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Abstract. We assessed the performance of ambient ozone (O3) and carbon dioxide (CO;) sensor field
calibration techniques when they were generated using data from one location and then applied to data
collected at a new location. This was motivated by a previous study (Casey et al., 2017) which
highlighted the importance of determining the extent to which field calibration regression models could
be aided by relationships among atmospheric trace gases at a given training location, which may not
hold if a model is applied to data collected in a new location. We also explored the sensitivity of these
methods in response to the timing of field calibrations relative to deployments periods. Employing data
from a number of field deployments in Colorado and New Mexico that spanned several years, we tested
and compared the performance of field-calibrated sensors using both linear models (LMs) and artificial
neural networks (ANNs) for regression. Sampling sites covered urban, rural/peri-urban, and oil and gas
production influenced environments. We found that the best performing model inputs and model type
depended on circumstances associated with individual case studies, such as differing characteristics of
local dominant emissions sources, relative timing of model training and application, and the extent of
extrapolation outside of parameter space encompassed by model training. In agreement with findings
from our previous study that was focused on data from a single location (Casey et al., 2017), ANNs
remained more effective than LMs for a number of these case studies but there were some exceptions.
For CO, models, exceptions included, case studies in which training data collection took place more
than several months subsequent to the test data period. For O; models, exceptions included case studies

in which the characteristics of dominant local emissions sources (oil and gas vs. urban) were
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significantly different at model training and testing locations. Among models that were tailored to case
studies on an individual basis, O3 ANNs performed better than Oz LMs in 6 out of 7 case studies, while
CO, ANNSs performed better than CO, LMs in 3 out of 5 case studies. The performance of O3 models
tended to be more sensitive to deployment location than to extrapolation in time while the performance
of CO; models tended to be more sensitive to extrapolation in time than to deployment location. The
performance of Os; ANN models benefited from the inclusion of several secondary metal oxide type

sensors as inputs in 5 of 7 case studies.

1 Introduction

In places like the Denver Julesburg (DJ) and San Juan (SJ) Basins, along Colorado’s Front Range and in
the Four Corners Region, oil and gas production activities have been increasing with the advent of
horizontal drilling that can be effectively used in conjunction with hydraulic fracturing to produce
hydrocarbons from unconventional geologic formations. Public health concerns have arisen about the
increasing number of people living alongside these industrial activities and emissions (Adgate et al.,
2014; Mckenzie et al., 2014; McKenzie et al., 2012, 2017). We previously developed methods to
quantify ozone (O3), carbon dioxide (CO,), methane (CHy), and carbon monoxide (CO) using low-cost
gas sensors in an area where the ambient mole fractions of these species are influenced by oil and gas
production activities (Casey et al., 2017). Such low-cost sensor measurements could enable greater
understanding of air quality in oil and gas production basins, informing the spatial and temporal scales
that people live and work in a way that current technologies used by regulatory agencies cannot feasibly
accomplish. In our previous work, we tested and compared the performance of direct and inverted
linear models (LMs) as well as artificial neural networks (ANNs) as regression tools in the field
calibration of low-cost sensor arrays to quantify these target gas species using month-long test datasets,
training each model with approximately one month of data prior to and one month of data subsequent to
this test period. ANNSs are powerful pattern recognition tools. They were found to perform better than
both inverted and direct LMs in our previous study, but concerns arose when findings suggested that the
performance of ANNs was being augmented by the relationships among gas mole fractions in the

atmosphere at a given location. Low-cost gas sensor systems have the potential to inform spatial and
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temporal variability of pollution. Calibration equations for each sensor system can be generated in one
location based on co-located measurements with reference instruments, and then the sensor systems can
be moved into a spatially distributed network. Since the relationships among gas mole fractions will
differ at different sampling sites across a spatially distributed network, calibration models may not hold
at new sampling sites. In this work, we test calibration model performance when extended to new

locations.

1.1 Low-Cost Sensors for Air Quality Measurements

The use of low-cost metal oxide, electrochemical, and non-dispersive infrared sensors to characterize air
quality is becoming increasingly common across the globe (Clements et al., 2017; Kumar et al., 2015).
While low-cost sensors have been emerging on the market with sufficient sensitivity to resolve
variations in ambient mole fractions of target gases of interest, they are also sensitive to temperature and
humidity variations that occur in the ambient environment. NDIR sensors, like the ELT s300 CO,
sensor employed in this study, have good selectivity, but, since pressure and temperature are not
controlled in the optical cavity of ELT s300 CO, sensors, the influence of temperature on sensor signals
plays an important role. The influence of humidity is also important to address because changes in
water vapor are known to influence NDIR measurements of CO; in terms of spectral cross-sensitivity

due to absorption band broadening (Licor, 2010).

Both metal oxide and electrochemical type sensors operate on the principle of oxidizing or reducing
reactions at sensor surfaces. For electrochemical sensors, like the Alphasense CO-B4 sensor employed
in this study, oxidizing or reducing compounds react at the working electrode, resulting in the transfer
of ions across an electrolyte solution from the working electrode to the counter electrode, balanced by
the flow of electrons across the circuit connecting the working electrode to the counter electrode. A
linear relationship is expected between this current and the target gas mole fraction. Electrochemical
sensors can be tuned to respond more or less strongly to specific gases by adjusting the material
properties of the working electrode. A membrane is located between the working electrode and the

exterior of the sensor in order to control redox reaction rates. The rates at which gases diffuse through
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the membrane to reach the working electrode and the electron transfer rates have been shown to
increase at higher temperatures (Xiong and Compton, 2014), and since chemical reaction rates are also
influenced by temperature, electrochemical sensor responses can be influenced by sensor operating
temperature. Changes in ambient humidity levels can cause sensors to lose or gain of the electrolyte

solution, by mass, also influencing electrochemical sensor response (Xiong and Compton, 2014).

For metal oxide sensors, and to a lesser extent for electrochemical sensors, resolving the response of a
sensor attributable to the target gas species can also pose a challenge in the presence of interfering gas
species. Metal oxide sensors, like those used in this study, have a resistive heater circuit that warms up
the sensor surface, causing O, molecules to adsorb to the sensor surface, which leads to increased
resistance across the surface of the sensor. In the presence of an oxidizing compound, like Oz, more
oxygen molecules are adsorbed to the sensor surface and the resistance across the sensor surface is
increased further. In the presence of a reducing compound, like CO, oxygen molecules are removed
from the sensor surface, allowing electrons to flow more freely, resulting in decreased resistance across
the sensor surface. For metal oxide sensors, the resistance across the sensor surface can then be used to
determine the mole fraction of a given oxidizing or reducing compound, often according to a nonlinear
relationship. Exposure to humidity has been shown to significantly lower the sensitivity of metal oxide
gas sensors making it an important parameter to address in a gas quantification model (Wang et al.,
2010). Metal oxide sensor operating temperature has also been shown to strongly influence sensor
sensitivity and selectivity to different gas species (Wang et al., 2010). Metal oxide type sensors can be
tuned to respond differently from one another to oxidizing and reducing gas species by using different

metal oxide materials and doping agents for the sensor surface, but selectivity is difficult to achieve.

1.2 Low-Cost Air Quality Sensor Quantification

Because low-cost gas sensor signals are influenced, sometimes significantly, by interfering gas species
and changing weather conditions in the ambient environment, field normalization methods to quantify
atmospheric trace gases using low-cost sensors have been found to be more effective than lab

calibration (Cross et al., 2017; Piedrahita et al., 2014; Sun et al., 2016). Our previous study and several
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others have compared the performance of field calibration models generated using LMs (simple and
multiple linear regression) relative to supervised learning methods (including ANNs and random
forests), all finding that ANNs (Casey et al., 2017; Spinelle et al., 2015, 2017) and random forests
(Zimmerman et al., 2017) outperformed LMs in the ambient field calibration of low-cost sensors. Like
earlier laboratory based studies (Brudzewski, 1999; Gulbag and Temurtas, 2006; Huyberechts and
Szeco, 1997; Martin et al., 2001; Niebling, 1994; Niebling and Schlachter, 1995; Penza and Cassano,
2003; Reza Nadafi et al.,, 2010; Srivastava, 2003; Sundgren et al., 1991), ANN-based calibration
models, incorporating signals from an array of gas sensors with overlapping sensitivity as inputs, have
been able to effectively compensate for the influence of interfering gas species and resolve the target

gas mole fraction.

ANNSs are known to be able to very effectively represent complex, nonlinear, and collinear relationships
among input and output variables in a system (Larasati et al., 2011). ANNSs are useful in the field
calibration of low-cost sensors because, through pattern recognition of a training dataset, they are able
to effectively represent the complex processes and relationships among sensors and the ambient
environment that would be very challenging to represent analytically or based on empirical
representation of individual driving relationships. In practice though, the reason multiple gas sensors
are able to improve the performance of calibration models may be in part the result of correlation
between mole fractions of target gases themselves that hold for one model training location, but might

not remain effective at alternative sampling sites or during other time periods.

1.3 Summary of Previous Study

Our previous study was carried out using sensor measurements collected over the course of several
months in the spring of 2017, in Greeley, Colorado, which lies within the Denver Julesburg oil and gas
production basin. Others had recently demonstrated the utility of machine learning methods in the
quantification of atmospheric trace gases using arrays of low-cost sensors in urban (De Vito et al., 2008,
2009; Zimmerman et al., 2017) and rural (Spinelle et al., 2015, 2017) areas. Our previous study tested

the relative performance of machine learning methods and LMs in the quantification of CH4, O3, COy,
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and CO in an area strongly influenced by oil and gas production activities, where enhanced levels of
hydrocarbons and other industry related pollutants could potentially confound measurements. The
previous study was also the first to compare machine learning regression techniques with LMs toward
the quantification of CH4 using arrays of low-cost sensors in any setting. The study tested and
compared calibration models using data from two U-Pod sensor systems containing arrays of low-cost
gas sensors; these systems were co-located with optical gas analysers at a Colorado Department of
Public Health and Environment monitoring site. ANNs and LMs were trained using a variety of sensor
signal input sets from a month of co-located data collected prior to and following a month long test
period. The performance of each model was then evaluated relative to reference instrument
measurements during the test period. For quantification of all four trace gases that we tested in this oil
and gas-influenced setting, we found that ANNs performed better than LMs. The better performance of
ANNSs over LMs was likely largely attributable to the ability of ANNs to more effectively represent
complex and nonlinear relationships among sensor responses, environmental variables, and trace gas
mole fractions than LMs. However, the performance of these powerful regression methods could be
aided by relationships among atmospheric trace gases specific to the training location, which would not

necessarily hold at different sampling sites.

