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Abstract. We assessed the performance of ambient ozone (O3) and carbon dioxide (CO2) sensor field 

calibration techniques when they were generated using data from one location and then applied to data 

collected at a new location. This was motivated by a previous study (Casey et al., 2017) which 10 

highlighted the importance of determining the extent to which field calibration regression models could 

be aided by relationships among atmospheric trace gases at a given training location, which may not 

hold if a model is applied to data collected in a new location.  We also explored the sensitivity of these 

methods in response to the timing of field calibrations relative to deployments periods.  Employing data 

from a number of field deployments in Colorado and New Mexico that spanned several years, we tested 15 

and compared the performance of field-calibrated sensors using both linear models (LMs) and artificial 

neural networks (ANNs) for regression.  Sampling sites covered urban, rural/peri-urban, and oil and gas 

production influenced environments. We found that the best performing model inputs and model type 

depended on circumstances associated with individual case studies, such as differing characteristics of 

local dominant emissions sources, relative timing of model training and application, and the extent of 20 

extrapolation outside of parameter space encompassed by model training.  In agreement with findings 

from our previous study that was focused on data from a single location (Casey et al., 2017), ANNs 

remained more effective than LMs for a number of these case studies but there were some exceptions.  

For CO2 models, exceptions included, case studies in which training data collection took place more 

than several months subsequent to the test data period.  For O3 models, exceptions included case studies 25 

in which the characteristics of dominant local emissions sources (oil and gas vs. urban) were 
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significantly different at model training and testing locations.  Among models that were tailored to case 

studies on an individual basis, O3 ANNs performed better than O3 LMs in 6 out of 7 case studies, while 

CO2 ANNs performed better than CO2 LMs in 3 out of 5 case studies.  The performance of O3 models 

tended to be more sensitive to deployment location than to extrapolation in time while the performance 

of CO2 models tended to be more sensitive to extrapolation in time than to deployment location.  The 5 

performance of O3 ANN models benefited from the inclusion of several secondary metal oxide type 

sensors as inputs in 5 of 7 case studies. 

1 Introduction  

In places like the Denver Julesburg (DJ) and San Juan (SJ) Basins, along Colorado’s Front Range and in 

the Four Corners Region, oil and gas production activities have been increasing with the advent of 10 

horizontal drilling that can be effectively used in conjunction with hydraulic fracturing to produce 

hydrocarbons from unconventional geologic formations.  Public health concerns have arisen about the 

increasing number of people living alongside these industrial activities and emissions (Adgate et al., 

2014; Mckenzie et al., 2014; McKenzie et al., 2012, 2017).  We previously developed methods to 

quantify ozone (O3), carbon dioxide (CO2), methane (CH4), and carbon monoxide (CO) using low-cost 15 

gas sensors in an area where the ambient mole fractions of these species are influenced by oil and gas 

production activities (Casey et al., 2017).  Such low-cost sensor measurements could enable greater 

understanding of air quality in oil and gas production basins, informing the spatial and temporal scales 

that people live and work in a way that current technologies used by regulatory agencies cannot feasibly 

accomplish.  In our previous work, we tested and compared the performance of direct and inverted 20 

linear models (LMs) as well as artificial neural networks (ANNs) as regression tools in the field 

calibration of low-cost sensor arrays to quantify these target gas species using month-long test datasets, 

training each model with approximately one month of data prior to and one month of data subsequent to 

this test period.   ANNs are powerful pattern recognition tools.  They were found to perform better than 

both inverted and direct LMs in our previous study, but concerns arose when findings suggested that the 25 

performance of ANNs was being augmented by the relationships among gas mole fractions in the 

atmosphere at a given location.  Low-cost gas sensor systems have the potential to inform spatial and 
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temporal variability of pollution. Calibration equations for each sensor system can be generated in one 

location based on co-located measurements with reference instruments, and then the sensor systems can 

be moved into a spatially distributed network.  Since the relationships among gas mole fractions will 

differ at different sampling sites across a spatially distributed network, calibration models may not hold 

at new sampling sites.  In this work, we test calibration model performance when extended to new 5 

locations. 

1.1 Low-Cost Sensors for Air Quality Measurements 

The use of low-cost metal oxide, electrochemical, and non-dispersive infrared sensors to characterize air 

quality is becoming increasingly common across the globe (Clements et al., 2017; Kumar et al., 2015).  

While low-cost sensors have been emerging on the market with sufficient sensitivity to resolve 10 

variations in ambient mole fractions of target gases of interest, they are also sensitive to temperature and 

humidity variations that occur in the ambient environment.  NDIR sensors, like the ELT s300 CO2 

sensor employed in this study, have good selectivity, but, since pressure and temperature are not 

controlled in the optical cavity of ELT s300 CO2 sensors, the influence of temperature on sensor signals 

plays an important role.  The influence of humidity is also important to address because changes in 15 

water vapor are known to influence NDIR measurements of CO2 in terms of spectral cross-sensitivity 

due to absorption band broadening (Licor, 2010).   

 

Both metal oxide and electrochemical type sensors operate on the principle of oxidizing or reducing 

reactions at sensor surfaces.  For electrochemical sensors, like the Alphasense CO-B4 sensor employed 20 

in this study, oxidizing or reducing compounds react at the working electrode, resulting in the transfer 

of ions across an electrolyte solution from the working electrode to the counter electrode, balanced by 

the flow of electrons across the circuit connecting the working electrode to the counter electrode.  A 

linear relationship is expected between this current and the target gas mole fraction.   Electrochemical 

sensors can be tuned to respond more or less strongly to specific gases by adjusting the material 25 

properties of the working electrode. A membrane is located between the working electrode and the 

exterior of the sensor in order to control redox reaction rates.  The rates at which gases diffuse through 
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the membrane to reach the working electrode and the electron transfer rates have been shown to 

increase at higher temperatures (Xiong and Compton, 2014), and since chemical reaction rates are also 

influenced by temperature, electrochemical sensor responses can be influenced by sensor operating 

temperature.  Changes in ambient humidity levels can cause sensors to lose or gain of the electrolyte 

solution, by mass, also influencing electrochemical sensor response (Xiong and Compton, 2014). 5 

 

For metal oxide sensors, and to a lesser extent for electrochemical sensors, resolving the response of a 

sensor attributable to the target gas species can also pose a challenge in the presence of interfering gas 

species.  Metal oxide sensors, like those used in this study, have a resistive heater circuit that warms up 

the sensor surface, causing O2 molecules to adsorb to the sensor surface, which leads to increased 10 

resistance across the surface of the sensor.  In the presence of an oxidizing compound, like O3, more 

oxygen molecules are adsorbed to the sensor surface and the resistance across the sensor surface is 

increased further.  In the presence of a reducing compound, like CO, oxygen molecules are removed 

from the sensor surface, allowing electrons to flow more freely, resulting in decreased resistance across 

the sensor surface. For metal oxide sensors, the resistance across the sensor surface can then be used to 15 

determine the mole fraction of a given oxidizing or reducing compound, often according to a nonlinear 

relationship.  Exposure to humidity has been shown to significantly lower the sensitivity of metal oxide 

gas sensors making it an important parameter to address in a gas quantification model (Wang et al., 

2010).  Metal oxide sensor operating temperature has also been shown to strongly influence sensor 

sensitivity and selectivity to different gas species (Wang et al., 2010).  Metal oxide type sensors can be 20 

tuned to respond differently from one another to oxidizing and reducing gas species by using different 

metal oxide materials and doping agents for the sensor surface, but selectivity is difficult to achieve.   

1.2 Low-Cost Air Quality Sensor Quantification 

Because low-cost gas sensor signals are influenced, sometimes significantly, by interfering gas species 

and changing weather conditions in the ambient environment, field normalization methods to quantify 25 

atmospheric trace gases using low-cost sensors have been found to be more effective than lab 

calibration (Cross et al., 2017; Piedrahita et al., 2014; Sun et al., 2016).  Our previous study and several 
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others have compared the performance of field calibration models generated using LMs (simple and 

multiple linear regression) relative to supervised learning methods (including ANNs and random 

forests), all finding that ANNs (Casey et al., 2017; Spinelle et al., 2015, 2017) and random forests 

(Zimmerman et al., 2017) outperformed LMs in the ambient field calibration of low-cost sensors.  Like 

earlier laboratory based studies (Brudzewski, 1999; Gulbag and Temurtas, 2006; Huyberechts and 5 

Szeco, 1997; Martín et al., 2001; Niebling, 1994; Niebling and Schlachter, 1995; Penza and Cassano, 

2003; Reza Nadafi et al., 2010; Srivastava, 2003; Sundgren et al., 1991), ANN-based calibration 

models, incorporating signals from an array of gas sensors with overlapping sensitivity as inputs, have 

been able to effectively compensate for the influence of interfering gas species and resolve the target 

gas mole fraction.   10 

 

ANNs are known to be able to very effectively represent complex, nonlinear, and collinear relationships 

among input and output variables in a system (Larasati et al., 2011).  ANNs are useful in the field 

calibration of low-cost sensors because, through pattern recognition of a training dataset, they are able 

to effectively represent the complex processes and relationships among sensors and the ambient 15 

environment that would be very challenging to represent analytically or based on empirical 

representation of individual driving relationships.  In practice though, the reason multiple gas sensors 

are able to improve the performance of calibration models may be in part the result of correlation 

between mole fractions of target gases themselves that hold for one model training location, but might 

not remain effective at alternative sampling sites or during other time periods. 20 

1.3 Summary of Previous Study 

Our previous study was carried out using sensor measurements collected over the course of several 

months in the spring of 2017, in Greeley, Colorado, which lies within the Denver Julesburg oil and gas 

production basin.  Others had recently demonstrated the utility of machine learning methods in the 

quantification of atmospheric trace gases using arrays of low-cost sensors in urban (De Vito et al., 2008, 25 

2009; Zimmerman et al., 2017) and rural (Spinelle et al., 2015, 2017) areas.  Our previous study tested 

the relative performance of machine learning methods and LMs in the quantification of CH4, O3, CO2, 
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and CO in an area strongly influenced by oil and gas production activities, where enhanced levels of 

hydrocarbons and other industry related pollutants could potentially confound measurements. The 

previous study was also the first to compare machine learning regression techniques with LMs toward 

the quantification of CH4 using arrays of low-cost sensors in any setting.  The study tested and 

compared calibration models using data from two U-Pod sensor systems containing arrays of low-cost 5 

gas sensors; these systems were co-located with optical gas analysers at a Colorado Department of 

Public Health and Environment monitoring site.  ANNs and LMs were trained using a variety of sensor 

signal input sets from a month of co-located data collected prior to and following a month long test 

period.  The performance of each model was then evaluated relative to reference instrument 

measurements during the test period.  For quantification of all four trace gases that we tested in this oil 10 

and gas-influenced setting, we found that ANNs performed better than LMs.  The better performance of 

ANNs over LMs was likely largely attributable to the ability of ANNs to more effectively represent 

complex and nonlinear relationships among sensor responses, environmental variables, and trace gas 

mole fractions than LMs.  However, the performance of these powerful regression methods could be 

aided by relationships among atmospheric trace gases specific to the training location, which would not 15 

necessarily hold at different sampling sites.  

