling	sites	across	a	spatially	distributed	network,	calibration	
models	may	not	hold	at	new	sampling	sites.		In	this	work,	we	test	calibration	model	performance	
when	extended	to	new	locations.”	
	
Section	1.3	
	
Comment:		Final	sentence:	It’s	unclear	why,	if	all	of	the	U-POD	sensor	systems	were	equipped	to	
measure	CO	and	CH4	alongside	CO2	and	O3,	analogous	training/test	matrix	pairs	are	unavailable	for	
these	other	species.	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	clarified	that	while	the	sensors	for	CO	and	CH4	were	included	in	the	U-Pods	during	
all	the	presented	case	studies,	reference	measurements	for	these	species	were	not	available:		“In	
previous	work	(Casey	et	al.,	2017)	we	have	additionally	addressed	the	quantification	of	CO	and	CH4	
using	arrays	of	low-cost	sensors	together	with	field	normalization	methods,	but	these	species	are	not	
included	in	the	present	analysis	because	reference	data	for	model	training	and	testing	deployment	
pairs,	diverging	in	location	and	timing	and	analogous	to	those	we	present	for	O3	and	CO2,	were	not	
available	CO	and	CH4.”	
	
Section	1.4	
	
Comment:	L20:	‘Very	high	levels	of	ozone’	–	specify	the	actual	concentration	or	concentration	range	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	replaced	‘Very	high	levels	of	ozone’	with	‘Mole	fractions	of	ozone	in	as	high	as	140	
ppb	and	117	ppb	during	winter	months	have	also	been	observed	and	attributed	directly	to	oil	and	
gas	production	emissions	in	the	Upper	Green	River	Basin	of	Wyoming	and	Utah’s	Uinta	Basin,	
respectively”	
	
Comment:		L23:	‘a	modeling	study’	–	is	there	really	only	one	modeling	study	that	shows	this?	
Response:	Thanks	for	this	comment.		This	is	the	only	modeling	study	we	know	of	that	was	focused	
on	the	effects	of	oil	and	gas	production	emissions	on	ozone,	with	potentially	high	spatial	near	
emissions	sources.	
	
Comment:		Final	sentence:	‘pooling’	avoid	using	words	with	common	association	different	from	the	
intended	meaning.	Consider	re-wording.	‘accumulating’?		
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	replaced	‘pooling’	with	accumulation’	
	
Section	2.1	
	
Comment:		L5:	“with	a	number	of	low-cost	gas	sensors”	–	specify	the	actual	number	of	sensors	
integrated	in	each	U-POD.		The	authors	identify	that	10	U-POD	systems	were	used	in	the	previous	and	
current	work,	but	the	vast	majority	of	case	studies	(outlined	in	Figure	1.)	utilize	just	2	U-PODs	at	each	



location.	The	authors	need	to	more	clearly	describe	in	the	text	how	the	U-PODs	were	distributed	
throughout	the	work	and	whether	all	10	U-PODs	used	in	the	current	work	had	the	same	
characteristic	O3	and	CO2	response	when	measuring	the	same	air.		
	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	replaced	added	subsections	to	section	2.2	describing	each	case	study,	including	how	
many	U-Pods	were	included	in	each:	
“2.2.1	Dawson	Summer	2014	
The	first	distributed	measurement	campaign	took	place	during	the	summer	of	2014	when	five	U-
Pods	were	sited	at	locations	around	Boulder	County,	with	four	distributed	along	the	eastern	
boundary	of	the	county,	adjacent	to	Weld	County	where	dense	oil	and	gas	production	activities	were	
underway.		A	background	site,	further	from	oil	and	gas	production	activities	was	also	included	to	the	
west,	near	a	busy	traffic	intersection	on	the	north	end	of	the	City	of	Boulder.	Co-locations	with	
reference	measurements	that	were	used	for	field	calibration	of	sensors	took	place	at	the	Continuous	
Ambient	Monitoring	Program	(CAMP)	Colorado	Department	of	Health	and	Environment	(CDPHE)	air	
quality	monitoring	site	in	downtown	Denver.	One	of	the	distributed	sampling	sites,	Dawson	School,	
was	also	equipped	with	an	O3	reference	instrument	(a	Thermo	Electron	49)	,operated	by	Detlev	
Helmig’s	research	group	from	the	Institute	for	Artic	and	Alpine	Research	(INSTAAR).	In	this	work,	a	
case	study	is	developed	using	data	from	one	U-Pod	located	at	the	CAMP	site	in	downtown	Denver	for	
O3	model	training,	and	data	from	one	U-Pod,	located	at	the	Dawson	School	for	O3	model	testing.	This	
case	study	is	used	to	test	model	performance	when	extrapolated	in	terms	of	O3	mole	fractions	and	
applied	in	a	new	location,	transferred	from	an	urban	to	a	peri-urban	environment.	
2.2.2	SJ	Basin	Spring	2015	
In	the	spring	of	2015	we	augmented	our	original	fleet	of	five	U-Pods	(BA,	BB,	BD,	BE,	and	BF)	with	
five	more	(BC,	BG,	BH,	BI,	and	BJ)	and	deployed	these	sensor	systems	in	the	SJ	Basin	while	a	targeted	
field	campaign	was	underway	to	understand	more	about	a	CH4	‘hot	spot’	that	was	discovered	from	
satellite	based	remote	sensing	measurements	(Frankenberg	et	al.,	2016;	Kort	et	al.,	2014).		The	
primary	goal	of	this	sensor	deployment	was	to	inform	spatial	and	temporal	patterns	in	atmospheric	
trace	gases	like	CH4,	O3,	CO,	and	CO2	across	the	SJ	Basin.		Most	U-Pods	were	located	at	existing	air	
quality	monitoring	sites	operated	by	the	New	Mexico	Air	Quality	Bureau	(NM	AQB),	the	Southern	Ute	
Indian	Tribe	Air	Quality	Program	(SUIT	AQP),	and	the	Navajo	Environmental	Protection	Agency	
(NEPA),	which	supported	validation	of	sensor	measurements	for	O3	After	this	deployment	period,	all	
U-Pods	were	moved	to	the	BAO	site	in	the	DJ	Basin	for	approximately	one	month,	and	were	co-
located	with	reference	instruments	there	that	were	operated	by	National	Oceanic	and	Atmospheric	
Administration	(NOAA)	researchers.		A	case	study	is	developed	with	data	from	the	BAO	site	to	train	
O3	models	for	four	U-Pods,	and	data	from	SJ	Basin	sites	to	test	O3	models	for	four	U-Pods.		This	case	
study	is	used	to	test	model	performance	when	extrapolated	in	temperature	and	time,	and	extended	
to	a	new	location,	extended	from	one	oil	and	gas	production	basin	to	another	across	Colorado	
2.2.3	SJ	Basin	Summer	2015	
In	the	summer	of	2015,	after	an	approximately	month-long	co-location	with	reference	instruments	at	
the	BAO	site,	seven	U-Pods	were	deployed	again	at	existing	regulatory	monitoring	sites	for	
approximately	one	month,	after	which	they	were	moved	back	to	the	BAO	site	for	another	month	of	
co-location	with	reference	instruments	there.		We	equipped	two	of	the	regulatory	monitoring	sites	in	
the	SJ	Basin	with	LI-COR	LI-840A	CO2	analysers	to	provide	reference	measurements	for	CO2.		A	case	
study	is	developed	with	data	from	the	BAO	site,	pre	and	post	of	the	SJ	Basin	summer	2015	
deployment	to	train	models,	and	data	from	SJ	Basin	sites	during	the	summer	deployment	period,	to	
test	models.		Data	from	seven	U-Pods	were	used	to	train	and	test	O3	models	and	data	from	two	U-
Pods	were	used	to	train	and	test	CO2	models.		This	case	study	is	used	to	test	model	performance	
when	training	took	place	both	pre	and	post	of	the	test	period,	and	when	extended	to	a	new	location,	
from	one	oil	and	gas	production	basin	to	another	across	Colorado	
2.2.4	BAO	Summer	2015	
During	the	SJ	Basin	Summer	2015	deployment	period,	two	U-Pods	remained	at	the	BAO	site.	A	case	
study	is	developed	using	data	from	two	U-Pods	the	BAO	site,	pre	and	post	of	the	summer	2015	
deployment	to	train	models	for	O3	and	CO2,	and	data	from	two	U-Pods	the	BAO	site	during	the	
summer	deployment	period	to	test	models	for	O3	and	CO2.		This	case	study	is	used	to	test	model	



performance	when	training	took	place	both	pre	and	post	of	the	test	period,	and	when	the	model	was	
tested	on	data	that	was	collected	in	the	same	location	as	model	training.	
2.2.5	BAO	Summer	2016	
U-Pods	were	deployed	at	the	BAO	site	again	in	2016	for	several	months	during	the	summer.	In	
August	of	2016	the	U-Pods	were	moved	to	the	Greeley	Tower	(GRET)	CDPHE	air	quality	monitoring	
site	in	Greeley,	Colorado,	a	location	which,	like	the	BAO	site,	is	also	strongly	influenced	by	DJ	Basin	oil	
and	gas	production	activities;	the	U-Pods	remained	there	for	a	year.		For	the	GRET	co-location	period,	
CDPHE	shared	reference	measurements	for	O3.		Additionally,	Jeffrey	Collett	and	Katherine	Benedict	
of	Colorado	State	University	(CSU)	shared	CO2	reference	measurements	from	an	instrument	they	
operated	at	the	site	before	October	1st	in	2016	and	after	March	7th	in	2017,	when	the	instrument	was	
located	at	the	GRET	site.		A	case	study	is	developed	using	data	from	two	U-Pods	during	the	yearlong	
deployment	at	the	GRET	site	to	train	models	for	O3,	and	data	from	two	U-Pods	during	the	BAO	
summer	2016	deployment	to	test	models	for	O3.		Because	reference	data	for	CO2	was	not	available	at	
the	GRET	site	during	winter	months,	data	from	two	U-Pods	during	eight	months	at	the	GRET	site	was	
used	to	train	models	for	CO2,	and	data	from	two	U-Pods	during	the	BAO	summer	2016	deployment	
was	used	to	test	models	for	CO2.		A	significantly	longer	training	duration	is	implemented	in	this	case	
study	because	the	training	period	took	place	more	than	several	months	after	the	model	testing	
period.		We	reasoned	that	a	longer	training	duration	would	be	better	able	to	represent	patterns	in	
sensor	drift	over	time,	as	well	as	encompass	the	temperature	range	of	test	dataset	period.		This	case	
study	is	used	to	test	model	performance	when	extrapolated	significantly	(more	than	several	months)	
in	time	and	extended	to	a	new	location,	from	one	location	in	DJ	oil	and	gas	production	basin	to	
another.	
2.2.6	GRET	Fall	2016	
In	order	to	test	model	performance,	under	similar	circumstances	in	terms	of	relative	model	training	
and	testing	durations	and	timing,	to	the	BAO	Summer	2016	case	study,	but	with	no	extension	of	
models	to	a	new	location,	we	developed	another	case	study.		This	time,	models	for	O3	and	CO2	were	
trained	using	data	from	two	U-Pods	at	GRET	over	the	course	of	eight	months	and	models	for	O3	and	
CO2	were	tested	using	data	from	two	U-Pods	at	GRET	over	the	course	of	approximately	a	month	in	
the	fall	of	2016.		This	case	study	is	used	to	test	model	performance	when	extrapolated	significantly	
(more	than	several	months)	in	time	and	applied	in	the	same	location	as	training	took	place.		
2.2.7	GRET	Spring	2017	
We	include	findings	from	our	previous	work	as	a	case	study	in	order	to	provide	context.		Models	for	
CO2	and	O3	were	tested	using	data	from	two	U-Pods	collected	over	the	course	of	approximately	one	
month	at	the	GRET	site	in	the	spring	of	2017.		Data	from	two	U-Pods	during	approximately	month-
long	periods	pre	and	post	of	the	test	period	were	used	to	train	O3	and	CO2	models.		This	case	study	
provides	another	example	of	model	performance	when	training	took	place	both	pre	and	post	of	the	
test	period,	and	testing	took	place	in	the	same	location	as	training.”	
	



	
	
Comment:		The	sensor	system	age	(time	since	manufacture	date)	and	environmental-hysteresis	
(lifetime	environmental	exposure	of	a	given	UPOD	system)	is	not	mentioned	anywhere	in	the	text.	Do	
these	factors	not	matter	when	analyzing	the	temporal	extension	of	a	given	calibration	model?	When	
considering	the	fundamental	measurement	principles	of	these	particular	gas	sensors,	does	
degradation	occur	due	to	gradual	(or	rapid)	deposition	of	material	onto	active	catalytic	sites	within	
the	sensors?	If	so,	then	the	age	of	a	given	sensor	and	what’s	it’s	been	exposed	to	over	its	lifetime,	
ought	to	factor	in..	or	at	least	deserve	a	mention.	
Response:		We	agree	with	the	importance	and	relevance	of	sensor	challenges	highlighted	in	this	
comment.	
Edits:		We	have	added	the	following	text	in	section	2.2	accordingly:	“Making	quantitative	
measurements	of	atmospheric	trace	gases	with	low-cost	sensors	is	challenged	by	unique	variations	
in	individual	sensor	responses	associated	with	variations	in	the	manufacturing	process,	sensor	age,	
and	sensor	exposure	history.		For	these	reasons,	we	generated	unique	calibration	models	using	data	
from	sensors	in	each	individual	U-Pod	sensor	system.		The	closest	available	data	prior	and	or	
subsequent	to	a	test	data	period	was	used	for	model	training	to	avoid	complications	associated	with	
significant	sensor	drift	and	degradation	in	sensor	sensitivity	to	target	gas	species	over	time	if	
possible.”	
	
We	have	additionally	added	the	following	text	has	been	added	to	section	3.2.2:		“Gas	sensor	
manufactures	don’t	clearly	define	sensor	lifetimes,	but	sensors	are	generally	expected	to	loose	
sensitivity	over	time.		For	example,	Alphasense	CO-B4	electrochemical	sensors	are	expected	to	have	
50%	of	their	original	sensitivity	after	two	years	(Alphasense,	2015).			The	heater	resistance	in	a	give	
metal	oxide	type	sensor	is	expected	to	drift	over	time,	influencing	sensor	measurements	(e2v	
Technologies	Ltd.,	2007).		Masson	and	colleagues	observed	a	significant	drift	in	a	metal	oxide	sensor	
heater	resistance	over	the	course	of	a	250	day	sampling	period	in	a	laboratory	setting	(Masson	et	al.,	
2015).		While	we	did	not	measure	and	record	metal	oxide	sensor	heater	resistance	for	sensors	
included	in	U-Pods,	we	have	investigated	eltCO2	and	e2vO3	sensor	signal	drift	from	the	summer	of	



2015	through	the	summer	of	2017.		These	data	are	presented	in	Fig.	S26.		Systematic	downward	drift	
in	all	eltCO2	sensor	signals	is	apparent	over	this	time	frame.		A	clear	and	consistent	pattern	of	
systematic	drift	over	this	time	period	is	less	apparent	for	e2vO3	sensors.		Since	the	training	data	was	
collected	immediately	after,	the	test	data	period,	and	since	the	test	data	period	was	relatively	short	
(approximately	one	month)	sensor	drift	could	be	negligible	across	the	combined	training/testing	
time	frame.	“	
	
Comment:		The	explanation	of	the	training	vs	test	sampling	periods	is	confusing	as	written.	Given	the	
nature	of	the	experiment,	doesn’t	each	UPOD	system	have	to	be	co-located	with	reference	
instrumentation	for	the	full	duration	of	the	period	of	study?	It	sounds	as	though	the	authors	aimed	to	
bookend	the	distributed	network	measurements	(‘testing	period’	with	a	period	of	colocation	at	a	
reference	site	in	the	general	vicinity	of	the	deployment	(‘training	period’)	–	but	in	order	evaluate	
their	models,	they	would	have	to	retain	a	co-located	reference	measurement	of	O3	and	CO2	at	all	
times	in	all	locations.		
Response:		Yes,	we	present	data,	opportunistically,	from	test	periods	when	sensor	systems	were	co-
located	with	O3	and	CO2	reference	instruments.			
Edits:		We	have	added	text	to	section	2.2	to	try	to	clarify	these	details:			“Five	to	ten	U-Pods	were	
deployed	at	sampling	sites	in	and	around	the	DJ	and	SJ	Basins	over	the	course	of	several	years,	from	
2014	-	2017.	Deployments	generally	consisted	of	co-location	with	reference	measurements	prior	to	
and	following	approximately	one-month	periods	of	spatially	distributed	measurements.		During	
some	of	the	distributed	measurement	periods,	a	subset	of	U-Pods	remained	co-located	with	reference	
instruments	where	the	field	calibrations	took	place.		As	well,	during	some	distributed	measurement	
periods,	some	U-Pods	were	deployed	in	new	locations	that	were	equipped	with	reference	
measurements.		In	between	periods	of	distributed	sensor	system	deployments,	sensor	systems	were	
co-located	with	reference	instruments	for	as	long	as	possible,	as	logistics,	and	coordination	with	
other	regulatory	agencies	and	researchers	would	allow.		In	this	way,	we	hoped	to	maximize	our	
ability	to	encompass	full	ranges	of	temperature,	humidity,	and	trace	gases	that	occur	across	seasons,	
in	order	to	minimize	extrapolation	with	respect	to	these	parameters	when	models	were	applied	to	
measurements	from	distributed	deployment	periods.		The	locations	where	all	or	a	subset	of	U-Pods	
were	co-located	with	reference	instruments	are	indicated	in	Fig.	1.		In	this	exploratory	study,	we	
opportunistically	employ	data	from	these	sensor	deployments,	treating	them	as	case	studies	in	order	
to	characterize	the	performance	of	field	calibration	models	when	they	are	extended	to	new	locations.	
For	each	case	study,	described	below,	data	was	divided	into	training	and	test	periods.		Timelines	for	
these	dataset	pairs	detailed	in	Fig.	2.		Some	U-Pods	used	included	in	these	case	studies	(indicated	in	
grey	font	in	Fig.	2)	were	constructed,	populated	with	sensors,	and	deployed	at	field	sites	in	the	spring	
of	2014,	approximately	a	year	before	the	rest	of	the	U-Pods	were	constructed,	populated	with	
sensors,	and	deployed	at	field	sites	in	the	spring	of	2015.		The	relative	age	of	sensor	systems	included	
in	some	case	study	comparisons	could	have	contributed	to	some	discrepancy	in	model	performance,	
though	systematic	differences	based	on	U-Pod	age	is	not	apparent.		
	
As	available	data	from	each	case	study	allowed,	we	used	approximately	one	month	of	training	data	
before	and	after	(pre	and	post	of)	a	given	approximately	month-long	test	period.	When	training	data	
was	not	available	within	several	months	of	a	test	period,	significantly	longer	training	datasets	were	
used	in	order	to	attempt	capture	and	effectively	represent	trends	in	sensor	drift	over	time,	as	well	as	
to	avoid	extrapolation	of	model	parameters	(particularly	temperature)	during	the	test	data	period.		
As	a	result,	model-training	durations	varied	across	case	studies	and	sometimes	significantly	
exceeded	model-testing	durations.		Each	case	study	is	similar	in	representing	approximately	one	
month-long	deployment	of	sensor	systems.		This	study	design	serves	a	primary	goal	of	this	work,	
which	is	to	help	support	the	quantification	atmospheric	trace	gases	from	low-cost	gas	sensor	data	in	
new	locations,	relative	to	model	training	locations,	for	periods	of	approximately	one	month	at	a	time.			
	
Making	quantitative	measurements	of	atmospheric	trace	gases	with	low-cost	sensors	is	challenged	
by	unique	variations	in	individual	sensor	responses	associated	with	variations	in	the	manufacturing	
process,	sensor	age,	and	sensor	exposure	history.		For	these	reasons,	we	generated	unique	
calibration	models	using	data	from	sensors	in	each	individual	U-Pod	sensor	system.		The	closest	



available	data	prior	and	or	subsequent	to	a	test	data	period	was	used	for	model	training	to	avoid	
complications	associated	with	significant	sensor	drift	and	degradation	in	sensor	sensitivity	to	target	
gas	species	over	time	if	possible.		Table	2	lists	the	O3	and	CO2	reference	instruments	that	were	co-
located	with	U-Pods	at	each	sampling	site,	along	with	instrument	operators,	calibration	procedures,	
and	reference	data	time	resolution.		The	selected	case	studies,	described	in	sections	2.2.1	through	
2.2.7	below	are	aimed	at	supporting	methods	to	quantify	atmospheric	trace	gases	during	the	
distributed	deployments	we	carried	out	from	2014	through	2017	as	well	as	future	distributed	sensor	
network	measurements.		Fig.	1	shows	sampling	site	locations	in	context	with	urban	areas	and	oil	and	
gas	production	wells.	Fig.	2	shows	the	timeline	of	each	of	these	deployments,	highlighting	the	
training	and	testing	periods	defined	for	both	O3	and	CO2.”	
	
Comment:		Looking	at	the	deployment	timelines	displayed	in	Figure	1,	it	is	also	evident	from	the	
Figure	(but	not	from	the	text)	that	the	vast	majority	(~75%	or	greater)	of	the	total	deployment	time	
was	used	to	train	the	nodes	not	test	the	resultant	calibration	models	(~25%	of	the	total	time).	These	
train-to-test	ratios	appear	to	undermine	the	general	applicability	of	the	models	to	longer	duration,	
distributed	sensor	measurements	in	which	no	co-located	reference	measurements	are	available.	The	
authors	should	make	an	effort	to	bridge	the	gap	between	how	they	were	able	to	execute	their	
experiments	and	how	distributed	low-cost	AQ	sensor	systems	will	ultimately	be	deployed.	
Response:	Thank	you	for	helping	us	clarify	why	varying	and	sometime	long	durations	of	training	
data	were	used	for	each	case	study,	and	how	we	hope	this	study	design	can	help	support	future	
sensor	measurement	efforts.			
Edits:		We	have	added	the	following	text	to	section	2.2	toward	this	end:	
“In	between	periods	of	distributed	sensor	system	deployments,	sensor	systems	were	co-located	with	
reference	instruments	for	as	long	as	possible,	as	logistics,	and	coordination	with	other	regulatory	
agencies	and	researchers	would	allow.		In	this	way,	we	hoped	to	maximize	our	ability	to	encompass	
full	ranges	of	ambient	temperature,	humidity,	and	trace	gases	that	occur	across	seasons,	in	order	to	
minimize	extrapolation	with	respect	to	these	parameters	when	models	were	applied	to	
measurements	from	distributed	deployment	periods.”	
	
“In	an	effort	to	fully	encompass	the	parameter	space	present	and	during	each	individual	test	
deployment	case	study,	as	well	as	sensor	drift	over	time,	model-training	durations	varied	across	case	
studies	and	sometimes	significantly	exceeded	model-testing	durations.		Each	case	study	is	similar	in	
representing	approximately	one	month-long	deployment	of	sensor	systems.		This	study	design	serves	
a	primary	goal	of	this	work,	which	is	to	help	support	the	quantification	atmospheric	trace	gases	from	
low-cost	gas	sensor	data	in	new	locations,	relative	to	model	training	locations,	for	periods	of	
approximately	one	month	at	a	time.”			
	
From	section	2.2.5:		“A	significantly	longer	training	duration	is	implemented	in	this	case	study	
because	the	training	period	took	place	more	than	several	months	after	the	model	testing	period.		We	
reasoned	that	a	longer	training	duration	would	be	better	able	to	represent	patterns	in	sensor	drift	
over	time,	as	well	as	encompass	the	temperature	range	of	test	dataset	period.		Significantly	less	
training	time	is	needed	when	training	occurs	directly	pre	and/or	post	of	a	given	model	application	
period.			
	
	
Highlighted	in	passage	above:	
	
Comment:		L10:	define	the	number	of	sampling	sites.	Eliminate	vague	language	in	the	text.		L15:	
same	comment.	
Response:		The	number	of	sampling	sites	during	each	case	study	varied,	so	to	help	clarify	we	directly	
reference	the	map	showing	each	of	the	sampling	sites	included	in	the	study.			
Edits:		We	have	renamed	this	‘Figure	1’	and	renamed	the	timeline	‘Figure	2’	accordingly.			

	
Comment:		L21:	5	UPOD	systems	are	purportedly	used	in	the	Boulder	/	CAMP	2014	work.	Figure	1	
lists	1	UPOD	system	as	being	active	during	that	test.	Reconcile	this.	



Response:	Thank	you	for	helping	us	clarify	that	while	5	U-Pods	were	deployed	during	the	Boulder	
County	study,	only	one	of	the	U-Pods	was	deployed	at	a	location	that	had	co-located	reference	
measurements	for	O3.			
Edits:		The	number	of	U-Pods	used	in	the	Dawson	Summer	2014	case	study	and	others	has	been	
clearly	updated	in	sections	2.2.1	–	2.2.7.	