1.4 Spatially Distributed Networks of Sensors and Spatial Extension of Calibration Models

Distributed spatial networks of low-cost sensor systems have the potential to inform air quality with
high spatial and temporal resolution. As such, studies have begun to deploy spatial networks of low-
cost sensor systems. These, studies rely on the spatial transferability of quantification techniques. In
the present work, we test model performance under conditions of spatial transferability, wherein a
model is trained using data from one location then applied to a test dataset using data from a new
location. In testing spatial extension of a model, we investigate how well the field calibration of low-
cost sensors can inform target gas mole fractions when sensors are deployed in a new location and a
new microenvironment of oxidizing and reducing compounds. We also test model performance under
conditions of temporal extension, wherein a model is trained using data that was collected only prior or

subsequent to the model application period. In testing temporal extension of models, we investigate
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how model performance is influenced by sensor drift over time. We opportunistically utilize
measurements collected with low-cost sensors in Denver, Boulder County, and the DJ and SJ oil and
gas production basins in recent years. This effort focuses on the analysis for O3 and CO; using both
LMs and ANNS, including a comparison of models with a number of different input sets. In previous
work (Casey et al., 2017), we have additionally addressed the quantification of CO and CHy4 using
arrays of low-cost sensors together with field normalization methods, but these species are not included

in the present analysis because analogous reference data to those we present for O3 and CO,, were not

available CO and CHa.

1.5 QOil and Gas Production and Air Quality

Oil and gas production related emissions, namely nitrogen oxides (NOx) and volatile organic
compounds (VOCs), have been shown to influence tropospheric ozone (O3), which is particularly
relevant in regions that are in non-attainment of the United States Environmental Protection Agency
(USEPA) National Ambient Air Quality Standards (NAAQS) for ozone, like the Colorado Front Range
where the DJ Basin is situated. NOx and VOC emissions, including those from oil and gas production
activities, react in the atmosphere in the presence of sunlight to form tropospheric O;. A number of
studies have demonstrated that oil and gas related emissions contribute to increased O in the DJ Basin
(Cheadle et al., 2017; Gilman et al., 2013; McDulffie et al., 2016). Mole fractions of ozone as high as
140 ppb and 117 ppb during winter months have also been observed and attributed directly to oil and
gas production emissions in the Upper Green River Basin of Wyoming and Utah’s Uinta Basin,
respectively (Ahmadov et al., 2015; Edwards et al., 2013, 2014; Field et al., 2015; Oltmans et al., 2016;
Schnell et al., 2009). Additionally, a modeling study concluded that oil and gas production activities
could significantly impact ozone near emissions sources, beginning 2 and 8 km downwind of

compressor engine and flaring activities, respectively (Olaguer, 2012).

Emissions of industry related air pollutants, including O3 precursors, NOx and VOCs, are expected to

occur on spatially distributed scales, across components on well pads, transmission lines, transportation
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routes, and gathering stations that are each distributed throughout production basins (Litovitz et al.
2013; Mitchell et al. 2015; Allen et al. 2013). Spatially distributed networks of low-cost sensors have
the potential to better inform spatial variability of air quality than existing regulatory air quality
monitoring stations which cannot feasibly cover such spatially resolved measurements continuously,
and may not be representative of air quality across smaller spatial scales (Bart et al., 2014; Jiao et al.,
2016; Moltchanov et al., 2015). Abeleira and Farmer show that ozone production throughout much of
the Front Range, outside of downtown Denver, is likely to be NOx limited implying that local NOx
sources are likely influencing ozone on small spatial scales (Abeleira and Farmer, 2017). Oil and gas
industry related NOx sources, such as diesel truck traffic, flaring, and compressor engines, could lead to
pockets of elevated O3 throughout the DJ Basin. While emissions from truck traffic (and in some cases
a generator to power a drill rig), at a given well pad are expected to be highest during the drilling,
stimulation, and completion phases, industry truck traffic often persists as the contents of produced
water and condensate tanks are frequently collected from well pads throughout the production phase, as
do emissions from flaring and compressor engines. Low-cost O3 sensors could augment the few and far
apart regulatory sites that currently monitor O3 levels in places like the DJ Basin, which has better
coverage than many other production basins in the United States. While elevated ambient CO, levels
are not directly harmful to human health, continuous CO, measurement can provide information about
nearby combustion-related pollution and atmospheric dynamics that lead to the accumulation of
potentially harmful compounds associated with the oil and gas production industry during periods of

atmospheric stability.

In this work, we present and compare models designed to address the unique challenges that come with
using low-cost sensors in the quantification of atmospheric trace gases of interest in oil and gas
production basins, where ambient hydrocarbon mole fractions are potentially elevated, exerting
uniquely cofounding influence on low-cost gas sensors. Calibration models that were found to perform
best in our previous study are applied to data collected in different locations. For the first time, we
investigate how well models can be transferred from one microenvironment to another, with different

dominant local emissions source characteristics, and different relative abundance of oxidizing and
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reducing compounds. Microenvironments explored in this work include a basin where both natural gas
and heavier hydrocarbons are produced (the DJ Basin), and a basin where prominently natural gas is
produced (the SJ Basin), with much smaller proportional emissions of heavier hydrocarbons, and likely
lower atmospheric concentrations of alkanes, alkenes, and aromatics. Within and bordering the DJ
Basin, additional microenvironments include an urban location, with significant mobile sources
emissions (NOx, CO, and VOCs), and a peri-urban site with fewer mobile emissions and closer
proximity to oil and gas production activities. We explore how robust model performance is when a
model is trained in one microenvironment and transferred to another; challenged by different relative
abundance of oxidizing and reducing gas species. Additionally, we test how well models can represent

and address sensor stability over time and the potential for drift.

2 Methods
2.1 Sensors and U-pods

All U-Pod sensor systems (mobilesensingtechnology.com) employed in the case studies, described
below, were populated with seven low-cost gas sensors, as in our previous study (Casey et al., 2017).
The gas sensors are listed in Table 1 along with their target gas and the model input codes we assigned
to each. A RHTO3 sensor was used in each U-Pod to measure temperature (temp) and relative humidity

(rh). A Bosch BMPO085 sensor was used to measure pressure in each U-Pod.

2.2 Case Studies

Five to ten U-Pods were deployed at sampling sites in and around the DJ and SJ Basins from 2014 -
2017. Deployments generally consisted of co-location with reference measurements prior to and
following approximately one-month periods of spatially distributed measurements. During some of the
distributed measurement periods, a subset of U-Pods remained co-located with reference instruments
where the field calibrations took place. As well, during some distributed measurement periods, some
U-Pods were deployed in new locations that were equipped with reference measurements. In between
periods of distributed sensor system deployments, sensor systems were co-located with reference

instruments for as long as possible, as logistics, and coordination with other regulatory agencies and
9
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researchers would allow. In this way, we hoped to maximize our ability to encompass full ranges of
temperature, humidity, and trace gases that occur across seasons, in order to minimize extrapolation
with respect to these parameters when models were applied to measurements from distributed
deployment periods. The locations where all or a subset of U-Pods were co-located with reference
instruments are indicated in Fig. 1. In this exploratory study, we opportunistically employ data from
these sensor deployments, treating them as case studies in order to characterize the performance of field
calibration models when they are extended to new locations. For each case study, described below, data
was divided into training and test periods. Timelines for these dataset pairs are detailed in Fig. 2. Some
U-Pods employed in these case studies (indicated in grey font in Fig. 2) were constructed, populated
with sensors, and deployed at field sites in the spring of 2014, approximately a year before the rest of
the U-Pods were constructed, populated with sensors, and deployed at field sites in the spring of 2015.
The relative age of sensor systems included in some case study comparisons could have contributed to
some discrepancy in model performance, though systematic differences based on U-Pod age is not

apparent.

As available data from each case study allowed, we used approximately one month of training data
before and after a given test period. When training data was not available within several months of a test
period, significantly longer training datasets were used in order to attempt capture and effectively
represent trends in sensor drift over time, as well as to avoid extrapolation of model parameters
(particularly temperature) during the test data period. As a result, model-training durations varied
across case studies and sometimes significantly exceeded model-testing durations. Each case study is
similar in representing approximately one month-long deployment of sensor systems. This study design
serves a primary goal of this work, supporting the quantification of atmospheric trace gases from low-
cost gas sensor data in new locations, relative to model training locations, for periods of approximately

one month at a time.

Making quantitative measurements of atmospheric trace gases with low-cost sensors is challenged by

unique variations in individual sensor responses associated with variations in the manufacturing
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process, sensor age, and sensor exposure history. For these reasons, we generated unique calibration
models using data from sensors in each individual U-Pod sensor system. The closest available data
prior and/or subsequent to a test data period was used for model training to avoid complications
associated with significant sensor drift and degradation in sensor sensitivity to target gas species over
time. Table 2 lists the O3 and CO; reference instruments that were co-located with U-Pods at each
sampling site, along with instrument operators, calibration procedures, and reference data time
resolution. The selected case studies, described in sections 2.2.1 through 2.2.7 below, were aimed to
support methods to quantify atmospheric trace gases during the distributed deployments we carried out
from 2014 through 2017 as well as future distributed sensor network measurements. Fig. 1 shows
sampling site locations in context with urban areas and oil and gas production wells. Fig. 2 shows the
timeline of each of these deployments, highlighting the training and testing periods defined for both O3
and CO:..

2.2.1 Dawson Summer 2014

The first distributed measurement campaign took place during the summer of 2014 when five U-Pods
were sited at locations around Boulder County, with four distributed along the eastern boundary of the
county, adjacent to Weld County where dense oil and gas production activities were underway. A
background site, further from oil and gas production activities was also included to the west, near a busy
traffic intersection on the north end of the City of Boulder. Co-locations with reference measurements
that were used for field calibration of the sensors took place at the Continuous Ambient Monitoring
Program (CAMP) Colorado Department of Health and Environment (CDPHE) air quality monitoring
site in downtown Denver. One of the distributed sampling sites, Dawson School, was also equipped
with a Thermo Electron 49 O; reference instrument operated by Detlev Helmig’s research group from
the Institute for Artic and Alpine Research (INSTAAR). In this work, a case study is developed using
data from one U-Pod located at the CAMP site in downtown Denver for O3 model training, and data
from one U-Pod, located at the Dawson School for Os model testing. This case study is used to test
model performance when extrapolated in terms of Oz mole fractions and applied in a new location,

transferred from an urban to a peri-urban environment.
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2.2.2 SJ Basin Spring 2015

In the spring of 2015, we augmented our original fleet of five U-Pods (BA, BB, BD, BE, and BF) with
five more (BC, BG, BH, BI, and BJ) and deployed these sensor systems in the SJ Basin while a targeted
field campaign was underway to understand more about a CH4 ‘hot spot’ that was discovered from
satellite based remote sensing measurements (Frankenberg et al., 2016; Kort et al., 2014). The primary
goal of this sensor deployment was to inform spatial and temporal patterns in atmospheric trace gases
like CHa4, O3, CO, and CO; across the SJ Basin. Most U-Pods were located at existing air quality
monitoring sites operated by the New Mexico Air Quality Bureau (NM AQB), the Southern Ute Indian
Tribe Air Quality Program (SUIT AQP), and the Navajo Environmental Protection Agency (NEPA),
which supported validation of sensor measurements for Os. After this deployment period, all U-Pods
were moved to the BAO site in the DJ Basin for approximately one month, and were co-located with
reference instruments there that were operated by National Oceanic and Atmospheric Administration
(NOAA) researchers. A case study is developed with data from the BAO site to train O3 models for
four U-Pods, and data from SJ Basin sites to test O3 models for four U-Pods. This case study is used to
test model performance when extrapolated in temperature and time, and applied in a new location,

extended from one oil and gas production basin to another across Colorado.