1.4 Spatially Distributed Networks of Sensors and Spatial Extension of Calibration Models 

Distributed spatial networks of low-cost sensor systems have the potential to inform air quality with 

high spatial and temporal resolution.  As such, studies have begun to deploy spatial networks of low-

cost sensor systems.  These, studies rely on the spatial transferability of quantification techniques.  In 20 

the present work, we test model performance under conditions of spatial transferability, wherein a 

model is trained using data from one location then applied to a test dataset using data from a new 

location.  In testing spatial extension of a model, we investigate how well the field calibration of low-

cost sensors can inform target gas mole fractions when sensors are deployed in a new location and a 

new microenvironment of oxidizing and reducing compounds.  We also test model performance under 25 

conditions of temporal extension, wherein a model is trained using data that was collected only prior or 

subsequent to the model application period.  In testing temporal extension of models, we investigate 
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how model performance is influenced by sensor drift over time.  We opportunistically utilize 

measurements collected with low-cost sensors in Denver, Boulder County, and the DJ and SJ oil and 

gas production basins in recent years. This effort focuses on the analysis for O3 and CO2 using both 

LMs and ANNs, including a comparison of models with a number of different input sets.  In previous 

work (Casey et al., 2017), we have additionally addressed the quantification of CO and CH4 using 5 

arrays of low-cost sensors together with field normalization methods, but these species are not included 

in the present analysis because analogous reference data to those we present for O3 and CO2, were not 

available CO and CH4.   

 

1.5 Oil and Gas Production and Air Quality 10 

Oil and gas production related emissions, namely nitrogen oxides (NOX) and volatile organic 

compounds (VOCs), have been shown to influence tropospheric ozone (O3), which is particularly 

relevant in regions that are in non-attainment of the United States Environmental Protection Agency 

(USEPA) National Ambient Air Quality Standards (NAAQS) for ozone, like the Colorado Front Range 

where the DJ Basin is situated. NOX and VOC emissions, including those from oil and gas production 15 

activities, react in the atmosphere in the presence of sunlight to form tropospheric O3. A number of 

studies have demonstrated that oil and gas related emissions contribute to increased O3 in the DJ Basin 

(Cheadle et al., 2017; Gilman et al., 2013; McDuffie et al., 2016). Mole fractions of ozone as high as 

140 ppb and 117 ppb during winter months have also been observed and attributed directly to oil and 

gas production emissions in the Upper Green River Basin of Wyoming and Utah’s Uinta Basin, 20 

respectively (Ahmadov et al., 2015; Edwards et al., 2013, 2014; Field et al., 2015; Oltmans et al., 2016; 

Schnell et al., 2009). Additionally, a modeling study concluded that oil and gas production activities 

could significantly impact ozone near emissions sources, beginning 2 and 8 km downwind of 

compressor engine and flaring activities, respectively (Olaguer, 2012).   

 25 

Emissions of industry related air pollutants, including O3 precursors, NOX and VOCs, are expected to 

occur on spatially distributed scales, across components on well pads, transmission lines, transportation 
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routes, and gathering stations that are each distributed throughout production basins (Litovitz et al. 

2013; Mitchell et al. 2015; Allen et al. 2013).  Spatially distributed networks of low-cost sensors have 

the potential to better inform spatial variability of air quality than existing regulatory air quality 

monitoring stations which cannot feasibly cover such spatially resolved measurements continuously, 

and may not be representative of air quality across smaller spatial scales (Bart et al., 2014; Jiao et al., 5 

2016; Moltchanov et al., 2015).  Abeleira and Farmer show that ozone production throughout much of 

the Front Range, outside of downtown Denver, is likely to be NOX limited implying that local NOX 

sources are likely influencing ozone on small spatial scales (Abeleira and Farmer, 2017).  Oil and gas 

industry related NOX sources, such as diesel truck traffic, flaring, and compressor engines, could lead to 

pockets of elevated O3 throughout the DJ Basin.  While emissions from truck traffic (and in some cases 10 

a generator to power a drill rig), at a given well pad are expected to be highest during the drilling, 

stimulation, and completion phases, industry truck traffic often persists as the contents of produced 

water and condensate tanks are frequently collected from well pads throughout the production phase, as 

do emissions from flaring and compressor engines.  Low-cost O3 sensors could augment the few and far 

apart regulatory sites that currently monitor O3 levels in places like the DJ Basin, which has better 15 

coverage than many other production basins in the United States.  While elevated ambient CO2 levels 

are not directly harmful to human health, continuous CO2 measurement can provide information about 

nearby combustion-related pollution and atmospheric dynamics that lead to the accumulation of 

potentially harmful compounds associated with the oil and gas production industry during periods of 

atmospheric stability.    20 

 

In this work, we present and compare models designed to address the unique challenges that come with 

using low-cost sensors in the quantification of atmospheric trace gases of interest in oil and gas 

production basins, where ambient hydrocarbon mole fractions are potentially elevated, exerting 

uniquely cofounding influence on low-cost gas sensors.  Calibration models that were found to perform 25 

best in our previous study are applied to data collected in different locations.  For the first time, we 

investigate how well models can be transferred from one microenvironment to another, with different 

dominant local emissions source characteristics, and different relative abundance of oxidizing and 
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reducing compounds.  Microenvironments explored in this work include a basin where both natural gas 

and heavier hydrocarbons are produced (the DJ Basin), and a basin where prominently natural gas is 

produced (the SJ Basin), with much smaller proportional emissions of heavier hydrocarbons, and likely 

lower atmospheric concentrations of alkanes, alkenes, and aromatics. Within and bordering the DJ 

Basin, additional microenvironments include an urban location, with significant mobile sources 5 

emissions (NOX, CO, and VOCs), and a peri-urban site with fewer mobile emissions and closer 

proximity to oil and gas production activities.  We explore how robust model performance is when a 

model is trained in one microenvironment and transferred to another; challenged by different relative 

abundance of oxidizing and reducing gas species.  Additionally, we test how well models can represent 

and address sensor stability over time and the potential for drift.   10 

2 Methods 

2.1 Sensors and U-pods 

All U-Pod sensor systems (mobilesensingtechnology.com) employed in the case studies, described 

below, were populated with seven low-cost gas sensors, as in our previous study (Casey et al., 2017). 

The gas sensors are listed in Table 1 along with their target gas and the model input codes we assigned 15 

to each.  A RHT03 sensor was used in each U-Pod to measure temperature (temp) and relative humidity 

(rh).  A Bosch BMP085 sensor was used to measure pressure in each U-Pod.   

2.2 Case Studies  

Five to ten U-Pods were deployed at sampling sites in and around the DJ and SJ Basins from 2014 - 

2017. Deployments generally consisted of co-location with reference measurements prior to and 20 

following approximately one-month periods of spatially distributed measurements.  During some of the 

distributed measurement periods, a subset of U-Pods remained co-located with reference instruments 

where the field calibrations took place.  As well, during some distributed measurement periods, some 

U-Pods were deployed in new locations that were equipped with reference measurements.  In between 

periods of distributed sensor system deployments, sensor systems were co-located with reference 25 

instruments for as long as possible, as logistics, and coordination with other regulatory agencies and 
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researchers would allow.  In this way, we hoped to maximize our ability to encompass full ranges of 

temperature, humidity, and trace gases that occur across seasons, in order to minimize extrapolation 

with respect to these parameters when models were applied to measurements from distributed 

deployment periods.  The locations where all or a subset of U-Pods were co-located with reference 

instruments are indicated in Fig. 1.  In this exploratory study, we opportunistically employ data from 5 

these sensor deployments, treating them as case studies in order to characterize the performance of field 

calibration models when they are extended to new locations. For each case study, described below, data 

was divided into training and test periods.  Timelines for these dataset pairs are detailed in Fig. 2.  Some 

U-Pods employed in these case studies (indicated in grey font in Fig. 2) were constructed, populated 

with sensors, and deployed at field sites in the spring of 2014, approximately a year before the rest of 10 

the U-Pods were constructed, populated with sensors, and deployed at field sites in the spring of 2015.  

The relative age of sensor systems included in some case study comparisons could have contributed to 

some discrepancy in model performance, though systematic differences based on U-Pod age is not 

apparent.  

 15 

As available data from each case study allowed, we used approximately one month of training data 

before and after a given test period. When training data was not available within several months of a test 

period, significantly longer training datasets were used in order to attempt capture and effectively 

represent trends in sensor drift over time, as well as to avoid extrapolation of model parameters 

(particularly temperature) during the test data period.  As a result, model-training durations varied 20 

across case studies and sometimes significantly exceeded model-testing durations.  Each case study is 

similar in representing approximately one month-long deployment of sensor systems.  This study design 

serves a primary goal of this work, supporting the quantification of atmospheric trace gases from low-

cost gas sensor data in new locations, relative to model training locations, for periods of approximately 

one month at a time.     25 

 

Making quantitative measurements of atmospheric trace gases with low-cost sensors is challenged by 

unique variations in individual sensor responses associated with variations in the manufacturing 
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process, sensor age, and sensor exposure history.  For these reasons, we generated unique calibration 

models using data from sensors in each individual U-Pod sensor system.  The closest available data 

prior and/or subsequent to a test data period was used for model training to avoid complications 

associated with significant sensor drift and degradation in sensor sensitivity to target gas species over 

time. Table 2 lists the O3 and CO2 reference instruments that were co-located with U-Pods at each 5 

sampling site, along with instrument operators, calibration procedures, and reference data time 

resolution.  The selected case studies, described in sections 2.2.1 through 2.2.7 below, were aimed to 

support methods to quantify atmospheric trace gases during the distributed deployments we carried out 

from 2014 through 2017 as well as future distributed sensor network measurements.  Fig. 1 shows 

sampling site locations in context with urban areas and oil and gas production wells. Fig. 2 shows the 10 

timeline of each of these deployments, highlighting the training and testing periods defined for both O3 

and CO2.  

2.2.1 Dawson Summer 2014 

The first distributed measurement campaign took place during the summer of 2014 when five U-Pods 

were sited at locations around Boulder County, with four distributed along the eastern boundary of the 15 

county, adjacent to Weld County where dense oil and gas production activities were underway.  A 

background site, further from oil and gas production activities was also included to the west, near a busy 

traffic intersection on the north end of the City of Boulder. Co-locations with reference measurements 

that were used for field calibration of the sensors took place at the Continuous Ambient Monitoring 

Program (CAMP) Colorado Department of Health and Environment (CDPHE) air quality monitoring 20 

site in downtown Denver. One of the distributed sampling sites, Dawson School, was also equipped 

with a Thermo Electron 49 O3 reference instrument operated by Detlev Helmig’s research group from 

the Institute for Artic and Alpine Research (INSTAAR). In this work, a case study is developed using 

data from one U-Pod located at the CAMP site in downtown Denver for O3 model training, and data 

from one U-Pod, located at the Dawson School for O3 model testing. This case study is used to test 25 

model performance when extrapolated in terms of O3 mole fractions and applied in a new location, 

transferred from an urban to a peri-urban environment. 
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2.2.2 SJ Basin Spring 2015 

In the spring of 2015, we augmented our original fleet of five U-Pods (BA, BB, BD, BE, and BF) with 

five more (BC, BG, BH, BI, and BJ) and deployed these sensor systems in the SJ Basin while a targeted 

field campaign was underway to understand more about a CH4 ‘hot spot’ that was discovered from 

satellite based remote sensing measurements (Frankenberg et al., 2016; Kort et al., 2014).  The primary 5 

goal of this sensor deployment was to inform spatial and temporal patterns in atmospheric trace gases 

like CH4, O3, CO, and CO2 across the SJ Basin.  Most U-Pods were located at existing air quality 

monitoring sites operated by the New Mexico Air Quality Bureau (NM AQB), the Southern Ute Indian 

Tribe Air Quality Program (SUIT AQP), and the Navajo Environmental Protection Agency (NEPA), 

which supported validation of sensor measurements for O3.  After this deployment period, all U-Pods 10 

were moved to the BAO site in the DJ Basin for approximately one month, and were co-located with 

reference instruments there that were operated by National Oceanic and Atmospheric Administration 

(NOAA) researchers.  A case study is developed with data from the BAO site to train O3 models for 

four U-Pods, and data from SJ Basin sites to test O3 models for four U-Pods.  This case study is used to 

test model performance when extrapolated in temperature and time, and applied in a new location, 15 

extended from one oil and gas production basin to another across Colorado. 