	
Comment:		L27:	Identify	the	actual	ref.	O3	measurement	in	the	text	here	
Response:	Thank	you,	we	agree	indicating	the	specific	instrument	used	would	be	useful	to	the	
reader.			
Edits:	“Thermo	Electron	49”	

	
Comment:		Last	sentence:	is	this	relevant	to	the	current	paper/study?	Not	clear	what	‘study’	the	
authors	are	referring	to	in	this	sentence.		
Response:	We	agree	this	sentence	lacked	specific	relevance	to	the	current	study.	
Edits:		We	have	removed	this	sentence.		
	

	



	
	
Comment:		L9:	The	authors	claim	that	the	SJ	Basin	network	was	similarly	executed	for	the	DJ	Basin.	
DJ	Basin	is	absent	from	Figure	1.,	replaced	presumably	by	BAO.	It	is	unclear	how	many	UPODs	were	
deployed	to	the	DJ	Basin.	It’s	very	confusing	trying	to	track	in	time	and	location	the	distribution	of	
the	10	UPODs.	If	I	try	and	decipher	the	information	in	Figure	1,	either	2	or	4	UPOD	units	were	
deployed	to	the	DJ	Basin,	which	on	the	face	of	it,	does	not	constitute	a	similar	network	deployment	of	
10x	UPODs	deployed	to	the	SJ	Basin	(although,	it	seems	that	only	4	and/or	7	UPOD	units	were	
deployed	to	the	SJ	Basin.	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	added	the	to	the	caption	of	Figure	2	(previously	Figure	1)	to	help	clarify	that	all	
sampling	sites	outside	of	the	SJ	Basin	group	were	in	the	DJ	Basin.		“The	Dawson,	BAO,	and	GRET	
sampling	sites	are	all	located	in	the	DJ	Basin.”		
	
	
Comment:		L13:	The	authors	identify	the	BAO	site	as	the	relevant	co-location	site	for	the	DJ	Basin-
deployed	UPODS,	but	then	point	out	that	there	were	NO	co-located	reference	instrumentation	
accessible	for	any	of	the	distributed	sampling	sites.	What	does	this	mean	for	evaluating	/	testing	their	
models	in	the	distributed	network	application?	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	made	significant	edits	in	section	2.2,	more	clearly	defining	which	data	is	included	in	
this	work	and	in	each	case	study.		All	discussion	about	the	distributed	deployment	sites	that	did	not	
have	reference	measurements	has	been	removed	from	the	text,	since	these	deployments	helped	to	
motivate,	but	are	not	directly	relevant	to	the	present	work.		
	



Comment:		L14-16:	The	authors	state	the	GRET	site	housed	all	10x	UPOD	systems	for	a	year,	but	
Figure	1	indicates	that	only	2-6?	UPOD	systems	were	used	at	this	location	and	only	for	shorter	
periods	of	time.	Again,	the	text	is	extremely	hard	to	follow	and	the	information	in	Figure	1	does	not	
make	it	any	clearer.	
Response:	Thanks	very	much	to	the	Reviewer	for	pointing	out	the	confusing	nature	of	how	the	
information	is	presented.		
Edits:		We	have	updated	Figure	2	(previously	Figure	1)	to	help	clarify	which	U-Pods	were	included	in	
each	case	study.		

	
Figure	2:	(a)	ANN	and	LM	training	and	test	deployment	timelines.		The	Dawson,	BAO,	and	GRET	sampling	
sites	are	all	located	in	the	DJ	Basin.		Model	training	periods	for	each	test	deployment	are	shown	in	blue,	
and	model	test	periods	are	shown	in	magenta.		For	the	BAO	Summer	2016	case	study,	the	period	
outlined	in	blue	shows	data	that	was	used	to	train	O3	model,	but	not	CO2	models	since	CO2	reference	data	
was	not	available	during	winter	months.	(b)	Information	about	each	of	the	case	studies	presented	in	the	
above	timelines,	including	model	training	and	testing	locations,	as	well	as	the	number	and	names	of	U-
Pods	included	in	each	case	study	for	both	O3	and	CO2	models.		The	U-Pods	with	names	shown	in	grey	
were	constructed	and	deployed	starting	in	May	of	2014.		The	U-Pods	with	names	shown	in	black	were	
constructed	and	deployed	starting	in	April	of	2015.			

Comment:		L26:	The	only	metal	oxide	sensor	that’s	relevant	to	the	current	work	is	the	e2vO3	sensor.	
The	operational	fundamentals	of	this	sensor	should	be	described:	the	raw	signal	processing,	circuitry		
considerations,	and	known	theoretical	operational	conditions	that	undermine	the	sensitivity,	
selectivity,	and/or	stability	of	the	e2vO3	metal	oxide	sensor.	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		Since	models	in	this	work	included	signals	from	multiple	gas	sensors,	we	have	added	a	
discussion	of	the	operating	principles	of	metal	oxide,	electrochemical,	NDIR	the	sensors	accordingly,	

(b) 

(a) 



as	well	ad	discuss	these	sensor	properties	in	context	with	model	development	in	section	1.1,	and	1.2.	
Additionally,	we	discuss	these	sensor	considerations	in	context	with	unique	challenges	associated	
with	measurements	in	oil	and	gas	production	basins	in	section	1.5:			
	
“While	low-cost	sensors	have	been	emerging	on	the	market	with	sufficient	sensitivity	to	resolve	
variations	in	ambient	mole	fractions	of	target	gases	of	interest,	they	are	also	sensitive	to	temperature	
and	humidity	variations	that	occur	in	the	ambient	environment.		NDIR	sensors,	like	the	ELT	s300	CO2	
sensor	employed	in	this	study,	have	good	selectivity,	but,	since	pressure	and	temperature	are	not	
controlled	in	the	optical	cavity	of	ELT	s300	CO2	sensors,	the	influence	of	temperature	on	sensor	
signals	plays	an	important	role.		The	influence	of	humidity	is	also	important	to	address	because	
changes	in	water	vapor	are	known	to	influence	NDIR	measurements	of	CO2	in	terms	of	spectral	cross-
sensitivity	due	to	absorption	band	broadening	(Licor,	2010).			
	
Both	metal	oxide	and	electrochemical	type	sensors	operate	on	the	principle	of	oxidizing	or	reducing	
reactions	at	sensor	surfaces.		For	electrochemical	sensors,	like	the	Alphasense	CO-B4	sensor	
employed	in	this	study,	oxidizing	or	reducing	compounds	react	at	the	working	electrode,	resulting	in	
the	transfer	of	ions	across	an	electrolyte	solution	from	the	working	electrode	to	the	counter	
electrode,	balanced	by	the	flow	of	electrons	across	the	circuit	connecting	the	working	electrode	to	
the	counter	electrode.		A	linear	relationship	is	expected	between	this	current	and	the	target	gas	mole	
fraction.			Electrochemical	sensors	can	be	tuned	to	respond	more	or	less	strongly	to	specific	gases	by	
adjusting	the	materials	properties	of	the	working	electrode.	A	membrane	is	located	between	the	
working	electrode	and	the	exterior	of	the	sensor	in	order	to	control	redox	reaction	rates.		Gases	
diffusion	through	the	membrane	to	reach	the	working	electrode	and	the	electron	transfer	rates	have	
been	shown	to	increase	at	higher	temperatures	(Xiong	and	Compton,	2014),	and	since	chemical	
reaction	rates	are	also	influenced	by	temperature,	electrochemical	sensor	responses	can	be	
influenced	by	sensor	operating	temperature.		Changes	in	ambient	humidity	levels	can	cause	sensors	
to	loose	or	gain	of	the	electrolyte	solution,	by	mass,	also	influencing	electrochemical	sensor	response	
(Xiong	and	Compton,	2014).	
	
For	metal	oxide	sensors,	and	to	a	lesser	extent	for	electrochemical	sensors,	resolving	the	response	of	
a	sensor	attributable	to	the	target	gas	species	can	also	pose	a	challenge	in	the	presence	of	interfering	
gas	species.		Metal	oxide	sensors,	like	those	used	in	this	study,	have	a	resistive	heater	circuit	that	
warms	up	the	sensor	surface,	causing	O2	molecules	to	adsorb	to	the	sensor	surface,	which	leads	to	
increased	resistance	across	the	surface	of	the	sensor.		In	the	presence	of	an	oxidizing	compound,	like	
O3,	more	oxygen	molecules	are	adsorbed	to	the	sensor	surface	and	the	resistance	across	the	sensor	
surface	in	increased	further.		In	the	presence	of	a	reducing	compound,	like	CO,	oxygen	molecules	are	
removed	from	the	sensor	surface,	allowing	electrons	to	flow	more	freely,	resulting	in	decreased	
resistance	across	the	sensor	surface.	For	metal	oxide	sensors,	the	resistance	across	the	sensor	
surface	can	then	be	used	to	determine	the	mole	fraction	of	a	given	oxidizing	or	reducing	compound,	
often	according	to	a	nonlinear	relationship.		Exposure	to	humidity	has	been	shown	to	significantly	
lower	the	sensitivity	of	metal	oxide	gas	sensors	making	it	an	important	parameter	to	address	in	a	gas	
quantification	model	(Wang	et	al.,	2010).		Metal	oxide	sensor	operating	temperature	has	also	been	
shown	to	strongly	influence	sensor	sensitivity	and	selectivity	to	different	gas	species	(Wang	et	al.,	
2010).		Metal	oxide	type	sensors	can	be	tuned	to	respond	differently	from	one	another	to	oxidizing	
and	reducing	gas	species	by	using	different	metal	oxide	materials	and	doping	agents	for	the	sensor	
surface,	but	selectivity	is	difficult	to	achieve.			
	
1.2		Low-Cost	Air	Quality	Sensor	Quantification	
	
Because	low-cost	gas	sensor	signals	are	influenced,	sometimes	significantly,	by	interfering	gas	
species	and	changing	weather	conditions	in	the	ambient	environment,	field	normalization	methods	
to	quantify	atmospheric	trace	gases	using	low-cost	sensors	have	been	found	to	be	more	effective	than	
lab	calibration	(Cross	et	al.,	2017;	Piedrahita	et	al.,	2014;	Sun	et	al.,	2016).		Our	previous	study	and	
several	others	have	compared	the	efficacy	field	calibration	models	generated	using	LMs	(simple	and	
multiple	linear	regression)	relative	to	supervised	learning	methods	(including	ANNs	and	random	



forests),	all	finding	that	ANNs	(Casey	et	al.,	2017;	Spinelle	et	al.,	2015,	2017)	and	random	forests	
(Zimmerman	et	al.,	2017)	outperformed	LMs	in	the	ambient	field	calibration	of	low-cost	sensors.		
Like	earlier	laboratory	based	studies	(Brudzewski,	1999;	Gulbag	and	Temurtas,	2006;	Huyberechts	
and	Szeco,	1997;	Martín	et	al.,	2001;	Niebling,	1994;	Niebling	and	Schlachter,	1995;	Penza	and	
Cassano,	2003;	Reza	Nadafi	et	al.,	2010;	Srivastava,	2003;	Sundgren	et	al.,	1991),	ANN-based	
calibration	models,	incorporating	signals	from	an	array	of	gas	sensors	with	overlapping	sensitivity	as	
inputs,	have	been	able	to	effectively	compensate	for	the	influence	of	interfering	gas	species	and	
resolve	the	target	gas	mole	fraction.			
	
ANNs	are	known	to	be	able	to	very	effectively	represent	complex,	nonlinear,	and	collinear	
relationships	among	input	and	output	variables	in	a	system	(Larasati	et	al.,	2011).		ANNs	are	useful	in	
the	field	calibration	of	low-cost	sensors	because,	through	pattern	recognition	of	a	training	dataset,	
they	are	able	to	effectively	represent	the	complex	processes	and	relationships	among	sensors	and	the	
ambient	environment	that	would	be	very	challenging	to	represent	analytically	or	based	on	empirical	
representation	of	individual	driving	relationships.		In	practice	though,	the	reason	multiple	gas	
sensors	are	able	to	improve	the	performance	of	calibration	models	may	be	in	part	the	result	of	
correlation	between	mole	fractions	of	target	gases	themselves	that	hold	for	one	model	training	
location,	but	might	not	remain	effective	at	alternative	sampling	sites	or	during	other	time	periods.”	
	
“In	this	work,	we	present	and	compare	models	designed	to	address	the	unique	challenges	that	come	
with	using	low-cost	sensors,	in	the	quantification	of	atmospheric	trace	gases	of	interest	in	oil	and	gas	
production	basins,	where	ambient	hydrocarbon	mole	fractions	are	potentially	elevated,	exerting	
uniquely	cofounding	influence	on	low-cost	gas	sensors.	We	investigate	how	well	models	can	be	
transferred	from	one	microenvironment	to	another,	with	different	dominant	local	emissions	source	
characteristics,	and	different	relative	abundance	of	oxidizing	and	reducing	compounds.		
Microenvironments	explored	in	this	work	include	an	oil	and	gas	basin	where	both	natural	gas	and	
heavier	hydrocarbons	are	produced	(the	DJ	Basin),	and	an	oil	and	gas	production	basin	where	
prominently	natural	gas	is	produced	(the	SJ	Basin),	with	much	smaller	proportional	emissions	of	
heavier	hydrocarbons,	and	in	tern,	lower	atmospheric	concentrations	of	alkanes.	Within	and	
bordering	the	DJ	Basin,	additional	microenvironments	include	an	urban	location,	with	significant	
mobile	sources	emissions	(NOX,	CO,	and	VOCs),	and	a	peri-urban	site	with	fewer	mobile	emissions	
and	closer	proximity	to	oil	and	gas	production	activities.		We	explore	how	robust	model	performance	
is	when	a	model	is	trained	in	one	microenvironment	and	transferred	to	another;	challenged	by	
different	relative	abundance	of	oxidizing	and	reducing	gas	species.		Additionally	we	test	how	well	
models	can	represent	and	address	sensor	stability	over	time	and	the	potential	for	drift.	“		
	
	
Comment:		L29:	‘in	a	few’	Quantify	the	number	of	UPODs	with	faulty	RH	sensors	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	replaced	‘in	a	few’	with	‘in	four’.	
	
Comment:		L31:	‘nearby’:	Define	the	exact	position	relative	to	the	faulty	UPOD	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.			
Edits:		We	have	updated	this	passage	to	include	specific	information	about	the	relative	positions	of	
U-Pods	when	faulty	humidity	signals	were	replaced:	“The	closest	U-Pod	with	good	humidity	sensors	
ranged	from	several	feet,	when	U-Pods	were	co-located	during	deployments	in	the	DJ	Basin,	to	
approximately	fifty	miles	during	deployments	in	the	San	Juan	Basin.”	



	
	
Comment:		Did	the	implementation	of	radio	communication	for	the	UPODs	have	any	impact	on	any	
of	the	other	measurements	in	the	system,	beyond	RH?	
Response:	We	have	added	the	following	text	to	help	address	this	question	for	the	Reviewer	and	
other	readers.			
Edits:	“No	other	impacts	to	sensor	systems	were	observed	in	connection	with	radio	
communications.”	
	
Comment:		At	the	beginning	of	the	paragraph,	the	authors	state	that	the	radio	communication	was	
active	until	November,	but	the	substitute	RH	values	from	the	Picarro	were	only	applied	up	to	October	
1	(later	part	of	the	paragraph).	This	is	confusing.	
Response:		Thank	you	for	catching	this	conflict.			
Edits:		We	have	corrected	it	by	changing	“November”	to	“October”	in	the	first	instance.			
	
Comment:		Generally	speaking,	faulty	or	absent	RH	measurements	on-board	the	UPOD	(or	any	low-
cost	AQ	sensor	system	that	suffers	from	environmental	interference)	is	a	potentially	widespread	
issue	across	the	emerging	field.	I	think	the	authors	missed	an	opportunity	to	discuss	their	work-
around	in	more	detail	and	comment	on	the	importance	of	maintaining	stable	RH	measurements	
within	any	given	low-cost	AQ	sensor	system.	
Response:		Thanks	to	the	reviewer	for	this	helpful	comment.		We	added	to	the	text	to	help	clarify	the	
work	around	that	we	implemented	for	faulty	RH	sensor	data.		Over	the	course	of	multiple	field	
deployments	of	U-Pod	sensor	systems,	including	those	described	in	this	work,	RHT03	sensors	signals	
were	found	to	drift	down	over	time,	and	“bottom	out”	in	some	cases.		Following	this	observation,	we	
have	since	upgraded	to	Sensirion	AG	SHT25	sensors	which	appear	to	be	more	robust	and	consistent	
over	the	course	of	long-term	field	deployments.	Hopefully	this	information	will	be	as	helpful	to	
readers	as	the	more	through	discussion	of	the	work	around	we	have	added.			
Edits:		We	have	added	the	following	text	accordingly:		
	“Over	the	course	of	multiple	field	deployments,	relative	humidity	sensors	in	four	of	the	U-Pods	
drifted	down,	causing	the	lower	humidity	levels	to	be	cut	off	or	‘bottomed	out’.		RH	sensors	were	not	
replaced	during	field	deployments	in	order	to	preserve	consistency	across	different	deployment	



periods,	allowing	for	the	possibility	of	a	single	comprehensive	model	to	apply	to	all	data	from	a	single	
U-Pod.		After	some	experimentation	in	generating	a	‘master	model’	that	could	be	applied	to	data	from	
a	given	U-Pod	for	all	collected	field	measurements,	across	several	years,	we	determined	that	
individual	models	for	each	deployment	would	be	more	effective,	and	replacing	RH	sensors	that	had	
drifted	down	would	have	been	appropriate	in	support	of	the	methods	presented	here.		We	have	since	
upgraded	to	Sensirion	AG	SHT25	sensors,	which	appear	to	be	more	robust	and	consistent	over	the	
course	of	long-term	field	deployments.”	
	
Comment:		The	completely	unusable	radio	communication	RH	values	and	the	drifting	RH	values	
mentioned	in	section	2.3	beg	the	question	–	do	the	authors	think	this	is	a	failure	on	the	RHT	
component	itself	or	the	circuitry	of	the	UPODs.	Again,	if	the	evidence	suggests	the	former,	that	is	
useful	empirical	data	for	others	in	the	field.			
Response:		Thanks	to	the	Reviewer	for	bringing	up	this	important	question.		We	have	not	yet	
determined	whether	the	failure	of	the	RHT	sensor	signals	during	periods	of	active	radio	
communications	were	connected	to	the	sensors	themselves	or	to	the	circuitry	of	the	UPODs.		This	will	
be	important	to	determine	for	the	sensor	community	and	before	we	try	to	implement	radio	
communications	again.		As	indicated	in	the	previous	comment,	the	drift	of	RHT03	sensors	over	time	
appeared	to	be	an	issue	associated	with	the	sensor	model	itself.		

	
Comment:		Where	is	RH	measured	specifically	within	each	UPOD.	Is	the	measurement	internal	to	the	
box	or	positioned	in	a	manner	to	provide	a	true	ambient	RH	measurement?	What	are	the	
implications	of	using	alternative	RH	data	sources	that	are	not	on-board	the	same	UPOD?	
Response:	RH	is	measured	within	each	U-Pod	enclosure,	in	the	microenvironment	where	the	gas	
sensors	are	located.		Using	an	alternative	source	for	RH	data	that	are	not	onboard	and	individual	U-
Pod	has	the	potential	to	increase	uncertainty	of	quantified	gas	mole	fractions.			
Edits:		We	have	added	the	following	text	accordingly:		“Temperature	and	RH	sensor	measurements	
are	usually	collected	from	within	each	U-Pod	sensor	system,	in	order	to	gain	representative	
information	about	the	environment	the	gas	sensors	are	being	operated	in.		Using	an	alternative	
source	for	RH	data	that	are	not	onboard	and	individual	U-Pod	has	the	potential	to	increase	
uncertainty	of	quantified	gas	mole	fractions.		We	used	replacement	RH	data	from	the	closest	available	
U-Pod	instead	of	ambient	measurements	in	order	to	more	closely	match	operating	temperature	
within	a	U-Pod	enclosure.”	
	
Comment:		If	median	values	were	used	for	the	co-located	reference	instruments,	but	the	data	from	
those	instruments	was	1-min	averages,	how	did	the	authors	obtain	reference	measurement	medians	
at	1-	min	(the	vast	majority	of	temporal	resolution	used	in	the	current	work).	
Response:		Thank	you	for	pointing	out	that	this	passage	was	confusing.		We	have	changed	the	text	to	
help	clarify.		
Edits:		“In	order	to	test	models	using	the	same	time	resolution	they	were	trained	with,	the	time	
resolution	of	reference	and	sensor	measurements	for	corresponding	training/testing	datasets	were	
matched,	if	necessary,	by	taking	medians	of	the	dataset	with	higher	time	resolution	to	match	the	data	
with	the	longer	time	resolution.”	
	
Comment:		L19:	What	%	of	the	total	data	used	in	training/testing	each	UPOD	was	removed	due	to	
this	5-min	null	data	condition?	
Response:	We	agree	this	information	is	useful	for	readers.	
Edits:		Accordingly,	we	have	added	the	following	text:		“During	a	given	deployment,	the	data	removed	
to	avoid	sensor	warm-up	transients	constituted	less	than	1%.”	
	
Section	2.4	
	
Comment:		L32	‘using	methods	described	previously’,	given	the	importance	of	the	LMs	and	ANNs	in	
the	current	work,	each	model	should	be	described	in	more	detail	in	the	manuscript.	
Response:	Thanks	to	the	Reviewer	for	the	feedback.		We	are	happy	to	provide	more	detail.	



Edits:		Two	useful	figures	from	our	previous	paper,	showing	ANN	architecture,	have	been	added	and	
cited	(now	Figures	2	and	3)	to	help	clarify.		The	following	text	has	also	been	added:			
	
“.		As	in	(Casey	et	al.,	2017),	direct	LMs	and	ANNs	were	trained	with	a	number	of	different	sensor	
input	sets	to	map	those	inputs	to	target	gas	mole	fractions	measured	by	reference	instruments.	
Direct	LMs	implemented	were	multiple	linear	regression	models	given	by		
	 	 	 ! =  !! +  !!!! +  !!!!+. . .+!!!!!!	 	 	 (1)	
where	r	is	the	target	gas	mole	fraction	(measured	by	a	reference	instrument)	s1	–	sn-1	are	sensor	
signals	from	U-Pods	that	are	included	as	model	predictor	variables,	and	p1	–	pn	are	corresponding	
predictor	coefficients.			
	
ANNs	designed	for	regression	tasks,	like	those	employed	in	this	work,	generally	consist	of	artificial	
neuron	nodes	that	are	connected	with	weights.		Weights	are	initiated	with	randomly	assigned	values.		
An	optimization	algorithm	is	then	employed	to	map	a	given	set	input	values	to	corresponding	target	
values.		An	example	of	a	very	simple	feed	forward	neural	network,	and	how	weights	are	propagated	
through	it	are	depicted	in	Fig.	3.			
	

	
Figure	3.		Example	of	a	simple	feed	forward	neural	network,	showing	how	inputs	are	propagated	
through	the	network	during	each	of	the	training	iterations	(Casey	et	al.,	2017)	
	
In	this	work,	ANNs	were	designed	by	assigning	U-Pod	sensor	signals	to	artificial	neurons	in	an	input	
layer	and	assigning	target	gas	mole	fractions	for	an	individual	gas	species,	measured	by	a	reference	
instrument	to	a	single	output	neuron.		Nonlinear,	tansig,	artificial	neurons	in	one	hidden	layer	for	O3	
or	two	hidden	layers	for	CO2	(accordance	with	our	earlier	findings	for	each	target	gas	species	(Casey	
et	al.,	2017))	were	then	added	between	input	layer	and	the	network	output	neuron.		Additionally,	
bias	neurons,	each	assigned	a	value	of	1,	were	connected	to	neurons	in	the	hidden	layer(s)	so	that	
individual	connecting	weights	could	be	activated	or	deactivated	during	the	optimization	process.		
The	number	of	neurons	in	each	hidden	layer	was	set	equal	to	the	number	of	inputs	included	in	a	
given	ANN.		Fig.	4	shows	a	diagram	of	an	ANN	architecture	employed	in	this	work,	when	there	were	
five	inputs.	
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Figure	4.	Diagram	of	an	example	ANN	with	the	same	color-coded	components	as	are	presented	in	Figure	
SM3	in	section	2.2	of	the	SM.		This	ANN	has	5	inputs,	1	hidden	layer	with	5	tansig	hidden	neurons,	and	1	
linear	output	layer	leading	to	1	output.		The	network	is	fully	connected	with	weights	and	biases	(Casey	et	
al.,	2017).	
	