2.2.3 SJ Basin Summer 2015

In the summer of 2015, after an approximately month-long co-location with reference instruments at the
BAO site, seven U-Pods were deployed again at existing regulatory monitoring sites for approximately
one month, after which they were moved back to the BAO site for another month of co-location with
reference instruments there. We equipped two of the regulatory monitoring sites in the SJ Basin with
LI-COR LI-840A CO, analysers to provide reference measurements for CO,. A case study is
developed with data from the BAO site, pre and post of the SJ Basin summer 2015 deployment to train
models, and data from SJ Basin sites during the summer deployment period to test models. Data from
seven U-Pods were used to train and test O3 models and data from two U-Pods were used to train and

test CO, models. This case study is used to test model performance when training took place both pre
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and post of the test period, and when extended to a new location, from one oil and gas production basin

to another across Colorado.

2.2.4 BAO Summer 2015

During the SJ Basin Summer 2015 deployment period, two U-Pods remained at the BAO site. A case
study is developed using data from those two U-Pods that remained at the BAO site. This case study is
used to test model performance when training took place both pre and post of the test period, and when

the model was tested on data that was collected in the same location as model training.

2.2.5 BAO Summer 2016

U-Pods were deployed at the BAO site again in 2016 for several months during the summer. In August
of 2016 the U-Pods were moved to the Greeley Tower (GRET) CDPHE air quality monitoring site in
Greeley, Colorado, a location which, like the BAO site, is also strongly influenced by DJ Basin oil and
gas production activities. The U-Pods remained there for one year. For the GRET co-location period,
CDPHE shared reference measurements for Os. Additionally, Jeffrey Collett and Katherine Benedict of
Colorado State University (CSU) shared CO, reference measurements from an instrument they operated
at the site before October 1* in 2016 and after March 7™ in 2017, when the instrument was located at the
GRET site. A case study is developed using data from two U-Pods. Data from the yearlong
deployment at the GRET site was used to train models for O3, and data from the BAO site during the
summer 2016 deployment was used test models for O;. Because reference data for CO, was not
available at the GRET site during winter months, only eight months of data from these two U-Pods
during the GRET deployment was used to train models for CO,, but again, data from BAO summer
2016 deployment was used to test models for CO,. A significantly longer training duration is
implemented in this case study because the training period took place more than several months after
the model testing period. We reasoned that a longer training duration would be better able to represent
patterns in sensor drift over time, as well as encompass the temperature range of test dataset period.
Significantly less training time is needed when training occurs directly pre and/or post of a given model

application period. This case study is used to test model performance when extrapolated significantly
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(more than several months) in time and extended to a new location, from one location in the DJ basin to

another.

2.2.6 GRET Fall 2016

In order to test model performance, under similar circumstances in terms of relative model training and
testing durations and timing to the BAO Summer 2016 case study, but with no extension of models to a
new location, we developed another case study. This time, models for O; and CO, were trained using
data from two U-Pods at GRET over the course of eight months and models for Os; and CO, were tested
using data from two U-Pods at GRET over the course of approximately a month in the fall of 2016.
This case study is used to test model performance when extrapolated significantly (more than several

months) in time and applied in the same location as training took place.

2.2.7 GRET Spring 2017

We include findings from our previous work as a case study in order to provide context. Models for
CO, and O3 were tested using data from two U-Pods collected over the course of approximately one
month at the GRET site in the spring of 2017. Data from two U-Pods during approximately month-long
periods pre and post of the test period were used to train O3 and CO, models. This case study provides
another example of model performance when training took place both pre and post of the test period,

and testing took place in the same location as training.

2.3 Reference and Sensor Data Preparation

Each of the U-Pod sensor signals was logged to an onboard micro SD card. For metal oxide type
sensors, voltage signals were converted into resistance, and then normalized by the resistance of the
sensor in clean air, Ry. A single value for Ry was used for each sensor across the study duration. This Ry
value was taken as the resistance of each sensor during the GRET Spring 2017 field deployment period,
when the target pollutant had approached background levels (at night for the metal oxide O3 sensors and
midday for all other metal oxide sensors), and when the ambient temperature was approximately 20° C
and relative humidity of approximately 25%. Relative humidity, temperature, and pressure measured

in each U-Pod were used to calculate absolute humidity. Over the course of multiple field deployments,
14
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relative humidity sensors in four of the U-Pods drifted down, causing the lower humidity levels to be
cut off or ‘bottomed out’. RH sensors were not replaced during field deployments in order to preserve
consistency across different deployment periods, allowing for the possibility of a single comprehensive
model to apply to all data from a single U-Pod. After some experimentation in generating a ‘master
model’ that could be applied to data from a given U-Pod for all collected field measurements, across
several years, we determined that individual models for each deployment would be more effective, and
replacing RH sensors that had drifted down would have been appropriate in support of the methods
presented here. We have since upgraded to Sensirion AG SHT25 sensors, which appear to be more
robust and consistent over the course of long-term field deployments. For measurements collected in
the spring and summer of 2015 and the spring of 2017, we replaced the relative humidity (RH) signal of
U-Pods with malfunctioning humidity sensors with signals from the closest U-Pod with a good
humidity sensor and complete data coverage as noted in Table S1. Temperature and RH sensor
measurements are usually collected from within each U-Pod sensor system in order to gain
representative information about the environment the gas sensors are being operated in. Using an
alternative source for RH data that are not onboard an individual U-Pod has the potential to increase
uncertainty of quantified gas mole fractions. We used replacement RH data from the closest available
U-Pod instead of ambient measurements in order to more closely approximate humidity at the operating
temperature within a U-Pod enclosure. The closest U-Pod with good humidity sensors ranged from
several feet, when U-Pods were co-located during deployments in the DJ Basin at the BAO and GRET

sites, to approximately fifty miles during deployments in the San Juan Basin.

When the U-Pods were initially deployed at the GRET site, on August 23" of 2016, the RH sensors in
all ten U-Pods malfunctioned, logging an error code of -99 instead of the relative humidity. This
malfunction seemed to coincide with the implementation of radio communication from each U-Pod to a
central node in an effort to reduce trips to the field site to download data and to identify issues with data
acquisition promptly. No other impacts to sensor systems were observed in connection with radio
communications. RH signals in the U-Pods began logging correctly again in October when we stopped

remote communication. We replaced RH values for the U-Pods during this time period by utilizing data
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from the Picarro Cavity Ring-Down Spectrometer that was co-located at GRET with the U-Pods. Water
mole fractions measured by the Picarro were converted into mass-based mixing ratios to match the units
of the absolute humidity signal in the U-Pod data. We applied an adjustment to this absolute humidity
signal so that it matched observations in U-Pods during the following month when good RH sensor data
was available, to account for the fact that temperatures were higher in U-Pod enclosures than the
ambient environment. We then replaced the relative humidity signal in each U-Pod from August 23"
through October 1* in 2016 with the mixing ratios derived from Picarro measurements. Using the
temperature and pressure logged in each U-Pod along with the absolute humidity from the Picarro,

relative humidity was calculated for each U-Pod during this period.

To perform regressions toward field calibration of sensors, the reference and U-Pod data needed to be
aligned. When reference measurements with minute time resolution were available for both training
and corresponding testing periods, minute median data from the U-Pods were used. Medians were used
as opposed to averages in order to reduce the potential influence of sensor noise as well as to remove
short duration spikes in the reference and sensor data that resulted from air masses that may not have
been well mixed across the reference instrument inlets and the U-Pod enclosures. When reference data
were instead available with only 5-minute or 60-minute time resolution, U-Pod medians were calculated
for to match that time step. In order to test models using the same time resolution they were trained
with, the time resolution of reference and sensor measurements for corresponding training/testing
datasets were matched, if necessary, by taking medians of the dataset with higher time resolution to
match the data with the longer time resolution. The first 15 minutes of data after any period that the U-
Pods had not recorded data for the previous 5 minutes was removed in order to filter transient behavior
associated with sensor warm-up. During a given deployment, the data removed to avoid sensor warm-

up transients constituted less than 1%.

When time was included in a model as an input, the absolute time was used. Specifically, we used the
datenum value from the MATLAB environment, which is defined by the number of days that have

elapsed since the start of January 1%, in the year 0000. A model was extrapolated in time when ever
p y y p
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training data does did take place both before and after a given test deployment period. In several case
studies we present, model training only took place after the test deployment period, comprising a ‘post
only’ calibration. In Colorado, and more broadly in the western United States, ambient temperatures
change significantly across the seasons throughout the year, so if a model is extrapolated in time,

extrapolation in temperature often results as well.

2.4 Calibration Model Techniques

In this work, we explore how well field calibration methods hold up in new locations, a topic
which has not yet been sufficiently addressed by the scientific community. As in (Casey et al., 2017),
direct LMs and ANNs were trained with a number of different sensor input sets to map those inputs to
target gas mole fractions measured by reference instruments. Direct LMs implemented were multiple
linear regression models given by

r= p1+ P2851+ P3S2t... tPnSn-1, (1)

where 7 is the target gas mole fraction (measured by a reference instrument) s; —s,.; are sensor signals
from U-Pods that are included as model predictor variables, and p; — p, are corresponding predictor

coefficients.

ANNSs designed for regression tasks, like those employed in this work, generally consist of artificial
neuron nodes that are connected with weights. Weights are initiated with randomly assigned values.
An optimization algorithm is then employed iteratively adjust the values of these weights in order to
map a given set input values to corresponding target values. An example of a very simple feed forward
neural network, and how weights are propagated through it are depicted in Fig. 3. In this work, ANNs
were designed by assigning U-Pod sensor signals to artificial neurons in an input layer and assigning
target gas mole fractions for an individual gas species, measured by a reference instrument to a single
output neuron. Nonlinear, tansig, artificial neurons in one hidden layer for Oz or two hidden layers for
CO, (accordance with our earlier findings for each target gas species (Casey et al., 2017)) were then
added between input layer and the network output neuron. Additionally, bias neurons, each assigned a

value of 1, were connected to neurons in the hidden layer(s) so that individual connecting weights could
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be activated or deactivated during the optimization process. The number of neurons in each hidden
layer was set equal to the number of inputs included in a given ANN. Fig. 4 shows a diagram of an

ANN architecture employed in this work, when there were five inputs.

For ANN training we employed the Levenberg Marquardt optimization algorithm with Bayesian
Regularization (Hagan et al., 1997). The Levenberg-Marquardt algorithm combines the Gauss-Newton
and Gradient Decent methods, towards incremental minimization of a cost function, which is defined by
the summed squared error between the ANN output and target values as a function of all of the weights
in the network. Training begins according to the Gauss-Newton method, in which the Hessian matrix,
the second order Taylor series representation of the local shape of the error surface, is approximated as
a function of the Jacobian matrix and its transpose, significantly reducing required training time.
Network weights are adjusted accordingly during each training step to reduce error. If the cost function
is not reduced in a given training step, an algorithm parameter is adjusted so that optimization more
closely approximates the gradient decent method (a first order Taylor series representation of the local
shape of the cost function), providing a guarantee of convergence on a cost function minimum. Since
local minima may exist across the error surface, it is important to train the same network multiple times,
with different randomly assigned starting weights, in order to assess the stability of ANN performance.

In this work, each ANN was trained 5 times.

