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Abstract. The scarcity of ground-based observations, poor spatial and temporal resolution of satellite observations necessitate

the use of data generated from models to assess spatio-temporal variations of atmospheric CO2 concentrations in a near

continuous manner in a global and regional scale. Africa is one of the most data scarce region as satellite observation at

the equator is limited by cloud cover and there are very limited number of ground based measurements. As a result, use of

simulations from models are mandatory to fill this data gap. However, the first step before the use of data from models requires5

assessment of model skill in simulating limited existing observations reasonably well. Even though, the NOAA Carbon Tracker

model is evaluated using TCCON and satellite observations at a global level, its performance should be assessed at a regional

scale, specifically in a regions like Africa with a highly varying climatic responses and a growing number of local sources.

In this study, NOAA CT2016 XCO2 is compared with the GOSAT observation over Africa using five years data covering

the period from May 2009 to April 2014. In addition, NOAA CT16NRT17 XCO2 is compared with OCO-2 observation10

over Africa using two years data covering the period from January 2015 to December 2016. The analysis shows that the

XCO2 simulated from CT2016 is lower than GOSAT retrievals by 0.28 ppm whereas CT16NRT17 XCO2 is higher than

OCO-2 retrievals by 0.34 ppm on African landmass on average, which are within the mean XCO2 posterior errors of 0.91

and 0.55 ppm associated with the GOSAT and OCO-2 XCO2 retrievals respectively. The mean correlations of 0.83 and 0.60,

regional precisions of 2.30 and 2.57 ppm, and the relative accuracies of 1.05 and 1.21 ppm are found between the model and15

the two data sets implying the existence of reasonably good agreement between CT and the two satellites over Africa’s land

region given that very limited number of in-situ observations over the region is assimilated in the model. These differences,

however, exhibit spatial and seasonal scale variations. Moreover, the model shows some differences with the observations at

extreme ends of XCO2 distribution. For example, the quantile probability of detection ranges from 0.42 to 0.99 and quantile

critical success index ranges from 0.37 to 0.93 over the continent when the analysis includes data above the 90th and 5th20

percentiles respectively (see main text for definitions). This shows that the model disagrees with observations on 58% of

XCO2 with values higher than 90th percentile. This discrepancy increases to approximately 80% at 95th percentile indicating

the agreement between CT and the satellites deteriorates towards the high extreme ends of the XCO2 distribution. Spatially,

OCO-2 XCO2 are lower than that of CT16NRT17 by upto 3 ppm over some regions in North Africa (e.g., Egypt, Libya and

Mali ) whereas it exceeds CT16NRT17 XCO2 by 2 ppm over Equatorial Africa (10 0S−10 0N). CT2016 shows high spatial25

mean of seasonal mean RMSD of 1.91 ppm during DJF with respect to GOSAT while CT16NRT17 shows 1.75 ppm during
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MAM with respect to OCO-2. On the other hand, low RMSD of 1.00 and 1.07 ppm during SON in the model XCO2 with

respect to GOSAT and OCO-2 are determined respectively indicating better agreement during autumn. The model simulation

and satellite observations exhibit similar seasonal cycles of XCO2 with a small discrepancy over the Southern Africa and

during wet seasons over all regions.

1 Introduction5

An understanding of the regional contributions and trends of carbon dioxide (CO2) is critical to design mitigation strategies

aimed at stabilizing atmospheric greenhouse gases. The present-day concentration of atmospheric CO2 continues to rise.

Ongoing emissions of CO2 and other greenhouse gases will influence the global climate system during the next decades and

centuries. Approximately one-half of the CO2 emissions from human activities is accumulating in the Earth’s atmosphere,

whereas the remaining portion of emitted CO2 is absorbed by sink on land and in the ocean (Raupach et al., 2007).10

Several studies (e.g., Tsutsumi et al., 2009; Stocker, 2014; Allison, 2015) have shown that the column averaged dry air

mole fractions of CO2 (XCO2) has undergone rapid changes from pre-industrial period value of 280 ppm to 396 ppm as

recently as 2013. This change has been attributed to anthropogenic factors such as fossil fuel combustion, land use change,

biomass burning, emission from industries such as cement. Notably, this value exceeds the highest XCO2 level retrieved from

ice cores representing the past 800,000 years. This increasing trend has been persistent. For example according to the World15

Meteorological Organization (WMO) 2016 report, the average concentrations of CO2 hit 403.3 ppm, up from 400 ppm in 2015

surpassing an annual positive increasing rate of 1.99±0.43 ppmyr−1 (http://www.esrl.noaa. gov/gmd/ccgg/trends/global.html

Houghton, 2007). These positive trends have led to imbalance of 0.58± 0.15 Wm2 in energy budget between 2005 and

2010 at the top of the atmosphere (Hansen et al., 2011). To this end, changes in atmospheric temperature, hydrology, sea

ice, and sea levels are attributed to climate forcing agents dominated by CO2 (Santer et al., 2013; Stocker et al., 2013).20

However, understanding the climate response to anthropogenic forcing in a more traceable manner is still difficult due to a

major uncertainty in carbon-climate feedbacks (Friedlingstein et al., 2006). Part of this uncertainty is due to lack of sufficient

data on regional and global carbon cycle. This is compounded with inappropriate modelling practices to capture spatio-temporal

variability of carbon cycle. These problems can be solved through strengthening carbon monitoring networks and setting

up proper modelling. A transport model, with appropriate physical and mathematical formulations and sufficiently tuned by25

observations, can be used to understand the spatio-temporal nature of atmospheric CO2 source and sink as well its associated

drivers.

Towards this, a number of national and international efforts have been initiated in the recent past by different government

and non-government agencies across the globe. Among these efforts, ground-based observations of greenhouse gas using Total

Carbon Column Observing Network (TCCON) is a notable one since it provides accurate and high–frequency measurements30

of column-integrated CO2 mixing ratio. For example, it has been established that TCCON has a precision of 0.25% for

measurements taken under clear sky conditions (Wunch et al., 2011). However, the number of TCCON sites is limited and can

not establish accurate CO2 amount and flux on subcontinental or regional scale. Moreover, some studies shows that the large
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uncertainty is amplified due to uneven global distribution of TCCON sites (Gurney et al., 2002; Hungershoefer et al., 2010).

In addition, none of these ground based observation networks are found in Africa.

On the other hand, the CO2 concentration retrieved from the satellite-based CO2 absorption spectra have the advantages of

unified, long-term, and the global coverage observation as compared to ground-based measurements. It has been established

from theoretical studies that accurate and precise satellite derived atmospheric CO2 can appreciably minimize the uncertain-5

ties in estimated CO2 surface flux (Rayner and O’Brien, 2001; Chevallier, 2007). Other studies have revealed that significant

improvement in estimation of weekly and monthly CO2 fluxes can be achieved subject to CO2 retrieval error of less than

4 ppm from satellite and modelling scheme whereby CO2 concentration is an independent parameter of carbon cycle model

(Houweling et al., 2004; Hungershoefer et al., 2010). However, XCO2 shows temporal variability on different time scales:

diurnal, synoptic, seasonal, inter-annual, and long term (Olsen and Randerson, 2004; Keppel-Aleks et al., 2011). More re-10

cent missions such as the Greenhouse gases Observing SATellite (GOSAT) (Hamazaki et al., 2005), the Orbiting Carbon

Observatory-2 (OCO-2) (Boesch et al., 2011) and planned missions such as the Active Sensing of CO2 Emissions over Nights,

Days, and Seasons (ASCENDS) (Dobbs et al., 2008) have been and are being developed specifically to resolve surface sources

and sinks of CO2 and provide information on these different scales of temporal variability. For example, GOSAT observations

started in 2009 and provide XCO2 based on spectra in the Short-Wavelength InfraRed (SWIR) region with a standard devia-15

tion of about 2 ppm with respect to ground-based and in-situ air-borne observations (Yokota et al., 2009; NIES GOSAT Project,

2012).

Moreover, atmospheric transport model, such as the NOAA Carbon Tracker (CT) is an integrated modelling system that

assimilate CO2 from other observations in order to compliment satellite observations in understanding CO2 surface sources

and sinks as well as its spatio-temporal variabilities. However, both satellite and model data should be validated against other20

independent satellite observations and/or in-situ observations before using them to answer scientific questions. As a result,

a number of validation and intercomparison have been conducted in previous studies. For example, Kulawik et al. (2016)

found root mean square deviation of 1.7, and 0.9 ppm in GOSAT and CT2013b XCO2 relative to TCCON respectively. Other

authors have undertaken validation exercises and found bias of −8.85± 4.75 ppm in NIES XCO2 with respect to TCCON

(Morino et al., 2010); root mean square deviation of −1.48 and 2.09 ppm in NIES Level 2 V02.xx XCO2 (Yoshida et al.,25

2013); and bias of −0.68±2.56 ppm in NIES level 2 V02.xx XCO2 with respect to aircraft observations (Inoue et al., 2013).