2.2.3 SJ Basin Summer 2015 

In the summer of 2015, after an approximately month-long co-location with reference instruments at the 

BAO site, seven U-Pods were deployed again at existing regulatory monitoring sites for approximately 

one month, after which they were moved back to the BAO site for another month of co-location with 20 

reference instruments there.  We equipped two of the regulatory monitoring sites in the SJ Basin with 

LI-COR LI-840A CO2 analysers to provide reference measurements for CO2.  A case study is 

developed with data from the BAO site, pre and post of the SJ Basin summer 2015 deployment to train 

models, and data from SJ Basin sites during the summer deployment period to test models.  Data from 

seven U-Pods were used to train and test O3 models and data from two U-Pods were used to train and 25 

test CO2 models.  This case study is used to test model performance when training took place both pre 
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and post of the test period, and when extended to a new location, from one oil and gas production basin 

to another across Colorado. 

2.2.4 BAO Summer 2015 

During the SJ Basin Summer 2015 deployment period, two U-Pods remained at the BAO site. A case 

study is developed using data from those two U-Pods that remained at the BAO site.  This case study is 5 

used to test model performance when training took place both pre and post of the test period, and when 

the model was tested on data that was collected in the same location as model training. 

2.2.5 BAO Summer 2016 

U-Pods were deployed at the BAO site again in 2016 for several months during the summer. In August 

of 2016 the U-Pods were moved to the Greeley Tower (GRET) CDPHE air quality monitoring site in 10 

Greeley, Colorado, a location which, like the BAO site, is also strongly influenced by DJ Basin oil and 

gas production activities.  The U-Pods remained there for one year.  For the GRET co-location period, 

CDPHE shared reference measurements for O3.  Additionally, Jeffrey Collett and Katherine Benedict of 

Colorado State University (CSU) shared CO2 reference measurements from an instrument they operated 

at the site before October 1st in 2016 and after March 7th in 2017, when the instrument was located at the 15 

GRET site.  A case study is developed using data from two U-Pods.  Data from the yearlong 

deployment at the GRET site was used to train models for O3, and data from the BAO site during the 

summer 2016 deployment was used test models for O3.  Because reference data for CO2 was not 

available at the GRET site during winter months, only eight months of data from these two U-Pods 

during the GRET deployment was used to train models for CO2, but again, data from BAO summer 20 

2016 deployment was used to test models for CO2.  A significantly longer training duration is 

implemented in this case study because the training period took place more than several months after 

the model testing period.  We reasoned that a longer training duration would be better able to represent 

patterns in sensor drift over time, as well as encompass the temperature range of test dataset period.  

Significantly less training time is needed when training occurs directly pre and/or post of a given model 25 

application period.  This case study is used to test model performance when extrapolated significantly 
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(more than several months) in time and extended to a new location, from one location in the DJ basin to 

another.   

2.2.6 GRET Fall 2016 

In order to test model performance, under similar circumstances in terms of relative model training and 

testing durations and timing to the BAO Summer 2016 case study, but with no extension of models to a 5 

new location, we developed another case study.  This time, models for O3 and CO2 were trained using 

data from two U-Pods at GRET over the course of eight months and models for O3 and CO2 were tested 

using data from two U-Pods at GRET over the course of approximately a month in the fall of 2016.  

This case study is used to test model performance when extrapolated significantly (more than several 

months) in time and applied in the same location as training took place.  10 

2.2.7 GRET Spring 2017 

We include findings from our previous work as a case study in order to provide context.  Models for 

CO2 and O3 were tested using data from two U-Pods collected over the course of approximately one 

month at the GRET site in the spring of 2017.  Data from two U-Pods during approximately month-long 

periods pre and post of the test period were used to train O3 and CO2 models.  This case study provides 15 

another example of model performance when training took place both pre and post of the test period, 

and testing took place in the same location as training. 

2.3 Reference and Sensor Data Preparation 

Each of the U-Pod sensor signals was logged to an onboard micro SD card.  For metal oxide type 

sensors, voltage signals were converted into resistance, and then normalized by the resistance of the 20 

sensor in clean air, R0. A single value for R0 was used for each sensor across the study duration. This R0 

value was taken as the resistance of each sensor during the GRET Spring 2017 field deployment period, 

when the target pollutant had approached background levels (at night for the metal oxide O3 sensors and 

midday for all other metal oxide sensors), and when the ambient temperature was approximately 20° C 

and relative humidity of approximately 25%.   Relative humidity, temperature, and pressure measured 25 

in each U-Pod were used to calculate absolute humidity.  Over the course of multiple field deployments, 



15 
 

relative humidity sensors in four of the U-Pods drifted down, causing the lower humidity levels to be 

cut off or ‘bottomed out’.  RH sensors were not replaced during field deployments in order to preserve 

consistency across different deployment periods, allowing for the possibility of a single comprehensive 

model to apply to all data from a single U-Pod.  After some experimentation in generating a ‘master 

model’ that could be applied to data from a given U-Pod for all collected field measurements, across 5 

several years, we determined that individual models for each deployment would be more effective, and 

replacing RH sensors that had drifted down would have been appropriate in support of the methods 

presented here.  We have since upgraded to Sensirion AG SHT25 sensors, which appear to be more 

robust and consistent over the course of long-term field deployments.  For measurements collected in 

the spring and summer of 2015 and the spring of 2017, we replaced the relative humidity (RH) signal of 10 

U-Pods with malfunctioning humidity sensors with signals from the closest U-Pod with a good 

humidity sensor and complete data coverage as noted in Table S1. Temperature and RH sensor 

measurements are usually collected from within each U-Pod sensor system in order to gain 

representative information about the environment the gas sensors are being operated in. Using an 

alternative source for RH data that are not onboard an individual U-Pod has the potential to increase 15 

uncertainty of quantified gas mole fractions.  We used replacement RH data from the closest available 

U-Pod instead of ambient measurements in order to more closely approximate humidity at the operating 

temperature within a U-Pod enclosure. The closest U-Pod with good humidity sensors ranged from 

several feet, when U-Pods were co-located during deployments in the DJ Basin at the BAO and GRET 

sites, to approximately fifty miles during deployments in the San Juan Basin.  20 

 

When the U-Pods were initially deployed at the GRET site, on August 23rd of 2016, the RH sensors in 

all ten U-Pods malfunctioned, logging an error code of -99 instead of the relative humidity.  This 

malfunction seemed to coincide with the implementation of radio communication from each U-Pod to a 

central node in an effort to reduce trips to the field site to download data and to identify issues with data 25 

acquisition promptly.  No other impacts to sensor systems were observed in connection with radio 

communications.  RH signals in the U-Pods began logging correctly again in October when we stopped 

remote communication.  We replaced RH values for the U-Pods during this time period by utilizing data 
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from the Picarro Cavity Ring-Down Spectrometer that was co-located at GRET with the U-Pods.  Water 

mole fractions measured by the Picarro were converted into mass-based mixing ratios to match the units 

of the absolute humidity signal in the U-Pod data.  We applied an adjustment to this absolute humidity 

signal so that it matched observations in U-Pods during the following month when good RH sensor data 

was available, to account for the fact that temperatures were higher in U-Pod enclosures than the 5 

ambient environment.   We then replaced the relative humidity signal in each U-Pod from August 23rd 

through October 1st in 2016 with the mixing ratios derived from Picarro measurements.  Using the 

temperature and pressure logged in each U-Pod along with the absolute humidity from the Picarro, 

relative humidity was calculated for each U-Pod during this period.     

 10 

To perform regressions toward field calibration of sensors, the reference and U-Pod data needed to be 

aligned.  When reference measurements with minute time resolution were available for both training 

and corresponding testing periods, minute median data from the U-Pods were used.  Medians were used 

as opposed to averages in order to reduce the potential influence of sensor noise as well as to remove 

short duration spikes in the reference and sensor data that resulted from air masses that may not have 15 

been well mixed across the reference instrument inlets and the U-Pod enclosures.  When reference data 

were instead available with only 5-minute or 60-minute time resolution, U-Pod medians were calculated 

for to match that time step. In order to test models using the same time resolution they were trained 

with, the time resolution of reference and sensor measurements for corresponding training/testing 

datasets were matched, if necessary, by taking medians of the dataset with higher time resolution to 20 

match the data with the longer time resolution. The first 15 minutes of data after any period that the U-

Pods had not recorded data for the previous 5 minutes was removed in order to filter transient behavior 

associated with sensor warm-up.  During a given deployment, the data removed to avoid sensor warm-

up transients constituted less than 1%. 

 25 

When time was included in a model as an input, the absolute time was used.  Specifically, we used the 

datenum value from the MATLAB environment, which is defined by the number of days that have 

elapsed since the start of January 1st, in the year 0000.  A model was extrapolated in time when ever 
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training data does did take place both before and after a given test deployment period.  In several case 

studies we present, model training only took place after the test deployment period, comprising a ‘post 

only’ calibration.  In Colorado, and more broadly in the western United States, ambient temperatures 

change significantly across the seasons throughout the year, so if a model is extrapolated in time, 

extrapolation in temperature often results as well.   5 

2.4 Calibration Model Techniques 

 In this work, we explore how well field calibration methods hold up in new locations, a topic 

which has not yet been sufficiently addressed by the scientific community.  As in (Casey et al., 2017), 

direct LMs and ANNs were trained with a number of different sensor input sets to map those inputs to 

target gas mole fractions measured by reference instruments.  Direct LMs implemented were multiple 10 

linear regression models given by  

    𝑟 =  𝑝! +  𝑝!𝑠! +  𝑝!𝑠!+. . .+𝑝!𝑠!!!,         (1) 

where r is the target gas mole fraction (measured by a reference instrument) s1 – sn-1 are sensor signals 

from U-Pods that are included as model predictor variables, and p1 – pn are corresponding predictor 

coefficients.   15 

 

ANNs designed for regression tasks, like those employed in this work, generally consist of artificial 

neuron nodes that are connected with weights.  Weights are initiated with randomly assigned values.  

An optimization algorithm is then employed iteratively adjust the values of these weights in order to 

map a given set input values to corresponding target values.  An example of a very simple feed forward 20 

neural network, and how weights are propagated through it are depicted in Fig. 3.  In this work, ANNs 

were designed by assigning U-Pod sensor signals to artificial neurons in an input layer and assigning 

target gas mole fractions for an individual gas species, measured by a reference instrument to a single 

output neuron.  Nonlinear, tansig, artificial neurons in one hidden layer for O3 or two hidden layers for 

CO2 (accordance with our earlier findings for each target gas species (Casey et al., 2017)) were then 25 

added between input layer and the network output neuron.  Additionally, bias neurons, each assigned a 

value of 1, were connected to neurons in the hidden layer(s) so that individual connecting weights could 
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be activated or deactivated during the optimization process.  The number of neurons in each hidden 

layer was set equal to the number of inputs included in a given ANN.  Fig. 4 shows a diagram of an 

ANN architecture employed in this work, when there were five inputs. 

 

For ANN training we employed the Levenberg Marquardt optimization algorithm with Bayesian 5 

Regularization (Hagan et al., 1997).  The Levenberg-Marquardt algorithm combines the Gauss-Newton 

and Gradient Decent methods, towards incremental minimization of a cost function, which is defined by 

the summed squared error between the ANN output and target values as a function of all of the weights 

in the network.  Training begins according to the Gauss-Newton method, in which the Hessian matrix, 

the second order Taylor series representation of the local shape of the error surface, is approximated as 10 

a function of the Jacobian matrix and its transpose, significantly reducing required training time.  

Network weights are adjusted accordingly during each training step to reduce error.  If the cost function 

is not reduced in a given training step, an algorithm parameter is adjusted so that optimization more 

closely approximates the gradient decent method (a first order Taylor series representation of the local 

shape of the cost function), providing a guarantee of convergence on a cost function minimum. Since 15 

local minima may exist across the error surface, it is important to train the same network multiple times, 

with different randomly assigned starting weights, in order to assess the stability of ANN performance.  