In the implementation of Bayesian Regularization, a term is added to the sum of squared error cost
function as a penalty for increased network complexity in order to guard against over fitting. A two
level Bayesian inference framework is employed, operating on the assumptions that the noise in the
training data is independent, normally distributed, and also that all of the weights in the ANN are small,
normally distributed, and unbiased (Hagan et al., 1997). In preliminary ANN tests we found that over
fitting occurred even when Bayesian Regularization was used, so we additionally implemented early
stopping, which proved to be effective in the reduction of over fitting. To implement early stopping, a
portion of training data is set aside as validation dataset, and during training. Training continues so long

as the error associated with the validation dataset is reduced. When the error associated with the
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validation dataset is no longer being reduced, training stops early. For ANNSs, training datasets were
divided in half on an alternating 24-hr basis, with half used for training and half used as validation data
for early stopping. Input signals for both LMs and ANNs were normalized so that they ranged in
magnitude from -1 to 1 since this practice is recommended for the ANN optimization algorithm used

(Hagan et al., 1997).

2.5 Calibration Model Evaluation and Testing

To evaluate the performance of each of the ANN and LM models that were generated using training
data then applied to test datasets, we explored residuals, the coefficient of determination (1), root mean
squared error (RMSE), mean bias error (MBE), and centered root mean squared error (CRMSE). The
CRMSE is an indicator of the distribution of errors about the mean, or the random component of the
error. The MBE, alternatively, is an indicator of the systematic component of the error. The sum of the
squares of the CRMSE and the MBE is equal to the square of the total error, the square root of which is
defined by the RMSE.

First, we generated and applied the best performing model, as determined in our previous work
(presented in Table 3), to data from each new case study. Each new case study was selected to
challenge models in different ways in order to evaluate the resiliency of the findings from our previous
study when challenged by different circumstances. Then we tested LMs for CO; and O3 that contained
only the primary target gas sensor for each species, as well as temperature and absolute humidity as
inputs. Finally, we generated, applied, and evaluated the performance of a number of LMs and ANNs
with different sets of inputs for each case study in order to see which specific model performed the best
for each individual case study. The r’, RMSE, and MBE for each of these alternative models when
applied to test data are presented in the supplemental materials (SM) in Fig. S2 through Fig. S7, along
with representative scatter plots and time series comparing the performance LMs and ANNs for a given
set of inputs. In Fig. S2 through Fig. S7, the best performing model inputs for each train/test data pair
are shaded in purple. The type of model that performed the best (ANN vs. LM) is indicated in the

caption of each figure. We discuss both the performance of the previously determined best fitting
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model (generated using data from the GRET Spring 2017 case study) when applied and generated to
data from new case studies, and the performance of models that were tuned to perform the best for each
individual case study. From these comparisons, we draw insight into circumstances that challenge
model performance in terms of relative local emissions characteristics, location, and timing between
model training and testing pairs. Table 4 lists the relative timing and parameter coverage between
model training and testing periods for dataset pairs, highlighting instances of incomplete coverage

during training that led to model extrapolation during testing.

3 Results and Discussion
3.1 BAO and SJ Basin Summer 2015

The set of deployments we conducted in the summer of 2015 is particularly useful to the objective of
characterizing how well field calibration models can be extended to a new location relative to their
performance where they were trained. During the testing period, two U-Pods were located at BAO,
where training took place, while seven U-Pods were co-located with reference measurements for Os,
and two U-Pods were co-located with reference measurements for CO; in the SJ Basin, across Colorado
and over the state line in New Mexico. Sampling sites at BAO, in the DJ Basin, and throughout the SJ
Basin were all influenced by oil and gas production activities and their associated emissions to some
extent, but the composition of the production stream is different in each basin. In the SJ Basin,
particularly the northern portion of the basin where all our sampling sites were located production is
dominated by coalbed methane. In contrast, many wells in the DJ Basin produce both oil and gas
leading to greater relative abundance of heavier hydrocarbons in emissions. The DJ Basin air shed is
also more strongly impacted by urban emissions than the SJ Basin air shed, and is more strongly
influenced by mobile sources with Denver, Boulder, Fort Collins, Greeley, and many other smaller
communities in its midst and along its borders. The Four Corners region, where the SJ Basin is situated,
has a much smaller population density. Additionally, while there are some agricultural activities and
associated emissions in and around the SJ Basin, there is a significantly larger agricultural industry in

and around the DJ Basin. SJ Basin sampling sites spanned a range of elevations, including some that
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were higher and some that were lower than the BAO Tower, coinciding with a wide range of

atmospheric pressure at the distributed sampling sites.

We began by testing the best-performing CO, model, as determined in our previous work (Casey et al.,
2017), on data from this case study, during the summer of 2015. ANNSs were trained for each U-Pod
using data from the BAO Tower with the following inputs from each U-Pod: eltCO2 (ELT S300 CO2
sensor), temp (temperature), and absHum (absolute humidity), then tested on data collected at the BAO
Tower and at sampling sites in the SJ Basin. The performance of these ANNs when applied the test data
are presented in Fig. 5 and Fig. 6. Fig. 5 shows scatter plots of U-Pod CO; vs. reference CO, during the
test data period for sensors located at BAO as well as sensors that were located at distributed sampling
sites throughout the SJ Basin. The scatter plots show that while there was generally a smaller dynamic
range of CO; at the SJ Basin sites relative to BAO, model performance did not appear to be impacted or
degraded by spatial extension to these locations in the SJ Basin. The line of best fit for Fort Lewis site
(periwinkle) is even closer to the 1:1 than the lines of best fit for two U-Pods located at BAO (black and
grey). Overlaid histograms of residuals in the bottom right corner of Fig. 55 show that CO, residuals
from each of the SJ Basin U-Pods are generally centered and evenly distributed about zero with similar

spread.

U-Pod CO; average residuals during this test period, using the best performing ANNs from our previous
study, are plotted according to time of day and date in Fig. 6. While the use of ANNs in place of LMs
reduces U-Pod CO; residuals significantly with respect to temperature, some daily periodicity in the
residuals for all four U-Pods is apparent in the upper plot in Fig. 6 that shows residuals by date. The
lower plot in Fig. 6, showing residuals by time of day, demonstrates that CO, from three of four U-Pods
was generally under predicted during early hours of the morning and generally over predicted during
afternoon and evening hours. Interestingly, this trend in residuals by time of day is more pronounced
for the two U-Pods that remained at BAO. Upon examination of overlaid histograms showing
distributions of parameters during model testing and training periods, in Fig. S12, and model time series

and residuals plots in Fig. S3, there is no indication of model extrapolation at the BAO site, nor the sites
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in the SJ Basin (with the exception of pressure due sampling site altitudes) and no significant trends of

concern with respect to residuals and model inputs.

Next we evaluated the best model type and set of inputs for CO, based on this specific case study.
Differing from our previous findings, for this group of training and testing data pairs from the summer
of 2015 at the BAO and SJ Basin sites, the inclusion of the e2vVOC (e2v MiCs-5521) and alphaCO
(Alphasense CO-B4) sensor signals noticeably improved the RMSE in the quantification of CO,. While
the inclusion of these two secondary sensor signals didn’t result in the best performance in our previous
study, using data from the GRET site (Casey et al., 2017), their inclusion did not degrade performance
relative to the models that included just eltCO2, temp, and absHum signals as inputs, so including these
sensor signals may be appropriate as a general rule, in areas that are strongly influenced by oil and gas
production activities. Generally, using rh vs. absHum signals as ANN inputs did not have a measurable
impact on model performance, though linear models were sometimes found to perform better when the
absHum signal is used instead of the rh signal. From Fig. S2, it is apparent that inputs including e2vCO
(e2v MiCs-5525), temp, rh, e2vVOC, and alphaCO sensor signals as model inputs resulted in the lowest
RMSE for U-Pods at BAO as well as at the two SJ Basin sites. Plots analogous to those presented in
Fig. 5 and Fig. 6, but with this best performing set of inputs for the present data set pairs are presented
in the SM, in Fig. S24 and Fig. S25 respectively.

For O3, we similarly began by testing the model that was found to perform the best from our previous
study on data from this case study. Oz was quantified using data from the two U-Pods deployed at BAO
and seven of the U-Pods deployed at SJ Basin sampling sites using ANNs with the following inputs:
e2vO3 (e2v MiCs-2611), temp, absHum, e2vCO, e2vVOC, figCH4 (Figaro TGS 2600), and figCxHy
(Figaro TGS 2602). These same inputs and model configuration were also found to be the best
performing for the U-Pods at the BAO site and the majority of SJ Basin 2015 dataset pairs as noted in
Fig. S2. Interestingly though, LMs with this same set of inputs performed competitively well for three
of the seven U-Pods in the SJ Basin in terms of RMSE and r*. The observation that LMs performed

competitively well at a subset of SJ Basin sites is likely connected to the relative abundance of
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hydrocarbons and other potentially interfering oxidizing and reducing gas species at individual
sampling sites, diverging from conditions present during model training at the BAO site. ANNs can
better represent the influence of these interfering species than LMs during training, but appear to have

lose their ability to do so for this subset of microenvironments in the SJ Basin.

Scatter plots and trends in residuals are presented in Fig. 7 and Fig. 8 for Os. These plots show the
performance of U-Pods at BAO relative to those at SJ Basin sites in the quantification of O3 during the
test data period. U-Pod O3 measurements at Fort Lewis, Navajo Dam, and the Sub Station did not agree
with reference measurements as well as U-Pod O3 measurements from the other four SJ Basin sites. As
noted earlier, U-Pods at the Navajo Dam and Sub Station sites had faulty relative humidity sensor data,
so humidity from the U-Pod located at the Ignacio site was used in place of their humidity signals.
Since the Ignacio site was located approximately twenty-two and fifty miles away from the Navajo Dam
and Sub Station sites respectively, this could have introduced some additional error into the application
of a calibration equation, particularly since we showed earlier that O; ANNs like the ones we employed
here are very sensitive to humidity inputs (Casey et al., 2017). Spatial variability in humidity across
tens of miles could be significant as isolated storms (which are on average 15 miles in diameter)
propagate throughout the region in the summer. At the Fort Lewis site, a 2b Technologies model 202
O; analyser was employed as a reference instrument, differing from the Thermo Scientific 491, Thermo
Scientific 49is, and Teledyne API T400 instruments utilized for reference measurements, elsewhere in
the SJ Basin, and the Thermo Scientific 49c¢ that was operated at the BAO site and used for model
training. Of all the reference instruments, only the 2b Technologies model 202 Oj; at the Fort Lewis site
was operated in a room that was not temperature controlled, as such, some bias may have been
introduced to the Fort Lewis O3 reference measurements. Different instruments, operators, calibration
and data quality checking procedures could have contributed to observed discrepancies. It is also
possible that the microenvironment at each of these three sites contributed to lower model performance.
Fig. S1 shows that differences among U-Pod O; performance during the test deployment period were
larger than those observed during the training period among the same U-Pods. Therefore, the

incongruous field calibration performance phenomena we observed seems to be connected to unique
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characteristics associated with humidity sensor signal replacement or individual sampling site
characteristics; possibly relative abundance of oxidizing and reducing molecules in the local
atmosphere, which could interfere with sensor responses to their target gas species, as opposed to the

quality of individual gas sensors in each of those U-Pods.