Moreover, strong consistency between the ACOS and NIES XCO2 monthly averages time series over different regions was

reported. For example, Deng et al. (2016a) found the greatest mean difference (1.43± 0.60 ppm) over China and the least

over Brazil (−0.03± 0.64 ppm) in the two time series of monthly means. Globally, ACOS XCO2 is higher than NIES by

about 1 ppm and has smaller bias than NIES data. Moreover, comparison of NIES Level 2 V02.xx XCO2 with XCO2 from30

Goddard Earth Observing System-Chemistry model(GEOS-5 v09-01-01) simulations revealed that the satellite XCO2 was

lower than the model by 2 ppm on average globally (Lei et al., 2014). Liang et al. (2017) compared XCO2 from OCO-2

and GOSAT with that of TCCON and found mean measurement accuracy of 0.27 and -0.41 ppm with RMSD of 1.56 and

2.22 ppm respectively. However, they found the measurement accuracy of GOSAT decreased to -0.62 ppm with RMSD of 2.3

ppm for period from 2014 to 2016. Liang et al. (2017) also indicates GOSAT shows a larger seasonal variability in describing35
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amplitudes than OCO-2, with greater amplitude in the northern hemisphere than the southern hemisphere. Lei et al. (2014) also

showed regional difference of XCO2 between the ACOS and NIES datasets. For example, a larger regional difference from

0.6 to 5.6 ppm was obtained over China land region, while it is from 1.6 to 3.7 ppm over global land region and from 1.4 to 2.7

ppm over US land region. These findings suggest that it is important to assess how satellite and model XCO2 compare with

each other over other regions.5

Therefore, this paper aims to assess the performance of Carbon Tracker model in simulating observed XCO2 from GOSAT

and OCO-2 satellites over Africa using various statistical metrics and identify weakness and strengths of the respective data

sets. Moreover, the skill of the model in capturing the amplitudes and phases of observed seasonal cycles over different parts of

the continent is evaluated and the consistence of the modelled spatio-temporal variability with the known seasonal climatology

of the regions that determines carbon source and sink levels is assessed.10

2 Data and Methodology

2.1 Carbon Tracker Model and Data

Carbon Tracker is an annually updated analysis of atmospheric carbon dioxide distributions and their surface fluxes (Peters

et al., 2007). It is a data assimilation system that combines observed carbon dioxide concentrations from 81 sites around the

world with model predictions of what concentrations would be based on a preliminary set of assumptions (“the first guess”)15

about sources and sinks for carbon dioxide. Carbon Tracker compares the model predictions with reality and then systematically

tweaks and evaluates the preliminary assumptions until it finds the combination that best matches the real world data. It has

modules for atmospheric transport of carbon dioxide via weather systems, photosynthesis and respiration, air-sea exchange,

fossil fuel combustion and fires. Transport of atmospheric CO2 is simulated by using the global two-way nested transport

model (TM5). TM5 is an off line atmospheric tracer transport model (Krol et al., 2005) driven by meteorology from the20

European Centre for Medium-Range Weather Forecasts (ECMWF ) operational forecast model and from the ERA Interim

reanalysis (Dee et al., 2011) to propagate surface emissions. TM5 is based on a global 30× 20 and a 10× 10 spatial grids over

North America.

The data from CT (version:CT2015) (http://carbontracker.noaa.gov; Peters et al. (2007) is used to extend aircraft profiles

from the stratosphere to the top of the atmosphere (Inoue et al., 2013; Frankenberg et al., 2016) and to quantify co-location25

error (Kulawik et al., 2016). The older data versions have been used and also compared with different data sets over other parts

of the globe in previous studies (Peters et al., 2007; Nayak et al., 2014; Kulawik et al., 2016; Krishnapriya et al., 2017). Most of

the studies confirm that CT XCO2 captures observations reasonably well. In this study we use Carbon Tracker release version

CT2016 , here after (CT2016) and near real time version (CT-NRT.v2017). Both versions of NOAA CT provides 3 hourly CO2

mole-fractions data for global atmosphere at 25 pressure levels for a period covering 2000 to 2016. The data can be accessed30

freely at the public domain (ftp://aftp.cmdl.noaa.gov/products/carbontracker).
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2.2 GOSAT measurements

GOSAT is the world’s first spacecraft dedicated solely to measure the concentrations of carbon dioxide and methane, the two

major greenhouse gases, from space. The spacecraft was launched successfully on January 23, 2009, and has been operating

since then. GOSAT records reflected sunlight using three near-infrared band sensors. The field of view at nadir allows a

circular footprint of about 10.5 km diameter (Kuze et al., 2009; Yokota et al., 2009; Crisp et al., 2012). GOSAT consists of5

two instruments. The sensors for the two instruments can be broadly labelled as thermal, near infrared and imager. The first

two sensors are used as part of Fourier Transform Spectrometer for carbon monitoring which is referred to as TANSO-FTS

while the imager for cloud and aerosol observations is referred to as TANSO-CAI. The details on spectral coverage, resolution,

field of view, and different products of TANSO-FTS in the three SWIR bands can be found in a number of previous studies

(Kuze et al., 2009; Saitoh et al., 2009; Yokota et al., 2009, 2011; Crisp et al., 2012; Nayak et al., 2014; Deng et al., 2016a,10

and references therein). In this study bias corrected ACOS B3.5 Lite XCO2 from GOSAT Level 2 (L2) retrieval based on the

SWIR spectra of FTS observations and made available by Atmospheric CO2 Observations from Space (ACOS) of NASA is

used. ACOS B3.5 Lite XCO2 has lower bias and better consistency than NIES GOSAT SWIR L2 CO2 globally (Deng et al.,

2016a). Therefore, our choice of the ACOS B3.5 Lite, here after (GOSAT) XCO2 is motivated by these differences.

2.3 OCO-2 measurements15

OCO-2, the second world’s full-time dedicatedCO2 measurement satellite, was successfully launched by National Aeronautics

and Space Administration (NASA) on 2 July 2014. OCO-2 measures atmospheric carbon dioxide with the accuracy, resolution,

and coverage required to detect CO2 source and sink on global and regional scale. OCO-2 has three-band spectrometer, which

measures reflected sunlight in three separate bands. The O2 A-band measures molecular absorption of oxygen from reflected

sunlight near 0.76 µm while the CO2 bands are located near 1.61 µm and 2.06 µm (Liang et al., 2017). In this study, bias20

corrected OCO-2 XCO2 V7 lite level 2 covering the period from January 2015 to December 2016, here after referred to as

OCO-2XCO2 are used. Due to scarcity of data, CT values from the two releases CT2016 for the year 2015 and CT-NRT.v2017

for the year 2016, here after (CT16NRT17) are employed in this study. The OCO-2 project team at Jet Propulsion Laboratory,

California Institute of Technology, produced the OCO-2 XCO2 data used in this study. The data can be accessed from NASA

Goddard Earth Science Data and Information Service Center.25

2.4 Methods

The GOSAT and CT model XCO2 time series used in this investigation spans five years, ranging from May 2009 to April

2014. Atmospheric CO2 concentrations of NOAA Carbon-Tracker have a global coverage with a 30× 20 Longitude/Latitude

resolution which covers 428 grid points in our study area. Satellite observations, however, is different from model assimilation,

and have gaps because of various reasons (e.g., cloud and the observational mode of satellite). As a result, there is no one to one30

spatio-temporal match between the two data sets. For example, CO2 products from the two dataset are not directly comparable

since CT is a 3 hourly smooth and regular grid dataset whereas GOSAT XCO2 is irregularly distributed in space and time.
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Thus, the CT CO2 is extracted on the time and location of GOSAT XCO2 data. Using the grid point of CT as a reference bin,

the corresponding GOSAT XCO2 found with in a rectangle of 1.50× 1.50 with centre at the reference bin and with temporal

mismatch of a maximum of 3 hrs is extracted. Moreover, CT has higher vertical resolutions than GOSAT. As a result, the two

can not be directly compared. It is customary to smooth the high resolution data (in this case CT) with averaging kernels and a

priori profiles of the low resolution satellite measurements (in this case GOSAT). In addition, due to a difference between CT5

and GOSAT on the number vertical levels, CT CO2 is interpolated to vertical levels of GOSAT. The CT XCO2 (XCOmodel
2 )

used in the comparison is computed from the interpolated CT CO2 (COinterp
2 ), pressure weighting function (w), XCO2 a

priori (XCO2a), column averaging kernel of the satellites retrievals (A) and a priori profile (CO2a) of the retrievals as per

procedure discussed by Rodgers and Connor (2003); Connor et al. (2008); O’Dell et al. (2012); Chevallier (2015); Jing et al.