	
For	ANN	training	we	employed	the	Levenberg	Marquardt	optimization	algorithm	with	Bayesian	
Regularization	(Hagan	et	al.,	1997).		The	Levenberg-Marquardt	algorithm	combines	the	Gauss-
Newton	and	Gradient	Decent	methods,	towards	incremental	minimization	of	a	cost	function	(the	
summed	squared	error	between	the	ANN	output	and	target	values	as	a	function	of	all	of	the	weights	
in	the	network).		Training	begins	according	to	the	Gauss-Newton	method,	in	which	the	Hessian	
matrix	(the	second	order	Taylor	series	representation	of	the	error	surface)	is	approximated	as	a	
function	of	the	Jacobian	matrix	and	its	transpose,	significantly	reducing	required	training	time.		
Network	weights	are	adjusted	accordingly	each	training	step	to	reduce	error.		If	the	cost	function	is	
not	reduced	in	a	given	training	step,	an	algorithm	parameter	is	adjusted	so	that	optimization	more	
closely	approximates	the	gradient	decent	method	(a	first	order	Taylor	series	representation	of	the	
cost	function),	providing	a	guarantee	of	convergence	on	a	cost	function	minimum.	Since	local	minima	
may	exist	across	the	error	surface,	it	is	important	to	train	the	same	network	multiple	times	(with	
different	randomly	assigned	starting	weights),	in	order	to	access	the	stability	of	ANN	performance.		
In	this	work	each	ANN	was	trained	5	times.”	
	
Comment:		P7L6	–	need	reference	for	Bayesian	Regularization	
Response:	We	agree	this	would	be	useful	for	readers.	
Edits:		Test	added:		“In	the	implementation	of	Bayesian	Regularization,	a	term	is	added	to	the	sum	of	
squared	error	cost	function	as	a	penalty	for	increased	network	complexity	in	order	to	guard	against	
over	fitting.		A	two	level	Bayesian	inference	framework	is	employed,	operating	on	the	assumptions	
the	noise	in	the	training	data	is	independent,	normally	distributed,	and	also	that	all	of	the	weights	in	
the	ANN	are	small,	normally	distributed,	and	unbiased	(Hagan	et	al.,	1997).”	
	
Comment:		The	concepts	of	early	stopping,	hidden	neurons,	and	hidden	layers	need	to	be	described	
Response:	Thanks	for	this	useful	comment.		Hidden	neurons	and	hidden	layers	have	been	depicted	
in	diagrams	and	described	in	more	detail,	embedded	in	the	new	text	describing	ANNs	in	general	cited	
two	comments	above.			
Edits:		We	have	added	some	text	to	describe	the	concept	of	early	stopping:		“In	preliminary	ANN	tests	
we	found	that	over	fitting	occurred	even	when	Bayesian	Regularization	was	used,	so	we	additionally	
implemented	early	stopping,	which	proved	to	be	effective	in	the	reduction	of	over	fitting.		To	
implement	early	stopping,	a	portion	of	training	data	is	set	aside	as	validation	dataset,	and	during	
training,	an	ANN	is	applied	to	this	validation	data	after	each	training	step.		Training	continues	so	long	
as	the	error	associated	with	the	validation	dataset	is	reduced.	When	the	error	associated	with	the	
validation	dataset	is	no	longer	being	reduced,	training	stops	early.	For	ANNs,	training	datasets	were	
divided	in	half	on	an	alternating	24-hr	basis,	with	half	used	for	training	and	half	used	as	validation	
data	for	early	stopping.”	
	



	
	
Comment:		Highlighted	sentence	is	confusing	as	written.	How	can	there	be	multiple	‘best’	
preforming	models?	
Response:	Thanks	to	the	Reviewer	for	the	helpful	comment.	
Edits:		We	have	added	section	2.5	entitled	“Calibration	Model	Evaluation	and	Testing	in	order	to	help	
clarify:			
	
“To	evaluate	the	performance	of	each	of	the	ANN	and	LM	models	that	were	generated	using	training	
data	then	applied	to	test	datasets,	we	used	residuals,	the	coefficient	of	determination	(r2),	root	mean	
squared	error	(RMSE),	mean	bias	error	(MBE),	and	centered	root	mean	squared	error	(CRMSE).		The	
CRMSE	is	an	indicator	of	the	distribution	of	errors	about	the	mean,	or	the	random	component	of	the	
error.		The	MBE,	alternatively,	is	an	indicator	of	the	systematic	component	of	the	error.		The	sum	of	
the	squares	of	the	CRMSE	and	the	MBE	is	equal	to	the	square	of	the	total	error,	the	square	root	of	
which	is	defined	by	the	RMSE.			
	
First,	we	generated	and	applied	the	best	performing	model,	as	determined	in	our	previous	work	
(presented	in	Table	3),	to	data	from	each	new	case	study.		Each	new	case	study	was	selected	to	
challenge	models	in	different	ways	in	order	to	evaluate	the	resiliency	of	the	findings	from	our	
previous	study	when	challenged	by	different	circumstances.		Next	we	tested	LMs	for	CO2	and	O3	that	
contained	only	the	primary	target	gas	sensor	for	each	species,	as	well	as	temperature	and	absolute	
humidity	as	inputs.		Finally,	we	generated,	applied,	and	evaluated	the	performance	of	a	number	of	
LMs	and	ANNs	with	different	sets	of	inputs	for	each	case	study	in	order	to	see	which	specific	model	
performed	the	best	for	each	individual	case	study.		The	r2,	RMSE,	and	MBE	for	each	of	these	
alternative	models	when	applied	to	test	data	are	presented	in	the	supplemental	materials	(SM)	in	Fig.	
S2	through	Fig.	S7,	along	with	representative	scatter	plots	and	time	series	comparing	the	
performance	LMs	and	ANNs	for	a	given	set	of	inputs.		In	Fig.	S2	through	Fig.	S7,	the	best	performing	
model	inputs	for	each	train/test	data	pair	are	shaded	in	purple.		The	type	of	model	that	performed	
the	best	(ANN	vs.	LM)	is	indicated	in	the	caption	of	each	figure.		We	discuss	both	the	performance	of	
the	previously	determined	best	fitting	model	(generated	using	data	from	the	GRET	Spring	2017	case	
study)	when	applied	and	generated	to	data	from	new	case	studies,	and	the	performance	of	models	
that	were	tuned	to	perform	the	best	for	each	individual	case	study.		From	these	comparisons,	we	
draw	insight	into	circumstances	that	challenge	model	performance	in	terms	of	relative	local	
emissions	characteristics,	location,	and	timing	between	model	training	and	testing	pairs.		Table	4	lists	
the	relative	timing	and	parameter	coverage	between	model	training	and	testing	periods	for	dataset	
pairs,	highlighting	instances	of	incomplete	coverage	during	training	that	led	to	model	extrapolation	
during	testing.”	
	
	



	
Comment:		Does	section	2.2	really	succinctly	describe	each	training/testing	dataset	pair?	This	is	the	
first	place	in	the	text	of	the	manuscript	where	the	limited	extent	of	co-location	upon	distributed	field	
deployment	is	described	and	how	the	10	UPODs	are	reconciled	against	such	limitations.	
Response:	Thanks	so	much	for	pointing	out	that	this	is	needed.		Instead	of	describing	why	
measurements	were	planned	and	carried	out,	we	change	the	focus	in	section	2.2	to	describe	
measurements	and	how	they	are	used	in	this	work.		
Edits:		We	have	added	subsections	to	section	2.2,	in	which	we	describe	each	case	study	
(training/testing	dataset	pair)	in	the	context	of	the	work	presented	here.	
	
Section	3.1	
	
Comment:		For	the	purposes	of	the	current	study,	if	there	is	no	co-location	with	reference,	is	it	still	a	
relevant	data	point?	Can	the	authors	effectively	‘test’	their	model	under	these	circumstances?		
Response:	Thanks	to	the	reviewer	for	pointing	out	this	confusion.		We	only	have	the	ability	to	
evaluate	models	when	we	have	co-located	reference	instruments,	and	we	only	include	data	in	this	
work	that	had	co-located	reference	instruments.			
Edits:		We	have	added	details	in	section	2.2	about	how	many	U-Pods	are	included	in	each	case	study	
presented	and	which	reference	instruments	were	co-located	with	each.	
	
Comment:		This	section	P8L3	is	also	the	first	mention	of	reducing/oxidizing	interfering	gas	species	–	
this	potential	deserves	a	more	detailed	explanation	in	the	context	of	the	specific	micro-environment	
source	contributions	
Response:	Thanks	for	this	important	comment.			
Edits:		We	have	added	a	discussion	of	the	operating	principles	of	the	sensors	to	section	2.1	
accordingly,	detailed	in	response	to	an	earlier	comment	above.				
	
Comment:		The	overall	discussion	of	factors	impacting	differences	between	the	two	Basin	
depolyments	is	fairly	scattered.	It	would	be	more	beneficial	to	the	reader	if	the	authors	could	draw	
more	specific	lines	of	connectivity	between	environmental	or	pollution	source	contributions	and	the	
robustness	(or	lack	of	robustness)	in	the	model.	
Response:	Thanks	very	much	to	the	Reviewer	for	this	helpful	comment.			
Edits:		We	have	improved	the	manuscript	by	describing	differences	between	the	gas	basins	in	more	
detail,	and	in	the	context	of	sensor	sensitivity	and	selectivity.		Here	is	text	from	one	place	in	the	
manuscript	where	we	have	made	these	improvements:				“In	this	work,	we	present	and	compare	
models	designed	to	address	the	unique	challenges	that	come	with	using	low-cost	sensors,	in	the	
quantification	of	atmospheric	trace	gases	of	interest	in	oil	and	gas	production	basins,	where	ambient	
hydrocarbon	mole	fractions	are	potentially	elevated,	exerting	uniquely	cofounding	influence	on	low-
cost	gas	sensors.	We	investigate	how	well	models	can	be	transferred	from	one	microenvironment	to	
another,	with	different	dominant	local	emissions	source	characteristics,	and	different	relative	
abundance	of	oxidizing	and	reducing	compounds.		Microenvironments	explored	in	this	work	include	
an	oil	and	gas	basin	where	both	natural	gas	and	heavier	hydrocarbons	are	produced	(the	DJ	Basin),	
and	an	oil	and	gas	production	basin	where	prominently	natural	gas	is	produced	(the	SJ	Basin),	with	
much	smaller	proportional	emissions	of	heavier	hydrocarbons,	and	in	tern,	lower	atmospheric	
concentrations	of	alkanes.	Within	and	bordering	the	DJ	Basin,	additional	microenvironments	include	
an	urban	location,	with	significant	mobile	sources	emissions	(NOX,	CO,	and	VOCs),	and	a	peri-urban	
site	with	fewer	mobile	emissions	and	closer	proximity	to	oil	and	gas	production	activities.		We	
explore	how	robust	model	performance	is	when	a	model	is	trained	in	one	microenvironment	and	
transferred	to	another;	challenged	by	different	relative	abundance	of	oxidizing	and	reducing	gas	
species.		Additionally	we	test	how	well	models	can	represent	and	address	sensor	stability	over	time	
and	the	potential	for	drift.”		
	
	



	
Comment:		eltCO2,	temp,	absHum	should	be	human	readable,	this	is	the	first	time	these	parameters	
appear	in	the	text.	I	understand	that	they	were	listed	in	the	table	describing	UPOD	guts,	but	they	
should	be	spelled	out	here.	
Response:	Thank	you	for	the	feedback.	
Edits:		Descriptions	added	here	and	at	the	first	mention	of	other	model	input	codes	in	the	manuscript	
in	the	text:	“eltCO2	(ELT	S300	CO2	sensor)	,	temp	(temperature)	,	and	absHum	(absolute	humidity)”	
	
Comment:		L18:	it	is	unclear	to	what	extent	the	current	work	and	the	previous	work	are	duplicated	
here?		Does	the	previous	work	form	the	basis	for	determining	the	optimal	set	of	input	parameters	to	
train	the	ANN	model	and	those	same	set	of	input	parameters	were	found	to	be	optimal	again	in	this	
second	application	or	are	the	actual	applications	overlapping	and	therefore	the	result	is	redundant?	
This	is	an	example	where	I	find	the	self-referential	context	to	Casey	et	al.,	2017	confusing	(and	
lacking	specific	differentiating	information).	
Response:	Thank	you	for	the	useful	comment.		We	applied	the	model	that	we	found	to	perform	best	
in	our	previous	work	to	new	data.		The	application	circumstances	did	not	overlap	and	are	not	
redundant.		
Edits:		We	have	added	the	following	text	to	help	clarify:		“We	began	by	testing	the	best-performing	
CO2	model,	as	determined	in	our	previous	work	(Casey	et	al.,	2017),	on	this	data,	collected	under	a	
different	set	of	circumstances,	during	the	summer	of	2015.”	
	
Comment:		The	under-prediction	/	over-prediction	behavior	of	all	four	UPODs	warrants	more	
discussion.		What	environmental	conditions	are	pushing	the	model	beyond	its	limits?	What	is	the	
fundamental	(under-the-hood)	reason	for	the	interference	in	the	first	place	(based	on	sensor	
fundamentals)?	
Response:	Thank	you	for	this	interesting	comment.		After	analysis	and	careful	consideration,	we	
have	added	the	following	text:	
Edits:		“Upon	examination	of	overlaid	histograms	showing	distributions	of	parameters	during	model	
testing	and	training	periods,	in	Fig.	S12,	and	model	time	series	and	residuals	plots	in	Fig.	S3,	there	is	
no	indication	of	model	extrapolation	at	the	BAO	site,	and	no	significant	trends	of	concern	with	
respect	to	residuals.		Bias	introduced	to	mole	fraction	estimates	are	likely	attributable	to	differences	
in	hydrocarbon	mixtures	in	the	SJ	Basin	relative	to	the	DJ	Basin.”	



	
Comment:		Why	did	the	majority	of	UPODs	stop	logging	data	during	the	deployment?	Did	the	system	
overheat?	What	fraction	of	the	total	possible	sample	time	was	missed?		
Response:	Thank	you	for	the	comment	and	helping	us	to	improve	the	details	of	the	study.	
Edits:		The	following	text	has	been	added	accordingly:		“Periods	of	missed	data	during	the	month-
long	deployment	included	approximately	1	day	at	the	Shiprock	site,	2	days	at	the	Bloomfield	site,	4	
days	at	the	Sub	Station	site,	9	days	at	the	Fort	Lewis	site,	and	17	days	at	the	Navajo	Dam	site.		We	
carried	out	frequent	sampling	site	visits	(on	a	weekly	or	biweekly	basis	as	logistics	and	travel	to	
remote	locations	in	some	cases	allowed)	in	order	to	identify	and	fix	problems	as	they	arose	during	
field	deployments.		Operational	issues	were	predominantly	attributable	to	power	supply	problems	
associated	with	BNC	bulkhead	fittings	and	corrupted	micro	SD	cards.”			
	
Section	3.1	continued..	
	

	

	
	
Highlighted	above:	
	
Comment:		L6-9:	Discussion	is	confusing	and	language	is	too	casual:	“did	not	make	a	big	difference”	–	
too	vague.	Quantify	based	on	the	statistical	analysis	of	the	model	test	data.	When	considering	the	



benefit	of	including	extra	sensor	inputs	in	the	training	matrix	for	their	models,	again	the	Authors	are	
drawing	comparisons	to	their	earlier	work	(Casey	et	al,	2017)	but	it’s	not	really	clear	how	this	
improves/informs	the	current	work	–	besides	stating	that	the	inclusion	of	the	parameters	didn’t	
make	the	data	product	worse.	
Response:		Thank	you	for	this	useful	comment.		With	this	work,	we	are	testing	methods	that	we	
developed	in	our	previous	work	under	new	circumstances	that	have	the	potential	to	challenge	and	
degrade	model	performance.		The	finding	we	are	highlighting	in	this	instance	is	that	in	the	current	
work,	two	additional	sensor	signals	result	in	improved	performance	of	a	model	under	different	
circumstances,	relative	to	our	previous	work.		Since	the	addition	of	these	two	signals	do	not	reduce	
the	performance	of	models	in	our	previous	work,	the	addition	of	these	two	sensor	signals	in	models	
for	the	quantification	of	CO2	may	be	warranted	more	broadly.	
Edits:		We	have	changed	‘did	not	make	a	big	difference’	to	‘did	not	have	a	measurable	affect’.			
Additionally	we	have	added	the	following	text:		“so	including	these	sensor	signals	may	be	appropriate	
as	a	general	rule,	in	areas	that	are	strongly	influenced	by	oil	and	gas	production	activities.”	
	
Comment:		L10	e2vCO2	does	not	exist	as	a	sensor	metric	in	the	UPODs.	
Response:	Thanks	so	much	to	the	Reviewer	for	catching	this	mistake.	It	should	be	e2vCO.	
Edits:		We	have	changed	‘e2vCO2’	to	‘e2vCO’.	
	
Comment:		L15:	‘all	the	UPODS’	how	many	is	this	again?		
Response:	Thank	for	the	clarifying	comment.	
Edits:		The	following	edits	have	been	made:		“O3	was	quantified	for	the	2	U-Pods	deployed	at	BAO	
and	7	of	the	U-Pods	deployed	at	SJ	Basin	sampling	sites”	
	
Comment:		L19:	‘For	a	number	of	UPODs’:	state	the	number.	
Response:	Thanks	to	the	reviewer	for	helping	us	clarify.	
Edits:		The	text	has	been	edited	accordingly:		“Interestingly	though,	LMs	with	this	same	set	of	inputs	
performed	competitively	well	for	3	of	the	7	U-Pods	in	the	SJ	Basin	in	terms	of	RMSE	and	r2”	
	
Comment:		L21:	‘for	some	of	the	sites..’:	which	sites?	
Response:	Thanks	to	the	Reviewer	for	helping	us	clarify.	
Edits:		The	following	edits	have	been	made	to	the	text:		“When	the	BAO	trained	U-Pods	field	
calibrations	for	O3	were	extended	to	sites	in	the	SJ	Basin,	we	found	that	U-Pods	at	the	Bloomfield,	
Bondad,	Shiprock	and	Ignacio	sites	performed	better	than	others	across	all	models	that	were	tested,	
as	seen	in	Fig.	S2.”	
	
Comment:		L15-22:	this	paragraph	seems	to	say	that	the	ANN	training	matrix	determined	to	be	
optimal	in	Casey	et	al.,	2017	was	also	found	to	be	optimal	in	the	current	work,	with	inclusion	of	all	
peripheral	sensors	to	the	input	training	matrix	for	O3.	But	they	also	state	that	the	LMs	data	products	
were	just	as	good	(or	better)	when	compared	to	the	ANN	models.	This	result	seems	important,	but	
not	really	discussed	further.	The	results	are	left	vague.	Conclusions	as	to	why	this	might	be	the	case	
are	absent.	
Response:	Thank	you	very	much	for	helping	us	to	make	our	conclusions	more	detailed	and	less	
vague.			
Edits:		We	have	added	the	following	text	accordingly:		“The	observation	that	LMs	performed	
competitively	well	at	a	subset	of	SJ	Basin	sites	is	likely	connected	to	the	relative	abundance	of	
hydrocarbons	and	other	potentially	interfering	oxidizing	and	reducing	gas	species	at	individual	
sampling	sites,	diverging	from	conditions	present	during	model	training	at	the	BAO	site.		ANNs	can	
better	represent	the	influence	of	these	interfering	species	than	LMs	during	training,	but	appear	to	
have	lost	their	ability	to	do	so	for	this	subset	of	microenvironments	in	the	SJ	Basin.”	
	
Comment:		L27:	‘had	bad	RH	data’	–	as	noted	in	a	section	that	doesn’t	exist.	What	is	bad	RH	data?		
L29:	‘relatively	far	away’	–	how	far?	Again.	These	details	matter.	
	



Response:	Thank	you	for	helping	us	clarify	the	text	and	catching	the	error	regarding	the	section	
referenced.			
Edits:		We	have	made	the	following	edits	to	the	text:		“As	noted	earlier,	U-Pods	at	the	Navajo	Dam	and	
Sub	Station	sites	had	faulty	relative	humidity	sensor	data,	so	humidity	from	the	U-Pod	located	at	the	
Ignacio	site	was	used	in	place	of	their	humidity	signals.		Since	the	Ignacio	site	was	located	
approximately	twenty-two	and	fifty	miles	away	from	the	Navajo	Dam	and	Sub	Station	sites	
respectively,	this	could	have	introduced	some	additional	error	into	the	application	of	a	calibration	
equation,	particularly	since	we	showed	earlier	that	O3	ANNs	like	the	ones	we	employed	here	are	very	
sensitive	to	humidity	inputs	(Casey	et	al.,	2017).		Spatial	variability	in	humidity	across	tens	of	miles	
could	be	significant	as	isolated	storms	(which	are	on	average	15	miles	in	diameter)	propagate	
throughout	the	region	in	the	summer.”	
	
Comment:		L30-31:	Apparently	one	of	the	major	results	from	Casey	et	al.,	2017	is	an	extreme	
sensitivity	to	RH	when	using	ANN’s	to	quantify	O3.	Given	the	failure	of	the	RH	sensor	throughout	
much	of	the	work	presented	in	the	current	work,	it	seems	critically	important	that	this	RHsensitivity	
be	discussed	in	much	greater	detail	in	the	current	work,	not	simply	stated	in	an	off—handed	matter	
with	a	reference	to	the	prior	work.	
Response:		Thanks	very	much	to	the	Reviewer	for	this	helpful	comment.		We	have	added	significant	
detail	throughout	the	text	describing	humidity	influences	on	sensors	in	the	context	of	model	
development	and	testing.	
Edits:		Here	is	an	example	of	some	text	we	have	added	accordingly	in	section	3.2:		“In	our	previous	
work,	we	showed	that	O3	models	were	very	sensitive	to	the	humidity	signal	input		(Casey	et	al.,	
2017).		In	this	case	study,	it	seems	that	replacing	actual	humidity	signals	with	closely	approximated	
humidity	signals,	negatively	influenced	model	performance.		In	order	to	investigate	this	observation	
further,	we	tested	the	influence	of	replacing	humidity	data	in	the	same	manner,	using	mixing	ratios	
from	the	same	co-located	Picarro,	on	test	data	from	the	GRET	Spring	2017	case	study.		A	comparison	
of	model	performance	under	normal	and	this	‘borrowed	RH’	circumstance	are	presented	in	Fig.	S27	
in	the	SM.		O3	model	performance	was	negatively	impacted	when	‘borrowed’	RH	values	based	on	
Picarro	data	replaced	U-Pod	RH	sensor	signals.		From	these	findings,	it	seems	likely	that	the	inclusion	
of	multiple	metal	oxide	type	sensors	as	inputs	in	the	model,	which	all	respond	strongly	to	humidity	
fluctuations,	helped	the	ANN	to	effectively	represent	the	influence	of	humidity	in	the	system,	more	so	
than	including	a	‘borrowed	RH’	signal	from	another	instrument.		We	tested	models	with	multiple	gas	
sensor	signals	and	no	humidity	signal	as	inputs	for	a	number	of	other	case	studies	as	well	(as	seen	in	
Fig.	S2,	Fig.	S4,	and	Fig.	S5),	when	good	humidity	data	from	U-Pod	enclosures	was	available,	but	they	
did	not	turn	out	to	be	the	best	performing	model	in	any	of	these	other	tests.”	
	
	
Comment:		L32:	‘had	a	different	reference	instrument’	what	was	the	instrument	and	why	do	the	
authors	think	that	this	particular	reference	instrument	was	in	error,	subsequently	disrupting	the	
validity	of	their	calibration	model?	
Response:	Thank	you	for	the	useful	comment.		We	only	want	to	acknowledge	that	discrepancies	
among	different	reference	instruments	that	are	operated	according	to	different	protocols	and	by	
different	agencies	are	possible.	
Edits:		The	following	text	has	been	added	to	help	clarify:		“At the Fort Lewis site, a 2b Technologies 
model 202 O3 analyser was employed as a reference instrument, differing from the Thermo Scientific 49i, 
Thermo Scientific 49is, and Teledyne API T400 instruments utilized for reference measurements, 
elsewhere in the SJ Basin, and the Thermo Scientific 49c that was operated at the BAO site and used for 
model training.  Of all the reference instruments, only the 2b Technologies model 202 O3 at the Fort Lewis 
site was operated in a room that was not temperature controlled.  Some bias may have been introduced to 
the Fort Lewis O3 reference measurements as the temperature in the room it was housed in varied. Different 
instruments, operators, calibration and data quality checking procedures could have contributed to observed 
discrepancies.  It is also possible that the microenvironment at each of these three sites contributed lower 
model performance.”	
	