All SJ Basin U-Pod O3 measurements systematically over estimate lower levels of O3 each night, a
trend apparent in the scatter plots in Fig. 7 and in the residuals by time of day plot in Fig. 8. Upon
examination of the scatter plots in Fig. 7, U-Pods at some sampling sites had positive bias for higher O;
measurements as well (Shiprock, Ignacio, Sub Station, and Bloomfield), while for others, bias at the
higher end of O3 distributions did not appear to be present (Navajo Dam, Fort Lewis, and Bondad). The
residuals by time of day plot in Fig. 8 shows that the two U-Pods at BAO did not have significant trends
in their residuals according to the time of day, but that U-Pods deployed at SJ Basin sites consistently
over estimated nighttime Os. The residuals are also plotted with respect to temperature in Fig. 8, where
all U-Pods, even those at BAO to a lesser extent, appear to over predict O3 at lower temperatures, which
generally occurred at night. In general, the times of day that correspond to the highest Os levels had the

lowest residuals, with some exceptions at the Fort Lewis and Navajo Dam sites.

Fig. 8 includes a plot of the residuals across the duration of the deployment period, showing no
significant sensor drift in measurements for any of the U-Pods. This plot also shows that the highest
residuals observed generally occurred over short periods in time, particularly for the Fort Lewis (blue)
and Sub Station (magenta) sites. In order to further explore the performance of field calibration models
for Os at SJ Basin sites relative to BAO, the combined parameter space of temperature with O;
reference mole fractions and temperature with absolute humidity are presented in Fig. 9. The combined
temperature and reference O3 parameter space appears to be similar for all of the U-Pods, both at BAO
and the SJ Basin sites. However, there appears to be some outlying combined temperature and
humidity parameter space at the Sub Station site and at the Navajo Dam site. Brief excursions, lasting

approximately 2 — 4 hours, of high humidity (up to 0.025 kg/kg, relative to the upper bound of absolute
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humidity observed at other sampling sites of 0.013 kg/kg) may be connected to some of the large short-

term residuals observed at these two sampling sites.

The majority of U-Pods stopped logging data, unfortunately, at one point or another during these
deployments. Periods of missed data during the month-long deployment included approximately one
day at the Shiprock site, two days at the Bloomfield site, four days at the Sub Station site, nine days at
the Fort Lewis site, and seventeen days at the Navajo Dam site. We carried out frequent sampling site
visits (on a weekly or biweekly basis as logistics and travel to remote locations in some cases allowed)
in order to identify and fix problems as they arose during field deployments. Operational issues were
predominantly attributable to power supply problems associated with BNC bulkhead fittings and
corrupted micro SD cards. The periods of missing data are reflected in the plots of residuals by date in
Fig. 6 for CO; and in Fig. 8 for O;. Fortunately, no drift over the course of the deployment period was

observed in these plots.

3.2 Insight from Additional Case Studies of Field Calibration Extension to New Locations
3.2.1 Urban calibration moved to rural/peri-urban setting: Dawson Summer 2014

The Boulder County deployment in the summer of 2014 was used to test how well a field calibration for
sensors in one U-Pod, generated in a busy urban area (at CAMP in downtown Denver), could be
extended to a peri-urban setting (at Dawson School in eastern Boulder County). Training took place at
CAMP for several days each month, before and after each approximately month-long deployment
period at Dawson School over the course of four months. Fig. S7 shows the performance of a number
of ANN and LM-based CAMP field calibrations with different sets of inputs at this Dawson School test
site. In this case study, LMs performed better than ANNs across all sets of sensor inputs. Unlike
findings from our previous study (Casey et al., 2017), including secondary metal oxide type sensors as
inputs didn’t help to improve model performance. The best performing set of inputs included just
e2vO3, temp, and absHum signals. The very different relative abundance of various oxidizing and
reducing compounds in downtown Denver relative to the Dawson School site, surrounded by open

grassy fields, and in closer proximity to oil and gas production activities, may be the reason why
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including additional gas sensors as model inputs and the use of ANNs failed to improve the
quantification of U-Pod Oj in this case. Relatively short training durations could also contribute to this

finding, based on findings from our previous work (Casey et al., 2017).

The fact that LMs performed better than ANNSs in this case (with an 12 of .95 and RMSE of 0.35 ppb for
LMs, as opposed to an 12 of .9 and an RMSE of 5.1 ppb for ANNs) may have to do with the general
expectation that LMs be more resilient to extrapolation than ANNs. Notably though, neither ANNs nor
the LMs captured the highest levels of O3 at Dawson School well. We attribute the poor performance at
high levels of Os at this site, those in exceedance of about 70 ppb, to extrapolation of the O; mole
fractions encompassed during the training period. The LM generally performed well within the O3
levels covered during the training period. Across applications, ANNs have been found to be unreliable
when extrapolated, due to the nonlinear nature and complexity of the relationships they represent.
Though they are generally expected to be more robust to extrapolation that ANNSs, increased uncertainty
in measurements can also be introduced to LMs when parameters are extrapolated. In order to have
high confidence in measurements of uncommonly high mole fractions of a target gas, the model training
period has to encompass the full possible range. Combining both field calibration and lab calibration
data together in a training dataset could accomplish this type of coverage. If extrapolation is expected
to occur with respect to the target gas mole fraction, as in this case study, the use of an inverted LM
may yield better results than LMs or ANNs. We describe inverted LMs and their potential advantages
in our previous work (Casey et al., 2017). Keeping in mind this finding about O3 extrapolation, for
ambient measurements in the DJ Basin, for subsequent deployments, we selected field calibration sites
that were more representative of distributed sampling site locations, outside of the dense urban
environment in downtown Denver, where O3 did not get as high, likely due to increased titration of O;

at night in connection with abundant NOx compounds.

3.2.2 Post only calibration moved across the state: SJ Basin Spring 2015

We also examined model performance that was subject to extrapolation in time and temperature. We

present O3 model performance data from four U-Pods that were co-located with reference instruments
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in the SJ Basin in the spring of 2015, at the Navajo Dam, Sub Station, and Bloomfield sites. Two U-
Pods at the Bloomfield site provide a set of duplicate measures. Fig. S4 shows the performance of a
number of ANN and LM-based BAO field calibrations with different sets of inputs at this SJ Basin test
sites in the spring of 2015, just prior to the summer 2015 BAO training period. U-Pod O; was
quantified for these deployments using training data from the same co-location period at BAO that was

used toward quantification of the summer 2015 SJ Basin deployment, described in section 3.1.

The addition of time as a model input didn’t seem to improve the performance of either ANNs or LMs
and ANNs generally outperformed LMs. Gas sensor manufactures don’t clearly define sensor lifetimes,
but sensors are generally expected to loose sensitivity over time. For example, Alphasense CO-B4
electrochemical sensors are expected to have 50% of their original sensitivity after two years
(Alphasense, 2015). The heater resistance in a given metal oxide type sensor is expected to drift over
time, influencing sensor measurements (e2v Technologies Ltd., 2007). Masson and colleagues
observed a significant drift in a metal oxide sensor heater resistance over the course of a 250 day
sampling period in a laboratory setting (Masson et al., 2015). While we did not measure and record
metal oxide sensor heater resistance for sensors included in U-Pods, we have investigated eltCO2 and
e2vO3 sensor signal drift from the summer of 2015 through the summer of 2017. These data are
presented in Fig. S26. Systematic downward drift in all eltCO2 sensor signals is apparent over this time
frame. A clear and consistent pattern of systematic drift over this time period is less apparent for e2vO3
sensors. Since the training data was collected immediately after, the test data period, and since the test
data period was relatively short (approximately one month) sensor drift could be negligible across the
combined training/testing time frame. U-Pods experienced colder temperatures during this spring
deployment than were encompassed subsequently in the BAO training period. Linear models generally
resulted in more bias than ANNs. Again the model for O; that was found to perform best in our
previous (Casey et al., 2017), an ANN with temp, absHum and all metal oxide sensor signals as inputs,
performed the best at sites included in this case study, with one exception. At the Sub Station site the
inclusion of the figCxHy sensor signal decreased model performance. Additionally, the performance of

all models tested at the Sub Station site during the SJ Basin Spring 2015 deployment was significantly
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worse in terms of MBE than model performance at other sites, both LMs and ANNs with different sets
of inputs. Since this sensor signal input augmented model performance at the same sampling location
during the summer deployment period, this finding could be attributable to the extrapolation with
respect to temperature that occurred during the test period of this case study. As discussed in the
introduction, metal oxide sensor sensitivity to different gas species can vary along with sensor surface
temperature. Models were trained to use the figCxHy sensor signal, across the ambient temperatures in
encompassed by the training data, to help account for the influence of confounding gas species at the
BAO site. We think it is possible that the different temperatures in combination with the unique mix of
gas species present at the Sub Station site, which the figCxHy sensors are highly sensitive to, caused the
ANN to perform worse. The Sub Station site is close to two large coal-fired power plants, indicated in
Fig. 11 by orange markers in the SJ Basin pane. It is possible that emissions from the San Juan
Generating Station (north) and/or the Four Corners Power Plant (south) uniquely influenced the
response of this particular Figaro sensor in ways that are not well represented at BAO in the DJ Basin,
or present at other SJ Basin sampling sites. Several-hour long enhancements or spikes are apparent in
the raw eltCO2 and alphaCO sensor signals in the U-Pod deployed at the Sub Station site, indicating the
presence of a near-by combustion-related emissions source. Another indication of a near-field power
plant plume across the deployment area is apparent, in the form of several-hour long enhancements of

reference measurements of NO and NO, at the site.

3.2.3 Post only calibration moved 40 miles across the DJ Basin: BAO Summer 2016

In testing the performance of field calibrations that were generated using data collected at the GRET
site in 2017 and applied for the quantification of O3 at BAO in the 2016, across the DJ Basin, we were
interested to find that again, the inclusion of time as a model input did not yield any improvements in
calibration equation performance, even though model training took place several months after the test
period. Fig. S5 shows the performance of a number of ANN and LM-based GRET field calibrations
with different sets of inputs at this BAO test site the previous summer. Another interesting finding from
this training/testing dataset pair was that the addition of secondary metal oxide type gas sensors, didn’t

seem to help improve the performance of field calibration equations either. Fig. S5 shows that ANNs
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performed better than LMs and that the most useful set of inputs included just e2vO3, temp, and
absHum. Similarly, the performance of field calibration equations for CO, generated at GRET in 2017
and applied to data from BAO in the summer of 2016, did not seem to be augmented by the inclusion of
additional gas sensor signals, though the inclusion of time as a predictor was useful. In the case of CO,,
LMs outperformed ANNs, which could be largely attributable to notable instability associated with the
performance of ANNs when time was included as an input. For CO,, we expected the inclusion of time
as an input to be a useful to model performance across this time frame, owing to observed trends of
decreased CO, sensor sensitivity in time. To keep the power requirements for the U-Pod sensor systems
low, and to keep systems quiet, fans were used to exchange air in the enclosures as opposed to pumps.
As a result, the air entering the enclosures was not filtered, and sensors were exposed to some dust over
time. This dust exposure is likely largely responsible for observed decreases in CO; sensors sensitivity
over time, shown in Fig. S26. Decreases in infrared lamp intensity over time may also play a role. In
the case of CO, sensors, the implementation of pumps to draw new, filtered air into sensor enclosures
could likely significantly reduce lose rates in the sensitivity of an individual sensor over periods of
continuous deployment in ambient environment. While we are not sure why ANN performance tended
not to benefit from the addition of a time input, while LM performance did, it is likely attributable to the
extrapolation of the time input, since only data that was collected significantly subsequent to the test
data period was used for training. ANNs are expected to be able to better represent time decay trends if
data from measurements both prior and subsequent to the test period are used in training, so that there is

no extrapolation with respect to the time input.