(2018) and given as:10

XCOmodel
2 =XCO2a +

∑
i

wiAi ∗ (COinterp
2 −CO2a)i (1)

where i is the index of the satellite retrieval vertical level.

Correlation coefficients (R), bias and root mean square deviation (RMSD) are used to assess the level of agreement between

the two data sets. The mean bias determines the average deviations in XCO2 between Carbon Tracker simulation and satellite

observations. In this work the bias at the jth grid point is computed as:15

Biasj =
1

n

n∑
i=1

(Si−Oi) (2)

where Si and Oi are CT and GOSAT XCO2 values over the jth pixel at the ith time respectively. To quantify the extent to

which XCO2 of CT and GOSAT agree, the pattern correlations at the jth grid point are computed as:

Rj =

1

n

∑n
i=1(Si− S̄)(Oi− Ō)√

1

n

∑n
i=1(Si− S̄)2

√
1

n

∑n
i=1(Oi− Ō)2

(3)

where S̄ and Ō are the mean values of Si and Oi over the jth pixel. The root mean square deviation (RMSD) which shows the20

standard error of the model with respect the observation at the jth grid point is computed as:

RMSDj =

√√√√ 1

n

n∑
i=1

((Si− S̄)− (Oi− Ō))2 (4)

This study also applies categorical contingency table for evaluation of performance of CT2016 in capturing the different parts

of observed XCO2 distribution. XCO2 is a continuous physical quantity for which categorical metrics are not applicable.

In such cases, scatter plots are used as a means of visual inspection of the model skill with no quantitative information in25

terms of spatial distribution and magnitude of the scatter apart from a single standard deviation. Recently, extended categorical

contingency table is proposed to overcome this drawback and assess whether a model simulation/satellite retrieval can capture

or fail to capture observed physical quantity exceeding a specified quantile threshold. This procedure effectively reduces the
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continuous physical quantity with two outcomes i.e., yes (capture) or no (fail). In this study, the skill of CT in correctly

simulating whether the observedXCO2 values are above a selected threshold will be determined using the categorical metrics.

The categorical metrics includes Quantile Bias (QBias), Quantile Probability of Detection (QPOD), Quantile False Alarm Ratio

(QFAR), Quantile Critical Success Index (QCSI) also known as the Threat Score and quantile Categorical miss (QMISS). The

QBias is defined as the ratio of number of observations (satellite data, OBS) to simulations (Carbon Tracker, SIM) above a5

certain threshold. Mathematically, QPOD, QFAR, QMISS and QCSI are defined as

QPOD =
NoHit

NoMiss+NoHit
(5)

QMISS =
NoMiss

NoMiss+NoHit
(6)

10

QFAR=
NoFalse

NoHit+NoFalse
(7)

and

QCSI =
NoHit

(NoHit+NoFalse+NoMiss)
(8)

where NoHit=
∑n

i (SIMi|(SIMi > t&OBSi > t)) is the number of data detected by both simulation (SIM ) and ob-

servation (OBS) above a threshold t, NoMiss=
∑n

i (OBSi|(SIMi ≤ t&OBSi > t)) is the number of data detected by15

observation but missed by simulation and NoFalse=
∑n

i (SIMi|(SIMi > t&OBSi ≤ t)) refers to number of data available

only from model above the threshold t and n is the number of exceedances.

QPOD quantifies the fraction of reference observations (in this case GOSAT observations) detected correctly by the simula-

tion above a selected threshold. Meaningful values of QPOD ranges from 0 (zero agreement) to 1 (perfect agreement); QFAR

identifies the fraction of events captured by simulation but not available in reference observations above the threshold. Sound20

values of QFAR is bounded by 0 to 1 with 0 implying perfect score. QCSI combines different aspects of the QPOD and QFAR

to characterize the overall performance of the simulation in capturing observation. The QCSI is constrained to have values

between 0 (zero agreement) to 1 (perfect agreement) by definition. QMISS quantifies events identified by reference observa-

tion but missed by the simulation. Therefore, by definition, quantile categorical miss ranges from 0 (perfect score) to 1 (zero

agreement). More details about these categorical statistical metrics can be found in works by other authors (e.g., AghaKouchak25

et al., 2011; Wilks, 2011; AghaKouchak and Mehran, 2013, and references therein). Using similar coincidence criteria and

statistical methods, CT16NRT17 and OCO-2 XCO2 are also compared.
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3 Results and discussions

3.1 Comparison of XCO2 mean climatology from NOAA CT2016 and GOSAT

The mole fraction ofCO2 obtained from the NOAA Carbon Tracker model and GOSAT observation was compared. The results

are based on 426 grid pints uniformly distributed to cover the whole Africa’s land region. The analysis was based on five years

daily data starting from May 2009 to April 2014. The XCO2 comparison was done only when there are more than ten XCO25

retrievals that fulfils the spatio-temporal matching criteria defined in Section 2.4.

Fig. 1 shows temporal average of CT2016 (Fig. 1a) and GOSAT (Fig. 1b) XCO2 distribution. The major common spatial

feature in the mean map of XCO2 from GOSAT and CT2016 reanalysis is dipole structure characterized by high XCO2

northward of equator and low XCO2 southward of equator with the exception of Congo basin which is characterized by

spatially anomalous high XCO2. The Southern Africa region is characterized by weak anthropogenic CO2 emission and high10

CO2 uptake by the vegetation. This contributed to the observed dipole distribution. Another important pattern is anomalous

peak over annual average location of Inter-tropical convergence zone (ITCZ) (Fig. 1b) which appears to fade over Eastern

Africa. This is in agreement with fact that carbon stocks and net primary production per unit land area are higher over Equatorial

Africa and decrease towards northward and southward of the equator over arid environments (Williams et al., 2007). However,

Fig. 1a shows that CT2016 has some limitations in simulating this spatial pattern in comparison to GOSAT.15

Fig. 1c shows mean difference (CT2016–GOSAT) XCO2 which ranges from -4 to 2 ppm. The highest difference between

the CT2016 and GOSAT XCO2 (as high as -4 ppm) is observed over Equatorial Africa, western Ethiopia and South Sudan

which are also known for near-year-round rainfall and relatively dense vegetation. The regions are known for their rain forest.

The likely explanation could be CO2 flux from respiration (photosynthesis) of forest in the region which is underestimated

(overestimated) in the reanalysis. However, the mean (over five years) may also be slightly positively biased due to fewer20

observations as shown in Fig.1d. The strategy and methods for cloud screening in GOSAT retrievals could lead to smaller

number of observation in the equatorial region (Crisp et al., 2012; O’Dell et al., 2012; Yoshida et al., 2013; Chevallier, 2015;

Deng et al., 2016b). The number of datasets used for comparison range from 14 to 4288 from grid to grid with a spatial mean of

1109 data over the continent. Fig. 1c also shows CT2016 simulations are overall lower than the values of GOSAT observation

over most regions with an exception in Gabon, Congo, southern Kenya and southern Tanzania where CT2016 simulations25

are higher than GOSAT observation by more than 1 ppm. The spatial distribution of global atmospheric CO2 is not uniform

because of the irregularly distributed sources of CO2 emissions, such as large power plant and forest fire, and biospherical

assimilation as clearly noted above.

Fig. 2a shows the histograms of differences of CT2016 and GOSAT XCO2. The mean difference between CT2016 and

GOSAT means is about -0.27 ppm with the standard deviation of 0.98 ppm indicating good regional consistency and low30

potential outliers. Moreover, a negative mean of the difference implies that XCO2 simulated from CT2016 is lower than that

of GOSAT retrievals over Africa land mass.

Because of selection criteria which permits a difference of 3 degree long and wide, the two datasets are not exactly at the

same point. The impact of the relative distance between them should be assessed before performing any statistical comparison.
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Figure 1. Distribution of five-years averages of CT2016 (a) and GOSAT (b) XCO2 and their difference (c) gridded in 30 × 20 bins over

Africa’s Land mass; and the total number of datasets at each grid (d).

Fig. 2b depicted color-coded scatter plot of CT2016 model simulation verses GOSAT to determine if the discrepancy between

the data sets arise from spatial mismatch. The color code indicates the relative distance between the model and observation

datasets. For these datasets the 50th percentile has a relative distance of 1.190 which means 50% of the data has a relative

distance shorter than 1.190. The maximum relative distance between them is 2.120. However, there is no indication that this

has been the case since the scatter is not a function of relative distance between the data sets. For example, data points with5

blue color with lowest location difference is scattered everywhere instead of along the 1:1 line. Furthermore, we found the bias

of -0.26 ppm, correlation coefficient of 0.86 and RMSD of 2.19 ppm for datasets which has a relative distance shorter than

1.190. On the other hand, the bias , correlation coefficient and RMSD are -0.33 ppm, 0.86 and 2.22 ppm for those which are

longer than 1.190. The above statistics was performed merely to test the influence of location mismatch.