In this work, each ANN was trained 5 times.   

 

In the implementation of Bayesian Regularization, a term is added to the sum of squared error cost 20 

function as a penalty for increased network complexity in order to guard against over fitting.  A two 

level Bayesian inference framework is employed, operating on the assumptions that the noise in the 

training data is independent, normally distributed, and also that all of the weights in the ANN are small, 

normally distributed, and unbiased (Hagan et al., 1997). In preliminary ANN tests we found that over 

fitting occurred even when Bayesian Regularization was used, so we additionally implemented early 25 

stopping, which proved to be effective in the reduction of over fitting.  To implement early stopping, a 

portion of training data is set aside as validation dataset, and during training.  Training continues so long 

as the error associated with the validation dataset is reduced. When the error associated with the 
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validation dataset is no longer being reduced, training stops early. For ANNs, training datasets were 

divided in half on an alternating 24-hr basis, with half used for training and half used as validation data 

for early stopping.  Input signals for both LMs and ANNs were normalized so that they ranged in 

magnitude from -1 to 1 since this practice is recommended for the ANN optimization algorithm used 

(Hagan et al., 1997).    5 

2.5 Calibration Model Evaluation and Testing 

To evaluate the performance of each of the ANN and LM models that were generated using training 

data then applied to test datasets, we explored residuals, the coefficient of determination (r2), root mean 

squared error (RMSE), mean bias error (MBE), and centered root mean squared error (CRMSE).  The 

CRMSE is an indicator of the distribution of errors about the mean, or the random component of the 10 

error.  The MBE, alternatively, is an indicator of the systematic component of the error.  The sum of the 

squares of the CRMSE and the MBE is equal to the square of the total error, the square root of which is 

defined by the RMSE.   

 

First, we generated and applied the best performing model, as determined in our previous work 15 

(presented in Table 3), to data from each new case study.  Each new case study was selected to 

challenge models in different ways in order to evaluate the resiliency of the findings from our previous 

study when challenged by different circumstances.  Then we tested LMs for CO2 and O3 that contained 

only the primary target gas sensor for each species, as well as temperature and absolute humidity as 

inputs.  Finally, we generated, applied, and evaluated the performance of a number of LMs and ANNs 20 

with different sets of inputs for each case study in order to see which specific model performed the best 

for each individual case study.  The r2, RMSE, and MBE for each of these alternative models when 

applied to test data are presented in the supplemental materials (SM) in Fig. S2 through Fig. S7, along 

with representative scatter plots and time series comparing the performance LMs and ANNs for a given 

set of inputs.  In Fig. S2 through Fig. S7, the best performing model inputs for each train/test data pair 25 

are shaded in purple.  The type of model that performed the best (ANN vs. LM) is indicated in the 

caption of each figure.  We discuss both the performance of the previously determined best fitting 
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model (generated using data from the GRET Spring 2017 case study) when applied and generated to 

data from new case studies, and the performance of models that were tuned to perform the best for each 

individual case study.  From these comparisons, we draw insight into circumstances that challenge 

model performance in terms of relative local emissions characteristics, location, and timing between 

model training and testing pairs.  Table 4 lists the relative timing and parameter coverage between 5 

model training and testing periods for dataset pairs, highlighting instances of incomplete coverage 

during training that led to model extrapolation during testing.   

3 Results and Discussion  

3.1 BAO and SJ Basin Summer 2015  

The set of deployments we conducted in the summer of 2015 is particularly useful to the objective of 10 

characterizing how well field calibration models can be extended to a new location relative to their 

performance where they were trained. During the testing period, two U-Pods were located at BAO, 

where training took place, while seven U-Pods were co-located with reference measurements for O3, 

and two U-Pods were co-located with reference measurements for CO2 in the SJ Basin, across Colorado 

and over the state line in New Mexico.  Sampling sites at BAO, in the DJ Basin, and throughout the SJ 15 

Basin were all influenced by oil and gas production activities and their associated emissions to some 

extent, but the composition of the production stream is different in each basin. In the SJ Basin, 

particularly the northern portion of the basin where all our sampling sites were located production is 

dominated by coalbed methane.  In contrast, many wells in the DJ Basin produce both oil and gas 

leading to greater relative abundance of heavier hydrocarbons in emissions.  The DJ Basin air shed is 20 

also more strongly impacted by urban emissions than the SJ Basin air shed, and is more strongly 

influenced by mobile sources with Denver, Boulder, Fort Collins, Greeley, and many other smaller 

communities in its midst and along its borders.  The Four Corners region, where the SJ Basin is situated, 

has a much smaller population density. Additionally, while there are some agricultural activities and 

associated emissions in and around the SJ Basin, there is a significantly larger agricultural industry in 25 

and around the DJ Basin.  SJ Basin sampling sites spanned a range of elevations, including some that 
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were higher and some that were lower than the BAO Tower, coinciding with a wide range of 

atmospheric pressure at the distributed sampling sites.   

 

We began by testing the best-performing CO2 model, as determined in our previous work (Casey et al., 

2017), on data from this case study, during the summer of 2015.  ANNs were trained for each U-Pod 5 

using data from the BAO Tower with the following inputs from each U-Pod:  eltCO2 (ELT S300 CO2 

sensor), temp (temperature), and absHum (absolute humidity), then tested on data collected at the BAO 

Tower and at sampling sites in the SJ Basin. The performance of these ANNs when applied the test data 

are presented in Fig. 5 and Fig. 6.  Fig. 5 shows scatter plots of U-Pod CO2 vs. reference CO2 during the 

test data period for sensors located at BAO as well as sensors that were located at distributed sampling 10 

sites throughout the SJ Basin.  The scatter plots show that while there was generally a smaller dynamic 

range of CO2 at the SJ Basin sites relative to BAO, model performance did not appear to be impacted or 

degraded by spatial extension to these locations in the SJ Basin.  The line of best fit for Fort Lewis site 

(periwinkle) is even closer to the 1:1 than the lines of best fit for two U-Pods located at BAO (black and 

grey). Overlaid histograms of residuals in the bottom right corner of Fig. 55 show that CO2 residuals 15 

from each of the SJ Basin U-Pods are generally centered and evenly distributed about zero with similar 

spread. 

 

U-Pod CO2 average residuals during this test period, using the best performing ANNs from our previous 

study, are plotted according to time of day and date in Fig. 6.  While the use of ANNs in place of LMs 20 

reduces U-Pod CO2 residuals significantly with respect to temperature, some daily periodicity in the 

residuals for all four U-Pods is apparent in the upper plot in Fig. 6 that shows residuals by date.  The 

lower plot in Fig. 6, showing residuals by time of day, demonstrates that CO2 from three of four U-Pods 

was generally under predicted during early hours of the morning and generally over predicted during 

afternoon and evening hours.  Interestingly, this trend in residuals by time of day is more pronounced 25 

for the two U-Pods that remained at BAO.  Upon examination of overlaid histograms showing 

distributions of parameters during model testing and training periods, in Fig. S12, and model time series 

and residuals plots in Fig. S3, there is no indication of model extrapolation at the BAO site, nor the sites 
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in the SJ Basin (with the exception of pressure due sampling site altitudes) and no significant trends of 

concern with respect to residuals and model inputs.   

 

Next we evaluated the best model type and set of inputs for CO2 based on this specific case study.  

Differing from our previous findings, for this group of training and testing data pairs from the summer 5 

of 2015 at the BAO and SJ Basin sites, the inclusion of the e2vVOC (e2v MiCs-5521) and alphaCO 

(Alphasense CO-B4) sensor signals noticeably improved the RMSE in the quantification of CO2.  While 

the inclusion of these two secondary sensor signals didn’t result in the best performance in our previous 

study, using data from the GRET site (Casey et al., 2017), their inclusion did not degrade performance 

relative to the models that included just eltCO2, temp, and absHum signals as inputs, so including these 10 

sensor signals may be appropriate as a general rule, in areas that are strongly influenced by oil and gas 

production activities.  Generally, using rh vs. absHum signals as ANN inputs did not have a measurable 

impact on model performance, though linear models were sometimes found to perform better when the 

absHum signal is used instead of the rh signal.  From Fig. S2, it is apparent that inputs including e2vCO 

(e2v MiCs-5525), temp, rh, e2vVOC, and alphaCO sensor signals as model inputs resulted in the lowest 15 

RMSE for U-Pods at BAO as well as at the two SJ Basin sites.  Plots analogous to those presented in 

Fig. 5 and Fig. 6, but with this best performing set of inputs for the present data set pairs are presented 

in the SM, in Fig. S24 and Fig. S25 respectively. 

 

For O3, we similarly began by testing the model that was found to perform the best from our previous 20 

study on data from this case study.  O3 was quantified using data from the two U-Pods deployed at BAO 

and seven of the U-Pods deployed at SJ Basin sampling sites using ANNs with the following inputs:  

e2vO3 (e2v MiCs-2611), temp, absHum, e2vCO, e2vVOC, figCH4 (Figaro TGS 2600), and figCxHy 

(Figaro TGS 2602).  These same inputs and model configuration were also found to be the best 

performing for the U-Pods at the BAO site and the majority of SJ Basin 2015 dataset pairs as noted in 25 

Fig. S2.  Interestingly though, LMs with this same set of inputs performed competitively well for three 

of the seven U-Pods in the SJ Basin in terms of RMSE and r2.  The observation that LMs performed 

competitively well at a subset of SJ Basin sites is likely connected to the relative abundance of 
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hydrocarbons and other potentially interfering oxidizing and reducing gas species at individual 

sampling sites, diverging from conditions present during model training at the BAO site.  ANNs can 

better represent the influence of these interfering species than LMs during training, but appear to have 

lose their ability to do so for this subset of microenvironments in the SJ Basin.   

 5 

Scatter plots and trends in residuals are presented in Fig. 7 and Fig. 8 for O3.  These plots show the 

performance of U-Pods at BAO relative to those at SJ Basin sites in the quantification of O3 during the 

test data period.  U-Pod O3 measurements at Fort Lewis, Navajo Dam, and the Sub Station did not agree 

with reference measurements as well as U-Pod O3 measurements from the other four SJ Basin sites.  As 

noted earlier, U-Pods at the Navajo Dam and Sub Station sites had faulty relative humidity sensor data, 10 

so humidity from the U-Pod located at the Ignacio site was used in place of their humidity signals.  

Since the Ignacio site was located approximately twenty-two and fifty miles away from the Navajo Dam 

and Sub Station sites respectively, this could have introduced some additional error into the application 

of a calibration equation, particularly since we showed earlier that O3 ANNs like the ones we employed 

here are very sensitive to humidity inputs (Casey et al., 2017).  Spatial variability in humidity across 15 

tens of miles could be significant as isolated storms (which are on average 15 miles in diameter) 

propagate throughout the region in the summer.  At the Fort Lewis site, a 2b Technologies model 202 

O3 analyser was employed as a reference instrument, differing from the Thermo Scientific 49i, Thermo 

Scientific 49is, and Teledyne API T400 instruments utilized for reference measurements, elsewhere in 

the SJ Basin, and the Thermo Scientific 49c that was operated at the BAO site and used for model 20 

training.  Of all the reference instruments, only the 2b Technologies model 202 O3 at the Fort Lewis site 

was operated in a room that was not temperature controlled, as such, some bias may have been 

introduced to the Fort Lewis O3 reference measurements.  Different instruments, operators, calibration 

and data quality checking procedures could have contributed to observed discrepancies.  It is also 

possible that the microenvironment at each of these three sites contributed to lower model performance.  25 

Fig. S1 shows that differences among U-Pod O3 performance during the test deployment period were 

larger than those observed during the training period among the same U-Pods.  Therefore, the 

incongruous field calibration performance phenomena we observed seems to be connected to unique 



24 
 

characteristics associated with humidity sensor signal replacement or individual sampling site 

characteristics; possibly relative abundance of oxidizing and reducing molecules in the local 

atmosphere, which could interfere with sensor responses to their target gas species, as opposed to the 

quality of individual gas sensors in each of those U-Pods.   