3.2.4 Post only calibration applied to the same location: GRET Fall 2016

To investigate if reduced performance from these GRET to BAO field calibration tests were more
connected to the new deployment location or to the significant extrapolation with respect to time of the
calibration models, we generated calibration equations based on similarly long training periods at
GRET and applied them to data collected prior to the training period at GRET in the fall of 2016. We
couldn’t draw strong conclusions from this comparison, unfortunately, because of an issue with

humidity sensors, described in the methods section and below. Fig. S6 shows the performance of a
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number of ANN and LM-based GRET field calibrations with different sets of inputs at the GRET test
site during fall of the previous year. For O3 models, the best performing ANN inputs for this dataset
pair were the same ones that we found in our previous study (Casey et al., 2017), with the exception of
the humidity signal. The fall 2016 GRET test period coincided with the time period U-Pod absolute
humidity was replaced using mixing ratios from a co-located Picarro due to missing humidity sensor
data. Interestingly, when this ‘borrowed’ humidity signal was not included as an input, the model
performance markedly increased and became competitive with other ‘same location’ test deployment
case studies. In our previous work, we showed that O; models were very sensitive to the humidity
signal input (Casey et al., 2017). In this case study, it seems that replacing actual humidity signals with
closely approximated humidity signals, negatively influenced model performance. In order to
investigate this observation further, we tested the influence of replacing humidity data in the same
manner, using mixing ratios from the same co-located Picarro, on test data from the GRET Spring 2017
case study. A comparison of model performance under normal and this ‘borrowed RH’ circumstance is
presented in Fig. S27 in the SM. O3 model performance was negatively impacted when ‘borrowed” RH
values based on Picarro data replaced U-Pod RH sensor signals. From these findings, it seems likely
that the inclusion of multiple metal oxide type sensors as inputs in the model, which all respond
strongly to humidity fluctuations, helped the ANN to effectively represent the influence of humidity in
the system, more so than including a ‘borrowed RH’ signal from another instrument. We tested models
with multiple gas sensor signals and no humidity signal as inputs for a number of other case studies as
well (as seen in Fig. S2, Fig. S4, and Fig. S5), when good humidity data from U-Pod enclosures was

available, but they did not turn out to be the best performing model in any of these other tests.

3.3 Evaluation of models across training/testing dataset pairs

For each of the case studies, we compare the relative model performance under three governing model-
training paradigms. The first of these paradigms includes linear models with only the primary gas
sensor signal, along with temperature, and absolute humidity signals as inputs. Performance of these
models is shown in Fig. 10. The next paradigm includes models that were found to perform best for

each trace gas in our previous work. Performance of these models is shown in Fig. 11. The third
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paradigm includes models that were optimized for each case study specifically. Performance of these
models is shown in Fig. 12. Table 5 and Table 6 show the mean and standard deviation of model
performance metrics for each of the case studies presented. Table 7 shows the percent change in model
performance metrics when one model-training paradigm is used in place of another, highlighting

relative benefits associated with the implementation of different models for Oz and CO,.

Fig. 10, Fig. 11, and Fig. 12 contain target plots showing the MBE and CRMSE of models from each
dataset pair in terms of absolute mole fractions and mole fractions normalized uniformly by the standard
deviation of reference data during the spring 2017 GRET deployment. In the SM, Fig. S23 contains
target diagrams equivalent to those presented in Fig. 12, but with individually normalized MBE and
CRMSE, according to the standard deviation of reference measurements during each individual test
period. The outer circle’s radius in each of these target diagrams denotes an error-to-signal ratio of 1.
The inner circle’s radius in each of these target diagrams encompasses the performance of models when
they were tested at the same location that they were trained and when training data bookended the test
period, so that there was no extrapolation of the model across time or deployment location. We present
our findings in the form of these target diagrams in order to compare our findings with those presented
in several particularly relevant previous studies focused on the field calibration of low-cost sensors

(Spinelle et al., 2015, 2017; Zimmerman et al., 2017).

Fig. 10 and Fig. 11 show that for CO,, ANN models generally performed slightly better than LM
models with the same set of inputs, though models that were extrapolated more than several months in
time were the exception. For Oz, ANNSs that included multiple secondary metal oxide sensor signals as
inputs were also found to generally perform slightly better than the relatively simple LMs that didn’t
include any secondary gas sensors as inputs over all (with exceptions for individual case studies). This
can be seen in Table 7 and in Fig. 10 and Fig. 11, with all plot markers falling within the outer radius in
Fig. 11 (ANNs) but some plot markers falling outside the outer radius in Fig. 10 (LMs). Models that
were not moved to a new location for the test period gained the most benefit in their performance when

ANNSs were used instead of LMs, resulting in a smaller inner radius in the target plots in Fig. 11 relative
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to Fig. 10 for both O3 and CO,. The target diagrams in Fig. 10 and Fig. 11 show some degradation in
performance when models were applied to data in new locations and when training data took place only
after the test period. The of the target plots in Fig. 10 and Fig. 11 demonstrate that bias was introduced
when field calibration models were extrapolated in terms of time, when training periods only
encompassed data after the test data period and not prior. Interestingly, there are noticeable similarities

between the target plots for CO; in Fig. 10 and 11 and the target plots for Oz in Fig. 10 and 11.

The relative performance of models among each training/test dataset pair remained fairly consistent
across the different models employed in data quantification. These systematic trends highlight the
importance of model training and testing circumstances relative to specific field calibration model types
and inputs. For the BAO Summer 2016 case study, when time was extrapolated significantly, and when
models were moved across the DJ Basin, CO; and Oz were both better represented by LMs than ANNSs.
CO; and O3 models did not benefit from additional gas sensors added as inputs either for this case
study. In Fig. 11, of models that performed best for each species as determined in our previous study,
models that were not extrapolated in time for CO,, and all O3 models, plot markers fall within the outer
radius, meeting performance standards framed by previous studies (Spinelle et al., 2015, 2017,
Zimmerman et al., 2017). In Fig. 12 the best field calibration model performances for each case study
all fall within the outer radius, showing good performance, and indicating that incomplete coverage of
parameter space in terms of atmospheric chemistry, weather patterns, sampling location, and sampling
timing, can be addressed to some extent by tailoring field calibration models and their inputs to specific

training/testing datasets pairs.

For CO, we found that field calibration models generally extended with good performance to new
locations. ANNs outperformed LMs when training took place pre and post of a test deployment. When
training only took place after a test deployment LMs performed better. LMs seem to be better at
extrapolating in time. Over time, ELT NDIR CO, sensors seem to lose sensitivity and/or drift. When
CO; models were extended back in time, significant bias resulted when time was not included as an

input. ANNs were not able to extrapolate in time with any success and their performance became very
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unstable when time was added as an input, an occurrence that is apparent in Fig. S5 and Fig. S6.
Models performed better when they were extended spatially, all the way across Colorado from the DJ
Basin to the SJ Basin, than they did when they were extended back in time. Extension of a LM back in
time and across the DJ Basin (from GRET in 2017 to BAO in 2016) resulted in significant MBE
relative to the other case studies. The inclusion of multiple additional gas sensors augmented model
performance when extended back in time at the same location as training took place, but not at a new

location.

For O; we found that ANNs with the same set of inputs worked best across a number of case studies,
informed by all the metal oxide sensor signals as well as temperature and humidity. The extension of
models to new locations often resulted in increased MBE or systematic error, and in some cases
increased CRMSE or random error. Some observed bias in the extension of models to new locations
could be attributable to different reference instruments with different operators and/or different
calibration and data quality measures employed. O3 model extension to new locations seemed to be
more impactful than extension back in time. Interestingly, additional metal oxide sensor signals
remained helpful when models were extended all the way across Colorado, from BAO to the SJ Basin,
but these additional gas sensor signals did not remain helpful when O3 models were extended across a
county line, from Adams County (CAMP) to Boulder County (Dawson) or from Weld County (GRET)
to Boulder County (BAO). ANNs generally performed better than LMs for Os, with the exception of
these two Front Range case studies (Dawson Summer 2014 and BAO Summer 2016). We found in our
previous study that shorter training times led to decreased performance in ANNs and sometimes
increased performance in LMs. The training time used in the CAMP to Dawson case study was
relatively short, which could have contributed to the superior performance of LMs over ANNs.  For
the BAO Summer 2016 case study, both ANN and LM markers are included (each with the same
inputs: e2vO3, temp, and absHum). LMs had smaller random error but ANNs had smaller bias,
highlighting an important consideration in the application of one or the other to inform specific research

or measurement goals.
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4 Conclusions

Several previous studies have shown that multiple gas sensor signals and the implementation of
supervised learning techniques can improve the performance of field calibration of low-cost sensors in
the quantification of a number of atmospheric trace gas mole fractions. We investigated how well a
supervised learning technique (ANNs) held up when sensors were moved to a new location, different
from where calibration model training took place. We tested the spatial and temporal transferability of
field calibration models for Os and CO; under a number of different circumstances using data from
multiple reference instrument co-locations, using the same sensors over the course of several years,
when sensors were deployed in two oil and gas production basins, along with urban and peri-urban
sites. We found that the best performing field calibration models for both O; and CO, were not
consistent across all training and testing deployment pairs, though some patterns emerged in terms of
model type and inputs in association with the spatial and temporal extension of calibration equations,
from training to testing performed in oil and gas production areas. The performance of Oz models
generally benefited from the inclusion of multiple metal oxide sensor signals in addition to the primary
e2vO3 sensor signal, while the performance of CO, models relied more heavily on temperature and
humidity inputs. CO, model performance was impacted more by temporal extension than spatial
extension. In contrast, O3 model performance was impacted more by spatial extension than temporal

extension.

While ANNs and other supervised learning techniques have been shown to consistently out perform
linear models in previous studies when training and testing took place in the same location, we find that
this trend does not always hold when field calibration models are applied in a new location, with
significantly different local emissions source signatures for O3 models, or when model training data
takes place more than several months subsequent to the model application period for CO, models. We
find that the implementation of calibration models that were well suited to specific training and test data
pairs resulted in generally good test performance in terms of centered root mean squared error and mean
biased error, scaled by reference measurement standard deviation, reported in target diagrams in

previous studies. For example, when models were significantly extrapolated in time and transferred to a
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new location, a well-suited set of sensor inputs would generally not include secondary gas sensor

signals.

LMs with just one primary gas sensor signal as well as temperature and humidity were found to
outperform ANNs when models were applied to a location with different dominating sources of
pollution in the case of Os, like Downtown Denver relative to eastern Boulder County. These three-
input LMs also outperformed ANNs when models were significantly extrapolated in time. While these
LMs seemed to be more stable under circumstances of significant extrapolation in terms of local air
chemistry and timing, we found that they did not extrapolate well in terms of the O3 mole fraction,
resulting in underproduction of O values during the test period that exceeded those encompassed in the

training data.