Comment:		L34	–	carried	into	highlighted	passage	below:	The	authors	indicate	that	the	sampling	
sites	or	the	circumstances	discussed	previously	are	the	reason	for	the	poor	model	performance,	not	
the	sensors	comprising	the	UPODs.	First,	WHAT	circumstances	specifically,	and	what	specifically	
about	the	sampling	sites?	This	level	of	non-explanation	is	unacceptable.		
Response:	Thanks	to	the	Reviewer	for	helping	us	clarify.	
Edits:		The	following	edits	have	been	made	to	the	text:		“therefore,	the	incongruous	field	calibration	
performance	phenomena	we	observed	seems	to	be	connected	to	unique	characteristics	associated	
with	individual	sampling	sites;	possibly	the	relative	abundance	of	oxidizing	and	reducing	molecules	
in	the	local	atmosphere,	which	could	interfere	with	sensor	responses	to	their	target	gas	species,	as	
opposed	to	the	quality	of	individual	sensors	in	each	of	those	U-Pods.”			
	

	
	
Comment:		L22:	brief	excursions	of	high	humidity	–	how	brief?	How	high?	
Response:	Thank	you	for	helping	us	improve	clarity.	
Edits:		The	following	details	have	been	added:		“Brief	excursions,	lasting	approximately	2	–	4	hours,	
of	high	humidity	(up	to	0.025	kg/kg,	relative	to	the	upper	bound	of	absolute	humidity	observed	at	
other	sampling	sites	of	0.013	kg/kg)	may	be	connected	to	some	of	the	large	short-term	residuals	
observed	at	these	two	sampling	sites.”	
	
Comment:		Can	the	authors	comment	on	the	role	that	humidity	transients	play	in	fundamental	
sensor	response?	The	description	of	the	high	and	low	bias	resulting	from	the	models	at	different	
locations	and	different	times	of	day	is	difficult	to	follow.	What	are	the	common	response	
characteristics	and	failings	of	the	model	that	manifest	across	the	case	studies	featured	here?	What	
are	the	lessons	learned	and	how	can	these	lessons	better	inform	ANN	model	development	moving	
forward?	
Response:		Thanks	very	much	to	the	Reviewer	for	this	helpful	comment.			
Edits:		We	have	added	the	following	details	about	fundamental	sensor	response	in	section	2.1,	
including	the	role	that	humidity	transients	play.	
	



Section	3.2.1	
	
Comment:		Extrapolation	of	the	ANN	and	LM	models	is	problematic.	Why?	If	the	full-span	of	O3	(or	
CO2)	concentration	encountered	in	the	field	deployment	is	not	covered	in	the	training	set	for	the	
model,	is	the	model	incapable	of	reasonably	extrapolating?	
Response:	Yes,	thank	you	for	the	helpful	comment.		The	Dawson	Summer	2014	case	study	suggested	
that,	when	a	model	is	transferred	to	a	new	location,	with	different	dominant	local	emission	sources,	
both	ANNs	and	LMs	fail	to	extrapolate	effectively	with	respect	to	high	O3	mole	fractions.			
Edits:		We	have	added	the	following	text	has	been	added	accordingly:		“Across	applications,	ANNs	
have	been	found	to	be	unreliable	when	extrapolated,	due	to	the	nonlinear	nature	and	complexity	of	
the	relationships	they	represent.		Though	they	are	generally	expected	to	be	more	robust	to	
extrapolation	that	ANNs,	increased	uncertainty	in	measurements	can	also	be	introduced	to	LMs	
when	parameters	are	extrapolated.		In	order	to	have	high	confidence	in	measurements	of	
uncommonly	high	mole	fractions	of	a	target	gas,	the	model	-raining	period	has	to	encompass	the	full	
possible	range.		Combining	both	field	calibration	and	lab	calibration	data	together	in	a	training	
dataset	could	accomplish	this	type	of	coverage.		If	extrapolation	is	expected	to	occur	with	respect	to	
the	target	gas	mole	fraction,	as	in	this	case	study,	the	use	of	an	inverted	LM	may	yield	better	results	
than	LMs	or	ANNs.		We	describe	inverted	LMs	and	their	potential	advantages	in	our	previous	work	
(Casey	et	al.,	2017).”	
	
Section	3.2.2	
	
Comment:		L15:	post-test	deployment	co-locations:	It’s	unclear	what	is	meant	by	‘post-test’,	please	
clarify.	
Response:	We	are	happy	to	clarify	this	concept.			
Edits:		The	following	text	has	been	added	to	the	end	of	section	2.3:		“A	model	was	extrapolated	in	
time	when	ever	training	data	does	not	take	place	both	before	and	after	a	given	test	deployment	
period.		In	several	case	studies	we	present,	model	training	only	took	place	after	the	test	deployment	
period,	comprising	a	‘post	only’	calibration.		In	Colorado,	and	more	broadly	in	the	western	United	
States,	ambient	temperatures	change	significantly	across	the	seasons	throughout	the	year,	so	if	a	
model	is	extrapolated	in	time,	extrapolation	in	temperature	often	results	as	well.”	
	
Comment:		L16:	state	the	#	of	UPODs	
Response:	Thank	you	for	helping	us	to	add	clarity.	
Edits:		The	following	edits	have	been	carried	out:		“We	present	data	from	four	U-Pods	that	were	co-
located	with	reference	instruments	in	the	SJ	Basin	in	the	spring	of	2015,	at	the	Navajo	Dam,	Sub	
Station,	and	Bloomfield	sites.		Two	U-Pods	at	the	Bloomfield	site	provide	a	set	of	duplicate	measures.”	
	
Comment:		The	concept	of	extrapolation	in	time	is	confusing.	Please	clarify	what	is	meant	by	this?		
Generating	a	model	at	time	X	and	then	applying	that	same	model	to	time	X-Y?	
Response:	Thank	you	for	helping	us	to	clarify	what	is	meant	by	extrapolation	in	time.			
Edits:		The	edits	have	been	made	in	the	manuscript	in	section	2.3:		“A	model	is	extrapolated	in	time	
when	ever	training	data	does	not	take	place	both	before	and	after	a	given	test	deployment	period.		In	
this	case	study,	model	training	only	took	place	after	the	test	deployment	period,	comprising	a	‘post	
only’	calibration.		In	Colorado,	and	more	broadly	in	the	western	United	States,	ambient	temperatures	
change	significantly	across	the	seasons	throughout	the	year,	so	if	a	model	is	extrapolated	in	time,	
extrapolation	in	temperature	often	results	as	well.”			
	
Comment:		The	authors	identify	coal-fired	power	plants	as	an	important	near-field	(‘close-by’)	
pollutant	source	that	could	contribute	a	specific	(unique)	pollutant	signature	that	could	render	the	
utility	of	the	Figaro	sensor	useless.	Did	the	CO2	response	of	the	UPODs	or	reference	instruments	or	
CO		response	of	the	sensor	measurements	indicate	a	near-field	power	plant	plume	across	the	
deployment	area?	



Response:	Thanks	to	the	Reviewer	for	this	useful	comment.		We	did	observe	evidence	of	a	near-field	
power	plant	plume	in	the	raw	CO2	and	CO	sensor	signals	as	well	as	the	NO	and	NO2	reference	
measurements	(the	site	was	not	equipped	with	a	CO	reference	instrument).	
Edits:		We	have	added	the	following	text	accordingly:		“Several-hour	long	enhancements	or	spikes	
are	apparent	in	the	raw	eltCO2	and	alphaCO	sensor	signals	in	the	U-Pod	deployed	at	the	Sub	Station	
site,	indicating	the	presence	of	a	near-by	combustion-related	emissions	source.		Another	indication	of	
indicate	a	near-field	power	plant	plume	across	the	deployment	area	is	apparent,	in	the	form	of	
several-hour	long	enhancements	reference	measurements	of	NO	and	NO2	at	the	site.”			
	
Section	3.2.3	
	
Comment:		How	specifically	was	‘time’	included	as	a	raw	input	vector	in	the	training	matrix?	
Absolute	time?	Time	since	start	of	deployment?	Time	since	calibration?	Time	since	sensor	
manufacture?	
Response:	Thank	you	for	the	helpful	comment.	 	
Edits:		We	have	added	the	following	text	to	the	end	of	section	2.3	to	help	clarify,	since	the	time	model	
input	is	discussed	there	first:		“When	time	was	included	in	a	model	as	an	input,	the	absolute	time	was	
used.		Specifically,	we	used	the	datenum	value	from	the	MATLAB	environment,	which	is	defined	by	
the	number	of	days	that	have	elapsed	since	the	start	of	January	1st,	in	the	year	0000.”	
	
Comment:		L11-12:	“…LMs	outperformed	ANNs	with	notable	instability	associated	with	the	
performance	of	ANNs	when	time	was	included	as	an	input.”	In	the	previous	sentence	the	authors	
stated	that	time	was	useful	predictor	of	CO2..	but	the	last	sentence	appears	to	contradict	this	
assertion.	The	fact	that	LMs	outperformed	ANNs	for	CO2	also	contradicts	general	assertions	made	in	
the	abstract.	
Response:	Thanks	very	much	to	the	Reviewer	for	making	these	important	points.			
Edits:		We	have	added	the	following	text	to	section	3.2.3	to	help	clarify:		“In	the	case	of	CO2,	LMs	
outperformed	ANNs,	which	could	be	largely	attributable	to	notable	instability	associated	with	the	
performance	of	ANNs	when	time	was	included	as	an	input.”	
	
We	have	also	added	the	following	text	to	the	abstract	to	help	clarify:		“For	CO2	models,	exceptions	
included,	case	studies	in	which	training	data	used	took	place	more	than	several	months	subsequent	
to	the	test	data	period.		For	O3	models,	exceptions	included	studies	in	which	the	characteristics	of	
dominant	local	emissions	sources	(oil	and	gas	vs.	urban)	were	significantly	different	at	model	
training	and	testing	locations.”	
	
Comment:		The	authors	should	comment	on	the	notion	that	time-sensitive	response	patterns	in	
sensors	indicates	that	some	level	of	time-decay.	Is	this	the	case	with	the	CO2	sensor	and	that’s	why	
time	as	a	input	parameter	in	the	model	makes	such	a	big	difference?	Is	there	some	fundamental	
reason	why	the	ANNs	would	be	poorly	suited	to	model	time-decay	patterns	in	the	sensors?	
Response:	Thanks	very	much	to	the	reviewer	for	this	suggestion	as	well	as	interesting	and	relevant	
questions.			
Edits:		We	have	added	the	following	text	to	address	each:		“For	CO2,	we	expected	the	inclusion	of	time	
as	an	input	to	be	a	useful	to	model	performance	across	this	time	frame,	owing	to	observed	trends	of	
decreased	CO2	sensor	sensitivity	in	time.		To	keep	the	power	requirements	for	the	U-Pod	sensor	
systems	low,	and	to	keep	systems	quiet,	fans	were	used	to	exchange	air	in	the	enclosures	as	opposed	
to	pumps.		As	a	result,	the	air	entering	the	enclosures	was	not	filtered,	and	sensors	were	exposed	to	
some	dust	over	time.		This	dust	exposure	is	likely	largely	responsible	for	observed	decreases	in	CO2	
sensors	sensitivity	over	time,	shown	in	Fig.	S26.		Decreases	in	infrared	lamp	intensity	over	time	may	
also	play	a	role.		In	the	case	of	CO2	sensors,	the	implementation	of	pumps	to	draw	new,	filtered	air	
into	sensor	enclosures	could	likely	significantly	reduce	lose	rates	in	the	sensitivity	of	an	individual	
sensor	over	periods	of	continuous	deployment	in	ambient	environment.		While	we	are	not	sure	why	
ANN	performance	tended	not	to	benefit	from	the	addition	of	a	time	input,	while	LM	performance	did,	
it	is	likely	attributable	to	the	extrapolation	of	the	time	input,	since	only	data	that	was	collected	
significantly	subsequent	to	the	test	data	period	was	used	for	training.		ANNs	are	expected	to	be	able	



to	better	represent	time	decay	trends	if	data	from	measurements	both	prior	and	subsequent	to	the	
test	period	are	used	in	training,	so	that	there	is	no	extrapolation	with	respect	to	the	time	input.”	
	
Section	3.2.4	
	
Comment:		L23-24	–	final	sentence	in	this	section	is	very	important.	Where	the	faulty	RH	(and	
necessity	of	substituting	RH	from	alternate	sources)	degraded	the	models,	if	enough	RH	variability	
was	captured	with	the	suite	of	peripheral	metal	oxides	sensors,	the	RH-interference	could	be	
effectively	modeled	without	explicit	RH	inputs.	It	would	seem	important	to	emphasize	this	point	a	bit	
more	prominently	and	discuss	further	–	especially	in	the	context	of	overcoming	some	of	the	RH-
measurement	shortfalls	elsewhere	in	the	manuscript	through	similar	means.	
Response:	Thanks	very	much	for	this	helpful	comment.			We	found	this	to	be	an	interesting	result	
also.			
Edits:		We	have	added	the	following	text	accordingly:		“We	tested	models	with	multiple	gas	sensor	
singals	and	no	humidity	signal	as	inputs	for	a	number	of	other	case	studies	as	well	(as	seen	in	Figures	
S2,	S4,	and	S5),	when	good	humidity	data	from	U-Pod	enclosures	was	available,	but	they	did	not	turn	
out	to	be	the	best	performing	model	in	any	of	these	other	tests.”	
	
4.	Conclusions	
	
Comment:		Supervised	learning	techniques	–	generally,	the	manuscript	lacks	a	description	of	what	is	
meant	by	this	-	
Response:	Thanks	very	much	to	the	Reviewer	for	pointing	this	out.			
Edits:		We	have	added	the	following	text	to	the	introduction	and	the	conclusions	to	help	clarify	that	
ANNs	are	an	example	of	a	supervised	learning	method,	as	are	random	forests:		“We	investigated	how	
well	a	supervised	learning	technique	(ANNs)	hold	up	when	sensors	are	moved	to	a	new	location,	
different	from	where	calibration	model	training	took	place.”	
	
Comment:		L19-20	the	concepts	of	temporal	and	spatial	extension	are	still	a	bit	confusing	here.	
Earlier	statements	to	clarify	exactly	what	is	meant	by	each	condition	would	be	helpful.	
Response:	Thanks	to	the	Reviewer	for	pointing	out	this	confusion.			
Edits:		We	have	added	the	following	text,	early	in	the	manuscript,	at	the	end	of	section	1.4:		“In	the	
present	work,	we	test	model	performance	under	conditions	of	spatial	extension,	wherein	a	model	is	
trained	using	data	from	one	location	then	applied	to	a	test	dataset	using	data	from	a	new	location.		In	
testing	spatial	extension	of	a	model	we	investigate	how	well	the	field	calibration	of	low-cost	sensors	
can	inform	target	gas	mole	fractions	when	sensors	are	deployed	in	a	new	location	and	a	new	
microenvironment	of	oxidizing	and	reducing	compounds.		We	also	test	model	performance	under	
conditions	of	temporal	extension,	wherein	a	model	is	trained	using	data	that	was	collected	only	prior	
or	subsequent	to	the	model	application	period.		In	testing	temporal	extension	of	models,	we	
investigate	how	model	performance	is	influence	by	sensor	drift	over	time.”	
	
Comment:		L24:	how	does	one	move	something	in	terms	of	its	temporal	coverage?	
Response:	Thanks	to	the	Reviewer	for	pointing	out	that	this	statement	is	confusing	and	unclear.			
Edits:		We	have	updated	the	text	accordingly:		“While	ANNs	and	other	supervised	learning	
techniques	have	been	shown	to	consistently	out	perform	linear	models	in	previous	studies	when	
training	and	testing	took	place	in	the	same	location,	we	find	that	this	trend	does	not	always	hold	
when	field	calibration	models	are	applied	in	a	new	location,	with	significantly	different	local	
emissions	source	signatures	for	O3	models,	or	when	model	training	data	takes	more	than	several	
months	subsequent	to	the	model	application	period	for	CO2	models.”			
	
Comment:		L1-3P16:	LMs	appear	to	be	more	robust	when	applied	to	a	changing	deployment	
condition	–	but	then	the	authors	hedge	and	say	that	they	“…	were	not	able	to	fully	represent	some	of	
the	complex	nonlinear	response	behavior	exhibited	by	the	arrays	of	sensors.”	So	a	linear	model	can’t	
model	nonlinear	behavior?	The	statement	needs	to	be	more	specific.	



Response:	Thanks	to	the	Reviewer	for	pointing	out	the	vague	nature	of	the	statement.		After	some	
consideration,	we	realize	that	a	more	important	point	to	make	at	the	end	of	this	paragraph	has	less	to	
do	with	nonlinear	response	behavior,	and	more	to	do	with	extrapolation	of	observed	ozone	mole	
fraction.	
Edits:		We	have	updated	the	text	accordingly:		“While	these	LMs	seemed	to	be	more	stable	under	
circumstances	of	significant	extrapolation	in	terms	of	local	air	chemistry	and	timing,	we	found	that	
they	did	not	extrapolate	well	in	terms	of	the	O3	mole	fraction,	resulting	in	underproduction	of	O3	
values	during	the	test	period	that	exceeded	those	encompassed	in	the	training	data.”	
	
Comment:		L7:	“..data	is	almost	a	band	running	vertically	in	a	range	of	CRMSEs.”	Data	running	in	‘a	
band’	doesn’t	aid	in	the	interpretation	of	the	data.	Re-phrase	to	address	the	statistical	product	that	
results	from	the	bias	that	was	encountered.	
Response:		We	agree	re-phrasing	this	statement	in	terms	of	statistical	attributes	will	help	clarify.	
Edits:		The	text	has	been	updated	accordingly:		“As	seen	in	Fig.	12,	plot	markers	from	all	case	studies	
have	very	similar	CRMSE	values,	but	plot	markers	from	case	studies	in	which	models	were	tested	in	
new	locations	have	larger	MBE	values	than	models	that	were	tested	in	the	same	location	as	they	were	
trained.	“	
	
Comment:		Final	paragraph:	how	‘generalizable’	are	the	models	developed	here?	It	would	seem	that	
despite	having	done	an	exhaustive	amount	of	work,	each	individual	UPOD	system	still	required	its	
own	ANN	or	LM	based	on	co-located	data	and	raw	sensor	data	from	that	individual	sensor	system.	
While	the	input	matrix	of	raw	sensor	signals	may	be	more	generalizable,	the	models	themselves	
appear	to	be	very	much	node-specific,	at	least	in	so	far	as	what	has	been	shown	in	the	paper.	
Response:	Thanks	to	the	reviewer	for	highlighting	this	important	point.		We	have	added	text	to	help	
address	it.	
Edits:		Text	added:		“In	order	to	account	for	unique	variations	in	sensor	responses,	in	each	individual	
sensor	system,	due	to	variations	in	manufacturing	along	with	elapses	time	and	specific	exposure	
subsequent	to	manufacturing,	we	present	models	that	are	generated	for	each	sensor	system	on	an	
individual	basis.			Future	studies	exploring	the	potential	for	universal	calibration	models	would	be	
very	useful	to	the	field.”	
	
Comment:		It	is	unclear	how	the	extension	of	the	model	frameworks	discussed	in	the	current	paper	
can	be	used	in	the	context	of	low-cost	electrochemical	sensors	
Response:		Thanks	to	the	Reviewer	for	this	very	important	comment.	We	have	added	five	key	take	
away	points	from	this	work	and	associated	recommendations	that	we	hope	can	be	used	by	others	in	
the	field	of	low-cost	gas	sensors.	
Edits:	“The	following	findings	from	this	work,	and	associated	recommendations,	are	made	to	help	
inform	the	logistics	of	future	studies	that	employ	field	calibration	methods	of	low-cost	gas	sensors.	
	

1. Finding:	For	O3	models,	LMs	perform	better	than	ANNs	when	the	chemical	composition	of	
local	emissions	sources	is	significantly	different	in	the	model-training	location	relative	to	the	
model-application	location.		We	found	that	when	models	were	trained	in	an	urban	area	with	
significant	mobile	sources,	then	tested	in	a	peri-urban	area,	more	strongly	influenced	by	oil	
and	gas	 emissions,	 the	differences	 in	 local	 sources	of	pollution	were	 significantly	different	
enough	 that	LMs	outperformed	ANNs.	 	Alternatively,	when	models	were	 trained	 in	one	oil	
and	gas	production	region	and	tested	in	another	the	different	composition	of	local	emissions	
(lighter	vs.	heavier	hydrocarbons)	was	not	significant	enough	for	LM	performance	to	surpass	
the	 performance	 of	 ANNs,	 though	 some	 positive	 bias	 was	 evident	 in	 predicted	 O3	 mole	
fractions.			
Explanation:		ANNs	are	very	effective	at	compensating	for	the	influence	of	interfering	gas	
species	through	pattern	recognition	of	a	training	dataset.		However,	if	different	patterns,	in	
terms	of	the	relative	abundance	of	various	oxidizing	and	reducing	compounds	in	the	air,	are	
present	in	the	testing	location	relative	to	the	training	location,	ANNs	may	not	able	to	
compensate	for	the	influence	of	interfering	gas	species	as	effectively.			The	relative	



abundance	of	interfering	oxidizing	and	reducing	compounds	are	not	included	as	model	
parameters,	but	ANN	performance	is	challenged	by	these	circumstances.		
Recommendation:	When	measuring	O3	or	other	gas	species	with	a	metal	oxide	type	sensor,	
if	the	nature	of	dominant	emissions	sources	at	the	model	training	location	is	significantly	
different	than	the	nature	of	dominant	emissions	sources	in	the	model	application	location,	us	
an	LM	instead	of	an	ANN.		For	the	best	performance,	try	to	train	models	in	locations	with	
similar	emissions	sources	to	a	desired	sampling	location.		If	the	nature	of	dominant	
emissions	sources	at	the	model	training	and	application	locations	are	similar,	signals	from	
an	array	of	multiple	unique	metal	oxide	sensors	will	likely	augment	model	performance.	

	
2. Finding:	 	 For	 CO2	 models,	 LMs	 perform	 better	 than	 ANNs	 when	 model	 training	 occurs	

significantly	 (more	 than	 several	months)	 prior	 to	 or	 subsequent	 to	 the	model	 application	
period.																														
Explanation:	 	 CO2	 sensors	 drift	 over	 time	 in	 terms	 of	 sensitivity	 and	 baseline	 response.			
When	models	are	extrapolated	in	time	(when	training	takes	place	more	than	several	months	
prior	 or	 subsequent	 to	 the	 model	 application	 period),	 ANN	 performance	 can	 be	
compromised	to	a	greater	extent	than	LM	performance	because	ANNs	are	able	to	represent	
relationships	 during	 training	 very	 effectively,	 and	 with	 significant	 more	 complexity	 and	
nonlinear	 relationships	among	 time	and	other	model	 inputs	 than	LMs.	 	The	more	complex	
the	model,	the	less	likely	it	can	be	extrapolate	effectively.		LMs,	with	no	interaction	terms	like	
we	employ	in	this	work,	are	not	able	to	fit	data	and	potentially	complex	patterns	inherent	in	
sensor	 drift	 over	 time	 during	 training	 as	 closely	 as	 an	 ANN,	 but	 the	 simple	 linear	
relationships	 they	 represent	between	 the	 time	 input	and	 the	 target	gas	mole	 fraction	over	
the	course	of	training	are	more	likely	to	hold	prior	or	subsequent	to	the	training	period.	
Recommendation:	When	measuring	CO2	with	a	NDIR	sensor,	if	model-training	data	is	only	
available	more	than	several	months	prior	or	subsequent	to	the	model	application	period,	use	
a	LM	instead	of	an	ANN.		For	the	best	model	performance,	use	training	data	that	is	collected	
directly	pre	or	post	of	the	model	application	period,	and	preferably	data	from	both	pre	and	
post	of	the	model	application	period.		Training	models	using	data	from	both	pre	and	post	of	a	
given	model	application	period	helps	models	to	encompass	sensor	drift	over	time	as	well	as	
increases	the	likelihood	of	covering	the	full	range	of	environmental	parameter	space	that	
occurs	during	the	model	application	period	so	that	extrapolation	of	these	parameters	is	
avoided.			

	
3. Finding:	 	 Extrapolation	 of	 an	 O3	 or	 CO2	 model	 in	 time,	 and	 especially	 significant	

extrapolation	in	time,	can	change	both	the	type	of	model	that	is	most	effective,	as	well	as	the	
specific	model	input	signals	that	are	most	effective.		
Explanation:		Low-cost	sensors	change	over	time,	both	in	terms	of	their	baseline	response	
and	in	terms	of	their	sensitivity	to	target	and	interfering	gas	species.		Different	sensor	types	
drift	due	to	different	physical	phenomenon	so	further	a	generalization	across	sensor	types	is	
difficult.	
Recommendation:	Use	training	data	collected	directly	pre	and	post	of	the	model	application	
period	in	order	to	implement	a	‘best	performing	model’	for	each	gas	species	that	can	be	
applied	using	data	from	different	model	training	and	application	pairs.	