Fig. 3 shows a statistical comparison of XCO2 from the CT2016 and GOSAT over Africa. The number of data used in this10

comparison are shown in Fig. 1d. As it is depicted in Fig. 3a, the bias ranges from -4 to 2 ppm with a mean bias of -0.28 ppm

(see Table 1). A larger negative bias of about -2 ppm was found along the annual mean position of ITCZ. The correlation varies

from 0.4 over some isolated pockets in Congo, Tanzania, Mozambique, Uganda and western Ethiopia to 0.9 over northern half

of Africa northward of 130N , Eastern Ethiopia and Kalahari Desert. Fig. 3b depicts correlation coefficient between GOSAT

and Carbon Tracker XCO2. The region with poor correlation also exhibits high RMSD as shown in Fig. 3c. To understand15

whether this discrepancy originates from model weakness alone, we have looked at the GOSAT posteriori estimate of XCO2

error, which are high over the same regions with high bias and RMSD between GOSAT and Carbon Tracker XCO2 (Fig. 3d).
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Figure 2. Histogram of the difference of CT2016 relative to GOSAT (left panel) and color code scatter diagram of XCO2 concentration as

derived from CT2016 and GOSAT (right panel). Color indicates the relative distance as shown in colorbar between datasets.

GOSAT’s posteriori estimate of XCO2 error is a combination of instrument noise, smoothing error and interference errors

(Connor et al., 2008; O’Dell et al., 2012). This posteriori estimate of XCO2 error does not include forward model error which

may lead to underestimation of the true error of satellite XCO2 by a factor of two (O’Dell et al., 2012). Therefore, part of the

discrepancy is clearly linked to satellite own uncertainty, which might have been amplified due to small number of data points

used to calculate the mean error of GOSAT XCO2 measurements (see Fig. 1d). In general, the two data sets are characterized5

by high spatial mean correlation of 0.83, a global offset of -0.28 ppm, which is the average bias, a regional precision of 2.30

ppm, and a relative accuracy of 1.05 ppm as depicted in Table 1.

Table 1. Summary of statistical relation between CT2016 and GOSAT observation. The statistical tools shown are the mean correlation

coefficient (R), the spatial average of bias (Bias), the spatial average root mean square deviation (RMSD), the standard deviation in bias (std

of Bias), GOSAT posteriori estimate of XCO2 error (GOSAT err), the standard deviation in CT2016 XCO2 (CT2016 std) and the standard

deviation in GOSAT XCO2 (GOSAT std). The number of data used in the statistics is 472,821 over 426 pixels covering the study period;

distribution at each grid point is shown in Fig. 1d. Negative bias indicates that CT2016 XCO2 is lower than GOSAT XCO2 values.

Statistical tool R Bias (ppm) RMSD (ppm) std of Bias (ppm) GOSAT err (ppm) CT2016 std (ppm) GOSAT std(ppm)

Values 0.83 -0.28 2.30 1.05 0.91 0.90 1.55
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Figure 3. Spatial patterns of bias (a), correlation (b), RMSD (c) of the two data sets, and mean posteriori estimate of XCO2 error from

GOSAT (d).

3.2 Categorical comparison of XCO2 from NOAA CT and GOSAT

Following the methods described in AghaKouchak et al. (2011), QBias, QPOD, QCSI, QMISS and QFAR are determined from

the coincident XCO2 data to assess how Carbon Tracker model and satellite observations perform with respect each other in

capturing different parts of XCO2 distribution. It is worth noting that these categorical metrics are used to evaluate the level of

agreement between CT2016 and GOSAT XCO2 in certain part of XCO2 distribution (e.g., above a given quantile threshold).5

In this way,XCO2 distribution is effectively rendered to be dichotomous variable for which we can use the categorical metrics.

Fig. 4 displays values for QBias, QPOD, QCSI, QMISS and QFAR for distribution exceeding 5% (first row), 75% (second

row), 90% (third row) and 95% (fourth row) quantiles. We filter out pixels in which the total number of observations are less

than 10 to avoid unreliable statistics. The thresholds are set based on the quantiles of the GOSAT observation. QPOD and

QCSI decrease at higher quantiles. In contrast, QFAR and QMISS increase at higher quantiles. Specially the decrease in QCSI10

is significant. It ranges from 0.8 to 1.0 at 5th percentile ( i.e., QCSI for values exceeding the 5th percentile) and smaller than

0.4 at 90th percentile.

On the other hand, the QMISS which is below 0.07 at threshold of 5th percentile shows a value above 0.58 at threshold

value of the 90th percentile for most of the regions (Fig. 4 ). This indicates that the agreement between CT2016 and GOSAT

XCO2 deteriorates as the comparison data range includes only higher extremes of the XCO2 distribution. For example, on15

average over the continent at 95th percentile the QFAR is lower than 0.24 indicating that 24% (see also Table 2) of datasets

11



Figure 4. Distribution of categorical metrics over the study area for quantiles exceeding 5% (first row), 75% (second row), 90% (third row)

and 95% (fourth row)
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Figure 5. Summary of categorical metrics (QBias, QPOD, QCSI, QFAR and QMISS) averaged over Africa’s land region for 5, 10, 25, 50,

75, 90 and 95 percentile.

simulated by the model to be above 95th percentile threshold were not actually in the observation. This indicates that a notable

difference between CT2016 and GOSAT XCO2 exists at the tails of the distribution. The information from these statistics are

crucial for modelers and/or scientists working on satellite remote sensing to improve the model and/or the retrieval strategy.

For example, in satellite retrievals, smoothing constraint or regularization (e.g., Tikhonov first or second order, the so called

shape constraint) heavily penalizes the portion of the profile at low and high extremes thereby restricting the possibility of5

observing profiles unusually different from the a priori profile. It is worth-noting that the a priori profile is usually constructed

from climatology of CO2 profile. In some case, only a handful of a priori profile represents a region (e.g., tropical model

atmosphere, mid-latitude model atmosphere, polar model atmosphere) with wide range of variability. This could create huge

discrepancy between the model and satellite observations in the tail region of the XCO2 distribution. The observed difference

between CT and GOSAT may well be partly attributed to such factors. However, when the data covers lower extremes, QPOD10

and QCSI have substantially improved indicating the existence of better agreement between CT2016 and GOSAT at the lower

end of the XCO2 distribution.

Fig. 4a shows the QPOD and QCSI are above 0.93 for lower quantiles which indicates that the model simulates above 93%

of the observations (see also Table 2). However, at higher quantiles the change in contingency metrics show a clear deviation

between the model simulation and observation. Figs. 4b show the scarce datasets in Equatorial Africa which, to certain extent,15

is the main reason for large biases observed around the Equator in Fig. 3a and also for the corresponding posteriori retrieval

error in GOSAT XCO2 in Fig. 3d. Note that individual posteriori retrieval errors are smoothed out during averaging over large

number of coincident observations. Fig. 4 shows that QBias is 1 at lower quantiles and decreases with increasing quantiles

implying that the number of CT2016 data that matches the GOSAT observation decreases with increasing threshold. Fig. 4b
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Table 2. Summary of extended contingency metrics for the relation between CT2016 model simulation and GOSAT observation.

Quantiles QBias QPOD QCSI QMISS QFAR threshold (ppm) Number of grid points

Q5 1.064 0.993 0.93 0.007 0.064 384.32 424

Q10 1.073 0.976 0.896 0.024 0.084 385.73 421

Q25 1.016 0.902 0.816 0.098 0.107 388.17 419

Q50 0.936 0.801 0.711 0.199 0.128 391.27 405

Q75 0.852 0.64 0.548 0.36 0.198 394.52 386

Q90 0.551 0.418 0.361 0.582 0.202 397.31 284

Q95 0.351 0.259 0.231 0.741 0.239 398.98 225

shows a spatial mean bias of 0.85 (see also Table 2). Fig. 4b also depicts that QCSI is lower than 0.5 and the QMISS is above

0.3 over most regions of Southern Africa. However, QCSI exceeds 0.6 over regions northward of 10oN . The results indicates

that, the agreement between CT2016 and GOSAT XCO2 shows a regional disparity which is better over Northern Africa than

the Southern Africa. In general, the discrepancy between CT2016 and GOSAT XCO2 is significant over the whole continent

towards the extreme high ends of the XCO2 distribution.5

In addition, QBias, QPOD, QCSI, QMISS and QFAR are calculated for all data, i.e., data that includes values higher than 5,

10, 25, 50, 75, 90 and 95 percentiles and averaged over the whole African land mass, as shown in Fig. 5. There is one major

conclusion that can be drawn from Fig. 5, i.e., the QFAR and QMISS increase with increase in the quantile thresholds while

QBias, QPOD and QCSI decrease.