Field calibration models tested in new locations often resulted in the introduction of additional bias
relative to field calibration models that were tested in the same location they were trained in. As seen in
Fig. 12, plot markers from all case studies have very similar CRMSE values, but plot markers from case
studies in which models were tested in new locations have larger MBE values than models that were
tested in the same location as they were trained. Finding ways to effectively mitigate bias associated
with new field deployment locations would further improve the performance of field calibrations toward
quantification of atmospheric trace gases using arrays of low-cost sensors. Such improvements in the
field of low-cost sensors will help to enable dense distributed networks of low-cost sensors to inform air
quality in oil and gas production basins. The following findings from this work, and associated
recommendations, are made to help inform the logistics of future studies that employ field calibration

methods of low-cost gas sensors.

1. Finding: For O3 models, LMs perform better than ANNs when the chemical composition of
local emissions sources is significantly different in the model-training location relative to the

model-application location. We found that when models were trained in an urban area with
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significant mobile sources, then tested in a peri-urban area, more strongly influenced by oil and
gas emissions, the differences in local sources of pollution were significantly different enough
that LMs outperformed ANNs. Alternatively, when models were trained in one oil and gas
production region and tested in another the different composition of local emissions (lighter vs.
heavier hydrocarbons) was not significant enough for LM performance to surpass the
performance of ANNSs, though some positive bias was evident in predicted O3 mole fractions.
Explanation: ANNs are very effective at compensating for the influence of interfering gas
species through pattern recognition of a training dataset. However, if different patterns, in terms
of the relative abundance of various oxidizing and reducing compounds in the air, are present in
the testing location relative to the training location, ANNs may not able to compensate for the
influence of interfering gas species as effectively.  The relative abundance of interfering
oxidizing and reducing compounds are not included as model parameters, but ANN performance
is challenged by these circumstances.

Recommendation: When measuring O3 or other gas species with a metal oxide type sensor, if
the nature of dominant emissions sources at the model training location is significantly different
than the nature of dominant emissions sources in the model application location, use a LM
instead of an ANN. For the best performance, try to train models in locations with similar
emissions sources to a desired sampling location. If the nature of dominant emissions sources at
the model training and application locations are similar, signals from an array of multiple unique

metal oxide sensors will likely augment model performance.

Finding: For CO; models, LMs perform better than ANNs when model training occurs
significantly (more than several months) prior to or subsequent to the model application period.
Explanation: CO; sensors drift over time in terms of sensitivity and baseline response. When
models are extrapolated in time (when training takes place more than several months prior or
subsequent to the model application period), ANN performance can be compromised to a greater
extent than LM performance. ANNs are able to represent relationships during training very

effectively, and with significant more complexity and nonlinear relationships among time and
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other model inputs than LMs. The more complex the model, the less likely it can be extrapolate
effectively. LMs, with no interaction terms like we employ in this work, are not able to fit data
and potentially complex patterns inherent in sensor drift over time during training as closely as
an ANN, but the simple linear relationships they represent between the time input and the target
gas mole fraction over the course of training are more likely to hold prior or subsequent to the
training period.

Recommendation: When measuring CO, with a NDIR sensor, if model-training data is only
available more than several months prior or subsequent to the model application period, use a
LM instead of an ANN. For the best model performance, use training data that is collected
directly pre or post of the model application period, and preferably data from both pre and post
of the model application period. Training models using data from both pre and post of a given
model application period helps models to encompass sensor drift over time as well as increases
the likelihood of covering the full range of environmental parameter space that occurs during the

model application period so that extrapolation of these parameters is avoided.

Finding: Extrapolation of an O3 or CO, model in time, and especially significant extrapolation
in time, can change both the type of model that is most effective, as well as the specific model
input signals that are most effective.

Explanation: Low-cost sensors change over time, both in terms of their baseline response and
in terms of their sensitivity to target and interfering gas species. Different sensor types drift due
to different physical phenomenon so further a generalization across sensor types is difficult.
Recommendation: Use training data collected directly pre and post of the model application
period in order to implement a ‘best performing model” for each gas species that can be applied

using data from different model training and application pairs.

Finding: ANNs yield less bias and more accurate gas mole fraction quantification than LMs,
even when transferred to a new location under the following circumstances: (a) extrapolation of

training parameters is avoided during the model application period, (b) training takes place for
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several weeks to a month prior and subsequent to the model application period, and (c) the
dominant local emissions sources are similar in the model training and application locations.
Explanation: Our previous study and multiple other ambient and laboratory based experiments
have shown, arrays of low-cost sensors in combination with ANN regression models can support
useful quantification of gases in mixtures and in the ambient environment because ANNs can
more effectively represent complex nonlinear relationships among environmental variables and
signals in a sensor system like a U-Pod than LMs. With this work, we have explored limitations
associated with these methods when challenged in different ways, as we present with a number
of case studies.

Recommendation: If minimizing error and bias in measurements of gas mole fractions using
low-cost sensors systems is a primary goal, design sensor system training and field deployment
experiments so that extrapolation of model training parameters is avoided during the model
application period, so that training takes place for several weeks to a month directly prior and
directly subsequent to the model application period, and so that the dominant local emissions
sources are similar in the model training and application locations. When these conditions are

satisfied, ANNs can be robustly implemented, with better performance than LMs.

It is also imperative that sensor users keep in mind the primary importance of minimizing extrapolation
of temperature, humidity and sensor signal from model training to application. We show that field
normalization trace gas quantification models can more readily be transferred across a large state from
one oil and gas production to another, than from an urban to oil and gas production basin that are in
closer proximity to each other. We also show that pre and post model training, directly prior to and
after field site deployment, is generally much more effective than pre or post model training alone,
especially when the training takes place significantly before or after the deployment period. Along with
these findings and general guidelines for future studies, we recommend further validation efforts in the
extension of quantification of atmospheric trace gases using low-cost gas sensor arrays in oil and gas
production basins and toward other ambient measurement applications. The findings presented here

may be applicable and generalizable in the use of low-cost metal oxide, electrochemical, and non-
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dispersive infrared sensor arrays in various configurations and sampling regions to characterize mole
fractions of a number of atmospheric trace gases. Future studies exploring the sensitivity of our
findings to these factors are recommended. In order to account for unique variations in sensor
responses, in each individual sensor system, due to variations in manufacturing along with elapsed time
and specific exposure subsequent to manufacturing, we present models that are generated for each
sensor system on an individual basis. Future studies exploring the potential for universal calibration

models would be very useful to the field.
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Table 1: Gas sensors included in U-Pods along with the model input codes for each. The input code is an abbreviation for the

make of the sensor, followed by the target gas species(s).

NDIR Metal Oxide Electrochemical

Target Gas(s) @ CO, CxHy **
Model S300 TGS 2600 TGS 2602 MiCs-2611
Make ELT Figaro Figaro
Code eltCO2  figCH4 figCxHy
*Light hydrocarbons
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15

20

e2v/SGX
e2vO3

46

VOCs

MiCs-5521 MiCs-5525 = CO-B4
e2v/SGX e2v/SGX
e2vVOC e2vCO alphaCO

Alphasense

**Heavy Hydrocarbons



Table 2: Reference instrument measurements at U-Pod sampling sites

Deployment

Ozone
CAMP
Dawson
BAO*
Navajo Dam
Bloomfield
Sub Station
Ignacio
Bondad
Shiprock
Fort Lewis

GRET

Reference Instrument

Teledyne API 400E
Thermo Electron 49
Thermo Scientific 49¢
Thermo Scientific 49i
Thermo Scientific 49i
Thermo Scientific 49i
Thermo Scientific 49is
Thermo Scientific 49is
Teledyne API T400
2b Technologies 202
Teledyne API T400E

Carbon Dioxide

BAO
SJ Basin
GRET

Picarro G2401
LI-COR LI-840A
Picarro G2508

*(McClure-Begley et al., n.d.)

Calibration

quarterly cal/nightly quality checks
pre cal/post cal check

annual cal/monthly quality checks
quartertly cal/weekly quality checks
quartertly cal/weekly quality checks
quartertly cal/weekly quality checks
monthly cal/weekly quality checks
monthly cal/weekly quality checks
quarterly cal/monthly quality checks
factory cal/post cal check

quarterly cal/nightly quality checks

pre + post cal: zero precision span

periodic zero stability checks

Operator

CDPHE
INSTAAR
NOAA
NM AQB
NM AQB
NM AQB
SUIT AQP
SUIT AQP
NEPA

CU Boulder
CDPHE

NOAA
CU Boulder
CSU

Res = Time resolution of measurements in minutes
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Table 3: Best performing models, as determined for each gas species, in the previous study (Casey et al., 2017)

Gas . i
Species Model Type Sensor Signal Model Inputs

eltCO2 (ELT S300 CO2 Sensor)
CO, ANN temp (temperature)
absHum (absolute humidity)
e2vO3 (e2v MiCs-2611)
e2vCO (e2v MiCs-5525)
e2vVOC (e2v MiCs-5521)
O; ANN figCH4 (Figaro TGS 2600)
figCxHy (Figaro TGS 2602)
temp (temperature)

absHum (absolute humidity)
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Table 4: Relative timing and parameter coverage between model training and test deployment dataset pairs. Incomplete coverage
of time occurred if training only took place before or after the test data period and not before and after (pre and post). Incomplete
coverage of location occurred when training took place in one location and testing took place in another. Incomplete coverage of
parameters, or extrapolation of models, including the target gas mole fraction, temperature, time, and pressure occurred when the
5  values observed during training did not encompass the values observed during testing. Extrapolation in time occurred when
training only took place after the test period (post model training timing). Extrapolation in location occurred when a model was

trained in one location then applied to data collected in a new location.

Case Study
Dawson Summer 2014
SJ Basin Spring 2015
SJ Basin Summer 2015
BAO Summer 2015
BAO Summer 2016
GRET Fall 2016

GRET Spring 2017

10

15

20

Summary
Urban calibration moved to
rural/peri-urban setting
DJ Basin calibration moved across
the state to SJ Basin sampling sites
D1J Basin calibration moved across
the state to SJ Basin sampling sites
DJ Basin calibration applied to
same location
D1J Basin calibration moved 40
miles across the DJ Basin
DJ Basin calibration applied to
same location
DJ Basin calibration applied to
same location
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Training

Timing
Pre/Post
Post
Pre/Post
Pre/Post
Post
Post

Pre/Post

Extrapolation
During Test

Location, O[]
Location,
Pressure, Time
Location, Pressure
None
Location, Time
Time

None



Table 5: O; model performance metrics.