	
4. Finding:	ANNs	yield	less	bias	and	more	accurate	gas	mole	fraction	quantification	than	LMs,	

even	when	transferred	to	a	new	location	under	the	following	circumstances:		when	
extrapolation	of	training	parameters	is	avoided	during	the	model	application	period,	when	
training	takes	place	for	several	weeks	to	a	month	prior	and	subsequent	to	the	model	
application	period,	and	when	the	dominant	local	emissions	sources	are	similar	in	the	model	
training	and	application	locations.			
Explanation:		Our	previous	study	and	multiple	other	ambient	and	laboratory	based	
experiments	have	shown,	arrays	of	low-cost	sensors	in	combination	with	ANN	regression	
models	can	support	useful	quantification	of	gases	in	mixtures	and	in	the	ambient	
environment	because	ANNs	can	more	effectively	represent	complex	nonlinear	relationships	



among	environmental	variables	and	signals	in	a	sensor	system	like	a	U-Pod	than	LMs.		With	
this	work,	we	have	explored	limitations	associated	with	these	methods	when	challenged	in	
different	ways,	as	we	present	with	a	number	of	case	studies.			
Recommendation:		If	minimizing	error	and	bias	in	measurements	of	gas	mole	fractions	
using	low-cost	sensors	systems	is	a	primary	goal,	design	sensor	system	training	and	field	
deployment	experiments	so	that	extrapolation	of	model	training	parameters	is	avoided	
during	the	model	application	period,	so	that	training	takes	place	for	several	weeks	to	a	
month	directly	prior	and	directly	subsequent	to	the	model	application	period,	and	so	that	the	
dominant	local	emissions	sources	are	similar	in	the	model	training	and	application	locations.		
When	these	conditions	are	satisfied,	ANNs	can	be	robustly	implemented,	with	better	
performance	than	LMs.				
	

It	is	also	imperative	that	sensor	users	keep	in	mind	the	primary	importance	of	minimizing	
extrapolation	of	temperature,	humidity	and	sensor	signal	from	model	training	to	application.”					
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Abstract. We assessed the performance of ambient ozone (O3) and carbon dioxide (CO2) sensor field 

calibration techniques when they were generated using data from one location and then applied to data 

collected at a new location. This was motivated by a previous study (Casey et al., 2017) which 10 

highlighted the importance of determining the extent to which field calibration regression models could 

be aided by relationships among atmospheric trace gases at a given training location, which may not 

hold if a model is applied to data collected in a new location.  We also explored the sensitivity of these 

methods in response to the timing of field calibrations relative to deployments periods.  Employing data 

from a number of field deployments in Colorado and New Mexico that spanned several years, we tested 15 

and compared the performance of field-calibrated sensors using both linear models (LMs) and artificial 

neural networks (ANNs) for regression.  Sampling sites covered urban, rural/peri-urban, and oil and gas 

production influenced environments. We found that the best performing model inputs and model type 

depended on circumstances associated with individual case studies, such as differing characteristics of 

local dominant emissions sources, relative timing of model training and application, and the extent of 20 

extrapolation outside of parameter space encompassed by model training.  In agreement with findings 

from our previous study that was focused on data from a single location (Casey et al., 2017), ANNs 

remained more effective than LMs for a number of these case studies but there were some exceptions.  

For CO2 models, exceptions included, case studies in which training data collection took place more 

than several months subsequent to the test data period.  For O3 models, exceptions included studies in 25 

which the characteristics of dominant local emissions sources (oil and gas vs. urban) were significantly 
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different at model training and testing locations.  Among models that were tailored to case studies on an 

individual basis, O3 ANNs performed better than O3 LMs in 6 out of 7 case studies, while CO2 ANNs 

performed better than CO2 LMs in 3 out of 5 case studies.  The performance of O3 models tended to be 

more sensitive to deployment location than to extrapolation in time while the performance of CO2 

models tended to be more sensitive to extrapolation in time than to deployment location.  The 5 

performance of O3 ANN models benefited from the inclusion of several secondary metal oxide type 

sensors as inputs in 5 of 7 case studies. 

1 Introduction  

In places like the Denver Julesburg (DJ) and San Juan (SJ) Basins, along Colorado’s Front Range and in 

the Four Corners Region, oil and gas production activities have been increasing with the advent of 10 

horizontal drilling that can be effectively used in conjunction with hydraulic fracturing to produce 

hydrocarbons from unconventional geologic formations.  Public health concerns have arisen about the 

increasing number of people living alongside these industrial activities and emissions (Adgate et al., 

2014; Mckenzie et al., 2014; McKenzie et al., 2012, 2017).  We previously developed methods to 

quantify ozone (O3), carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) using low-cost 15 

gas sensors in an area where the ambient mole fractions of these species are influenced by oil and gas 

production activities (Casey et al., 2017).  Such low-cost sensor measurements could enable greater 

understanding of air quality in oil and gas production basins, informing the spatial and temporal scales 

that people live and work in a way that current technologies used by regulatory agencies cannot feasibly 

accomplish.  In our previous work, we tested and compared the performance of direct and inverted 20 

linear models (LMs) as well as artificial neural networks (ANNs) as regression tools in the field 

calibration of low-cost sensor arrays to quantify these target gas species using month-long test datasets, 

training each model with approximately one month of data prior to and one month of data subsequent to 

this test period.   ANNs are powerful pattern recognition tools.  They were found to perform better than 

both inverted and direct LMs in our previous study, but concerns arose when findings suggested that the 25 

performance of ANNs was being augmented by the relationships among gas mole fractions in the 

atmosphere at a given location. Low-cost gas sensor systems have the potential to inform spatial and 
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temporal variability of pollution. Calibration equations for each sensor system can be generated in one 

location based on co-located measurements with reference instruments, and then the sensor systems can 

be moved into a spatially distributed network.  Since the relationships among gas mole fractions will 

differ at different sampling sites across a spatially distributed network, calibration models may not hold 

at new sampling sites.  In this work, we test calibration model performance when extended to new 5 

locations. 

1.1 Low-Cost Sensors for Air Quality Measurements 

The use of low-cost metal oxide, electrochemical and non-dispersive infrared sensors to characterize air 

quality is becoming increasingly common across the globe (Clements et al., 2017; Kumar et al., 2015).  

While low-cost sensors have been emerging on the market with sufficient sensitivity to resolve 10 

variations in ambient mole fractions of target gases of interest, they are also sensitive to temperature and 

humidity variations that occur in the ambient environment.  NDIR sensors, like the ELT s300 CO2 

sensor employed in this study, have good selectivity, but, since pressure and temperature are not 

controlled in the optical cavity of ELT s300 CO2 sensors, the influence of temperature on sensor signals 

plays an important role.  The influence of humidity is also important to address because changes in 15 

water vapor are known to influence NDIR measurements of CO2 in terms of spectral cross-sensitivity 

due to absorption band broadening (Licor, 2010).   

 

Both metal oxide and electrochemical type sensors operate on the principle of oxidizing or reducing 

reactions at sensor surfaces.  For electrochemical sensors, like the Alphasense CO-B4 sensor employed 20 

in this study, oxidizing or reducing compounds react at the working electrode, resulting in the transfer 

of ions across an electrolyte solution from the working electrode to the counter electrode, balanced by 

the flow of electrons across the circuit connecting the working electrode to the counter electrode.  A 

linear relationship is expected between this current and the target gas mole fraction.   Electrochemical 

sensors can be tuned to respond more or less strongly to specific gases by adjusting the materials 25 

properties of the working electrode. A membrane is located between the working electrode and the 

exterior of the sensor in order to control redox reaction rates.  The rates at which gases diffuse through 
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the membrane to reach the working electrode and the electron transfer rates have been shown to 

increase at higher temperatures (Xiong and Compton, 2014), and since chemical reaction rates are also 

influenced by temperature, electrochemical sensor responses can be influenced by sensor operating 

temperature.  Changes in ambient humidity levels can cause sensors to lose or gain of the electrolyte 

solution, by mass, also influencing electrochemical sensor response (Xiong and Compton, 2014). 5 

 

For metal oxide sensors, and to a lesser extent for electrochemical sensors, resolving the response of a 

sensor attributable to the target gas species can also pose a challenge in the presence of interfering gas 

species.  Metal oxide sensors, like those used in this study, have a resistive heater circuit that warms up 

the sensor surface, causing O2 molecules to adsorb to the sensor surface, which leads to increased 10 

resistance across the surface of the sensor.  In the presence of an oxidizing compound, like O3, more 

oxygen molecules are adsorbed to the sensor surface and the resistance across the sensor surface is 

increased further.  In the presence of a reducing compound, like CO, oxygen molecules are removed 

from the sensor surface, allowing electrons to flow more freely, resulting in decreased resistance across 

the sensor surface. For metal oxide sensors, the resistance across the sensor surface can then be used to 15 

determine the mole fraction of a given oxidizing or reducing compound, often according to a nonlinear 

relationship.  Exposure to humidity has been shown to significantly lower the sensitivity of metal oxide 

gas sensors making it an important parameter to address in a gas quantification model (Wang et al., 

2010).  Metal oxide sensor operating temperature has also been shown to strongly influence sensor 

sensitivity and selectivity to different gas species (Wang et al., 2010).  Metal oxide type sensors can be 20 

tuned to respond differently from one another to oxidizing and reducing gas species by using different 

metal oxide materials and doping agents for the sensor surface, but selectivity is difficult to achieve.   

1.2 Low-Cost Air Quality Sensor Quantification 

Because low-cost gas sensor signals are influenced, sometimes significantly, by interfering gas species 

and changing weather conditions in the ambient environment, field normalization methods to quantify 25 

atmospheric trace gases using low-cost sensors have been found to be more effective than lab 

calibration (Cross et al., 2017; Piedrahita et al., 2014; Sun et al., 2016).  Our previous study and several 
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others have compared the performance of field calibration models generated using LMs (simple and 

multiple linear regression) relative to supervised learning methods (including ANNs and random 

forests), all finding that ANNs (Casey et al., 2017; Spinelle et al., 2015, 2017) and random forests 

(Zimmerman et al., 2017) outperformed LMs in the ambient field calibration of low-cost sensors.  Like 

earlier laboratory based studies (Brudzewski, 1999; Gulbag and Temurtas, 2006; Huyberechts and 5 

Szeco, 1997; Martín et al., 2001; Niebling, 1994; Niebling and Schlachter, 1995; Penza and Cassano, 

2003; Reza Nadafi et al., 2010; Srivastava, 2003; Sundgren et al., 1991), ANN-based calibration 

models, incorporating signals from an array of gas sensors with overlapping sensitivity as inputs, have 

been able to effectively compensate for the influence of interfering gas species and resolve the target 

gas mole fraction.   10 

 

ANNs are known to be able to very effectively represent complex, nonlinear, and collinear relationships 

among input and output variables in a system (Larasati et al., 2011).  ANNs are useful in the field 

calibration of low-cost sensors because, through pattern recognition of a training dataset, they are able 

to effectively represent the complex processes and relationships among sensors and the ambient 15 

environment that would be very challenging to represent analytically or based on empirical 

representation of individual driving relationships.  In practice though, the reason multiple gas sensors 

are able to improve the performance of calibration models may be in part the result of correlation 

between mole fractions of target gases themselves that hold for one model training location, but might 

not remain effective at alternative sampling sites or during other time periods. 20 

1.3 Summary of Previous Study 

Our previous study was carried out using sensor measurements collected over the course of several 

months in the spring of 2017, in Greeley, Colorado, which lies within the Denver Julesburg oil and gas 

production basin.  Others had recently demonstrated the utility of machine learning methods in the 

quantification of atmospheric trace gases using arrays of low-cost sensors in urban (De Vito et al., 2008, 25 

2009; Zimmerman et al., 2017) and rural (Spinelle et al., 2015, 2017) areas.  Our previous study tested 

the relative performance of machine learning methods and LMs in the quantification of CH4, O3, CO2, 
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and CO in an area strongly influenced by oil and gas production activities, where enhanced levels of 

hydrocarbons and other industry related pollutants could potentially confound measurements. Our 

previous study was also the first to compare machine learning regression techniques with LMs toward 

the quantification of CH4 using arrays of low-cost sensors in any setting.  The study tested and 

compared calibration models using data from two U-Pod sensor systems containing arrays of low-cost 5 

gas sensors; these systems were co-located with optical gas analysers at a Colorado Department of 

Public Health and Environment monitoring site.  ANNs and LMs were trained using a variety of sensor 

signal input sets from a month of co-located data collected prior to and following a month long test 

period.  The performance of each model was then evaluated relative to reference instrument 

measurements during the test period.  For quantification of all four trace gases that we tested in this oil 10 

and gas-influenced setting, we found that ANNs performed better than LMs.  The better performance of 

ANNs over LMs was likely largely attributable to the ability of ANNs to more effectively represent 

complex and nonlinear relationships among sensor responses, environmental variables, and trace gas 

mole fractions than LMs.  However, the performance of these powerful regression methods could be 

aided by relationships among atmospheric trace gases specific to the training location, which would not 15 

necessarily hold at different sampling sites.  

1.4 Spatially Distributed Networks of Sensors and Spatial Extension of Calibration Models 

Distributed spatial networks of low-cost sensor systems have the potential to inform air quality with 

high spatial and temporal resolution.  As such, studies have begun to deploy spatial networks of low-

cost sensor systems.  These studies rely on the spatial transferability of quantification techniques.  In the 20 

present work, we test model performance under conditions of spatial transferability, wherein a model is 

trained using data from one location then applied to a test dataset using data from a new location.  In 

testing spatial extension of a model, we investigate how well the field calibration of low-cost sensors 

can inform target gas mole fractions when sensors are deployed in a new location and a new 

microenvironment of oxidizing and reducing compounds.  We also test model performance under 25 

conditions of temporal extension, wherein a model is trained using data that was collected only prior or 

subsequent to the model application period.  In testing temporal extension of models, we investigate 

Joanna Gordon� 9/30/18 12:50 PM
Deleted: to compareimetime

Joanna Gordon� 9/29/18 10:14 AM
Deleted:   TheA number of

Joanna Gordon� 9/2/18 2:31 PM
Deleted: enclosures 30 
Joanna Gordon� 9/30/18 12:50 PM
Deleted: ; these systems

Joanna Gordon� 9/2/18 2:39 PM
Deleted:   

Joanna Gordon� 9/2/18 2:55 PM
Deleted: measurements 

Joanna Gordon� 9/29/18 10:25 AM
Deleted:  

Joanna Gordon� 9/30/18 12:51 PM
Deleted: As such, studies have begun to deploy 35 
spatial networks of low-cost sensor systems.

Joanna Gordon� 9/30/18 12:51 PM
Deleted: These

Joanna Gordon� 9/2/18 2:55 PM
Deleted: that 

Joanna Gordon� 9/30/18 12:51 PM
Deleted: relycontingent

Joanna Gordon� 9/30/18 12:51 PM
Deleted: transferability40 



7 
 

how model performance is influenced by sensor drift over time.  We opportunistically utilize 

measurements collected with low-cost sensors in Denver, Boulder County, and the DJ and SJ oil and 

gas production basins in recent years.  This effort focuses on the analysis for O3 and CO2 using both 

LMs and ANNs, including a comparison of models with a number of different input sets.  In previous 

work (Casey et al., 2017), we have additionally addressed the quantification of CO and CH4 using 5 

arrays of low-cost sensors together with field normalization methods, but these species are not included 

in the present analysis because analogous reference data to those we present for O3 and CO2, were not 

available CO and CH4.   

 

1.5 Oil and Gas Production and Air Quality 10 

Oil and gas production related emissions, namely nitrogen oxides (NOX) and volatile organic 

compounds (VOCs), have been shown to influence tropospheric ozone (O3), which is particularly 

relevant in regions that are in non-attainment of the United States Environmental Protection Agency 

(USEPA) National Ambient Air Quality Standards (NAAQS) for ozone, like the Colorado Front Range 

where the DJ Basin is situated. NOX and VOC emissions, including those from oil and gas production 15 

activities, react in the atmosphere in the presence of sunlight to form tropospheric O3. A number of 

studies have demonstrated that oil and gas related emissions contribute to increased O3 in the DJ Basin 

(Cheadle et al., 2017; Gilman et al., 2013; McDuffie et al., 2016). Mole fractions of ozone as high as 

140 ppb and 117 ppb during winter months have also been observed and attributed directly to oil and 

gas production emissions in the Upper Green River Basin of Wyoming and Utah’s Uinta Basin, 20 

respectively (Ahmadov et al., 2015; Edwards et al., 2013, 2014; Field et al., 2015; Oltmans et al., 2016; 

Schnell et al., 2009). Additionally, a modeling study concluded that oil and gas production activities 

could significantly impact ozone near emissions sources, beginning 2 and 8 km downwind of 

compressor engine and flaring activities, respectively (Olaguer, 2012).   

 25 

Emissions of industry related air pollutants, including O3 precursors, NOX and VOCs, are expected to 

occur on spatially distributed scales, across components on well pads, transmission lines, transportation 
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routes, and gathering stations that are each distributed throughout production basins (Litovitz et al. 

2013; Mitchell et al. 2015; Allen et al. 2013).  Spatially distributed networks of low-cost sensors have 

the potential to better inform spatial variability of air quality than existing regulatory air quality 

monitoring stations which cannot feasibly cover such spatially resolved measurements continuously, 

and may not be representative of air quality across smaller spatial scales (Bart et al., 2014; Jiao et al., 5 

2016; Moltchanov et al., 2015).  Abeleira and Farmer show that ozone production throughout much of 

the Front Range, outside of downtown Denver, is likely to be NOX limited implying that local NOX 

sources are likely influencing ozone on small spatial scales (Abeleira and Farmer, 2017).  Oil and gas 

industry related NOX sources, like well pad combustion and diesel truck traffic, flaring, and compressor 

engines could lead to pockets of elevated O3 throughout the DJ Basin.  While emissions from truck 10 

traffic (and in some cases drilling rig generators), at a given well pad are expected to be highest during 

the drilling, stimulation, and completion phases, industry truck traffic often persists as the contents of 

produced water and condensate tanks are frequently collected from well pads throughout production 

phase, as are emissions from flaring and compressor engines.  Low-cost O3 sensors could augment the 

few and far apart regulatory sites that currently monitor O3 levels in places like the DJ Basin, which has 15 

better coverage than many other production basins in the United States.  While elevated ambient CO2 

levels are not directly harmful to human health, continuous CO2 measurement can provide information 

about nearby combustion-related pollution and atmospheric dynamics that lead to the accumulation of 

potentially harmful compounds associated with the oil and gas production industry during periods of 

atmospheric stability.    20 

 

In this work, we present and compare models designed to address the unique challenges that come with 

using low-cost sensors, in the quantification of atmospheric trace gases of interest in oil and gas 

production basins, where ambient hydrocarbon mole fractions are potentially elevated, exerting 

uniquely cofounding influence on low-cost gas sensors. Calibration models that were found to perform 25 

best in our previous study are applied to data collected in different locations.  For the first time, we 

investigate how well models can be transferred from one microenvironment to another, with different 

dominant local emissions source characteristics, and different relative abundance of oxidizing and 
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reducing compounds.  Microenvironments explored in this work include a basin where both natural gas 

and heavier hydrocarbons are produced (the DJ Basin), and a basin where prominently natural gas is 

produced (the SJ Basin), with much smaller proportional emissions of heavier hydrocarbons, and likely  

lower atmospheric concentrations of alkanes, alkenes, and aromatics. Within and bordering the DJ 

Basin, additional microenvironments include an urban location, with significant mobile sources 5 

emissions (NOX, CO, and VOCs), and a peri-urban site with fewer mobile emissions and closer 

proximity to oil and gas production activities.  We explore how robust model performance is when a 

model is trained in one microenvironment and transferred to another; challenged by different relative 

abundance of oxidizing and reducing gas species.  Additionally, we test how well models can represent 

and address sensor stability over time and the potential for drift.   10 

2 Methods 

2.1 Sensors and U-pods 

All U-Pod sensor systems (mobilesensingtechnology.com) employed in the case studies, described 

below, were populated with seven low-cost gas sensors, as in our previous study (Casey et al., 2017). 

The gas sensors are listed in Table 1 along with their target gas and the model input codes we assigned 15 

to each.  A RHT03 sensor was used in each U-Pod to measure temperature (temp) and relative humidity 

(rh).  A Bosch BMP085 sensor was used to measure pressure in each U-Pod.   

2.2 Case Studies  

Five to ten U-Pods were deployed at sampling sites in and around the DJ and SJ Basins from 2014 - 

2017. Deployments generally consisted of co-location with reference measurements prior to and 20 

following approximately one-month periods of spatially distributed measurements.  During some of the 

distributed measurement periods, a subset of U-Pods remained co-located with reference instruments 

where the field calibrations took place.  As well, during some distributed measurement periods, some 

U-Pods were deployed in new locations that were equipped with reference measurements.  In between 

periods of distributed sensor system deployments, sensor systems were co-located with reference 25 

instruments for as long as possible, as logistics, and coordination with other regulatory agencies and 

Joanna Gordon� 9/30/18 12:53 PM
Deleted: a

Joanna Gordon� 9/30/18 12:53 PM
Deleted: a

Joanna Gordon� 9/30/18 12:53 PM
Deleted: tuern

Joanna Gordon� 9/2/18 12:32 PM
Deleted: Ten 30 
Joanna Gordon� 9/30/18 12:53 PM
Deleted: systemss

Joanna Gordon� 8/15/18 2:31 PM
Deleted: a number of 

Joanna Gordon� 8/29/18 1:49 PM
Deleted: 

Joanna Gordon� 8/24/18 4:15 PM
Deleted: Deployment Locations and Timelines

Joanna Gordon� 9/2/18 3:08 PM
Deleted: These ten 35 
Joanna Gordon� 8/15/18 2:42 PM
Deleted: a number of 

Joanna Gordon� 9/2/18 3:09 PM
Deleted:  

Joanna Gordon� 8/16/18 11:29 AM
Deleted:  a

Joanna Gordon� 8/16/18 11:29 AM
Deleted:   

Joanna Gordon� 9/2/18 3:10 PM
Deleted:   40 
Joanna Gordon� 8/16/18 11:32 AM
Deleted: During other 



10 
 

researchers would allow.  In this way, we hoped to maximize our ability to encompass full ranges of 

temperature, humidity, and trace gases that occur across seasons, in order to minimize extrapolation 

with respect to these parameters when models were applied to measurements from distributed 

deployment periods.  The locations where all or a subset of U-Pods were co-located with reference 

instruments are indicated in Fig. 1.  In this exploratory study, we opportunistically employ data from 5 

these sensor deployments, treating them as case studies in order to characterize the performance of field 

calibration models when they are extended to new locations. For each case study, described below, data 

was divided into training and test periods.  Timelines for these dataset pairs are detailed in Fig. 2.  Some 

U-Pods employed in these case studies (indicated in grey font in Fig. 2) were constructed, populated 

with sensors, and deployed at field sites in the spring of 2014, approximately a year before the rest of 10 

the U-Pods were constructed, populated with sensors, and deployed at field sites in the spring of 2015.  

The relative age of sensor systems included in some case study comparisons could have contributed to 

some discrepancy in model performance, though systematic differences based on U-Pod age is not 

apparent.  

 15 

As available data from each case study allowed, we used approximately one month of training data 

before and after a given test period. When training data was not available within several months of a test 

period, significantly longer training datasets were used in order to attempt capture and effectively 

represent trends in sensor drift over time, as well as to avoid extrapolation of model parameters 

(particularly temperature) during the test data period.  As a result, model-training durations varied 20 

across case studies and sometimes significantly exceeded model-testing durations.  Each case study is 

similar in representing approximately one month-long deployment of sensor systems.  This study design 

serves a primary goal of this work, supporting the quantification of atmospheric trace gases from low-

cost gas sensor data in new locations, relative to model training locations, for periods of approximately 

one month at a time.   25 

 

Making quantitative measurements of atmospheric trace gases with low-cost sensors is challenged by 

unique variations in individual sensor responses associated with variations in the manufacturing 
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process, sensor age, and sensor exposure history.  For these reasons, we generated unique calibration 

models using data from sensors in each individual U-Pod sensor system.  The closest available data 

prior and or subsequent to a test data period was used for model training to avoid complications 

associated with significant sensor drift and degradation in sensor sensitivity to target gas species over 

time. Table 2 lists the O3 and CO2 reference instruments that were co-located with U-Pods at each 5 

sampling site, along with instrument operators, calibration procedures, and reference data time 

resolution.  The selected case studies, described in sections 2.2.1 through 2.2.7 below, were aimed to 

support methods to quantify atmospheric trace gases during the distributed deployments we carried out 

from 2014 through 2017 as well as future distributed sensor network measurements.  Fig. 1 shows 

sampling site locations in context with urban areas and oil and gas production wells. Fig. 2 shows the 10 

timeline of each of these deployments, highlighting the training and testing periods defined for both O3 

and CO2.  