3.3 Comparison of monthly average time series of NOAA CT2016 and GOSAT XCO210

Africa is one of the largest continents covering both northern and southern hemispheres. As a result, the continent is under the

influence of semi-permanent high pressure cells which led to the Sahara Desert in the North and the Kalahari in the South.

The equatorial low pressure cell which allows formation of the seasonally migrating inter-tropical convergence zone is part

of the major large scale atmospheric circulation systems. These large scale pressure systems, Oceanic circulations and their

interaction with the atmosphere coupled with diverse topographies of the region allow for the formation of different climates15

(e.g., equatorial, tropical wet, tropical dry, monsoon, semi desert (semi arid), desert (hyper arid), subtropical high climates).

Geographically, the Sahel, a narrow steppe, is located just south of Sahara; the central part of the continent constitutes the

largest rainforest next to Amazon whereas most southern areas contain savana plains. The continent get rainfall from migrating

ITCZ, west Africa monsoon, intrusion of mid-latitude frontal systems, travelling low pressure systems (Mitchell, 2001, and

references therein). Since CO2 fluxes exhibit seasonal variability and Africa experiences different seasons as noted above, it is20

important to divide Africa into three major regions, namely North Africa (10 to 35 0N ), Equatorial Africa (10 0S to 10 0N ),

and Southern Africa (35 to 10 0S) and conduct the comparison of the two XCO2 datasets.

Figs. 6 - 8 show time series of XCO2 monthly means covering the period from May 2009 to April 2014 for both CT2016

and GOSAT over North Africa, Equatorial Africa and Southern Africa respectively. Figs. 6a - 8a depict the existence of an
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Table 3. Summary of statistical relation between CT2016 and GOSAT observation. The statistical analysis were made using monthly average

of time series of 60 months (i.e., months from May 2009 to April 2014).

Statistics R Bias (ppm) RMSD (ppm) number of data

Africa 0.997 -0.254 0.265 698505

North Africa 0.996 -0.361 0.345 424070

Equatorial Africa 0.977 -0.172 0.708 101660

Southern Africa 0.964 0.006 0.841 172775
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Figure 6. The monthly mean time series of CT2016 and GOSAT from May 2009 to April 2014 averaged over North Africa (a), bias associated

to the monthly means (b), the histogram of difference (c) and the annual growth rate obtained by subtracting the mean from the mean of the

next year (d). The error bars in (a) shows the GOSAT a posteriori XCO2 uncertainty.

overall very good agreement for the monthly averages with respect to amplitudes and phase of XCO2. However, XCO2 from

the two data sets slightly disagree in capturing seasonal cycle over Southern Africa.

Fig. 6a shows thatXCO2 concentration reaches maximum (394.79 ppm) for CT2016 and (395.35 ppm) for GOSAT in April

and minimum in September (388.66 ppm) for CT2016 and (388.75 ppm) for GOSAT over North Africa. Consistent with this

evidence, other authors (e.g., Zhou et al., 2008) have indicated presence of a strong absorption of CO2 by vegetation during5

August in the northern hemisphere. This is also likely cause for minimum XCO2 observed during September over North

Africa. The largest monthly mean difference of -0.90 ppm between the two datasets is observed in June, while the smallest
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Figure 7. The same as Fig. 6 but over Equatorial Africa.

value of -0.04 ppm is found in August (see also Table 4). In addition, both datasets show XCO2 increases from October to

April and decreases from May to September. Moreover, the two dataset shows a monthly mean regional mean bias of -0.36

ppm with a correlation of 1.0 and root mean square deviation of 0.36 ppm (see Table 3).

Fig. 7a shows XCO2 concentration reaches maximum (392.99 ppm) for CT2016 in March and (393.53 ppm) for GOSAT in

January while minimum (389.56 ppm for CT2016 and 389.32 ppm for GOSAT) in October over Equatorial Africa. The largest5

monthly mean difference of -1.34 ppm and the smallest of -0.05 ppm between the two datasets observed in December in April

respectively (Table 4). Moreover, both datasets show that XCO2 increases from October to March while it decreases from

June to October. This similarity in the seasonal variability of the two datasets shows that they are in good agreement in terms

of amplitude and phase. In addition, the two data sets show a monthly average regional average bias of -0.17 ppm, correlation

of 0.98 and a small root mean square deviation 0.71 ppm over Equatorial Africa (see Table 3). Fig. 8a shows maximum XCO210

concentration in April (391.04 ppm) for CT2016 and in October (391.28 ppm) for GOSAT, while minimum in May (389.30

ppm) for CT2016 and ( 388.46 ppm) for GOSAT over Southern Africa. The largest monthly mean difference of 1.53 ppm and

0.03 ppm between the two datasets is observed in April and in July (Table 4) respectively. Both datasets show concentration

of CO2 increases from May to July while it decreases from October to November. However, the XCO2 from CT2016 shows

a gradual increasing trend from January to April. Conversely, GOSAT XCO2 shows a decreasing trend. This is most likely15
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Figure 8. The same as Fig. 6 but over Southern Africa.

CT2016 simulation respond to the growing size of sinks following the rainy season. Moreover, the two data sets shows a

monthly mean regional mean bias of 0.07 ppm, correlation of 0.97 and RMSD of 0.87 ppm over southern Africa (see Table 3).

Figs. 6b - 8b show regional averaged bias in the monthly mean XCO2 time series between CT2016 and GOSAT covering

the period of May 2009 to April 2014. Fig. 6b shows the presence of seasonally varying negative bias over North Africa. A

high (<-0.5 ppm) negative bias in dry seasons (April to June) and low (>=-0.1 ppm) negative bias in wet seasons (August to5

September) are observed. Moreover, the strength of bias increases from February to June. Conversely, the bias decreases from

June to September. Similarly, Figs. 7b and 8b show seasonally fluctuating bias over Equatorial and Southern Africa regions.

For example, Fig. 8b shows a positive bias from February to July and negative bias from August to December over Southern

Africa.

Figs. 6c - 8c show the histogram of difference. The mean difference between CT2016 simulation and GOSAT observation of10

XCO2 is -0.36 ppm with a standard deviation of 0.35 ppm over North Africa (see Fig. 6c); Fig. 7c presents a mean difference

of -0.17 ppm with standard deviation of 0.71 ppm over Equatorial Africa; and Fig. 8c reveals a mean difference of 0.01 ppm

and a standard deviation of 0.85 ppm which indicate that XCO2 from CT2016 was slightly higher than that of GOSAT over

Southern Africa on average. In addition, the low standard deviation of monthly mean difference over North Africa typically

indicates good regional consistency between CT2016 and GOSAT. This is mainly because Northern Africa is dominated by15

the Sahara desert which is known for its weak source/sink of CO2. However, the spatial mean of monthly mean bias is slightly
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Table 4. Five years monthly averaged XCO2 concentration in ppm obtained from CT2016 (CT) and GOSAT (GO) and their difference

CT −GO (D) in ppm over Africa (A), North Africa (NA), Equatorial Africa(EA) and Southern Africa (SA).

Month A CT A GO A D NA CT NA GO NA D EA CT EA GO EA D SA CT SA GO SA D

January 391.81 392.17 -0.36 392.43 392.61 -0.18 392.22 393.53 -1.31 390.28 390.49 -0.21

February 392.48 392.58 -0.1 393.27 393.5 -0.23 392.72 393.21 -0.49 390.52 390.06 0.46

March 393.25 393.28 -0.03 394.02 394.29 -0.27 392.99 393.19 -0.2 390.82 389.81 1.01

April 393.81 393.91 -0.1 394.79 395.35 -0.56 392.87 392.92 -0.05 391.04 389.51 1.53

May 391.65 391.85 -0.21 392.92 393.73 -0.81 390.47 389.93 0.54 389.3 388.46 0.84

June 391.49 391.94 -0.45 392.43 393.33 -0.9 391.12 390.89 0.23 389.95 389.85 0.11

July 390.92 391.1 -0.18 391.09 391.5 -0.41 391.44 391.03 0.41 390.43 390.4 0.03

August 389.89 389.96 -0.07 389.4 389.44 -0.04 390.92 390.72 0.21 390.37 390.61 -0.25

September 389.26 389.4 -0.14 388.65 388.75 -0.1 390.02 389.67 0.35 390.39 391.01 -0.61

October 389.19 389.71 -0.51 388.85 389.26 -0.41 389.56 389.32 0.24 389.95 391.28 -1.32

November 389.97 390.43 -0.46 390.06 390.32 -0.26 389.86 390.52 -0.66 389.8 390.76 -0.96

December 391.09 391.53 -0.45 391.42 391.6 -0.18 391.23 392.57 -1.34 389.98 390.52 -0.54

higher (-0.36 ppm) over North Africa than over Equatorial Africa (-0.17 ppm ) and Southern Africa (0.01 ppm). This is likely

due to the presence of strong local source from emissions and long range transport from the Northern Hemisphere as reported

in other studies (Williams et al., 2007; Carré et al., 2010).