Standard Standard Standard
Case Study N| R® RMEE MBbE) Deviation  Deviation Deviation
(ppb) (pp R2 RMSE MBE

03 Models
Best O; Model (Casey et al., 2017)
ANN with inputs: e2vO3 temp absHum e2vVOC e2vCO FigCH4 FigCxHy

Dawson Summer 1
2014 0.83 6.46 -0.91 0.00 0.00 0.00
SJ Basin Spring 2015 4 0.86 7.74 3.69 0.05 3.82 5.78
SJ Basin Summer 7
2015 0.85 7.03 4.89 0.10 1.10 1.73
BAO Summer 2015 2 0.93 4.26 1.45 0.00 0.31 0.07
BAO Summer 2016 2 0.92 12.21 -11.14 0.00 0.31 0.07
GRET Fall 2016 2 0.96 12.87 12.02 0.01 2.30 2.35
2
GRET Spring 2017 0.98 2.59 1.49 0.00 0.69 1.02
Simple Model (Single Gas Sensor)
LM with inputs: e2vO3 temp absHum
Dawson Summer 1
2014 0.95 3.59 -0.46 0.00 0.00 0.00
SJ Basin Spring 2015 4 0.83 17.95 16.09 0.06 6.10 5.83
SJ Basin Summer 7
2015 0.86 6.30 3.53 0.06 1.40 2.06
BAO Summer 2015 2 0.87 5.50 0.94 0.00 0.78 1.56
BAO Summer 2016 2 0.89 5.78 -2.71 0.00 0.78 1.56
GRET Fall 2016 2 0.93 12.73 11.92 0.01 0.62 0.88
GRET Spring 2017 2 0.89 6.00 -3.19 0.00 0.73 1.38
Models Optimized For Case Studies
Dawson Summer 1
2014 0.95 3.59 -0.46 0.00 0.00 0.00
SJ Basin Spring 2015 4 0.86 7.74 3.69 0.05 3.82 5.78
SJ Basin Summer
2015 0.85 7.03 4.89 0.10 1.10 1.73
BAO Summer 2015 2 0.93 4.26 1.45 0.02 0.51 1.54
BAO Summer 2016 2 0.87 6.25 -0.20 0.02 0.51 1.54
GRET Fall 2016 2 0.95 3.99 2.14 0.00 0.28 0.89
GRET Spring 2017 2 0.98 2.59 1.49 0.00 0.69 1.02
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Table 6: CO, model performance metrics.

, RMSE MBE | Standard  Swndard - Standard
Case Study N| R ( ) - Deviation R2 Deviation Deviation
ppm)  (ppm) v RMSE MBE

CO, Models
Best CO, Model from (Casey et al., 2017)
ANN with inputs: eltCO2 temp absHum

SJ Basin Summer 2015 2 0.65 8.42 -0.62 0.00 1.81 1.41
BAO Summer 2015 2 075 9.98 -2.60 0.05 13.00 13.89
BAO Summer 2016 2 069 5438 48.37 0.05 13.00 13.89

GRET Fall 2016 2 074 4237 39.58 0.02 2.44 2.57
GRET Spring 2017 2 0.83 6.31 0.59 0.03 0.13 2.61

Simple Model (Single Gas Sensor)
LM with inputs: eltCO2 temp absHum

SJ Basin Summer 2015 2 0.71 7.84 0.27 0.01 1.43 0.42
BAO Summer 2015 2069 1062 -1.26 0.06 1.52 10.67
BAO Summer 2016 2 073 1182 0.73 0.06 1.52 10.67

GRET Fall 2016 2 082 8.62 -3.46 0.00 0.69 1.45
GRET Spring 2017 2 055 9.88 -0.33 0.03 0.29 1.91
Models Optimized For Case Studies

SJ Basin Summer 2015 2 0.72 7.45 -0.11 0.04 2.06 0.31
BAO Summer 2015 2 0.80 8.85 -2.29 0.10 6.47 7.08
BAO Summer 2016 2073 1182 0.73 0.06 1.52 10.67

GRET Fall 2016 2 082 8.62 -3.46 0.00 0.69 1.45
GRET Spring 2017 2| 0.83 6.31 0.59 0.03 0.13 2.61

10

51



Table 7: Relative benefits associated with the implementation of different models for O; and CO,.

Mean % Mean % Mean % | Mean % Mean % Mean %
Increase  Decrease Decrease | Increase Decrease Decrease
Case Study inR> inRMSE in MBE inR*> inRMSE in MBE

CO, Models 05 Models
Benefit of Models Optimized for Case Studies Over the Best Models from (Casey et al., 2017)
Dawson Summer 2014 14.51 44.42 50.00
SJ Basin Spring 2015 0.00 0.00 0.00
SJ Basin Summer 2015 10.56 11.52 82.60 0.00 0.00 0.00
BAO Summer 2015 5.84 11.27 11.95 0.00 0.00 0.00
BAO Summer 2016 5.72 78.27 98.49 -5.01 48.82 98.19
GRET Fall 2016 11.17 79.66 108.73 -0.54 68.99 82.22
GRET Spring 2017 0.00 0.00 0.00 0.00 0.00 0.00
Benefit of the Best Models from (Casey et al., 2017) Over Simple Linear Models
Dawson Summer 2014 -12.67 -79.92 -99.99
SJ Basin Spring 2015 3.20 56.88 77.09
SJ Basin Summer 2015 -8.41 -7.29 331.39 -1.34 -11.53 -38.41
BAO Summer 2015 8.70 6.05 -106.48 6.79 22.48 -53.85
BAO Summer 2016 -5.41 -360.09  -6543.84 2.57 -111.22 -310.71
GRET Fall 2016 -10.05 -391.73 1244.99 2.88 -1.12 -0.86
GRET Spring 2017 51.92 36.13 278.55 10.00 56.90 146.65
Benefit of Models Optimized for Case Studies Over Simple Linear Models
Dawson Summer 2014 0.00 0.00 0.00
SJ Basin Spring 2015 3.20 56.88 77.09
SJ Basin Summer 2015 1.26 5.06 140.25 -1.34 -11.53 -38.41
BAO Summer 2015 15.04 16.64 -81.80 6.79 22.48 -53.85
BAO Summer 2016 0.00 0.00 0.00 -2.57 -8.10 92.59
GRET Fall 2016 0.00 0.00 0.00 2.33 68.64 82.07
GRET Spring 2017 51.92 36.13 278.55 10.00 56.90 146.65
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Figure 1: (a) Training and test deployment locations are identified in the SJ and DJ Basins in context with urban centers and oil
and gas production wells. (b) Panel zoomed in on the SJ Basin, covering approximately 4,250 square miles (85x50 miles). (c)

Panel zoomed in on the DJ Basin covering approximately 1,540 square miles (28x55 miles).
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Model Training and Test Deployment Timelines

(a) Case Study

Year Jan Feb Mar Apr May Jun
Dawson Summer 2014 | 2014
SJ Basin Spring 2015 2015
SJ Basin Summer 2015 2015
BAO Summer 2015 2015
BAO Summer 2016

Jul

Aug Sep Oct Nov Dec

GRET Fall 2016

2016
2017

GRET Spring 2017

2017

2016
2017

(b) Training Test oF 0s CO, Co,
Case Study Location | Location | # U-Pods | U-Pod Names | # U-Pods | U-Pod Names
Dawson Summer 2014 | CAMP Dawson 1 BE NA NA
SJ Basin Spring 2015 BAO SJ Basin 4 BB, BD, BF, BJ NA NA
SJ Basin Summer 2015 BAO | SJ Basin 7 BL‘ ‘Bl = 2 ,

BAO Summer 2015 BAO BAO 2 - BC, I':;J 2 BC, BJ
BAO Summer 2016 GRET BAO 2 BH, BI 2 BH, Bl
GRET Fall 2016 GRET GRET 2 BH, BI 2 BH, BI
GRET Spring 2017 GRET GRET 2 BH, BI 2 , Bl

Figure 2: (a) ANN and LM training and test deployment timelines. The Dawson, BAO, and GRET sampling sites are all located in
the DJ Basin. Model training periods for each test deployment are shown in blue, and model test periods are shown in magenta.
For the BAO Summer 2016 case study, the period outlined in blue shows data that was used to train O; model, but not CO, models
since CO, reference data was not available during winter months. (b) Information about each of the case studies presented in the
above timelines, including model training and testing locations, as well as the number and names of U-Pods included in each case
study for both O; and CO, models. The U-Pods with names shown in grey were constructed and deployed starting in May of 2014.

The U-Pods with names shown in black were constructed and deployed starting in April of 2015.




Neurons

Hidden

Output

hijn = Wy *xi; +wy *i, + by x1

b, b2 , 1
b3 lout — 1 + e_hlin

‘ ‘01=W5*h10ut+W6*h20ut+b3*1

Figure 3. Example of a simple feed forward neural network, showing how inputs are propagated through the network during each
of the training iterations (Casey et al., 2017)
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Hidden Layer Output Layer

Output

Input
s | o 1
5 1

Figure 4. Diagram of an example ANN with the same color-coded components as are presented in Figure SM3 in section 2.2 of the
SM. This ANN has 5 inputs, 1 hidden layer with 5 tansig hidden neurons, and 1 linear output layer leading to 1 output. The
network is fully connected with weights and biases (Casey et al., 2017).
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Figure 5: Scatter plots of U-Pod CO; vs. reference CO, and overlaid histograms of U-Pod CO, residuals for (a) BAO and BAO (b)
BAO and Bloomfield (c) BAO and Fort Lewis. A 1:1 single-weight reference line is included in each scatter plot along with
double-weight lines of best fit for U-Pods at each sampling location. Data from U-Pod BC at BAO is plotted in black along with U-
Pods BJ, BB, and BD at BAO, Fort Lewis, and Bloomfield, respectively. Sensor signal inputs include eltCO2, temp, and absHum.
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(d) Overlaid histograms of model residuals with respect to reference CO,.
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Figure 6: U-Pod CO, residuals by (a) data and (b) time of day and throughout the duration of the deployment period. Sensor
signal inputs include eltCO2, temp, and absHum.
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Figure 9: Scatter plots showing the combined parameter space of (a) absolute humidity with temperature and (b) reference O;

with temperature for each of the U-Pod sampling sites at BAO and the SJ Basin.
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Figure 10: Target diagrams demonstrating performance of a previously determined best-performing model across all new test
datasets. (a) CO, and (b) O; LM performance when only the primary gas sensor, temperature and humidity are inputs. (¢) CO,
and (d) O; ANN performance with inputs that were found to perform best at the GRET site in the spring of 2017 (Casey et al.,
2017). Model input definitions: eltCO2 (ELT S300 CO; sensor), e2vO3 (e2v MiCs-2611 sensor), temp (temperature), and absHum

(absolute humidity).
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Figure 11: Target diagrams demonstrating performance of a previously determined best-performing model across all new test
datasets (a) CO; and (b) O; ANN performance with inputs that were found to perform best at the GRET site in the spring of 2017
(Casey et al., 2017). Model input definitions: eltCO2 (ELT S300 CO, sensor), e2vCO (e2v MiCs-5525 sensor), e2vVOC (e2v MiCs-
5521 sensor), e2vO3 (e2v MiCs-2611 sensor), figCH4 (Figaro TGS 2600 sensor), figCxHy (Figaro TGS 2602 sensor), temp
(temperature), and absHum (absolute humidity).
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Figure 12: Target diagrams for (a) CO, and (b) O; calibration model performance for the best performing model for each
particular case when tested on data from a number of field deployments. Model input definitions: eltCO2 (ELT S300 CO2
sensor), e2vCO (e2v MiCs-5525 sensor), e2vVOC (e2v MiCs-5521 sensor), e2vO3 (e2v MiCs-2611 sensor), figCH4 (Figaro TGS
2600 sensor), figCxHy (Figaro TGS 2602 sensor), alphaCO (Alphasense CO-B4 sensor) temp (temperature), absHum (absolute
humidity), rh (relative humidity), and time (absolute time).
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