2.2.1 Dawson Summer 2014 

The first distributed measurement campaign took place during the summer of 2014 when five U-Pods 

were sited at locations around Boulder County, with four distributed along the eastern boundary of the 15 

county, adjacent to Weld County where dense oil and gas production activities were underway.  A 

background site, further from oil and gas production activities was also included to the west, near a busy 

traffic intersection on the north end of the City of Boulder. Co-locations with reference measurements 

that were used for field calibration of the sensors took place at the Continuous Ambient Monitoring 

Program (CAMP) Colorado Department of Health and Environment (CDPHE) air quality monitoring 20 

site in downtown Denver. One of the distributed sampling sites, Dawson School, was also equipped 

with a Thermo Electron 49 O3 reference instrument operated by Detlev Helmig’s research group from 

the Institute for Artic and Alpine Research (INSTAAR). In this work, a case study is developed using 

data from one U-Pod located at the CAMP site in downtown Denver for O3 model training, and data 

from one U-Pod, located at the Dawson School for O3 model testing. This case study is used to test 25 

model performance when extrapolated in terms of O3 mole fractions and applied in a new location, 

transferred from an urban to a peri-urban environment. 
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2.2.2 SJ Basin Spring 2015 

In the spring of 2015, we augmented our original fleet of five U-Pods (BA, BB, BD, BE, and BF) with 

five more (BC, BG, BH, BI, and BJ) and deployed these sensor systems in the SJ Basin while a targeted 

field campaign was underway to understand more about a CH4 ‘hot spot’ that was discovered from 

satellite based remote sensing measurements (Frankenberg et al., 2016; Kort et al., 2014).  The primary 5 

goal of this sensor deployment was to inform spatial and temporal patterns in atmospheric trace gases 

like CH4, O3, CO, and CO2 across the SJ Basin.  Most U-Pods were located at existing air quality 

monitoring sites operated by the New Mexico Air Quality Bureau (NM AQB), the Southern Ute Indian 

Tribe Air Quality Program (SUIT AQP), and the Navajo Environmental Protection Agency (NEPA), 

which supported validation of sensor measurements for O3.  After this deployment period, all U-Pods 10 

were moved to the BAO site in the DJ Basin for approximately one month, and were co-located with 

reference instruments there that were operated by National Oceanic and Atmospheric Administration 

(NOAA) researchers.  A case study is developed with data from the BAO site to train O3 models for 

four U-Pods, and data from SJ Basin sites to test O3 models for four U-Pods.  This case study is used to 

test model performance when extrapolated in temperature and time, and extended to a new location, 15 

extended from one oil and gas production basin to another across Colorado. 

2.2.3 SJ Basin Summer 2015 

In the summer of 2015, after an approximately month-long co-location with reference instruments at the 

BAO site, seven U-Pods were deployed again at existing regulatory monitoring sites for approximately 

one month, after which they were moved back to the BAO site for another month of co-location with 20 

reference instruments there.  We equipped two of the regulatory monitoring sites in the SJ Basin with 

LI-COR LI-840A CO2 analysers to provide reference measurements for CO2.  A case study is 

developed with data from the BAO site, pre and post of the SJ Basin summer 2015 deployment to train 

models, and data from SJ Basin sites during the summer deployment period, to test models.  Data from 

seven U-Pods were used to train and test O3 models and data from two U-Pods were used to train and 25 

test CO2 models.  This case study is used to test model performance when training took place both pre 
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and post of the test period, and when extended to a new location, from one oil and gas production basin 

to another across Colorado. 

2.2.4 BAO Summer 2015 

During the SJ Basin Summer 2015 deployment period, two U-Pods remained at the BAO site. A case 

study is developed using data from those two U-Pods that remained at the BAO site.  This case study is 5 

used to test model performance when training took place both pre and post of the test period, and when 

the model was tested on data that was collected in the same location as model training. 

2.2.5 BAO Summer 2016 

U-Pods were deployed at the BAO site again in 2016 for several months during the summer. In August 

of 2016 the U-Pods were moved to the Greeley Tower (GRET) CDPHE air quality monitoring site in 10 

Greeley, Colorado, a location which, like the BAO site, is also strongly influenced by DJ Basin oil and 

gas production activities.  The U-Pods remained there for one year.  For the GRET co-location period, 

CDPHE shared reference measurements for O3.  Additionally, Jeffrey Collett and Katherine Benedict of 

Colorado State University (CSU) shared CO2 reference measurements from an instrument they operated 

at the site before October 1st in 2016 and after March 7th in 2017, when the instrument was located at the 15 

GRET site.  A case study is developed using data from two U-Pods during the yearlong deployment at 

the GRET site to train models for O3, and data from two U-Pods during the BAO summer 2016 

deployment to test models for O3.  Because reference data for CO2 was not available at the GRET site 

during winter months, the data from two U-Pods collected during eight months at the GRET site was 

used to train models for CO2, and data from two U-Pods during the BAO summer 2016 deployment was 20 

used to test models for CO2.  A significantly longer training duration is implemented in this case study 

because the training period took place more than several months after the model testing period.  We 

reasoned that a longer training duration would be better able to represent patterns in sensor drift over 

time, as well as encompass the temperature range of test dataset period.  Significantly less training time 

is needed when training occurs directly pre and/or post of a given model application period.  This case 25 
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study is used to test model performance when extrapolated significantly (more than several months) in 

time and extended to a new location, from one location in the DJ basin to another.   

2.2.6 GRET Fall 2016 

In order to test model performance, under similar circumstances in terms of relative model training and 

testing durations and timing to the BAO Summer 2016 case study, but with no extension of models to a 5 

new location, we developed another case study.  This time, models for O3 and CO2 were trained using 

data from two U-Pods at GRET over the course of eight months and models for O3 and CO2 were tested 

using data from two U-Pods at GRET over the course of approximately a month in the fall of 2016.  

This case study is used to test model performance when extrapolated significantly (more than several 

months) in time and applied in the same location as training took place.  10 

2.2.7 GRET Spring 2017 

We include findings from our previous work as a case study in order to provide context.  Models for 

CO2 and O3 were tested using data from two U-Pods collected over the course of approximately one 

month at the GRET site in the spring of 2017.  Data from two U-Pods during approximately month-long 

periods pre and post of the test period were used to train O3 and CO2 models.  This case study provides 15 

another example of model performance when training took place both pre and post of the test period, 

and testing took place in the same location as training. 

2.3 Reference and Sensor Data Preparation 

Each of the U-Pod sensor signals was logged to an onboard micro SD card.  For metal oxide type 

sensors, voltage signals were converted into resistance, and then normalized by the resistance of the 20 

sensor in clean air, R0. A single value for R0 was used for each sensor across the study duration. This R0 

value was taken as the resistance of each sensor during the GRET Spring 2017 field deployment period, 

when the target pollutant had approached background levels (at night for the metal oxide O3 sensors and 

midday for all other metal oxide sensors), and when the ambient temperature was approximately 20° C 

and relative humidity of approximately 25%.   Relative humidity, temperature, and pressure measured 25 

in each U-Pod were used to calculate absolute humidity.  Over the course of multiple field deployments, 
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relative humidity sensors in four of the U-Pods drifted down, causing the lower humidity levels to be 

cut off or ‘bottomed out’.  RH sensors were not replaced during field deployments in order to preserve 

consistency across different deployment periods, allowing for the possibility of a single comprehensive 

model to apply to all data from a single U-Pod.  After some experimentation in generating a ‘master 

model’ that could be applied to data from a given U-Pod for all collected field measurements, across 5 

several years, we determined that individual models for each deployment would be more effective, and 

replacing RH sensors that had drifted down would have been appropriate in support of the methods 

presented here.  We have since upgraded to Sensirion AG SHT25 sensors, which appear to be more 

robust and consistent over the course of long-term field deployments.  For measurements collected in 

the spring and summer of 2015 and the spring of 2017, we replaced the relative humidity (RH) signal of 10 

U-Pods with malfunctioning humidity sensors with signals from the closest U-Pod with a good 

humidity sensor and complete data coverage as noted in Table S1. Temperature and RH sensor 

measurements are usually collected from within each U-Pod sensor system in order to gain 

representative information about the environment the gas sensors are being operated in. Using an 

alternative source for RH data that are not onboard an individual U-Pod has the potential to increase 15 

uncertainty of quantified gas mole fractions.  We used replacement RH data from the closest available 

U-Pod instead of ambient measurements in order to more closely approximate humidity at the operating 

temperature within a U-Pod enclosure. The closest U-Pod with good humidity sensors ranged from 

several feet, when U-Pods were co-located during deployments in the DJ Basin at the BAO and GRET 

sites, to approximately fifty miles during deployments in the San Juan Basin.  20 

 

When the U-Pods were initially deployed at the GRET site, on August 23rd of 2016, the RH sensors in 

all ten U-Pods malfunctioned, logging an error code of -99 instead of the relative humidity.  This 

malfunction seemed to coincide with the implementation of radio communication from each U-Pod to a 

central node in an effort to reduce trips to the field site to download data and to identify issues with data 25 

acquisition promptly.  No other impacts to sensor systems were observed in connection with radio 

communications.  RH signals in the U-Pods began logging correctly again in October when we stopped 

remote communication.  We replaced RH values for the U-Pods during this time period by utilizing data 
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from the Picarro Cavity Ring-Down Spectrometer that was co-located at GRET with the U-Pods.  Water 

mole fractions measured by the Picarro were converted into mass-based mixing ratios to match the units 

of the absolute humidity signal in the U-Pod data.  We applied an adjustment to this absolute humidity 

signal so that it matched observations in U-Pods during the following month when good RH sensor data 

was available, to account for the fact that temperatures were higher in U-Pod enclosures than the 5 

ambient environment.   We then replaced the relative humidity signal in each U-Pod from August 23rd 

through October 1st in 2016 with the mixing ratios derived from Picarro measurements.  Using the 

temperature and pressure logged in each U-Pod along with the absolute humidity from the Picarro, 

relative humidity was calculated for each U-Pod during this period.     

 10 

To perform regressions toward field calibration of sensors, the reference and U-Pod data needed to be 

aligned.  When reference measurements with minute time resolution were available for both training 

and corresponding testing periods, minute median data from the U-Pods were used.  Medians were used 

as opposed to averages in order to reduce the potential influence of sensor noise as well as to remove 

short duration spikes in the reference and sensor data that resulted from air masses that may not have 15 

been well mixed across the reference instrument inlets and the U-Pod enclosures.  When reference data 

were instead available with only 5-minute or 60-minute time resolution, U-Pod medians were calculated 

for to match that time step. In order to test models using the same time resolution they were trained 

with, the time resolution of reference and sensor measurements for corresponding training/testing 

datasets were matched, if necessary, by taking medians of the dataset with higher time resolution to 20 

match the data with the longer time resolution. The first 15 minutes of data after any period that the U-

Pods had not recorded data for the previous 5 minutes was removed in order to filter transient behavior 

associated with sensor warm-up.  During a given deployment, the data removed to avoid sensor warm-

up transients constituted less than 1%. 

 25 

When time was included in a model as an input, the absolute time was used.  Specifically, we used the 

datenum value from the MATLAB environment, which is defined by the number of days that have 

elapsed since the start of January 1st, in the year 0000.  A model was extrapolated in time when ever 
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training data does not take place both before and after a given test deployment period.  In several case 

studies we present, model training only took place after the test deployment period, comprising a ‘post 

only’ calibration.  In Colorado, and more broadly in the western United States, ambient temperatures 

change significantly across the seasons throughout the year, so if a model is extrapolated in time, 

extrapolation in temperature often results as well.   5 

2.4 Calibration Model Techniques 

In this work, we explore how well field calibration methods hold up in new locations, a topic 

which has not yet been sufficiently addressed by the scientific community.  As in (Casey et al., 2017), 

direct LMs and ANNs were trained with a number of different sensor input sets to map those inputs to 

target gas mole fractions measured by reference instruments. Direct LMs implemented were multiple 10 

linear regression models given by 

    ! =  !! +  !!!! +  !!!!+. . .+!!!!!!,         (1) 

where r is the target gas mole fraction (measured by a reference instrument) s1 – sn-1 are sensor signals 

from U-Pods that are included as model predictor variables, and p1 – pn are corresponding predictor 

coefficients.   15 

 

ANNs designed for regression tasks, like those employed in this work, generally consist of artificial 

neuron nodes that are connected with weights.  Weights are initiated with randomly assigned values.  

An optimization algorithm is then employed to map a given set input values to corresponding target 

values.  An example of a very simple feed forward neural network, and how weights are propagated 20 

through it are depicted in Fig. 3.  In this work, ANNs were designed by assigning U-Pod sensor signals 

to artificial neurons in an input layer and assigning target gas mole fractions for an individual gas 

species, measured by a reference instrument to a single output neuron.  Nonlinear, tansig, artificial 

neurons in one hidden layer for O3 or two hidden layers for CO2 (accordance with our earlier findings 

for each target gas species (Casey et al., 2017)) were then added between input layer and the network 25 

output neuron.  Additionally, bias neurons, each assigned a value of 1, were connected to neurons in the 

hidden layer(s) so that individual connecting weights could be activated or deactivated during the 
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optimization process.  The number of neurons in each hidden layer was set equal to the number of 

inputs included in a given ANN.  Fig. 4 shows a diagram of an ANN architecture employed in this 

work, when there were five inputs. 

 

For ANN training we employed the Levenberg Marquardt optimization algorithm with Bayesian 5 

Regularization (Hagan et al., 1997).  The Levenberg-Marquardt algorithm combines the Gauss-Newton 

and Gradient Decent methods, towards incremental minimization of a cost function, which is the 

summed squared error between the ANN output and target values as a function of all of the weights in 

the network.  Training begins according to the Gauss-Newton method, in which the Hessian matrix, the 

second order Taylor series representation of the error surface, is approximated as a function of the 10 

Jacobian matrix and its transpose, significantly reducing required training time.  Network weights are 

adjusted accordingly during each training step to reduce error.  If the cost function is not reduced in a 

given training step, an algorithm parameter is adjusted so that optimization more closely approximates 

the gradient decent method (a first order Taylor series representation of the cost function), providing a 

guarantee of convergence on a cost function minimum. Since local minima may exist across the error 15 

surface, it is important to train the same network multiple times, with different randomly assigned 

starting weights, in order to access the stability of ANN performance.  In this work, each ANN was 

trained 5 times.   

 

In the implementation of Bayesian Regularization, a term is added to the sum of squared error cost 20 

function as a penalty for increased network complexity in order to guard against over fitting.  A two 

level Bayesian inference framework is employed, operating on the assumptions that the noise in the 

training data is independent, normally distributed, and also that all of the weights in the ANN are small, 

normally distributed, and unbiased (Hagan et al., 1997). In preliminary ANN tests we found that over 

fitting occurred even when Bayesian Regularization was used, so we additionally implemented early 25 

stopping, which proved to be effective in the reduction of over fitting.  To implement early stopping, a 

portion of training data is set aside as validation dataset, and during training.  Training continues so long 

as the error associated with the validation dataset is reduced. When the error associated with the 
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validation dataset is no longer being reduced, training stops early. For ANNs, training datasets were 

divided in half on an alternating 24-hr basis, with half used for training and half used as validation data 

for early stopping.  Input signals for both LMs and ANNs were normalized so that they ranged in 

magnitude from -1 to 1 since this practice is recommended for the ANN optimization algorithm used 

(Hagan et al., 1997).    5 

2.5 Calibration Model Evaluation and Testing 

To evaluate the performance of each of the ANN and LM models that were generated using training 

data then applied to test datasets, we explored residuals, the coefficient of determination (r2), root mean 

squared error (RMSE), mean bias error (MBE), and centered root mean squared error (CRMSE).  The 

CRMSE is an indicator of the distribution of errors about the mean, or the random component of the 10 

error.  The MBE, alternatively, is an indicator of the systematic component of the error.  The sum of the 

squares of the CRMSE and the MBE is equal to the square of the total error, the square root of which is 

defined by the RMSE.   

 

First, we generated and applied the best performing model, as determined in our previous work 15 

(presented in Table 3), to data from each new case study.  Each new case study was selected to 

challenge models in different ways in order to evaluate the resiliency of the findings from our previous 

study when challenged by different circumstances.  Then we tested LMs for CO2 and O3 that contained 

only the primary target gas sensor for each species, as well as temperature and absolute humidity as 

inputs.  Finally, we generated, applied, and evaluated the performance of a number of LMs and ANNs 20 

with different sets of inputs for each case study in order to see which specific model performed the best 

for each individual case study.  The r2, RMSE, and MBE for each of these alternative models when 

applied to test data are presented in the supplemental materials (SM) in Fig. S2 through Fig. S7, along 

with representative scatter plots and time series comparing the performance LMs and ANNs for a given 

set of inputs.  In Fig. S2 through Fig. S7, the best performing model inputs for each train/test data pair 25 

are shaded in purple.  The type of model that performed the best (ANN vs. LM) is indicated in the 

caption of each figure.  We discuss both the performance of the previously determined best fitting 
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model (generated using data from the GRET Spring 2017 case study) when applied and generated to 

data from new case studies, and the performance of models that were tuned to perform the best for each 

individual case study.  From these comparisons, we draw insight into circumstances that challenge 

model performance in terms of relative local emissions characteristics, location, and timing between 

model training and testing pairs.  Table 4 lists the relative timing and parameter coverage between 5 

model training and testing periods for dataset pairs, highlighting instances of incomplete coverage 

during training that led to model extrapolation during testing.   

3 Results and Discussion  

3.1 BAO and SJ Basin Summer 2015  

The set of deployments we conducted in the summer of 2015 is particularly useful to the objective of 10 

characterizing how well field calibration models can be extended to a new location relative to their 

performance where they were trained. During the testing period, two U-Pods were located at BAO, 

where training took place, while seven U-Pods were co-located with reference measurements for O3, 

and two U-Pods were co-located with reference measurements for CO2 in the SJ Basin, across Colorado 

and over the state line in New Mexico.  Sampling sites at BAO, in the DJ Basin, and throughout the SJ 15 

Basin were all influenced by oil and gas production activities and their associated emissions to some 

extent, but the composition of the production stream is different in each basin. In the SJ Basin, 

particularly the northern portion of the basin where all our sampling sites were located production is 

dominated by coalbed methane.  In contrast, many wells in the DJ Basin produce both oil and gas 

leading to greater relative abundance of heavier hydrocarbons in emissions.  The DJ Basin air shed is 20 

also more strongly impacted by urban emissions than the SJ Basin air shed, and is more strongly 

influenced by mobile sources with Denver, Boulder, Fort Collins, Greeley, and many other smaller 

communities in its midst and along its borders.  The Four Corners region, where the SJ Basin is situated, 

has a much smaller population density. Additionally, while there are some agricultural activities and 

associated emissions in and around the SJ Basin, there is a significantly larger agricultural industry in 25 

and around the DJ Basin.  SJ Basin sampling sites spanned a range of elevations, including some that 
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were higher and some that were lower than the BAO Tower, coinciding with a wide range of 

atmospheric pressure at the distributed sampling sites.   

 

We began by testing the best-performing CO2 model, as determined in our previous work (Casey et al., 

2017), on this data, collected under a different set of circumstances, during the summer of 2015.  ANNs 5 

that were trained for each U-Pod using data from the BAO Tower with the following inputs from each 

U-Pod:  eltCO2 (ELT S300 CO2 sensor) , temp (temperature) , and absHum (absolute humidity). These 

data are presented in Fig. 5 and Fig. 6.  Fig. 5 shows scatter plots of U-Pod CO2 vs. reference CO2 

during the test data period for sensors located at BAO as well as sensors that were located at distributed 

sampling sites throughout the SJ Basin.  The scatter plots show that while there was generally a smaller 10 

dynamic range of CO2 at the SJ Basin sites relative to BAO, model performance did not appear to be 

impacted or degraded by spatial extension to these locations in the SJ Basin.  The line of best fit for Fort 

Lewis site (periwinkle) is even closer to the 1:1 than the lines of best fit for two U-Pods located at BAO 

(black and grey). Overlaid histograms of residuals in the bottom right corner of Fig. 5 show that CO2 

residuals from each of the SJ Basin U-Pods are generally centered and evenly distributed about zero 15 

with similar spread. 

 

U-Pod CO2 average residuals from the same data presented in Fig. 5, quantified using ANNs with 

eltCO2, temp, and absHum signals as inputs, are plotted according to time of day and date in Fig. 6.  

While the use of ANNs in place of LMs was shown to reduce U-Pod CO2 residuals significantly with 20 

respect to temperature, some daily periodicity in the residuals for all four U-Pods is apparent in the 

upper plot in Fig. 6 that shows residuals by date.  The lower plot in Fig. 6, showing residuals by time of 

day, demonstrates that CO2 from three of four U-Pods was generally under predicted during early hours 

of the morning and generally over predicted during afternoon and evening hours. Interestingly, this 

trend in residuals by time of day is more pronounced for the two U-Pods that remained at BAO.  Upon 25 

examination of overlaid histograms showing distributions of parameters during model testing and 

training periods, in Fig. S12, and model time series and residuals plots in Fig. S3, there is no indication 

of model extrapolation at the BAO site, nor the sites in the SJ Basin (with the exception of pressure due 
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the wide range altitudes encompassed) and no significant trends of concern with respect to residuals 

with respect to model inputs. Bias introduced to mole fraction estimates are likely attributable to 

differences in hydrocarbon mixtures in the SJ Basin relative to the DJ Basin.  

 

Next we evaluated the best model type and set of inputs for this specific case study.  Differing from our 5 

previous findings, for this group of training and testing data pairs from the summer of 2015 at the BAO 

and SJ Basin sites, the inclusion of the e2vVOC (e2v MiCs-5521) and alphaCO (Alphasense CO-B4) 

sensor signals noticeably improved the RMSE in the quantification of CO2.  While the inclusion of 

these two secondary sensor signals didn’t result in the best performance in our previous study, using 

data from the GRET site (Casey et al., 2017), their inclusion did not degrade performance relative to the 10 

models that included just eltCO2, temp, and absHum signals as inputs, so including these sensor signals 

may be appropriate as a general rule, in areas that are strongly influenced by oil and gas production 

activities.  Generally, using rh vs. absHum signals as ANN inputs did not have a measurable impact on 

model performance, though linear models were sometimes found to perform better when the absHum 

signal is used instead of the rh signal.  From Fig. S2, it is apparent that inputs including e2vCO (e2v 15 

MiCs-5525), temp, rh, e2vVOC, and alphaCO sensor signals as model inputs resulted in the lowest 

RMSE for U-Pods at BAO as well as at the two SJ Basin sites.  Plots analogous to those presented in 

Fig. 5 and Fig. 6, but with this best performing set of inputs for the present data set pairs are presented 

in the SM, in Fig. S24 and Fig. S25 respectively. 

 20 

O3 was quantified for the two U-Pods deployed at BAO and seven of the U-Pods deployed at SJ Basin 

sampling sites using an ANN with the following inputs:  e2vO3 (e2v MiCs-2611), temp, absHum, 

e2vCO, e2vVOC, figCH4 (Figaro TGS 2600), and figCxHy (Figaro TGS 2602).  ANNs with this 

configuration were found to perform best in the quantification of O3 in our previous study (Casey et al., 

2017).  These same inputs and model configuration were also found to be the best performing for the U-25 

Pods at the BAO site and the majority of SJ Basin 2015 dataset pairs as noted in Fig. S2.  Interestingly 

though, LMs with this same set of inputs performed competitively well for three of the seven U-Pods in 

the SJ Basin in terms of RMSE and r2.  The observation that LMs performed competitively well at a 
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subset of SJ Basin sites is likely connected to the relative abundance of hydrocarbons and other 

potentially interfering oxidizing and reducing gas species at individual sampling sites, diverging from 

conditions present during model training at the BAO site.  ANNs can better represent the influence of 

these interfering species than LMs during training, but appear to have lost their ability to do so for this 

subset of microenvironments in the SJ Basin.   5 

 

Scatter plots and trends in residuals are presented in Fig. 7 and Fig. 8 for O3.  These plots show the 

performance of U-Pods at BAO relative to those at SJ Basin sites in the quantification of O3 during the 

test data period.  U-Pod O3 measurements at Fort Lewis, Navajo Dam, and the Sub Station did not agree 

with reference measurements as well as U-Pod O3 measurements from the other four SJ Basin sites.  As 10 

noted earlier, U-Pods at the Navajo Dam and Sub Station sites had faulty relative humidity sensor data, 

so humidity from the U-Pod located at the Ignacio site was used in place of their humidity signals.  