Figs. 6d - 8d display annual growth rate of XCO2 which ranges from 1.5 to 2.7 ppm yr−1. Moreover, the two datasets

are consistent in determining the annual growth rate. The results are found in good agreement with the observed variability in5

the globally annual growth rate from surface measurements (http://www.esrl.noaa.gov/ gmd/ccgg/trends/global.html) which is

1.67, 2.39, 1.70, 2.40, 2.51 ppm yr−1 global during 2009 - 2013 respectively, and 1.89, 2.42, 1.86,2.63, 2.06 ppm yr−1 for

Mauna Loa during 2009 - 2013 respectively, with error bars of 0.05 - 0.09 ppm yr−1 for global and 0.11 ppm yr−1 for Mauna

Loa data sets(Kulawik et al., 2015). The growth rate may not be conclusive due to short length of the data sets used. However,

it reflects how the CT and GOSAT observations perform with respect to each other.10

3.4 Comparison of seasonal climatology

Seasonal cycle has important implications for flux estimates (Keppel-Aleks et al., 2012). It is important to analyse whether there

are seasonally dependent biases that are affecting the seasonal cycle, and whether the data sets are capturing the same seasonal

cycle. The four seasons considered here are: winter (December, January and February or in short DJF), spring (March, April

and May or in short MAM ), summer (June, July and August or in short JJA), and autumn (September, October and November15

or in short SON). Fig. 9 shows the seasonal distributions of CT2016 (left panels) and GOSAT (middle panels) XCO2 and

their difference (CT2016 - GOSAT, right panels). The distribution clearly shows thatXCO2 concentration is maximum during

spring (MAM) and minimum during autumn (SON) over the North Africa. On the other hand maxima is found during autumn
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(SON) and minima during winter (DJF) over the Southern Africa. These features are in good agreement with the rainfall

climatology of northern and southern hemispheres. Moreover, Table 5 shows seasonally varying biases. Seasonal biases affect

the seasonal cycle and amplitudes, which are important for biospheric flux attribution (Lindqvist et al., 2015).

Figure 9. Seasonal climatology of XCO2 for NOAA CT2016 (left panels) and GOSAT (midel panels) and their difference (right panels).

The right panels in Fig. 9 show that the seasonal mean difference (CT2016 - GOSAT) ranges from -4 to 6 ppm. A maximum

difference of 6 ppm over the gulf of Guinea and Congo during JJA. However, such maximum difference was observed over5

Southern Africa during DJF. A minimum of -4 ppm over annual mean ITCZ region was observed during DJF and MAM.

Moreover, the difference is above 1 ppm over Southern Africa regions during DJF and MAM (wet season of the region). This

implies high spatial variability in the seasonal mean difference (see also Table 5). It also suggests that the discrepancy between

the CT2016 and GOSAT becomes significant when vegetation cover is weak during DJF and MAM (dry seasons) over North

Africa.10

During SON the seasonal difference in most Africa’s land region ranges from -2 to 1 ppm. The result implies CT2016

simulates lower values ofXCO2 than that of GOSAT observation indicating that there is a better spatial consistency during this

season. Furthermore, during these seasons both the Northern and Southern Africa have a moderate vegetation cover following

their respective summer seasons. The two datasets show lower regional variation (i.e., only from -2 to 2 ppm) over most of

Africa land mass. However, the Equatorial Africa exhibits the mean difference lower than -2 ppm during DJF and MAM. This15

indicates the model tends to simulate lower than GOSAT retrievals XCO2 over the region. In addition, this strong negative

bias is partially due to positive bias in GOSAT XCO2 retrieval due to cirrus clouds. For example, O’Dell et al. (2012) noted

that GOSAT XCO2 retrievals are positively biased due to thin cirrus clouds. Fig. 9 (right panels) reveals XCO2 from CT2016
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Figure 10. Histogram of difference for the seasonal XCO2 climatology for DJF (a), MAM(b), JJA (c) and SON (d) seasons.

is lower than GOSAT XCO2 over Northern Africa. The underestimation of observed XCO2 by NOAA CT2016 model is

likely related with the skill of driving ERA-Interim data as noted from previous studies. For example, Mengistu Tsidu (2012)

has shown that the ERA-Interim data has a wet bias over Ethiopian highlands. Mengistu Tsidu et al. (2015) have also shown

that ERA-Interim precipitable water is higher than measurements from radio-sonde, FTIR and GPS observations. Therefore,

such wet bias in the driving ERA-Interim GCM might have forced NOAA CT2016 to generate dense vegetation which serve5

as CO2 sink. In other study, Nagarajan and Aiyyer (2004) found ECMWF has a cold bias in the lower atmosphere between

1000 to 750 hPa against independent upper-air sounding data which may affects CO2.

Fig. 10 shows mean difference between CT2016 and GOSAT XCO2 seasonal means which ranges from -0.37 to 0.04 ppm

with a standard deviation within a range of 1.00 to 1.91 ppm over the continent. The highest mean difference of XCO2 (-0.37

ppm) occurs during SON and the lowest (0.04 ppm) occurs during MAM. Table 5 presents the summary of statistical values10

for spatial mean of each season mean. The comparison between the two data sets also shows there is a strong correlation (>0.5)

during each season over the continent. However, there is moderate correlations (0.3 to 0.5) during DJF and MAM over North

Africa and during DJF over Southern Africa. The low correlation over Northern Africa may be linked to a weak absorption by

vegetation and a strong emission from human activities during winter as reported elsewhere (Liu et al., 2009; Kong et al., 2010).

Moreover, Table 5 shows that the seasonal biases are negative over North Africa while they are mostly positive over Equatorial15

and Southern Africa. Negative biases are observed during DJF and SON over Equatorial and Southern Africa respectively

implying that XCO2 from CT2016 are lower than GOSAT during dry seasons.
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Table 5. Summary of statistical relation between CT2016 and GOSAT XCO2: Bias, correlation (R), Root mean square deviation (RMSD),

standard deviation of XCO2 from CT2016 simulation (CT2016 std), standard deviation of XCO2 from GOSAT observation (GOSAT std),

aggregate number of coincident observations (number of data) and number of grids over the region (grid). Negative bias means CT2016 is

lower than GOSAT. The statistics are on the basis of spatial average of seasonal averages of bias, correlation, RMSD and standard deviations.

Region Statistics Bias (ppm) R RMSD (ppm) CT2016 std (ppm) std in GOSAT (ppm) number of data grid

A
fr

ic
a

DJF 0.06 0.73 1.91 1.15 2.57 135865 409

MAM 0.04 0.92 1.62 1.98 3.25 95942 410

JJA 0.22 0.65 1.59 1.12 2.08 116360 400

SON -0.37 0.76 1 0.94 1.52 124233 408

N
or

th
A

fr
ic

a DJF -0.25 0.36 1.08 0.67 1.12 103913 204

MAM -0.72 0.44 1.11 0.62 1.24 65115 204

JJA -0.42 0.73 1.17 0.9 1.66 60854 204

SON -0.35 0.66 0.53 0.52 0.71 91778 204

E
qu

at
or

ia
lA

fr
ic

a

DJF -0.52 0.68 2.47 1.06 3.07 22639 121

MAM 0.18 0.9 1.88 1.94 3.46 8300 115

JJA 1.51 0.59 2.02 1.46 2.52 12714 104

SON 0.25 0.7 1.3 1.16 1.83 10213 113

So
ut

he
rn

A
fr

ic
a DJF 1.61 0.42 1.72 0.88 1.9 9313 84

MAM 1.56 0.67 0.97 0.82 1.31 22527 91

JJA 0.18 0.81 0.78 0.93 1.31 42792 92

SON -1.16 0.77 0.81 0.84 1.26 22242 91

3.5 Comparison of mean XCO2 from NOAA CT16NRT17 and OCO-2

The strong El Niño event occurred during 2015-2016 provides an opportunity to compare the performance of CT16NRT17

during strong El Niño events. Because of the decline in terrestrial productivity and enhancement of soil respiration, the con-

centration of CO2 increases during El Niño events (Jones et al., 2001). In this section we compare mean XCO2 of NOAA

CT16NRT17 and NASA’s OCO-2 covering the period from January 2015 to December 2016. OCO-2 is the most recent full-5

time dedicated CO2 measuring satellite with greater spatio-temporal resolution.