 5 

All SJ Basin U-Pod O3 measurements systematically over estimate lower levels of O3 each night, a 

trend apparent in the scatter plots in Fig. 7 and in the residuals by time of day plot in Fig. 8.  Upon 

examination of the scatter plots in Fig. 7, U-Pods at some sampling sites had positive bias for higher O3 

measurements as well (Shiprock, Ignacio, Sub Station, and Bloomfield), while for others, bias at the 

higher end of O3 distributions did not appear to be present (Navajo Dam, Fort Lewis, and Bondad).  The 10 

residuals by time of day plot in Fig. 8 shows that the two U-Pods at BAO did not have significant trends 

in their residuals according to the time of day, but that U-Pods deployed at SJ Basin sites consistently 

over estimated nighttime O3.  The residuals are also plotted with respect to temperature in Fig. 8, where 

all U-Pods, even those at BAO to a lesser extent, appear to over predict O3 at lower temperatures, which 

generally occurred at night.  In general, the times of day that correspond to the highest O3 levels had the 15 

lowest residuals, with some exceptions at the Fort Lewis and Navajo Dam sites.   

 

Fig. 8 includes a plot of the residuals across the duration of the deployment period, showing no 

significant sensor drift in measurements for any of the U-Pods.  This plot also shows that the highest 

residuals observed generally occurred over short periods in time, particularly for the Fort Lewis (blue) 20 

and Sub Station (magenta) sites.  In order to further explore the performance of field calibration models 

for O3 at SJ Basin sites relative to BAO, the combined parameter space of temperature with O3 

reference mole fractions and temperature with absolute humidity are presented in Fig. 9.  The combined 

temperature and reference O3 parameter space appears to be similar for all of the U-Pods, both at BAO 

and the SJ Basin sites.  However, there appears to be some outlying combined temperature and 25 

humidity parameter space at the Sub Station site and at the Navajo Dam site.  Brief excursions, lasting 

approximately 2 – 4 hours, of high humidity (up to 0.025 kg/kg, relative to the upper bound of absolute 
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humidity observed at other sampling sites of 0.013 kg/kg) may be connected to some of the large short-

term residuals observed at these two sampling sites.  

 

The majority of U-Pods stopped logging data, unfortunately, at one point or another during these 

deployments.  Periods of missed data during the month-long deployment included approximately one 5 

day at the Shiprock site, two days at the Bloomfield site, four days at the Sub Station site, nine days at 

the Fort Lewis site, and seventeen days at the Navajo Dam site.  We carried out frequent sampling site 

visits (on a weekly or biweekly basis as logistics and travel to remote locations in some cases allowed) 

in order to identify and fix problems as they arose during field deployments.  Operational issues were 

predominantly attributable to power supply problems associated with BNC bulkhead fittings and 10 

corrupted micro SD cards.  The periods of missing data are reflected in the plots of residuals by date in 

Fig. 6 for CO2 and in Fig. 8 for O3.  Fortunately, no drift over the course of the deployment period was 

observed in these plots.  

3.2 Insight from Additional Case Studies of Field Calibration Extension to New Locations 

3.2.1 Urban calibration moved to rural/peri-urban setting: Dawson Summer 2014 15 

The Boulder County deployment in the summer of 2014 was used to test how well a field calibration for 

sensors in one U-Pod, generated in a busy urban area (at CAMP in downtown Denver), could be 

extended to a peri-urban setting (at Dawson School in eastern Boulder County).  Training took place at 

CAMP for several days each month, before and after each approximately month-long deployment 

period at Dawson School over the course of four months.  Fig. S7 shows the performance of a number 20 

of ANN and LM-based CAMP field calibrations with different sets of inputs at this Dawson School test 

site.  In this case study, LMs performed better than ANNs across all sets of sensor inputs.  Unlike 

findings from our previous study (Casey et al., 2017), including secondary metal oxide type sensors as 

inputs didn’t help to improve model performance.  The best performing set of inputs included just 

e2vO3, temp, and absHum signals.  The very different relative abundance of various oxidizing and 25 

reducing compounds in downtown Denver relative to the Dawson School site, surrounded by open 

grassy fields, and in closer proximity to oil and gas production activities, may be the reason why 
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including additional gas sensors as model inputs and the use of ANNs failed to improve the 

quantification of U-Pod O3 in this case.  Relatively short training durations could also contribute to this 

finding, based on findings from our previous work (Casey et al., 2017).   

 

The fact that LMs performed better than ANNs in this case (with an r2 of .95 and RMSE of 0.35 ppb for 5 

LMs, as opposed to an r2 of .9 and an RMSE of 5.1 ppb for ANNs) may have to do with the general 

expectation that LMs be more resilient to extrapolation than ANNs.  Notably though, neither ANNs nor 

the LMs captured the highest levels of O3 at Dawson School well.  We attribute the poor performance at 

high levels of O3 at this site, those in exceedance of about 70 ppb, to extrapolation of the O3 mole 

fractions encompassed during the training period.  The LM generally performed well within the O3 10 

levels covered during the training period.  Across applications, ANNs have been found to be unreliable 

when extrapolated, due to the nonlinear nature and complexity of the relationships they represent.  

Though they are generally expected to be more robust to extrapolation that ANNs, increased uncertainty 

in measurements can also be introduced to LMs when parameters are extrapolated.  In order to have 

high confidence in measurements of uncommonly high mole fractions of a target gas, the model training 15 

period has to encompass the full possible range.  Combining both field calibration and lab calibration 

data together in a training dataset could accomplish this type of coverage.  If extrapolation is expected 

to occur with respect to the target gas mole fraction, as in this case study, the use of an inverted LM 

may yield better results than LMs or ANNs.  We describe inverted LMs and their potential advantages 

in our previous work (Casey et al., 2017).  Keeping in mind this finding about O3 extrapolation, for 20 

ambient measurements in the DJ Basin, for subsequent deployments, we selected field calibration sites 

that were more representative of distributed sampling site locations, outside of the dense urban 

environment in downtown Denver, where O3 did not get as high, likely due to increased titration of O3 

at night in connection with abundant NOX compounds.   

3.2.2 Post only calibration moved across the state:  SJ Basin Spring 2015 25 

We also examined model performance that was subject to extrapolation in time and temperature. We 

present O3 model performance data from four U-Pods that were co-located with reference instruments 
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in the SJ Basin in the spring of 2015, at the Navajo Dam, Sub Station, and Bloomfield sites.  Two U-

Pods at the Bloomfield site provide a set of duplicate measures.  Fig. S4 shows the performance of a 

number of ANN and LM-based BAO field calibrations with different sets of inputs at this SJ Basin test 

sites in the spring of 2015, just prior to the summer 2015 BAO training period.  U-Pod O3 was 

quantified for these deployments using training data from the same co-location period at BAO that was 5 

used toward quantification of the summer 2015 SJ Basin deployment, described in section 3.1.   

 

The addition of time as a model input didn’t seem to improve the performance of either ANNs or LMs 

and ANNs generally outperformed LMs.  Gas sensor manufactures don’t clearly define sensor lifetimes, 

but sensors are generally expected to loose sensitivity over time.  For example, Alphasense CO-B4 10 

electrochemical sensors are expected to have 50% of their original sensitivity after two years 

(Alphasense, 2015).   The heater resistance in a given metal oxide type sensor is expected to drift over 

time, influencing sensor measurements (e2v Technologies Ltd., 2007).  Masson and colleagues 

observed a significant drift in a metal oxide sensor heater resistance over the course of a 250 day 

sampling period in a laboratory setting (Masson et al., 2015).  While we did not measure and record 15 

metal oxide sensor heater resistance for sensors included in U-Pods, we have investigated eltCO2 and 

e2vO3 sensor signal drift from the summer of 2015 through the summer of 2017.  These data are 

presented in Fig. S26.  Systematic downward drift in all eltCO2 sensor signals is apparent over this time 

frame.  A clear and consistent pattern of systematic drift over this time period is less apparent for e2vO3 

sensors.  Since the training data was collected immediately after, the test data period, and since the test 20 

data period was relatively short (approximately one month) sensor drift could be negligible across the 

combined training/testing time frame.  U-Pods experienced colder temperatures during this spring 

deployment than were encompassed subsequently in the BAO training period.   Linear models generally 

resulted in more bias than ANNs. Again the model for O3 that was found to perform best in our 

previous (Casey et al., 2017),  an ANN with temp, absHum and all metal oxide sensor signals as inputs, 25 

performed the best at sites included in this case study, with one exception. At the Sub Station site the 

inclusion of the figCxHy sensor signal decreased model performance.  Additionally, the performance of 

all models tested at the Sub Station site during the SJ Basin Spring 2015 deployment was significantly 
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worse in terms of MBE than model performance at other sites, both LMs and ANNs with different sets 

of inputs.  Since this sensor signal input augmented model performance at the same sampling location 

during the summer deployment period, this finding could be attributable to the extrapolation with 

respect to temperature that occurred during the test period of this case study.  As discussed in the 

introduction, metal oxide sensor sensitivity to different gas species can vary along with sensor surface 5 

temperature.  Models were trained to use the figCxHy sensor signal, across the ambient temperatures in 

encompassed by the training data, to help account for the influence of confounding gas species at the 

BAO site.  We think it is possible that the different temperatures in combination with the unique mix of 

gas species present at the Sub Station site, which the figCxHy sensors are highly sensitive to, caused the 

ANN to perform worse.  The Sub Station site is close to two large coal-fired power plants, indicated in 10 

Fig. 11 by orange markers in the SJ Basin pane.  It is possible that emissions from the San Juan 

Generating Station (north) and/or the Four Corners Power Plant (south) uniquely influenced the 

response of this particular Figaro sensor in ways that are not well represented at BAO in the DJ Basin, 

or present at other SJ Basin sampling sites.  Several-hour long enhancements or spikes are apparent in 

the raw eltCO2 and alphaCO sensor signals in the U-Pod deployed at the Sub Station site, indicating the 15 

presence of a near-by combustion-related emissions source.  Another indication of a near-field power 

plant plume across the deployment area is apparent, in the form of several-hour long enhancements of 

reference measurements of NO and NO2 at the site.  

3.2.3 Post only calibration moved 40 miles across the DJ Basin:  BAO Summer 2016 

In testing the performance of field calibrations that were generated using data collected at the GRET 20 

site in 2017 and applied for the quantification of O3 at BAO in the 2016, across the DJ Basin, we were 

interested to find that again, the inclusion of time as a model input did not yield any improvements in 

calibration equation performance, even though model training took place several months after the test 

period.  Fig. S5 shows the performance of a number of ANN and LM-based GRET field calibrations 

with different sets of inputs at this BAO test site the previous summer.  Another interesting finding from 25 

this training/testing dataset pair was that the addition of secondary metal oxide type gas sensors, didn’t 

seem to help improve the performance of field calibration equations either.  Fig. S5 shows that ANNs 
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performed better than LMs and that the most useful set of inputs included just e2vO3, temp, and 

absHum.  Similarly, the performance of field calibration equations for CO2 generated at GRET in 2017 

and applied to data from BAO in the summer of 2016, did not seem to be augmented by the inclusion of 

additional gas sensor signals, though the inclusion of time as a predictor was useful.  In the case of CO2, 

LMs outperformed ANNs, which could be largely attributable to notable instability associated with the 5 

performance of ANNs when time was included as an input.  For CO2, we expected the inclusion of time 

as an input to be a useful to model performance across this time frame, owing to observed trends of 

decreased CO2 sensor sensitivity in time.  To keep the power requirements for the U-Pod sensor systems 

low, and to keep systems quiet, fans were used to exchange air in the enclosures as opposed to pumps.  