Since the Ignacio site was located approximately twenty-two and fifty miles away from the Navajo Dam 

and Sub Station sites respectively, this could have introduced some additional error into the application 

of a calibration equation, particularly since we showed earlier that O3 ANNs like the ones we employed 15 

here are very sensitive to humidity inputs (Casey et al., 2017).  Spatial variability in humidity across 

tens of miles could be significant as isolated storms (which are on average 15 miles in diameter) 

propagate throughout the region in the summer.  At the Fort Lewis site, a 2b Technologies model 202 

O3 analyser was employed as a reference instrument, differing from the Thermo Scientific 49i, Thermo 

Scientific 49is, and Teledyne API T400 instruments utilized for reference measurements, elsewhere in 20 

the SJ Basin, and the Thermo Scientific 49c that was operated at the BAO site and used for model 

training.  Of all the reference instruments, only the 2b Technologies model 202 O3 at the Fort Lewis site 

was operated in a room that was not temperature controlled, as such, some bias may have been 

introduced to the Fort Lewis O3 reference measurements.  Different instruments, operators, calibration 

and data quality checking procedures could have contributed to observed discrepancies.  It is also 25 

possible that the microenvironment at each of these three sites contributed to lower model performance.  

Fig. S1 shows that differences among U-Pod O3 performance during the test deployment period were 

larger than those observed during the training phase among the same U-Pods; therefore, the incongruous 
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field calibration performance phenomena we observed seems to be connected to unique characteristics 

associated with individual sampling sites;  possibly relative abundance of oxidizing and reducing 

molecules in the local atmosphere, which could interfere with sensor responses to their target gas 

species, as opposed to the quality of individual sensors in each of those U-Pods.   

 5 

All SJ Basin U-Pod O3 measurements systematically over estimate lower levels of O3 each night, a 

trend apparent in the scatter plots in Fig. 7 and in the residuals by time of day plot in Fig. 8.  Upon 

examination of the scatter plots in Fig. 7, U-Pods at some sampling sites had positive bias for higher O3 

measurements as well (Shiprock, Ignacio, Sub Station, and Bloomfield), while for others, bias at the 

higher end of O3 distributions did not appear to be present (Navajo Dam, Fort Lewis, and Bondad).  The 10 

residuals by time of day plot in Fig. 8 shows that the two U-Pods at BAO did not have significant trends 

in their residuals according to the time of day, but that U-Pods deployed at SJ Basin sites consistently 

over estimated nighttime O3.  The residuals are also plotted with respect to temperature in Fig. 8, where 

all U-Pods, even those at BAO to a lesser extent, appear to over predict O3 at lower temperatures, which 

generally occurred at night.  In general, the times of day that correspond to the highest O3 levels had the 15 

lowest residuals, with some exceptions at the Fort Lewis and Navajo Dam sites.   

 

Fig. 8 includes a plot of the residuals across the duration of the deployment period, showing no 

significant sensor drift in measurements for any of the U-Pods.  This plot also shows that the highest 

residuals observed generally occurred over short periods in time, particularly for the Fort Lewis (blue) 20 

and Sub Station (magenta) sites.  In order to further explore the performance of field calibration models 

for O3 at SJ Basin sites relative to BAO, the combined parameter space of temperature with O3 

reference mole fractions and temperature with absolute humidity are presented in Fig. 9.  The combined 

temperature and reference O3 parameter space appears to be similar for all of the U-Pods, both at BAO 

and the SJ Basin sites.  However, there appears to be some outlying combined temperature and 25 

humidity parameter space at the Sub Station site and at the Navajo Dam site.  Brief excursions, lasting 

approximately 2 – 4 hours, of high humidity (up to 0.025 kg/kg, relative to the upper bound of absolute 
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humidity observed at other sampling sites of 0.013 kg/kg) may be connected to some of the large short-

term residuals observed at these two sampling sites.  

 

The majority of U-Pods stopped logging data, unfortunately, at one point or another during these 

deployments.  Periods of missed data during the month-long deployment included approximately one 5 

day at the Shiprock site, two days at the Bloomfield site, four days at the Sub Station site, nine days at 

the Fort Lewis site, and seventeen days at the Navajo Dam site.  We carried out frequent sampling site 

visits (on a weekly or biweekly basis as logistics and travel to remote locations in some cases allowed) 

in order to identify and fix problems as they arose during field deployments.  Operational issues were 

predominantly attributable to power supply problems associated with BNC bulkhead fittings and 10 

corrupted micro SD cards.  The periods of missing data are reflected in the plots of residuals by date in 

Fig. 6 for CO2 and in Fig. 8 for O3.  Fortunately, no drift over the course of the deployment period was 

observed in these plots.  

3.2 Insight from Additional Case Studies of Field Calibration Extension to New Locations 

3.2.1 Urban calibration moved to rural/peri-urban setting: Dawson Summer 2014 15 

The Boulder County deployment in the summer of 2014 was used to test how well a field calibration for 

sensors in one U-Pod, generated in a busy urban area (at CAMP in downtown Denver), could be 

extended to a peri-urban setting (at Dawson School in eastern Boulder County).  Training took place at 

CAMP for several days each month, before and after each approximately month-long deployment 

period at Dawson School over the course of four months.  Fig. S7 shows the performance of a number 20 

of ANN and LM-based CAMP field calibrations with different sets of inputs at this Dawson School test 

site.  In this case study, LMs performed better than ANNs across all sets of sensor inputs.  Unlike 

findings from our previous study (Casey et al., 2017), including secondary metal oxide type sensors as 

inputs didn’t help to improve model performance.  The best performing set of inputs included just 

e2vO3, temp, and absHum signals.  The very different relative abundance of various oxidizing and 25 

reducing compounds in downtown Denver relative to the Dawson School site, surrounded by open 

grassy fields, and in closer proximity to oil and gas production activities, may be the reason why 
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including additional gas sensors as model inputs and the use of ANNs failed to improve the 

quantification of U-Pod O3 in this case.  Relatively short training durations could also contribute to this 

finding, based on findings from our previous work (Casey et al., 2017).   

 

The fact that LMs performed better than ANNs in this case (with an r2 of .95 and RMSE of 0.35 ppb for 5 

LMs, as opposed to an r2 of .9 and an RMSE of 5.1 ppb for ANNs) may have to do with the general 

expectation that LMs be more resilient to extrapolation than ANNs.  Notably though, neither ANNs nor 

the LMs captured the highest levels of O3 at Dawson School well.  We attribute the poor performance at 

high levels of O3 at this site, those in exceedance of about 70 ppb, to extrapolation of the O3 mole 

fractions encompassed during the training period.  The LM generally performed well within the O3 10 

levels covered during the training period.  Across applications, ANNs have been found to be unreliable 

when extrapolated, due to the nonlinear nature and complexity of the relationships they represent.  

Though they are generally expected to be more robust to extrapolation that ANNs, increased uncertainty 

in measurements can also be introduced to LMs when parameters are extrapolated.  In order to have 

high confidence in measurements of uncommonly high mole fractions of a target gas, the model training 15 

period has to encompass the full possible range.  Combining both field calibration and lab calibration 

data together in a training dataset could accomplish this type of coverage.  If extrapolation is expected 

to occur with respect to the target gas mole fraction, as in this case study, the use of an inverted LM 

may yield better results than LMs or ANNs.  We describe inverted LMs and their potential advantages 

in our previous work (Casey et al., 2017).  Keeping in mind this finding about O3 extrapolation, for 20 

ambient measurements in the DJ Basin, for subsequent deployments, we selected field calibration sites 

that were more representative of distributed sampling site locations, outside of the dense urban 

environment in downtown Denver, where O3 did not get as high, likely due to increased titration of O3 

at night in connection with abundant NOX compounds.   

3.2.2 Post only calibration moved across the state:  SJ Basin Spring 2015 25 

We also examined model performance that was subject to extrapolation in time and temperature. We 

present O3 model performance data from four U-Pods that were co-located with reference instruments 
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in the SJ Basin in the spring of 2015, at the Navajo Dam, Sub Station, and Bloomfield sites.  Two U-

Pods at the Bloomfield site provide a set of duplicate measures.  Fig. S4 shows the performance of a 

number of ANN and LM-based BAO field calibrations with different sets of inputs at this SJ Basin test 

sites in the spring of 2015, just prior to the summer 2015 BAO training period.  U-Pod O3 was 

quantified for these deployments using training data from the same co-location period at BAO that was 5 

used toward quantification of the summer 2015 SJ Basin deployment, described in section 3.1.   

 

The addition of time as a model input didn’t seem to improve the performance of either ANNs or LMs 

and ANNs generally outperformed LMs.  Gas sensor manufactures don’t clearly define sensor lifetimes, 

but sensors are generally expected to loose sensitivity over time.  For example, Alphasense CO-B4 10 

electrochemical sensors are expected to have 50% of their original sensitivity after two years 

(Alphasense, 2015).   The heater resistance in a given metal oxide type sensor is expected to drift over 

time, influencing sensor measurements (e2v Technologies Ltd., 2007).  Masson and colleagues 

observed a significant drift in a metal oxide sensor heater resistance over the course of a 250 day 

sampling period in a laboratory setting (Masson et al., 2015).  While we did not measure and record 15 

metal oxide sensor heater resistance for sensors included in U-Pods, we have investigated eltCO2 and 

e2vO3 sensor signal drift from the summer of 2015 through the summer of 2017.  These data are 

presented in Fig. S26.  Systematic downward drift in all eltCO2 sensor signals is apparent over this time 

frame.  A clear and consistent pattern of systematic drift over this time period is less apparent for e2vO3 

sensors.  Since the training data was collected immediately after, the test data period, and since the test 20 

data period was relatively short (approximately one month) sensor drift could be negligible across the 

combined training/testing time frame.  U-Pods experienced colder temperatures during this spring 

deployment than were encompassed subsequently in the BAO training period.   Linear models generally 

resulted in more bias than ANNs. Again the model for O3 that was found to perform best in our 

previous (Casey et al., 2017),  an ANN with temp, absHum and all metal oxide sensor signals as inputs, 25 

performed the best at sites included in this case study, with one exception. At the Sub Station site the 

inclusion of the figCxHy sensor signal decreased model performance.  Additionally, the performance of 

all models tested at the Sub Station site during the SJ Basin Spring 2015 deployment was significantly 
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worse in terms of MBE than model performance at other sites, both LMs and ANNs with different sets 

of inputs.  Since this sensor signal input augmented model performance at the same sampling location 

during the summer deployment period, this finding could be attributable to the extrapolation with 

respect to temperature that occurred during the test period of this case study.  As discussed in the 

introduction, metal oxide sensor sensitivity to different gas species can vary along with sensor surface 5 

temperature.  Models were trained to use the figCxHy sensor signal, across the ambient temperatures in 

encompassed by the training data, to help account for the influence of confounding gas species at the 

BAO site.  We think it is possible that the different temperatures in combination with the unique mix of 

gas species present at the Sub Station site, which the figCxHy sensors are highly sensitive to, caused the 

ANN to perform worse.  The Sub Station site is close to two large coal-fired power plants, indicated in 10 

Fig. 1 by orange markers in the SJ Basin pane.  It is possible that emissions from the San Juan 

Generating Station (north) and/or the Four Corners Power Plant (south) uniquely influenced the 

response of this particular Figaro sensor in ways that are not well represented at BAO in the DJ Basin, 

or present at other SJ Basin sampling sites.  Several-hour long enhancements or spikes are apparent in 

the raw eltCO2 and alphaCO sensor signals in the U-Pod deployed at the Sub Station site, indicating the 15 

presence of a near-by combustion-related emissions source.  Another indication of a near-field power 

plant plume across the deployment area is apparent, in the form of several-hour long enhancements of 

reference measurements of NO and NO2 at the site.  

3.2.3 Post only calibration moved 40 miles across the DJ Basin:  BAO Summer 2016 

In testing the performance of field calibrations that were generated using data collected at the GRET 20 

site in 2017 and applied for the quantification of O3 at BAO in the 2016, across the DJ Basin, we were 

interested to find that again, the inclusion of time as a model input did not yield any improvements in 

calibration equation performance, even though model training took place several months after the test 

period.  Fig. S5 shows the performance of a number of ANN and LM-based GRET field calibrations 

with different sets of inputs at this BAO test site the previous summer.  Another interesting finding from 25 

this training/testing dataset pair was that the addition of secondary metal oxide type gas sensors, didn’t 

seem to help improve the performance of field calibration equations either.  Fig. S5 shows that ANNs 
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performed better than LMs and that the most useful set of inputs included just e2vO3, temp, and 

absHum.  Similarly, the performance of field calibration equations for CO2 generated at GRET in 2017 

and applied to data from BAO in the summer of 2016, did not seem to be augmented by the inclusion of 

additional gas sensor signals, though the inclusion of time as a predictor was useful.  In the case of CO2, 

LMs outperformed ANNs, which could be largely attributable to notable instability associated with the 5 

performance of ANNs when time was included as an input.  For CO2, we expected the inclusion of time 

as an input to be a useful to model performance across this time frame, owing to observed trends of 

decreased CO2 sensor sensitivity in time.  To keep the power requirements for the U-Pod sensor systems 

low, and to keep systems quiet, fans were used to exchange air in the enclosures as opposed to pumps.  

As a result, the air entering the enclosures was not filtered, and sensors were exposed to some dust over 10 

time.  This dust exposure is likely largely responsible for observed decreases in CO2 sensors sensitivity 

over time, shown in Fig. S26.  Decreases in infrared lamp intensity over time may also play a role.  In 

the case of CO2 sensors, the implementation of pumps to draw new, filtered air into sensor enclosures 

could likely significantly reduce lose rates in the sensitivity of an individual sensor over periods of 

continuous deployment in ambient environment.  While we are not sure why ANN performance tended 15 

not to benefit from the addition of a time input, while LM performance did, it is likely attributable to the 

extrapolation of the time input, since only data that was collected significantly subsequent to the test 

data period was used for training.  ANNs are expected to be able to better represent time decay trends if 

data from measurements both prior and subsequent to the test period are used in training, so that there is 

no extrapolation with respect to the time input.   20 

3.2.4 Post only calibration applied to the same location:  GRET Fall 2016 

To investigate if reduced performance from these GRET to BAO field calibration tests were more 

connected to the new deployment location or to the significant extrapolation with respect to time of the 

calibration models, we generated calibration equations based on similarly long training periods at 

GRET and applied them to data collected prior to the training period at GRET in the fall of 2016.  We 25 

couldn’t draw strong conclusions from this comparison, unfortunately, because of an issue with 

humidity sensors, described in the methods section and below.  Fig. S6 shows the performance of a 
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number of ANN and LM-based GRET field calibrations with different sets of inputs at the GRET test 

site during fall of the previous year.  For O3 models, the best performing ANN inputs for this dataset 

pair were the same ones that we found in our previous study (Casey et al., 2017), with the exception of 

the  humidity signal.  The fall 2016 GRET test period coincided with the time period U-Pod absolute 

humidity was replaced using mixing ratios from a co-located Picarro due to missing humidity sensor 5 

data. Interestingly, when this ‘borrowed’ humidity signal was not included as an input, the model 

performance markedly increased and became competitive with other ‘same location’ test deployment 

case studies.  In our previous work, we showed that O3 models were very sensitive to the humidity 

signal input  (Casey et al., 2017).  In this case study, it seems that replacing actual humidity signals with 

closely approximated humidity signals, negatively influenced model performance.  In order to 10 

investigate this observation further, we tested the influence of replacing humidity data in the same 

manner, using mixing ratios from the same co-located Picarro, on test data from the GRET Spring 2017 

case study.  A comparison of model performance under normal and this ‘borrowed RH’ circumstance is 

presented in Fig. S27 in the SM.  O3 model performance was negatively impacted when ‘borrowed’ RH 

values based on Picarro data replaced U-Pod RH sensor signals.  From these findings, it seems likely 15 

that the inclusion of multiple metal oxide type sensors as inputs in the model, which all respond 

strongly to humidity fluctuations, helped the ANN to effectively represent the influence of humidity in 

the system, more so than including a ‘borrowed RH’ signal from another instrument.  We tested models 

with multiple gas sensor signals and no humidity signal as inputs for a number of other case studies as 

well (as seen in Fig. S2, Fig. S4, and Fig. S5), when good humidity data from U-Pod enclosures was 20 

available, but they did not turn out to be the best performing model in any of these other tests.   

3.3 Evaluation of models across training/testing dataset pairs 

For each of the case studies, we compare the relative model performance under three governing model-

training paradigms.  The first of these paradigms includes linear models with only the primary gas 

sensor signal, along with temperature, and absolute humidity signals as inputs.  Performance of these 25 

models is shown in Fig. 10.  The next paradigm includes models that were found to perform best for 

each trace gas in our previous work.  Performance of these models is shown in Fig. 11.  The third 
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paradigm includes models that were optimized for each case study specifically.  Performance of these 

models is shown in Fig. 12.  Table 5 and Table 6 show the mean and standard deviation of model 

performance metrics for each of the case studies presented.  Table 7 shows the percent change in model 

performance metrics when one model-training paradigm is used in place of another, highlighting 

relative benefits associated with the implementation of different models for O3 and CO2.   5 

 

Fig. 10, Fig. 11, and Fig. 12 contain target plots showing the MBE and CRMSE of models from each 

dataset pair in terms of absolute mole fractions and mole fractions normalized uniformly by the standard 

deviation of reference data during the spring 2017 GRET deployment.  In the SM, Fig. S23 contains 

target diagrams equivalent to those presented in Fig. 12, but with individually normalized MBE and 10 

CRMSE, according to the standard deviation of reference measurements during each individual test 

period.  The outer circle’s radius in each of these target diagrams denotes an error-to-signal ratio of 1.  

The inner circle’s radius in each of these target diagrams encompasses the performance of models when 

they were tested at the same location that they were trained and when training data bookended the test 

period, so that there was no extrapolation of the model across time or deployment location.  We present 15 

our findings in the form of these target diagrams in order to compare our findings with those presented 

in several particularly relevant previous studies focused on the field calibration of low-cost sensors 

(Spinelle et al., 2015, 2017; Zimmerman et al., 2017).  

 

Fig. 10 and Fig. 11 show that for CO2, ANN models generally performed slightly better than LM 20 

models with the same set of inputs, though models that were extrapolated more than several months in 

time were the exception.  For O3, ANNs that included multiple secondary metal oxide sensor signals as 

inputs were also found to generally perform slightly better than the relatively simple LMs that didn’t 

include any secondary gas sensors as inputs over all (with exceptions for individual case studies).  This 

can be seen in Table 7 and in Fig. 10 and Fig. 11, with all plot markers falling within the outer radius in 25 

Fig. 11 (ANNs) but some plot markers falling outside the outer radius in Fig. 10 (LMs).  Models that 

were not moved to a new location for the test period gained the most benefit in their performance when 

ANNs were used instead of LMs, resulting in a smaller inner radius in the target plots in Fig. 11 relative 
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to Fig. 10 for both O3 and CO2.  The target diagrams in Fig. 10 and Fig. 11 show some degradation in 

performance when models were applied to data in new locations and when training data took place only 

after the test period.  The of the target plots in Fig. 10 and Fig. 11 demonstrate that bias was introduced 

when field calibration models were extrapolated in terms of time, when training periods only 

encompassed data after the test data period and not prior.  Interestingly, there are noticeable similarities 5 

between the target plots for CO2 in Fig. 10 and 11 and the target plots for O3 in Fig. 10 and 11.   

 

The relative performance of models among each training/test dataset pair remained fairly consistent 

across the different models employed in data quantification.  These systematic trends highlight the 

importance of model training and testing circumstances relative to specific field calibration model types 10 

and inputs.  For the BAO Summer 2016 case study, when time was extrapolated significantly, and when 

models were moved across the DJ Basin, CO2 and O3 were both better represented by LMs than ANNs.  

CO2 and O3 models did not benefit from additional gas sensors added as inputs either for this case 

study. In Fig. 11, of models that performed best for each species as determined in our previous study, 

models that were not extrapolated in time for CO2, and all O3 models, plot markers fall within the outer 15 

radius, meeting performance standards framed by previous studies (Spinelle et al., 2015, 2017; 

Zimmerman et al., 2017).  In Fig. 12 the best field calibration model performances for each case study 

all fall within the outer radius, showing good performance, and indicating that incomplete coverage of 

parameter space in terms of atmospheric chemistry, weather patterns, sampling location, and sampling 

timing, can be addressed to some extent by tailoring field calibration models and their inputs to specific 20 

training/testing datasets pairs. 

 

For CO2 we found that field calibration models generally extended with good performance to new 

locations.  ANNs outperformed LMs when training took place pre and post of a test deployment.  When 

training only took place after a test deployment LMs performed better.  LMs seem to be better at 25 

extrapolating in time.  Over time, ELT NDIR CO2 sensors seem to lose sensitivity and/or drift.  When 

CO2 models were extended back in time, significant bias resulted when time was not included as an 

input.  ANNs were not able to extrapolate in time with any success and their performance became very 
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unstable when time was added as an input, an occurrence that is apparent in Fig. S5 and Fig. S6.  

Models performed better when they were extended spatially, all the way across Colorado from the DJ 

Basin to the SJ Basin, than they did when they were extended back in time.  Extension of a LM back in 

time and across the DJ Basin (from GRET in 2017 to BAO in 2016) resulted in significant MBE 

relative to the other case studies.  The inclusion of multiple additional gas sensors augmented model 5 

performance when extended back in time at the same location as training took place, but not at a new 

location.   

 

For O3 we found that ANNs with the same set of inputs worked best across a number of case studies, 

informed by all the metal oxide sensor signals as well as temperature and humidity.  The extension of 10 

models to new locations often resulted in increased MBE or systematic error, and in some cases 

increased CRMSE or random error.  Some observed bias in the extension of models to new locations 

could be attributable to different reference instruments with different operators and/or different 

calibration and data quality measures employed. O3 model extension to new locations seemed to be 

more impactful than extension back in time.  Interestingly, additional metal oxide sensor signals 15 

remained helpful when models were extended all the way across Colorado, from BAO to the SJ Basin, 

but these additional gas sensor signals did not remain helpful when O3 models were extended across a 

county line, from Adams County (CAMP) to Boulder County (Dawson) or from Weld County (GRET) 

to Boulder County (BAO).  ANNs generally performed better than LMs for O3, with the exception of 

these two Front Range case studies (Dawson Summer 2014 and BAO Summer 2016).  We found in our 20 

previous study that shorter training times led to decreased performance in ANNs and sometimes 

increased performance in LMs.  The training time used in the CAMP to Dawson case study was 

relatively short, which could have contributed to the superior performance of LMs over ANNs.    For 

the BAO Summer 2016 case study, both ANN and LM markers are included (each with the same 

inputs: e2vO3, temp, and absHum).  LMs had smaller random error but ANNs had smaller bias, 25 

highlighting an important consideration in the application of one or the other to inform specific research 

or measurement goals.  
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4 Conclusions 

Several previous studies have shown that multiple gas sensor signals and the implementation of 

supervised learning techniques can improve the performance of field calibration of low-cost sensors in 

the quantification of a number of atmospheric trace gas mole fractions.  We investigated how well a 

supervised learning technique (ANNs) held up when sensors were moved to a new location, different 5 

from where calibration model training took place.  We tested the spatial and temporal transferability of 

field calibration models for O3 and CO2 under a number of different circumstances using data from 

multiple reference instrument co-locations, using the same sensors over the course of several years, 

when sensors were deployed in two oil and gas production basins, along with urban and peri-urban 

sites.  We found that the best performing field calibration models for both O3 and CO2 were not 10 

consistent across all training and testing deployment pairs, though some patterns emerged in terms of 

model type and inputs in association with the spatial and temporal extension of calibration equations, 

from training to testing performed in oil and gas production areas.  The performance of O3 models 

generally benefited from the inclusion of multiple metal oxide sensor signals in addition to the primary 

e2vO3 sensor signal, while the performance of CO2 models relied more heavily on temperature and 15 

humidity inputs.  CO2 model performance was impacted more by temporal extension than spatial 

extension.  In contrast, O3 model performance was impacted more by spatial extension than temporal 

extension. 

 

While ANNs and other supervised learning techniques have been shown to consistently out perform 20 

linear models in previous studies when training and testing took place in the same location, we find that 

this trend does not always hold when field calibration models are applied in a new location, with 

significantly different local emissions source signatures for O3 models, or when model training data 

takes place more than several months subsequent to the model application period for CO2 models  We 

found that the implementation of calibration models that were well suited to specific training and test 25 

data pairs resulted in generally good test performance in terms of centered root mean squared error and 

mean biased error, scaled by reference measurement standard deviation, reported in target diagrams in 

previous studies.  For example, when models were significantly extrapolated in time and transferred to a 
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new location, a well-suited set of sensor inputs would generally not include secondary gas sensor 

signals.   

 

LMs with just one primary gas sensor signal as well as temperature and humidity were found to 

outperform ANNs when models were applied to a location with different dominating sources of 5 

pollution in the case of O3, like Downtown Denver relative to eastern Boulder County.  These three-

input LMs also outperformed ANNs when models were significantly extrapolated in time.  While these 

LMs seemed to be more stable under circumstances of significant extrapolation in terms of local air 

chemistry and timing, we found that they did not extrapolate well in terms of the O3 mole fraction, 

resulting in underproduction of O3 values during the test period that exceeded those encompassed in the 10 

training data.     