The comparison was done based on the selection criteria discussed in Section 2.4. Fig. 11 shows mean distribution of

XCO2 from CT16NRT17 (Fig. 11a) and OCO-2 (Fig. 11b) over Africa’s land mass. CT16NRT17 shows high ( > 400 ppm)

XCO2 values over North Africa while these high XCO2 values are observed over Equatorial Africa in the case of OCO-2
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Figure 11. Distribution of two years average XCO2 of CT16NRT17 (a) and OCO-2 (b) XCO2 and their difference (c) gridded in 30 × 20

bins; and (d) the total number of datasets at each grid

observation. The two datasets show a discrepancy over Equatorial Africa, where CT16NRT17 simulates low XCO2 values

(< 401 ppm) while OCO-2 observes high values of XCO2 (> 401 ppm). Both datasets show moderate XCO2 values which

ranges from 397 to 400 ppm over Southern Africa. The XCO2 distribution from OCO-2 is consistent with the maximum CO2

concentration reported in past study (Williams et al., 2007) implying that the CT16NRT17 likely underestimatesXCO2 values

over Equatorial Africa. It is also possible that the discrepancy is a compounded effect of OCO-2 XCO2 positive bias over the5

region (O’Dell et al., 2012; Chevallier, 2015). Fig. 11c shows the mean difference between two years mean of XCO2 from

CT16NRT17 and OCO-2, which is in the range from -2 to 2 ppm. However, high (<-2 ppm) negative mean difference between

the two data sets over rain forest regions (Gulf of Guinea and Congo basin) and ITCZ zone over Eastern Africa (South Sudan

and southeastern Sudan) is observed implying that CT16NRT17 simulates lowerXCO2 values than that of OCO-2 observation

over regions where vegetation uptake is strong. Conversely, high (>1) positive mean difference over the Sahara desert, Somalia10

and Tanzania implies CT16NRT17 simulates higher XCO2 values than OCO-2 observation where the vegetation uptake is

weak. Moreover, a positive (>2) mean difference over Egypt, Libya, Sudan, Chad, Niger, Mali and Mauritania is likely due

to overestimates of XCO2 emission from local sources by CT16NRT17. Overall, the two datasets show a fairly reasonable

agreement with a correlation of 0.60 and offset of 0.36 ppm, a regional precision of 2.51 ppm and a regional accuracy of 1.21

ppm.15
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Table 6. Summary of statistical relation between CT16NRT17 and OCO-2 observation. The statistical tools shown are the mean correlation

coefficient (R), the average of bias (Bias), the average root mean square deviation (RMSD), the standard deviation in bias (std of Bias), mean

posteriori estimate of XCO2 error from OCO-2 (OCO-2 err), the standard deviation in CT16NRT17 XCO2 (CT16NRT17 std) and the

standard deviation in OCO-2 XCO2 (OCO-2 std). Positive Bias indicates that CT16NRT17 is higher than OCO-2. The number of data used

in the statistics is 1,659,411 over 426 pixels covering the study period. Distribution at each grid point is shown in Fig 11d.

Statistical tool R Bias (ppm) RMSD (ppm) std of Bias (ppm) OCO-2 err (ppm) CT16NRT17 std (ppm) OCO-2 std (ppm)

Values 0.6 0.34 2.57 1.21 0.55 0.55 1.28

Fig. 12a shows the histogram of two years mean difference, which is characterized by a positive mean of 0.34 ppm and

a standard deviation of 1.21 ppm. This suggests that CT16NRT17 simulates high XCO2 as compared to observations from

OCO-2 over Africa’s land mass.

Figure 12. Histogram of the difference of CT16NRT17 relative to OCO-2 (left panel) and color code scatter diagram ofXCO2 concentration

as derived from CT16NRT17 and OCO-2 (right panel). Color indicates the relative distance as shown in colorbar between datasets.

Because of presence of spatial and temporal mismatch of some level between CT16NRT17 and OCO-2 datasets, it is impor-

tant to assess the effect of relative distance between the datasets. Fig. 12b shows a color coded distribution of the two datasets.5

In the figure color codes indicate the relative distance. The random scatter of blue dots implies that the statistical discrepancies

do not arise from the relative distance between the two datasets. More specifically, a statistical comparison of datasets lower
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and higher than the 50th percentile (1.20) shows bias of 0.58 and 0.57 ppm, correlation of 0.57 and 0.57 and RMSD of 2.65

and 2.67 ppm respectively.

Figure 13. The bias (a), correlation (b), RMSD (c) of model and OCO-2 XCO2 and mean posteriori estimate of XCO2 error from OCO-2

(d).

Fig. 13 shows the comparison of mean XCO2 from CT16NRT17 and OCO-2 covering the period from January 2015 to

December 2016. The number of data used are displayed in Fig. 11d. Fig. 13a depicts the bias which ranges from -2 to 2 ppm

with a mean bias of 0.34 ppm. However higher biases (<-2 ppm) are observed over Equatorial Africa along the annual average5

location of ITCZ. Fig. 13b shows the correlation map with values from 0.2 to 0.8 over Africa’s land mass. A good correlation

exceeding 0.6 are seen over many regions of the continent while weak correlation of less than 0.2 and higher root mean square

error (> 3 ppm ) are observed over small pockets of Equatorial and Eastern Africa regions (see Fig. 13c). These regions also

show high (> 0.65 ppm) error in satellite retrieval (see Fig. 13d). In addition, Fig. 11d shows the number of observations

are small (< 1000 ) over the regions. This may contribute to the observed discrepancy over these regions. However, weak10

correlations are also observed over a wider area in North Africa such as Mauritania, Mali, Algeria and some regions of Niger

where satellite errors are low and sufficient data are obtained. This indicates the necessity of incorporating more measurement

in Carbon Tracker assimilation over North Africa in order to tune the assimilation model such that it captures the sub-regional

carbon cycles. The poor correlation and high RMSD values observed over Ethiopia highland is likely due to the inefficiency of

retrieving XCO2 from satellites over high-latitude lands (Chevallier, 2015).15
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3.6 Categorical comparison of XCO2 from NOAA CT16NRT17 and OCO-2

Fig. 14 depicts the QBias, QPOD, QCSI, QMISS and QFAR between CT16NRT17 and OCO-2 at different thresholds. The

maps clearly show that QFAR and QMISS increase with increasing threshold. On the other hand, QBias, QPOD and QCSI

decrease with increasing thresholds (see also Fig. 15).

In our analysis, threshold is determined based on OCO-2 observation. The value of XCO2 at 90th percentile is 404.255

ppm and most CT16NRT17 XCO2 value are below 404 ppm over North Africa. Therefore, categorical analysis shows white

space over these regions for thresholds above 90th percentile. Fig. 14 also shows that CT16NRT17 simulates the observation

at lower quantiles. However, discrepancy between CT16NRT17 and OCO-2 is significant at higher quantiles. At 75th quantile

the QPOD and QCSI values are less than 0.6 over Africa’s land mass which implies more than 40% of the OCO-2 observation

were not captured in the CT16NRT17 simulation.10

3.7 Comparison of monthly average time series of NOAA CT16NRT17 and OCO-2 XCO2

Figs. 16 - 18 show a two year monthly average time series comparison of XCO2 from CT16NRT17 and OCO-2 over North

Africa, Equatorial Africa and Southern Africa respectively. Fig. 16a shows the existence of good agreement between the

two datasets in describing pattern over North Africa. Moreover, both datasets show a decreasing trend of XCO2 from May

to September while increasing trend from October to April. On the other hand, consistent with the climate condition and15

associated CO2 exchange, the monthly mean XCO2 shows a maximum value of 403.37 ppm for CT16NRT17 and 402.06

ppm for OCO-2 during May. Conversely, a minimum concentration of 398.77 ppm from CT16NRT17 simulation and 398.27

ppm from OCO-2 observation are found in September. In addition, both CT16NRT17 and OCO-2 show maximum XCO2

values (402.15 ppm for CT16NRT17 and 402.03 ppm for OCO-2) in December. These pick values in December are not

surprising, because the 2015-2016 El Niño started on March 2015 and reached pick in December 2015 which added extra CO220

into the atmosphere (Chatterjee et al., 2017). Fig. 16a also shows that XCO2 from CT16NRT17 simulation are higher than

OCO-2 observation over North Africa.