As a result, the air entering the enclosures was not filtered, and sensors were exposed to some dust over 10 

time.  This dust exposure is likely largely responsible for observed decreases in CO2 sensors sensitivity 

over time, shown in Fig. S26.  Decreases in infrared lamp intensity over time may also play a role.  In 

the case of CO2 sensors, the implementation of pumps to draw new, filtered air into sensor enclosures 

could likely significantly reduce lose rates in the sensitivity of an individual sensor over periods of 

continuous deployment in ambient environment.  While we are not sure why ANN performance tended 15 

not to benefit from the addition of a time input, while LM performance did, it is likely attributable to the 

extrapolation of the time input, since only data that was collected significantly subsequent to the test 

data period was used for training.  ANNs are expected to be able to better represent time decay trends if 

data from measurements both prior and subsequent to the test period are used in training, so that there is 

no extrapolation with respect to the time input.   20 

3.2.4 Post only calibration applied to the same location:  GRET Fall 2016 

To investigate if reduced performance from these GRET to BAO field calibration tests were more 

connected to the new deployment location or to the significant extrapolation with respect to time of the 

calibration models, we generated calibration equations based on similarly long training periods at 

GRET and applied them to data collected prior to the training period at GRET in the fall of 2016.  We 25 

couldn’t draw strong conclusions from this comparison, unfortunately, because of an issue with 

humidity sensors, described in the methods section and below.  Fig. S6 shows the performance of a 
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number of ANN and LM-based GRET field calibrations with different sets of inputs at the GRET test 

site during fall of the previous year.  For O3 models, the best performing ANN inputs for this dataset 

pair were the same ones that we found in our previous study (Casey et al., 2017), with the exception of 

the  humidity signal.  The fall 2016 GRET test period coincided with the time period U-Pod absolute 

humidity was replaced using mixing ratios from a co-located Picarro due to missing humidity sensor 5 

data. Interestingly, when this ‘borrowed’ humidity signal was not included as an input, the model 

performance markedly increased and became competitive with other ‘same location’ test deployment 

case studies.  In our previous work, we showed that O3 models were very sensitive to the humidity 

signal input  (Casey et al., 2017).  In this case study, it seems that replacing actual humidity signals with 

closely approximated humidity signals, negatively influenced model performance.  In order to 10 

investigate this observation further, we tested the influence of replacing humidity data in the same 

manner, using mixing ratios from the same co-located Picarro, on test data from the GRET Spring 2017 

case study.  A comparison of model performance under normal and this ‘borrowed RH’ circumstance is 

presented in Fig. S27 in the SM.  O3 model performance was negatively impacted when ‘borrowed’ RH 

values based on Picarro data replaced U-Pod RH sensor signals.  From these findings, it seems likely 15 

that the inclusion of multiple metal oxide type sensors as inputs in the model, which all respond 

strongly to humidity fluctuations, helped the ANN to effectively represent the influence of humidity in 

the system, more so than including a ‘borrowed RH’ signal from another instrument.  We tested models 

with multiple gas sensor signals and no humidity signal as inputs for a number of other case studies as 

well (as seen in Fig. S2, Fig. S4, and Fig. S5), when good humidity data from U-Pod enclosures was 20 

available, but they did not turn out to be the best performing model in any of these other tests.   

3.3 Evaluation of models across training/testing dataset pairs 

For each of the case studies, we compare the relative model performance under three governing model-

training paradigms.  The first of these paradigms includes linear models with only the primary gas 

sensor signal, along with temperature, and absolute humidity signals as inputs.  Performance of these 25 

models is shown in Fig. 10.  The next paradigm includes models that were found to perform best for 

each trace gas in our previous work.  Performance of these models is shown in Fig. 11.  The third 
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paradigm includes models that were optimized for each case study specifically.  Performance of these 

models is shown in Fig. 12.  Table 5 and Table 6 show the mean and standard deviation of model 

performance metrics for each of the case studies presented.  Table 7 shows the percent change in model 

performance metrics when one model-training paradigm is used in place of another, highlighting 

relative benefits associated with the implementation of different models for O3 and CO2.   5 

 

Fig. 10, Fig. 11, and Fig. 12 contain target plots showing the MBE and CRMSE of models from each 

dataset pair in terms of absolute mole fractions and mole fractions normalized uniformly by the standard 

deviation of reference data during the spring 2017 GRET deployment.  In the SM, Fig. S23 contains 

target diagrams equivalent to those presented in Fig. 12, but with individually normalized MBE and 10 

CRMSE, according to the standard deviation of reference measurements during each individual test 

period.  The outer circle’s radius in each of these target diagrams denotes an error-to-signal ratio of 1.  

The inner circle’s radius in each of these target diagrams encompasses the performance of models when 

they were tested at the same location that they were trained and when training data bookended the test 

period, so that there was no extrapolation of the model across time or deployment location.  We present 15 

our findings in the form of these target diagrams in order to compare our findings with those presented 

in several particularly relevant previous studies focused on the field calibration of low-cost sensors 

(Spinelle et al., 2015, 2017; Zimmerman et al., 2017).  

 

Fig. 10 and Fig. 11 show that for CO2, ANN models generally performed slightly better than LM 20 

models with the same set of inputs, though models that were extrapolated more than several months in 

time were the exception.  For O3, ANNs that included multiple secondary metal oxide sensor signals as 

inputs were also found to generally perform slightly better than the relatively simple LMs that didn’t 

include any secondary gas sensors as inputs over all (with exceptions for individual case studies).  This 

can be seen in Table 7 and in Fig. 10 and Fig. 11, with all plot markers falling within the outer radius in 25 

Fig. 11 (ANNs) but some plot markers falling outside the outer radius in Fig. 10 (LMs).  Models that 

were not moved to a new location for the test period gained the most benefit in their performance when 

ANNs were used instead of LMs, resulting in a smaller inner radius in the target plots in Fig. 11 relative 
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to Fig. 10 for both O3 and CO2.  The target diagrams in Fig. 10 and Fig. 11 show some degradation in 

performance when models were applied to data in new locations and when training data took place only 

after the test period.  The of the target plots in Fig. 10 and Fig. 11 demonstrate that bias was introduced 

when field calibration models were extrapolated in terms of time, when training periods only 

encompassed data after the test data period and not prior.  Interestingly, there are noticeable similarities 5 

between the target plots for CO2 in Fig. 10 and 11 and the target plots for O3 in Fig. 10 and 11.   

 

The relative performance of models among each training/test dataset pair remained fairly consistent 

across the different models employed in data quantification.  These systematic trends highlight the 

importance of model training and testing circumstances relative to specific field calibration model types 10 

and inputs.  For the BAO Summer 2016 case study, when time was extrapolated significantly, and when 

models were moved across the DJ Basin, CO2 and O3 were both better represented by LMs than ANNs.  

CO2 and O3 models did not benefit from additional gas sensors added as inputs either for this case 

study. In Fig. 11, of models that performed best for each species as determined in our previous study, 

models that were not extrapolated in time for CO2, and all O3 models, plot markers fall within the outer 15 

radius, meeting performance standards framed by previous studies (Spinelle et al., 2015, 2017; 

Zimmerman et al., 2017).  In Fig. 12 the best field calibration model performances for each case study 

all fall within the outer radius, showing good performance, and indicating that incomplete coverage of 

parameter space in terms of atmospheric chemistry, weather patterns, sampling location, and sampling 

timing, can be addressed to some extent by tailoring field calibration models and their inputs to specific 20 

training/testing datasets pairs. 

 

For CO2 we found that field calibration models generally extended with good performance to new 

locations.  ANNs outperformed LMs when training took place pre and post of a test deployment.  When 

training only took place after a test deployment LMs performed better.  LMs seem to be better at 25 

extrapolating in time.  Over time, ELT NDIR CO2 sensors seem to lose sensitivity and/or drift.  When 

CO2 models were extended back in time, significant bias resulted when time was not included as an 

input.  ANNs were not able to extrapolate in time with any success and their performance became very 
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unstable when time was added as an input, an occurrence that is apparent in Fig. S5 and Fig. S6.  

Models performed better when they were extended spatially, all the way across Colorado from the DJ 

Basin to the SJ Basin, than they did when they were extended back in time.  Extension of a LM back in 

time and across the DJ Basin (from GRET in 2017 to BAO in 2016) resulted in significant MBE 

relative to the other case studies.  The inclusion of multiple additional gas sensors augmented model 5 

performance when extended back in time at the same location as training took place, but not at a new 

location.   

 

For O3 we found that ANNs with the same set of inputs worked best across a number of case studies, 

informed by all the metal oxide sensor signals as well as temperature and humidity.  The extension of 10 

models to new locations often resulted in increased MBE or systematic error, and in some cases 

increased CRMSE or random error.  Some observed bias in the extension of models to new locations 

could be attributable to different reference instruments with different operators and/or different 

calibration and data quality measures employed. O3 model extension to new locations seemed to be 

more impactful than extension back in time.  Interestingly, additional metal oxide sensor signals 15 

remained helpful when models were extended all the way across Colorado, from BAO to the SJ Basin, 

but these additional gas sensor signals did not remain helpful when O3 models were extended across a 

county line, from Adams County (CAMP) to Boulder County (Dawson) or from Weld County (GRET) 

to Boulder County (BAO).  ANNs generally performed better than LMs for O3, with the exception of 

these two Front Range case studies (Dawson Summer 2014 and BAO Summer 2016).  We found in our 20 

previous study that shorter training times led to decreased performance in ANNs and sometimes 

increased performance in LMs.  The training time used in the CAMP to Dawson case study was 

relatively short, which could have contributed to the superior performance of LMs over ANNs.    For 

the BAO Summer 2016 case study, both ANN and LM markers are included (each with the same 

inputs: e2vO3, temp, and absHum).  LMs had smaller random error but ANNs had smaller bias, 25 

highlighting an important consideration in the application of one or the other to inform specific research 

or measurement goals.  
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4 Conclusions 

Several previous studies have shown that multiple gas sensor signals and the implementation of 

supervised learning techniques can improve the performance of field calibration of low-cost sensors in 

the quantification of a number of atmospheric trace gas mole fractions.  We investigated how well a 

supervised learning technique (ANNs) held up when sensors were moved to a new location, different 5 

from where calibration model training took place.  We tested the spatial and temporal transferability of 

field calibration models for O3 and CO2 under a number of different circumstances using data from 

multiple reference instrument co-locations, using the same sensors over the course of several years, 

when sensors were deployed in two oil and gas production basins, along with urban and peri-urban 

sites.  We found that the best performing field calibration models for both O3 and CO2 were not 10 

consistent across all training and testing deployment pairs, though some patterns emerged in terms of 

model type and inputs in association with the spatial and temporal extension of calibration equations, 

from training to testing performed in oil and gas production areas.  The performance of O3 models 

generally benefited from the inclusion of multiple metal oxide sensor signals in addition to the primary 

e2vO3 sensor signal, while the performance of CO2 models relied more heavily on temperature and 15 

humidity inputs.  CO2 model performance was impacted more by temporal extension than spatial 

extension.  In contrast, O3 model performance was impacted more by spatial extension than temporal 

extension. 

 

While ANNs and other supervised learning techniques have been shown to consistently out perform 20 

linear models in previous studies when training and testing took place in the same location, we find that 

this trend does not always hold when field calibration models are applied in a new location, with 

significantly different local emissions source signatures for O3 models, or when model training data 

takes place more than several months subsequent to the model application period for CO2 models.  We 

find that the implementation of calibration models that were well suited to specific training and test data 25 

pairs resulted in generally good test performance in terms of centered root mean squared error and mean 

biased error, scaled by reference measurement standard deviation, reported in target diagrams in 

previous studies.  For example, when models were significantly extrapolated in time and transferred to a 
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new location, a well-suited set of sensor inputs would generally not include secondary gas sensor 

signals.   