 

Field calibration models tested in new locations often resulted in the introduction of additional bias 

relative to field calibration models that were tested in the same location they were trained in.  As seen in 

Fig. 12, plot markers from all case studies have very similar CRMSE values, but plot markers from case 15 

studies in which models were tested in new locations have larger MBE values than models that were 

tested in the same location as they were trained.   Finding ways to effectively mitigate bias associated 

with new field deployment locations would further improve the performance of field calibrations toward 

quantification of atmospheric trace gases using arrays of low-cost sensors.  Such improvements in the 

field of low-cost sensors will help to enable dense distributed networks of low-cost sensors to inform air 20 

quality in oil and gas production basins.  The following findings from this work, and associated 

recommendations, are made to help inform the logistics of future studies that employ field calibration 

methods of low-cost gas sensors. 

 

1. Finding: For O3 models, LMs perform better than ANNs when the chemical composition of 25 

local emissions sources is significantly different in the model-training location relative to the 

model-application location.  We found that when models were trained in an urban area with 

significant mobile sources, then tested in a peri-urban area, more strongly influenced by oil and 
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gas emissions, the differences in local sources of pollution were significantly different enough 

that LMs outperformed ANNs.  Alternatively, when models were trained in one oil and gas 

production region and tested in another the different composition of local emissions (lighter vs. 

heavier hydrocarbons) was not significant enough for LM performance to surpass the 

performance of ANNs, though some positive bias was evident in predicted O3 mole fractions.   5 

Explanation:  ANNs are very effective at compensating for the influence of interfering gas 

species through pattern recognition of a training dataset.  However, if different patterns, in terms 

of the relative abundance of various oxidizing and reducing compounds in the air, are present in 

the testing location relative to the training location, ANNs may not able to compensate for the 

influence of interfering gas species as effectively.   The relative abundance of interfering 10 

oxidizing and reducing compounds are not included as model parameters, but ANN performance 

is challenged by these circumstances.  

Recommendation: When measuring O3 or other gas species with a metal oxide type sensor, if 

the nature of dominant emissions sources at the model training location is significantly different 

than the nature of dominant emissions sources in the model application location, use a LM 15 

instead of an ANN.  For the best performance, try to train models in locations with similar 

emissions sources to a desired sampling location.  If the nature of dominant emissions sources at 

the model training and application locations are similar, signals from an array of multiple unique 

metal oxide sensors will likely augment model performance. 

 20 

2. Finding:  For CO2 models, LMs perform better than ANNs when model training occurs 

significantly (more than several months) prior to or subsequent to the model application period.                             

Explanation:  CO2 sensors drift over time in terms of sensitivity and baseline response.   When 

models are extrapolated in time (when training takes place more than several months prior or 

subsequent to the model application period), ANN performance can be compromised to a greater 25 

extent than LM performance. ANNs are able to represent relationships during training very 

effectively, and with significant more complexity and nonlinear relationships among time and 

other model inputs than LMs.  The more complex the model, the less likely it can be extrapolate 
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effectively.  LMs, with no interaction terms like we employ in this work, are not able to fit data 

and potentially complex patterns inherent in sensor drift over time during training as closely as 

an ANN, but the simple linear relationships they represent between the time input and the target 

gas mole fraction over the course of training are more likely to hold prior or subsequent to the 

training period. 5 

Recommendation: When measuring CO2 with a NDIR sensor, if model-training data is only 

available more than several months prior or subsequent to the model application period, use a 

LM instead of an ANN.  For the best model performance, use training data that is collected 

directly pre or post of the model application period, and preferably data from both pre and post 

of the model application period.  Training models using data from both pre and post of a given 10 

model application period helps models to encompass sensor drift over time as well as increases 

the likelihood of covering the full range of environmental parameter space that occurs during the 

model application period so that extrapolation of these parameters is avoided.   

 

3. Finding:  Extrapolation of an O3 or CO2 model in time, and especially significant extrapolation 15 

in time, can change both the type of model that is most effective, as well as the specific model 

input signals that are most effective.  

Explanation:  Low-cost sensors change over time, both in terms of their baseline response and 

in terms of their sensitivity to target and interfering gas species.  Different sensor types drift due 

to different physical phenomenon so further a generalization across sensor types is difficult. 20 

Recommendation: Use training data collected directly pre and post of the model application 

period in order to implement a ‘best performing model’ for each gas species that can be applied 

using data from different model training and application pairs. 

 

4. Finding: ANNs yield less bias and more accurate gas mole fraction quantification than LMs, 25 

even when transferred to a new location under the following circumstances: (a) extrapolation of 

training parameters is avoided during the model application period, (b) training takes place for 
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several weeks to a month prior and subsequent to the model application period, and (c) the 

dominant local emissions sources are similar in the model training and application locations.   

Explanation:  Our previous study and multiple other ambient and laboratory based experiments 

have shown, arrays of low-cost sensors in combination with ANN regression models can support 

useful quantification of gases in mixtures and in the ambient environment because ANNs can 5 

more effectively represent complex nonlinear relationships among environmental variables and 

signals in a sensor system like a U-Pod than LMs.  With this work, we have explored limitations 

associated with these methods when challenged in different ways, as we present with a number 

of case studies.   

Recommendation:  If minimizing error and bias in measurements of gas mole fractions using 10 

low-cost sensors systems is a primary goal, design sensor system training and field deployment 

experiments so that extrapolation of model training parameters is avoided during the model 

application period, so that training takes place for several weeks to a month directly prior and 

directly subsequent to the model application period, and so that the dominant local emissions 

sources are similar in the model training and application locations.  When these conditions are 15 

satisfied, ANNs can be robustly implemented, with better performance than LMs.     

 

It is also imperative that sensor users keep in mind the primary importance of minimizing extrapolation 

of temperature, humidity and sensor signal from model training to application.  We show that field 

normalization trace gas quantification models can more readily be transferred across a large state from 20 

one oil and gas production to another, than from an urban to oil and gas production basin that are in 

closer proximity to each other.  We also show that pre and post model training, directly prior to and 

after field site deployment, is generally much more effective than pre or post model training alone, 

especially when the training takes place significantly before or after the deployment period. Along with 

these findings and general guidelines for future studies, we recommend further validation efforts in the 25 

extension of quantification of atmospheric trace gases using low-cost gas sensor arrays in oil and gas 

production basins and toward other ambient measurement applications. The findings presented here 

may be applicable and generalizable in the use of low-cost metal oxide, electrochemical, and non-
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dispersive infrared sensor arrays in various configurations and sampling regions to characterize mole 

fractions of a number of atmospheric trace gases.  Future studies exploring the sensitivity of our 

findings to these factors are recommended.  In order to account for unique variations in sensor 

responses, in each individual sensor system, due to variations in manufacturing along with elapsed time 

and specific exposure subsequent to manufacturing, we present models that are generated for each 5 

sensor system on an individual basis.   Future studies exploring the potential for universal calibration 

models would be very useful to the field.   

 

The authors declare that they have no conflict of interest. 
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Table 1: Gas sensors included in U-Pods along with the model input codes for each.  The input code is an abbreviation for the 

make of the sensor, followed by the target gas species(s).  

Sensor Type NDIR Metal Oxide Electrochemical 

Target Gas(s) CO2 CH4 * CxHy ** O3 VOCs CO CO 

Model S300 TGS 2600 TGS 2602 MiCs-2611 MiCs-5521 MiCs-5525 CO-B4 

Make ELT Figaro Figaro e2v/SGX e2v/SGX e2v/SGX Alphasense 

Code eltCO2 figCH4 figCxHy e2vO3 e2vVOC e2vCO alphaCO 

*Light hydrocarbons **Heavy Hydrocarbons 
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Table 2: Reference instrument measurements at U-Pod sampling sites 

Deployment Reference Instrument Calibration Operator Res  

Ozone 

CAMP  Teledyne API 400E  quarterly cal/nightly quality checks CDPHE 1  

Dawson  Thermo Electron 49 pre cal/post cal check INSTAAR 5  

BAO* Thermo Scientific 49c annual cal/monthly quality checks NOAA 60 

Navajo Dam 

Bloomfield 

Sub Station  

Ignacio 

Bondad 

Shiprock 

Fort Lewis 

Thermo Scientific 49i 

Thermo Scientific 49i 

Thermo Scientific 49i 

Thermo Scientific 49is 

Thermo Scientific 49is 

Teledyne API T400 

2b Technologies 202 

quartertly cal/weekly quality checks 

quartertly cal/weekly quality checks 

quartertly cal/weekly quality checks 

monthly cal/weekly quality checks 

monthly cal/weekly quality checks 

quarterly cal/monthly quality checks 

factory cal/post cal check 

NM AQB 

NM AQB 

NM AQB 

SUIT AQP 

SUIT AQP 

NEPA 

CU Boulder 

1 

1 

1 

1 

1 

60 

1 

GRET  Teledyne API T400E quarterly cal/nightly quality checks CDPHE 1 

Carbon Dioxide 

BAO Picarro G2401  NOAA 1 

SJ Basin LI-COR LI-840A pre + post cal:  zero precision span CU Boulder 1 

GRET Picarro G2508 periodic zero stability checks CSU 1 

*(McClure-Begley et al., n.d.)  Res = Time resolution of measurements in minutes 
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Table 3: Best performing models, as determined for each gas species, in the previous study (Casey et al., 2017) 

Gas 
Species Model Type Sensor Signal Model Inputs  

CO2 ANN 
eltCO2           (ELT S300 CO2 Sensor) 
temp              (temperature) 
absHum        (absolute humidity) 

O3 ANN 

e2vO3            (e2v MiCs-2611) 
e2vCO            (e2v MiCs-5525) 
e2vVOC         (e2v MiCs-5521) 
figCH4           (Figaro TGS 2600) 
figCxHy         (Figaro TGS 2602) 
temp              (temperature) 
absHum        (absolute humidity) 

 

 

 

 5 

 
 

 

 

 10 

 

 

 

 

 15 

 

 

 

 

 20 

 



49 
 

Table 4: Relative timing and parameter coverage between model training and test deployment dataset pairs.  Incomplete coverage 
of time occurred if training only took place before or after the test data period and not before and after (pre and post).  Incomplete 
coverage of location occurred when training took place in one location and testing took place in another.  Incomplete coverage of 
parameters, or extrapolation of models, including the target gas mole fraction, temperature, time, and pressure occurred when the 
values observed during training did not encompass the values observed during testing.  Extrapolation in time occurred when 5 
training only took place after the test period (post model training timing).  Extrapolation in location occurred when a model was 
trained in one location then applied to data collected in a new location.   

Case Study Summary 
Training 
Timing 

Extrapolation 
During Test 

Dawson Summer 2014 
Urban calibration moved to 

rural/peri-urban setting Pre/Post Location, O� 

SJ Basin Spring 2015 
DJ Basin calibration moved across 
the state to SJ Basin sampling sites Post 

Location, 
Pressure, Time 

SJ Basin Summer 2015 
DJ Basin calibration moved across 
the state to SJ Basin sampling sites Pre/Post Location, Pressure 

BAO Summer 2015 
DJ Basin calibration applied to 

same location Pre/Post None 

BAO Summer 2016 
DJ Basin calibration moved 40 

miles across the DJ Basin Post Location, Time 

GRET Fall 2016 
DJ Basin calibration applied to 

same location Post Time 

GRET Spring 2017 
DJ Basin calibration applied to 

same location Pre/Post None 
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Table 5: O3 model performance metrics.   

Case Study N R2 RMSE  
(ppb) 

MBE 
(ppb) 

Standard 
Deviation 

R2 

Standard 
Deviatio
n RMSE 

Standard 
Deviation 

MBE 
 O3 Models 

Best O3 Model (Casey et al., 2017) 
ANN with inputs:  e2vO3 temp absHum e2vVOC e2vCO FigCH4 FigCxHy 

Dawson Summer 
2014 

1 
0.83 6.46 -0.91 0.00 0.00 0.00 

SJ Basin Spring 2015 4 0.86 7.74 3.69 0.05 3.82 5.78 
SJ Basin Summer 

2015 
7 

0.85 7.03 4.89 0.10 1.10 1.73 

BAO Summer 2015 2 0.93 4.26 1.45 0.00 0.31 0.07 

BAO Summer 2016 2 0.92 12.21 -11.14 0.00 0.31 0.07 

GRET Fall 2016 2 0.96 12.87 12.02 0.01 2.30 2.35 

GRET Spring 2017 
2 

0.98 2.59 1.49 0.00 0.69 1.02 
Simple Model (Single Gas Sensor) 

LM with inputs:  e2vO3 temp absHum 
Dawson Summer 

2014 
1 

0.95 3.59 -0.46 0.00 0.00 0.00 

SJ Basin Spring 2015 4 0.83 17.95 16.09 0.06 6.10 5.83 
SJ Basin Summer 

2015 
7 

0.86 6.30 3.53 0.06 1.40 2.06 

BAO Summer 2015 2 0.87 5.50 0.94 0.00 0.78 1.56 

BAO Summer 2016 2 0.89 5.78 -2.71 0.00 0.78 1.56 

GRET Fall 2016 2 0.93 12.73 11.92 0.01 0.62 0.88 

GRET Spring 2017 2 0.89 6.00 -3.19 0.00 0.73 1.38 
Models Optimized For Case Studies 

Dawson Summer 
2014 

1 
0.95 3.59 -0.46 0.00 0.00 0.00 

SJ Basin Spring 2015 4 0.86 7.74 3.69 0.05 3.82 5.78 
SJ Basin Summer 

2015 
7 

0.85 7.03 4.89 0.10 1.10 1.73 

BAO Summer 2015 2 0.93 4.26 1.45 0.02 0.51 1.54 

BAO Summer 2016 2 0.87 6.25 -0.20 0.02 0.51 1.54 

GRET Fall 2016 2 0.95 3.99 2.14 0.00 0.28 0.89 

GRET Spring 2017 2 0.98 2.59 1.49 0.00 0.69 1.02 
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Table 6: CO2 model performance metrics. 

Case Study N R2 RMSE  
(ppm) 

MBE 
(ppm) 

Standard 
Deviation R2 

Standard 
Deviation 

RMSE 

Standard 
Deviation 

MBE 
 CO2 Models 

Best CO2 Model from (Casey et al., 2017)       
ANN with inputs:  eltCO2 temp absHum 

SJ Basin Summer 2015 2 0.65 8.42 -0.62 0.00 1.81 1.41 

BAO Summer 2015 2 0.75 9.98 -2.60 0.05 13.00 13.89 

BAO Summer 2016 2 0.69 54.38 48.37 0.05 13.00 13.89 

GRET Fall 2016 2 0.74 42.37 39.58 0.02 2.44 2.57 

GRET Spring 2017 
2 

0.83 6.31 0.59 0.03 0.13 2.61 
Simple Model (Single Gas Sensor) 

LM with inputs:  eltCO2 temp absHum 

SJ Basin Summer 2015 2 0.71 7.84 0.27 0.01 1.43 0.42 

BAO Summer 2015 2 0.69 10.62 -1.26 0.06 1.52 10.67 

BAO Summer 2016 2 0.73 11.82 0.73 0.06 1.52 10.67 

GRET Fall 2016 2 0.82 8.62 -3.46 0.00 0.69 1.45 

GRET Spring 2017 2 0.55 9.88 -0.33 0.03 0.29 1.91 
Models Optimized For Case Studies 

SJ Basin Summer 2015 2 0.72 7.45 -0.11 0.04 2.06 0.31 

BAO Summer 2015 2 0.80 8.85 -2.29 0.10 6.47 7.08 

BAO Summer 2016 2 0.73 11.82 0.73 0.06 1.52 10.67 

GRET Fall 2016 2 0.82 8.62 -3.46 0.00 0.69 1.45 

GRET Spring 2017 2 0.83 6.31 0.59 0.03 0.13 2.61 
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Table 7: Relative benefits associated with the implementation of different models for O3 and CO2.   

Case Study 

Mean % 
Increase 

in R2 

Mean % 
Decrease 
in RMSE  

Mean % 
Decrease 
in MBE 

Mean % 
Increase 

in R2 

Mean % 
Decrease 
in RMSE  

Mean % 
Decrease 
in MBE 

 CO2 Models O3 Models 

Benefit of Models Optimized for Case Studies Over the Best Models from (Casey et al., 2017) 

Dawson Summer 2014    14.51 44.42 50.00 

SJ Basin Spring 2015    0.00 0.00 0.00 

SJ Basin Summer 2015 10.56 11.52 82.60 0.00 0.00 0.00 

BAO Summer 2015 5.84 11.27 11.95 0.00 0.00 0.00 

BAO Summer 2016 5.72 78.27 98.49 -5.01 48.82 98.19 

GRET Fall 2016 11.17 79.66 108.73 -0.54 68.99 82.22 

GRET Spring 2017 0.00 0.00 0.00 0.00 0.00 0.00 

Benefit of the Best Models from (Casey et al., 2017) Over Simple Linear Models  

Dawson Summer 2014    -12.67 -79.92 -99.99 

SJ Basin Spring 2015    3.20 56.88 77.09 

SJ Basin Summer 2015 -8.41 -7.29 331.39 -1.34 -11.53 -38.41 

BAO Summer 2015 8.70 6.05 -106.48 6.79 22.48 -53.85 

BAO Summer 2016 -5.41 -360.09 -6543.84 2.57 -111.22 -310.71 

GRET Fall 2016 -10.05 -391.73 1244.99 2.88 -1.12 -0.86 

GRET Spring 2017 51.92 36.13 278.55 10.00 56.90 146.65 

Benefit of Models Optimized for Case Studies Over Simple Linear Models 

Dawson Summer 2014    0.00 0.00 0.00 

SJ Basin Spring 2015    3.20 56.88 77.09 

SJ Basin Summer 2015 1.26 5.06 140.25 -1.34 -11.53 -38.41 

BAO Summer 2015 15.04 16.64 -81.80 6.79 22.48 -53.85 

BAO Summer 2016 0.00 0.00 0.00 -2.57 -8.10 92.59 

GRET Fall 2016 0.00 0.00 0.00 2.33 68.64 82.07 

GRET Spring 2017 51.92 36.13 278.55 10.00 56.90 146.65 
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Figure 1: (a) Training and test deployment locations are identified in the SJ and DJ Basins in context with urban centers and oil 
and gas production wells.  (b) Panel zoomed in on the SJ Basin, covering approximately 4,250 square miles (85x50 miles).  (c) 
Panel zoomed in on the DJ Basin covering approximately 1,540 square miles (28x55 miles). 
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Figure 2: (a) ANN and LM training and test deployment timelines.  The Dawson, BAO, and GRET sampling sites are all located in 5 
the DJ Basin.  Model training periods for each test deployment are shown in blue, and model test periods are shown in magenta.  
For the BAO Summer 2016 case study, the period outlined in blue shows data that was used to train O3 model, but not CO2 models 
since CO2 reference data was not available during winter months. (b) Information about each of the case studies presented in the 
above timelines, including model training and testing locations, as well as the number and names of U-Pods included in each case 
study for both O3 and CO2 models.  The U-Pods with names shown in grey were constructed and deployed starting in May of 2014.  10 
The U-Pods with names shown in black were constructed and deployed starting in April of 2015.   
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Figure 3.  Example of a simple feed forward neural network, showing how inputs are propagated through the network during each 
of the training iterations (Casey et al., 2017) 
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Figure 4. Diagram of an example ANN with the same color-coded components as are presented in Figure SM3 in section 2.2 of the 
SM.  This ANN has 5 inputs, 1 hidden layer with 5 tansig hidden neurons, and 1 linear output layer leading to 1 output.  The 
network is fully connected with weights and biases (Casey et al., 2017). 
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Figure 5:  Scatter plots of U-Pod CO2 vs. reference CO2 and overlaid histograms of U-Pod CO2 residuals for (a) BAO and BAO (b) 
BAO and Bloomfield (c) BAO and Fort Lewis.  A 1:1 single-weight reference line is included in each scatter plot along with 
double-weight lines of best fit for U-Pods at each sampling location.  Data from U-Pod BC at BAO is plotted in black along with U-
Pods BJ, BB, and BD at BAO, Fort Lewis, and Bloomfield, respectively.  Sensor signal inputs include eltCO2, temp, and absHum.  5 
(d) Overlaid histograms of model residuals with respect to reference CO2. 
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Figure 6:  U-Pod CO2 residuals by (a) data and (b) time of day and throughout the duration of the deployment period. Sensor 
signal inputs include eltCO2, temp, and absHum. 
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Figure 7: Scatter plots of U-Pod vs reference O3, comparing U-Pod BC at BAO, in black, with (a) U-Pod BJ at BAO (b) U-Pod BA 
at Navajo Dam (c) U-Pod BB at Fort Lewis (d) U-Pod BD at Bloomfield (e) U-Pod BE at Bondad (f) U-Pod BF at the Sub Station 
(g) U-Pod BH at Shiprock and (h) U-Pod BI at Igniacio.  (i) Overlaid histograms of model residuals with respect to reference O3. 
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Figure 8:  Residuals of U-Pod O3 spanning of the deployment period, by (a) date (b) time of day and (c) temperature. 
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Figure 9:  Scatter plots showing the combined parameter space of (a) absolute humidity with temperature and (b) reference O3 
with temperature for each of the U-Pod sampling sites at BAO and the SJ Basin. 
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Figure 10:  Target diagrams demonstrating performance of a previously determined best-performing model across all new test 
datasets.  (a) CO2 and (b) O3 LM performance when only the primary gas sensor, temperature and humidity are inputs.  (c) CO2 
and (d) O3 ANN performance with inputs that were found to perform best at the GRET site in the spring of 2017 (Casey et al., 
2017).  Model input definitions: eltCO2 (ELT S300 CO2 sensor), e2vO3 (e2v MiCs-2611 sensor), temp (temperature), and absHum 5 
(absolute humidity). 
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CO2	Inputs	 Deployment	
Time	

Deployment	
Loca6on	

Training	
Loca6on	

O3	Inputs	

eltCO2	temp	rh	e2vVOC	alphaCO	 Summer	2015	 BAO	 BAO	 e3vO3	temp	absHum		e2vVOC	e2vCO		figCH4	figCxHy	

eltCO2	temp	rh	e2vVOC	alphaCO	 Summer	2015	 SJ	Basin	 BAO	 e3vO3	temp	absHum		e2vVOC	e2vCO		figCH4	figCxHy	

Spring	2015	 SJ	Basin	 BAO	 e3vO3	temp	absHum		e2vVOC	e2vCO		figCH4	figCxHy	

eltCO2	temp	absHum	 Spring	2017	 GRET	 GRET	 e3vO3	temp	absHum		e2vVOC	e2vCO		figCH4	figCxHy	

eltCO2	temp	rh	Gme	 Summer	2016	 BAO	 GRET	 e3vO3	temp	absHum		

eltCO2	temp	absHum	rh	e2vVOC	alphaCO	figCH4	figCxHy	e2vCO	Gme	 Fall	2016	 GRET	 GRET	 e3vO3	temp	absHum		e2vVOC	e2vCO		figCH4	figCxHy	eltCO2	alphaCO	rh	Gme	

Summer	2014	 Daweson	 CAMP	 e3vO3	temp	absHum		

CO2	Inputs	 Deployment	
Time	

Deployment	
Loca6on	

Training	
Loca6on	

O3	Inputs	

eltCO2	temp	rh	e2vVOC	alphaCO	 Summer	2015	 BAO	 BAO	 e3vO3	temp	absHum		e2vVOC	e2vCO		figCH4	figCxHy	

eltCO2	temp	rh	e2vVOC	alphaCO	 Summer	2015	 SJ	Basin	 BAO	 e3vO3	temp	absHum		e2vVOC	e2vCO		figCH4	figCxHy	
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Figure 11:  Target diagrams demonstrating performance of a previously determined best-performing model across all new test 
datasets (a) CO2 and (b) O3 ANN performance with inputs that were found to perform best at the GRET site in the spring of 2017 
(Casey et al., 2017).  Model input definitions:  eltCO2 (ELT S300 CO2 sensor), e2vCO (e2v MiCs-5525 sensor), e2vVOC (e2v MiCs-
5521 sensor), e2vO3 (e2v MiCs-2611 sensor), figCH4 (Figaro TGS 2600 sensor), figCxHy (Figaro TGS 2602 sensor), temp 5 
(temperature), and absHum (absolute humidity). 
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Figure 12:  Target diagrams for (a) CO2 and (b) O3 calibration model performance for the best performing model for each 
particular case when tested on data from a number of field deployments.  Model input definitions:  eltCO2 (ELT S300 CO2 
sensor), e2vCO (e2v MiCs-5525 sensor), e2vVOC (e2v MiCs-5521 sensor), e2vO3 (e2v MiCs-2611 sensor), figCH4 (Figaro TGS 
2600 sensor), figCxHy (Figaro TGS 2602 sensor), alphaCO (Alphasense CO-B4 sensor) temp (temperature), absHum (absolute 5 
humidity), rh (relative humidity), and time (absolute time).   

 

 
 