 

LMs with just one primary gas sensor signal as well as temperature and humidity were found to 

outperform ANNs when models were applied to a location with different dominating sources of 5 

pollution in the case of O3, like Downtown Denver relative to eastern Boulder County.  These three-

input LMs also outperformed ANNs when models were significantly extrapolated in time.  While these 

LMs seemed to be more stable under circumstances of significant extrapolation in terms of local air 

chemistry and timing, we found that they did not extrapolate well in terms of the O3 mole fraction, 

resulting in underproduction of O3 values during the test period that exceeded those encompassed in the 10 

training data.     

 

Field calibration models tested in new locations often resulted in the introduction of additional bias 

relative to field calibration models that were tested in the same location they were trained in.  As seen in 

Fig. 12, plot markers from all case studies have very similar CRMSE values, but plot markers from case 15 

studies in which models were tested in new locations have larger MBE values than models that were 

tested in the same location as they were trained.   Finding ways to effectively mitigate bias associated 

with new field deployment locations would further improve the performance of field calibrations toward 

quantification of atmospheric trace gases using arrays of low-cost sensors.  Such improvements in the 

field of low-cost sensors will help to enable dense distributed networks of low-cost sensors to inform air 20 

quality in oil and gas production basins.  The following findings from this work, and associated 

recommendations, are made to help inform the logistics of future studies that employ field calibration 

methods of low-cost gas sensors. 

 

 25 

1. Finding: For O3 models, LMs perform better than ANNs when the chemical composition of 

local emissions sources is significantly different in the model-training location relative to the 

model-application location.  We found that when models were trained in an urban area with 
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significant mobile sources, then tested in a peri-urban area, more strongly influenced by oil and 

gas emissions, the differences in local sources of pollution were significantly different enough 

that LMs outperformed ANNs.  Alternatively, when models were trained in one oil and gas 

production region and tested in another the different composition of local emissions (lighter vs. 

heavier hydrocarbons) was not significant enough for LM performance to surpass the 5 

performance of ANNs, though some positive bias was evident in predicted O3 mole fractions.   

Explanation:  ANNs are very effective at compensating for the influence of interfering gas 

species through pattern recognition of a training dataset.  However, if different patterns, in terms 

of the relative abundance of various oxidizing and reducing compounds in the air, are present in 

the testing location relative to the training location, ANNs may not able to compensate for the 10 

influence of interfering gas species as effectively.   The relative abundance of interfering 

oxidizing and reducing compounds are not included as model parameters, but ANN performance 

is challenged by these circumstances.  

Recommendation: When measuring O3 or other gas species with a metal oxide type sensor, if 

the nature of dominant emissions sources at the model training location is significantly different 15 

than the nature of dominant emissions sources in the model application location, use a LM 

instead of an ANN.  For the best performance, try to train models in locations with similar 

emissions sources to a desired sampling location.  If the nature of dominant emissions sources at 

the model training and application locations are similar, signals from an array of multiple unique 

metal oxide sensors will likely augment model performance. 20 

 

2. Finding:  For CO2 models, LMs perform better than ANNs when model training occurs 

significantly (more than several months) prior to or subsequent to the model application period.                             

Explanation:  CO2 sensors drift over time in terms of sensitivity and baseline response.   When 

models are extrapolated in time (when training takes place more than several months prior or 25 

subsequent to the model application period), ANN performance can be compromised to a greater 

extent than LM performance. ANNs are able to represent relationships during training very 

effectively, and with significant more complexity and nonlinear relationships among time and 
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other model inputs than LMs.  The more complex the model, the less likely it can be extrapolate 

effectively.  LMs, with no interaction terms like we employ in this work, are not able to fit data 

and potentially complex patterns inherent in sensor drift over time during training as closely as 

an ANN, but the simple linear relationships they represent between the time input and the target 

gas mole fraction over the course of training are more likely to hold prior or subsequent to the 5 

training period. 

Recommendation: When measuring CO2 with a NDIR sensor, if model-training data is only 

available more than several months prior or subsequent to the model application period, use a 

LM instead of an ANN.  For the best model performance, use training data that is collected 

directly pre or post of the model application period, and preferably data from both pre and post 10 

of the model application period.  Training models using data from both pre and post of a given 

model application period helps models to encompass sensor drift over time as well as increases 

the likelihood of covering the full range of environmental parameter space that occurs during the 

model application period so that extrapolation of these parameters is avoided.   

 15 

3. Finding:  Extrapolation of an O3 or CO2 model in time, and especially significant extrapolation 

in time, can change both the type of model that is most effective, as well as the specific model 

input signals that are most effective.  

Explanation:  Low-cost sensors change over time, both in terms of their baseline response and 

in terms of their sensitivity to target and interfering gas species.  Different sensor types drift due 20 

to different physical phenomenon so further a generalization across sensor types is difficult. 

Recommendation: Use training data collected directly pre and post of the model application 

period in order to implement a ‘best performing model’ for each gas species that can be applied 

using data from different model training and application pairs. 

 25 

4. Finding: ANNs yield less bias and more accurate gas mole fraction quantification than LMs, 

even when transferred to a new location under the following circumstances: (a) extrapolation of 

training parameters is avoided during the model application period, (b) training takes place for 
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several weeks to a month prior and subsequent to the model application period, and (c) the 

dominant local emissions sources are similar in the model training and application locations.   

Explanation:  Our previous study and multiple other ambient and laboratory based experiments 

have shown, arrays of low-cost sensors in combination with ANN regression models can support 

useful quantification of gases in mixtures and in the ambient environment because ANNs can 5 

more effectively represent complex nonlinear relationships among environmental variables and 

signals in a sensor system like a U-Pod than LMs.  With this work, we have explored limitations 

associated with these methods when challenged in different ways, as we present with a number 

of case studies.   

Recommendation:  If minimizing error and bias in measurements of gas mole fractions using 10 

low-cost sensors systems is a primary goal, design sensor system training and field deployment 

experiments so that extrapolation of model training parameters is avoided during the model 

application period, so that training takes place for several weeks to a month directly prior and 

directly subsequent to the model application period, and so that the dominant local emissions 

sources are similar in the model training and application locations.  When these conditions are 15 

satisfied, ANNs can be robustly implemented, with better performance than LMs.     

 

It is also imperative that sensor users keep in mind the primary importance of minimizing extrapolation 

of temperature, humidity and sensor signal from model training to application.  We show that field 

normalization trace gas quantification models can more readily be transferred across a large state from 20 

one oil and gas production to another, than from an urban to oil and gas production basin that are in 

closer proximity to each other.  We also show that pre and post model training, directly prior to and 

after field site deployment, is generally much more effective than pre or post model training alone, 

especially when the training takes place significantly before or after the deployment period. Along with 

these findings and general guidelines for future studies, we recommend further validation efforts in the 25 

extension of quantification of atmospheric trace gases using low-cost gas sensor arrays in oil and gas 

production basins and toward other ambient measurement applications. The findings presented here 

may be applicable and generalizable in the use of low-cost metal oxide, electrochemical, and non-
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dispersive infrared sensor arrays in various configurations and sampling regions to characterize mole 

fractions of a number of atmospheric trace gases.  Future studies exploring the sensitivity of our 

findings to these factors are recommended.  In order to account for unique variations in sensor 

responses, in each individual sensor system, due to variations in manufacturing along with elapsed time 

and specific exposure subsequent to manufacturing, we present models that are generated for each 5 

sensor system on an individual basis.   Future studies exploring the potential for universal calibration 

models would be very useful to the field.   
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Table 1: Gas sensors included in U-Pods along with the model input codes for each.  The input code is an abbreviation for the 

make of the sensor, followed by the target gas species(s).  

Sensor Type NDIR Metal Oxide Electrochemical 

Target Gas(s) CO2 CH4 * CxHy ** O3 VOCs CO CO 

Model S300 TGS 2600 TGS 2602 MiCs-2611 MiCs-5521 MiCs-5525 CO-B4 

Make ELT Figaro Figaro e2v/SGX e2v/SGX e2v/SGX Alphasense 

Code eltCO2 figCH4 figCxHy e2vO3 e2vVOC e2vCO alphaCO 

*Light hydrocarbons **Heavy Hydrocarbons 
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Table 2: Reference instrument measurements at U-Pod sampling sites 

Deployment Reference Instrument Calibration Operator Res  

Ozone 

CAMP  Teledyne API 400E  quarterly cal/nightly quality checks CDPHE 1  

Dawson  Thermo Electron 49 pre cal/post cal check INSTAAR 5  

BAO* Thermo Scientific 49c annual cal/monthly quality checks NOAA 60 

Navajo Dam 

Bloomfield 

Sub Station  

Ignacio 

Bondad 

Shiprock 

Fort Lewis 

Thermo Scientific 49i 

Thermo Scientific 49i 

Thermo Scientific 49i 

Thermo Scientific 49is 

Thermo Scientific 49is 

Teledyne API T400 

2b Technologies 202 

quartertly cal/weekly quality checks 

quartertly cal/weekly quality checks 

quartertly cal/weekly quality checks 

monthly cal/weekly quality checks 

monthly cal/weekly quality checks 

quarterly cal/monthly quality checks 

factory cal/post cal check 

NM AQB 

NM AQB 

NM AQB 

SUIT AQP 

SUIT AQP 

NEPA 

CU Boulder 

1 

1 

1 

1 

1 

60 

1 

GRET  Teledyne API T400E quarterly cal/nightly quality checks CDPHE 1 

Carbon Dioxide 

BAO Picarro G2401  NOAA 1 

SJ Basin LI-COR LI-840A pre + post cal:  zero precision span CU Boulder 1 

GRET Picarro G2508 periodic zero stability checks CSU 1 

*(McClure-Begley et al., n.d.)  Res = Time resolution of measurements in minutes 
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Table 3: Best performing models, as determined for each gas species, in the previous study (Casey et al., 2017) 

Gas 
Species Model Type Sensor Signal Model Inputs  

CO2 ANN 
eltCO2           (ELT S300 CO2 Sensor) 
temp              (temperature) 
absHum        (absolute humidity) 

O3 ANN 

e2vO3            (e2v MiCs-2611) 
e2vCO            (e2v MiCs-5525) 
e2vVOC         (e2v MiCs-5521) 
figCH4           (Figaro TGS 2600) 
figCxHy         (Figaro TGS 2602) 
temp              (temperature) 
absHum        (absolute humidity) 
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Table 4: Relative timing and parameter coverage between model training and test deployment dataset pairs.  Incomplete coverage 
of time occurred if training only took place before or after the test data period and not before and after (pre and post).  Incomplete 
coverage of location occurred when training took place in one location and testing took place in another.  Incomplete coverage of 
parameters, or extrapolation of models, including the target gas mole fraction, temperature, time, and pressure occurred when the 
values observed during training did not encompass the values observed during testing.  Extrapolation in time occurred when 5 
training only took place after the test period (post model training timing).  Extrapolation in location occurred when a model was 
trained in one location then applied to data collected in a new location.   

Case Study Summary 
Training 
Timing 

Extrapolation 
During Test 

Dawson Summer 2014 
Urban calibration moved to 

rural/peri-urban setting Pre/Post Location, O� 

SJ Basin Spring 2015 
DJ Basin calibration moved across 
the state to SJ Basin sampling sites Post 

Location, 
Pressure, Time 

SJ Basin Summer 2015 
DJ Basin calibration moved across 
the state to SJ Basin sampling sites Pre/Post Location, Pressure 

BAO Summer 2015 
DJ Basin calibration applied to 

same location Pre/Post None 

BAO Summer 2016 
DJ Basin calibration moved 40 

miles across the DJ Basin Post Location, Time 

GRET Fall 2016 
DJ Basin calibration applied to 

same location Post Time 

GRET Spring 2017 
DJ Basin calibration applied to 

same location Pre/Post None 
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Table 5: O3 model performance metrics.   

Case Study N R2 RMSE  
(ppb) 

MBE 
(ppb) 

Standard 
Deviation 

R2 

Standard 
Deviation 

RMSE 

Standard 
Deviation 

MBE 
 O3 Models 

Best O3 Model (Casey et al., 2017) 
ANN with inputs:  e2vO3 temp absHum e2vVOC e2vCO FigCH4 FigCxHy 

Dawson Summer 
2014 

1 
0.83 6.46 -0.91 0.00 0.00 0.00 

SJ Basin Spring 2015 4 0.86 7.74 3.69 0.05 3.82 5.78 
SJ Basin Summer 

2015 
7 

0.85 7.03 4.89 0.10 1.10 1.73 

BAO Summer 2015 2 0.93 4.26 1.45 0.00 0.31 0.07 

BAO Summer 2016 2 0.92 12.21 -11.14 0.00 0.31 0.07 

GRET Fall 2016 2 0.96 12.87 12.02 0.01 2.30 2.35 

GRET Spring 2017 
2 

0.98 2.59 1.49 0.00 0.69 1.02 
Simple Model (Single Gas Sensor) 

LM with inputs:  e2vO3 temp absHum 
Dawson Summer 

2014 
1 

0.95 3.59 -0.46 0.00 0.00 0.00 

SJ Basin Spring 2015 4 0.83 17.95 16.09 0.06 6.10 5.83 
SJ Basin Summer 

2015 
7 

0.86 6.30 3.53 0.06 1.40 2.06 

BAO Summer 2015 2 0.87 5.50 0.94 0.00 0.78 1.56 

BAO Summer 2016 2 0.89 5.78 -2.71 0.00 0.78 1.56 

GRET Fall 2016 2 0.93 12.73 11.92 0.01 0.62 0.88 

GRET Spring 2017 2 0.89 6.00 -3.19 0.00 0.73 1.38 
Models Optimized For Case Studies 

Dawson Summer 
2014 

1 
0.95 3.59 -0.46 0.00 0.00 0.00 

SJ Basin Spring 2015 4 0.86 7.74 3.69 0.05 3.82 5.78 
SJ Basin Summer 

2015 
7 

0.85 7.03 4.89 0.10 1.10 1.73 

BAO Summer 2015 2 0.93 4.26 1.45 0.02 0.51 1.54 

BAO Summer 2016 2 0.87 6.25 -0.20 0.02 0.51 1.54 

GRET Fall 2016 2 0.95 3.99 2.14 0.00 0.28 0.89 

GRET Spring 2017 2 0.98 2.59 1.49 0.00 0.69 1.02 
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Table 6: CO2 model performance metrics. 

Case Study N R2 RMSE  
(ppm) 

MBE 
(ppm) 

Standard 
Deviation R2 

Standard 
Deviation 

RMSE 

Standard 
Deviation 

MBE 
 CO2 Models 

Best CO2 Model from (Casey et al., 2017)       
ANN with inputs:  eltCO2 temp absHum 

SJ Basin Summer 2015 2 0.65 8.42 -0.62 0.00 1.81 1.41 

BAO Summer 2015 2 0.75 9.98 -2.60 0.05 13.00 13.89 

BAO Summer 2016 2 0.69 54.38 48.37 0.05 13.00 13.89 

GRET Fall 2016 2 0.74 42.37 39.58 0.02 2.44 2.57 

GRET Spring 2017 
2 

0.83 6.31 0.59 0.03 0.13 2.61 
Simple Model (Single Gas Sensor) 

LM with inputs:  eltCO2 temp absHum 

SJ Basin Summer 2015 2 0.71 7.84 0.27 0.01 1.43 0.42 

BAO Summer 2015 2 0.69 10.62 -1.26 0.06 1.52 10.67 

BAO Summer 2016 2 0.73 11.82 0.73 0.06 1.52 10.67 

GRET Fall 2016 2 0.82 8.62 -3.46 0.00 0.69 1.45 

GRET Spring 2017 2 0.55 9.88 -0.33 0.03 0.29 1.91 
Models Optimized For Case Studies 

SJ Basin Summer 2015 2 0.72 7.45 -0.11 0.04 2.06 0.31 

BAO Summer 2015 2 0.80 8.85 -2.29 0.10 6.47 7.08 

BAO Summer 2016 2 0.73 11.82 0.73 0.06 1.52 10.67 

GRET Fall 2016 2 0.82 8.62 -3.46 0.00 0.69 1.45 

GRET Spring 2017 2 0.83 6.31 0.59 0.03 0.13 2.61 
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Table 7: Relative benefits associated with the implementation of different models for O3 and CO2.   

Case Study 

Mean % 
Increase 

in R2 

Mean % 
Decrease 
in RMSE  

Mean % 
Decrease 
in MBE 

Mean % 
Increase 

in R2 

Mean % 
Decrease 
in RMSE  

Mean % 
Decrease 
in MBE 

 CO2 Models O3 Models 

Benefit of Models Optimized for Case Studies Over the Best Models from (Casey et al., 2017) 

Dawson Summer 2014    14.51 44.42 50.00 

SJ Basin Spring 2015    0.00 0.00 0.00 

SJ Basin Summer 2015 10.56 11.52 82.60 0.00 0.00 0.00 

BAO Summer 2015 5.84 11.27 11.95 0.00 0.00 0.00 

BAO Summer 2016 5.72 78.27 98.49 -5.01 48.82 98.19 

GRET Fall 2016 11.17 79.66 108.73 -0.54 68.99 82.22 

GRET Spring 2017 0.00 0.00 0.00 0.00 0.00 0.00 

Benefit of the Best Models from (Casey et al., 2017) Over Simple Linear Models  

Dawson Summer 2014    -12.67 -79.92 -99.99 

SJ Basin Spring 2015    3.20 56.88 77.09 

SJ Basin Summer 2015 -8.41 -7.29 331.39 -1.34 -11.53 -38.41 

BAO Summer 2015 8.70 6.05 -106.48 6.79 22.48 -53.85 

BAO Summer 2016 -5.41 -360.09 -6543.84 2.57 -111.22 -310.71 

GRET Fall 2016 -10.05 -391.73 1244.99 2.88 -1.12 -0.86 

GRET Spring 2017 51.92 36.13 278.55 10.00 56.90 146.65 

Benefit of Models Optimized for Case Studies Over Simple Linear Models 

Dawson Summer 2014    0.00 0.00 0.00 

SJ Basin Spring 2015    3.20 56.88 77.09 

SJ Basin Summer 2015 1.26 5.06 140.25 -1.34 -11.53 -38.41 

BAO Summer 2015 15.04 16.64 -81.80 6.79 22.48 -53.85 

BAO Summer 2016 0.00 0.00 0.00 -2.57 -8.10 92.59 

GRET Fall 2016 0.00 0.00 0.00 2.33 68.64 82.07 

GRET Spring 2017 51.92 36.13 278.55 10.00 56.90 146.65 
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Figure 1: (a) Training and test deployment locations are identified in the SJ and DJ Basins in context with urban centers and oil 
and gas production wells.  (b) Panel zoomed in on the SJ Basin, covering approximately 4,250 square miles (85x50 miles).  (c) 
Panel zoomed in on the DJ Basin covering approximately 1,540 square miles (28x55 miles). 
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Figure 2: (a) ANN and LM training and test deployment timelines.  The Dawson, BAO, and GRET sampling sites are all located in 5 
the DJ Basin.  Model training periods for each test deployment are shown in blue, and model test periods are shown in magenta.  
For the BAO Summer 2016 case study, the period outlined in blue shows data that was used to train O3 model, but not CO2 models 
since CO2 reference data was not available during winter months. (b) Information about each of the case studies presented in the 
above timelines, including model training and testing locations, as well as the number and names of U-Pods included in each case 
study for both O3 and CO2 models.  The U-Pods with names shown in grey were constructed and deployed starting in May of 2014.  10 
The U-Pods with names shown in black were constructed and deployed starting in April of 2015.   
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Figure 3.  Example of a simple feed forward neural network, showing how inputs are propagated through the network during each 
of the training iterations (Casey et al., 2017) 
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Figure 4. Diagram of an example ANN with the same color-coded components as are presented in Figure SM3 in section 2.2 of the 
SM.  This ANN has 5 inputs, 1 hidden layer with 5 tansig hidden neurons, and 1 linear output layer leading to 1 output.  The 
network is fully connected with weights and biases (Casey et al., 2017). 
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Figure 5:  Scatter plots of U-Pod CO2 vs. reference CO2 and overlaid histograms of U-Pod CO2 residuals for (a) BAO and BAO (b) 
BAO and Bloomfield (c) BAO and Fort Lewis.  A 1:1 single-weight reference line is included in each scatter plot along with 
double-weight lines of best fit for U-Pods at each sampling location.  Data from U-Pod BC at BAO is plotted in black along with U-
Pods BJ, BB, and BD at BAO, Fort Lewis, and Bloomfield, respectively.  Sensor signal inputs include eltCO2, temp, and absHum.  5 
(d) Overlaid histograms of model residuals with respect to reference CO2. 
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Figure 6:  U-Pod CO2 residuals by (a) data and (b) time of day and throughout the duration of the deployment period. Sensor 
signal inputs include eltCO2, temp, and absHum. 
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Figure 7: Scatter plots of U-Pod vs reference O3, comparing U-Pod BC at BAO, in black, with (a) U-Pod BJ at BAO (b) U-Pod BA 
at Navajo Dam (c) U-Pod BB at Fort Lewis (d) U-Pod BD at Bloomfield (e) U-Pod BE at Bondad (f) U-Pod BF at the Sub Station 
(g) U-Pod BH at Shiprock and (h) U-Pod BI at Igniacio.  (i) Overlaid histograms of model residuals with respect to reference O3. 
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Figure 8:  Residuals of U-Pod O3 spanning of the deployment period, by (a) date (b) time of day and (c) temperature. 
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Figure 9:  Scatter plots showing the combined parameter space of (a) absolute humidity with temperature and (b) reference O3 
with temperature for each of the U-Pod sampling sites at BAO and the SJ Basin. 
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Figure 10:  Target diagrams demonstrating performance of a previously determined best-performing model across all new test 
datasets.  (a) CO2 and (b) O3 LM performance when only the primary gas sensor, temperature and humidity are inputs.  (c) CO2 
and (d) O3 ANN performance with inputs that were found to perform best at the GRET site in the spring of 2017 (Casey et al., 
2017).  Model input definitions: eltCO2 (ELT S300 CO2 sensor), e2vO3 (e2v MiCs-2611 sensor), temp (temperature), and absHum 5 
(absolute humidity). 
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Figure 11:  Target diagrams demonstrating performance of a previously determined best-performing model across all new test 
datasets (a) CO2 and (b) O3 ANN performance with inputs that were found to perform best at the GRET site in the spring of 2017 
(Casey et al., 2017).  Model input definitions:  eltCO2 (ELT S300 CO2 sensor), e2vCO (e2v MiCs-5525 sensor), e2vVOC (e2v MiCs-
5521 sensor), e2vO3 (e2v MiCs-2611 sensor), figCH4 (Figaro TGS 2600 sensor), figCxHy (Figaro TGS 2602 sensor), temp 5 
(temperature), and absHum (absolute humidity). 
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Figure 12:  Target diagrams for (a) CO2 and (b) O3 calibration model performance for the best performing model for each 
particular case when tested on data from a number of field deployments.  Model input definitions:  eltCO2 (ELT S300 CO2 
sensor), e2vCO (e2v MiCs-5525 sensor), e2vVOC (e2v MiCs-5521 sensor), e2vO3 (e2v MiCs-2611 sensor), figCH4 (Figaro TGS 
2600 sensor), figCxHy (Figaro TGS 2602 sensor), alphaCO (Alphasense CO-B4 sensor) temp (temperature), absHum (absolute 5 
humidity), rh (relative humidity), and time (absolute time).   

 

 
 