Fig. 16b shows the monthly mean difference between CT16NRT17 and OCO-2 which ranges from -0.5 to 2 ppm. As a

consequence of strong El Niño, the region misses the short rain season during spring (MAM) when vegetation are still under

the influence of the dormancy of winter (DJF). However, following the summer vegetation awakens from the long dormancy25

and becomes a sink of CO2. Starting from August 2015, the difference between the two datasets is minimum; this implies

that CT simulates low values of XCO2 when the vegetation uptake is strong. On the other hand, a maximum difference of

exceeding 1 ppm was observed during MAM, implying higherXCO2 values from CT16NRT17 simulation than that of OCO-2

when vegetation uptake is weak following the strong El Niño over North Africa. Moreover, Fig. 16c displays a monthly mean

regional mean bias of 0.87 ppm, correlation of 0.95 and a root mean square deviation of 0.72 ppm between CT16NRT17 and30

OCO-2 XCO2. This implies that CT16NRT17 is in a good agreement with OCO-2. However, a small discrepancies arose due

to likely a strong anthropogenic emission from Nigeria, Egypt and Algeria together with the establishment of plantation over

25



Figure 14. Distribution of categorical metrics over the study area for quantiles exceeding 5% (first row), 75% (second row), 90% (third row)

and 95% (fourth row).
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Figure 15. Summary of categorical metrics (QBias, QPOD, QCSI, Qmis and QFAR) averaged over Africa’s land region for 5, 10, 25, 50,

75, 90 and 95 percentiles.
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Figure 16. The monthly mean time series of CT16NRT17 and OCO-2 from January 2015 to December 2016 averaged over North Africa (a),

bias associated to the monthly means (b), the histogram of difference (c) and the annual growth rate obtained by subtracting the mean from

the mean of the next year (d). The error bars in (a) shows the OCO-2 a posteriori XCO2 uncertainty.
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North Africa, which recently exceeded deforestation, and resulted in net flux of carbon sink (Canadell et al., 2009). This might

have contributed to the observed discrepancy over North Africa.

Figs. 17a - 18a show monthly mean time series of XCO2 from the model and OCO-2 instrument over Equatorial Africa and

Southern Africa which are also in good agreement in terms of pattern. However, the figures show that CT16NRT17 simulations

are lower than those of OCO-2 during October, November and December whereas it is opposite during April, May and June5

over Equatorial Africa and Southern Africa. Figs. 17b and 18b depict a seasonal bias in the monthly time series over Equatorial

Africa and Southern Africa respectively. Positive biases are observed during dry seasons while negative biases are during wet

seasons. Moreover, the datasets have monthly averaged regional mean biases of 0.13 and 0.11 ppm, correlation of 0.90 and

0.94, RMSD of 0.84 and 0.73 ppm over Equatorial Africa and Southern Africa respectively. This shows that existence of

better agreement between CT16NRT17 and OCO-2 over these regions in terms of monthly average regional mean values. Figs.10

16d-18d show both CT16NRT17 and OCO-2 are in good agreement in estimating the annual growth rate. Patra et al. (2017)

found a global mean of more than 3 ppm of CO2 added to the atmosphere due to the strong El Niño event that occurred during

2015-2016. In agreement with this, both CT16NRT17 and OCO-2 shows an annual growth rate that ranges from 3.10 to 3.42

ppm year−1 ofXCO2 over Africa’s land mass (see also Table 7). However, over all regions of Africa’s land mass CT16NRT17

shows lower XCO2 annual growth rate than those of OCO-2.15

2 4 6 8 10 12 14 16 18 20 22 24
Number of Months since Jan. 2015

397

398

399

400

401

402

403

404

405

C
O

2
 c

on
c 

(p
pm

)

(a)

CT16NRT17
OCO-2

(b)

5 10 15 20
Months since Jan. 2015

-1.5

-1

-0.5

0

0.5

1

1.5

B
ia

s 
(p

pm
)

(c)

Mean=0.13
Std=0.84
r=0.90

-2 -1 0 1 2
change in CO 2  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
or

m
 p

ro
b 

di
st

(d)

CT16NRT17 OCO-2
during 2015-2016 

0

0.5

1

1.5

2

2.5

3

3.5

A
nn

ua
l C

O
2

 g
ro

w
th

 (
pp

m
) 

Figure 17. The same as in Fig. 16 but over Equatorial Africa.

3.8 Comparison of seasonal means of NOAA CT16NRT17 and OCO-2 XCO2

Fig. 19 depicts seasonal means of XCO2 over Africa’s land mass from CT16NRT17 (left panels), OCO-2 (middle panels) and

their difference (right panels) covering period of January 2015 to December 2016. The white space seen over some regions
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Figure 18. The same as in Fig. 16 but over Southern Africa.

Table 7. Annual growth rate (AGR) of XCO2 over Africa land mass from CT16NRT17 and OCO-2. The results are obtained as the mean

annual difference of 2015 and 2016 values

Region AGR of CT (ppm year−1) AGR Of OCO-2 (ppm year−1)

North Africa 3.10 3.33

Equatorial Africa 3.14 3.42

Southern Africa 3.20 3.16

(e.g., Mali during JJA) is due to insufficient coincident satellite data according to the selection criteria during these seasons.

XCO2 increases from winter to spring and then decreases from spring peak to summer minimum over the whole continent.

The decrease from spring maximum to summer continued into autumn over northern half of Africa in contrast to southern

half of Africa which exhibits an increase in XCO2. The decrease from spring to autumn (northward of equator) and until

summer (southward of equator) is likely to be a consequence of the land vegetation awakening from dormancy of winter and5

partly spring. Conversely, the decomposition of died and decayed vegetation which began in autumn and continued throughout

winter adds extra CO2 leading to a maximum concentration during spring (Idso et al., 1999). In agreement with this, both

CT16NRT17 and OCO-2 show maximum XCO2 during MAM over North Africa and during SON over Southern Africa.

Conversely, minimum XCO2 are observed during SON over North Africa and during DJF over South Africa.

Fig. 19 (right panels) shows the seasonal mean difference of CT16NRT17 and OCO-2. A higher mean difference of greater10

than 1 ppm are observed over North Africa during DJF and MAM when the vegetation cover over the region decreases. This

indicates that XCO2 values from CT16NRT17 are higher than that of OCO-2 when vegetation uptake is weak. On the other
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Figure 19. Seasonal mean of CO2 for NOAA CT16NRT17 (left panels) and OCO-2 (middle panels) and their difference (right panels).

hand, higher negative mean difference of less than -2 ppm are observed over Equatorial Africa during DJF and during SON over

Southern Africa. This difference between the CT and OCO-2 arises likely during forest fire that naturally occurs following their

respective dry season. Consistent with report by Liang et al. (2017), low seasonal variability is observed between CT16NRT17

and OCO-2 in the range from -4 to 4 ppm with greater amplitude over North and Equatorial Africa than over Southern Africa

(see Figs. 19 (right panels)).5

Fig. 20 shows the histogram of seasonal mean difference of CT16NRT17 and OCO-2. The smaller standard deviation of 1.49

and 1.07 are observed during JJA and SON. On the other hand, higher standard deviation of 1.69 and 1.75 ppm are observed

during DJF and MAM respectively. The results indicate that CT16NRT17 and OCO-2 show a better consistency during wet

seasons and this consistency decreases as the vegetation cover decreases over most regions of Africa land mass during dry

seasons.10

4 Conclusions

In this study, the NOAA CT2016XCO2 values are compared with two full-timeCO2 dedicated satellites, GOSAT and OCO-2

over Africa land mass. Comparison between CT2016 and GOSAT were done using a five years datasets covering the period

from May 2009 to April 2014. This comparison is important to test the performance of CT2016 in capturing climatology of the

XCO2. Comparison of CT16NRT17 with OCO-2 was done using two years data during the strong El Niño event from January15

2015 to December 2016. This provide opportunity to assess the performance of CT16NRT17 simulation during strong El Niño
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Figure 20. Histogram of difference for the seasonal CO2 climatology for DJF (a), MAM(b), JJA (c) and SON (d) seasons.

events. Comparison of Carbon Tracker with the two satellites reveals biases of -0.28 and 0.34 ppm, correlations of 0.83 and

0.60 and root mean square deviations of 2.30 and 2.57 ppm with respect to GOSAT and OCO-2 respectively. The performance

of the model in capturing the whole distribution is also assessed. It is found that Carbon Tracker can capture more than 93%

of the observation higher than the lowest (5th percentile) thresholds. However, the quantile probability of detection and the

quantile critical success index decrease with increasing threshold implying the model and satellite show some discrepancies5

over the extreme values exceeding 90th percentile.

The monthly average time series of CT2016 over North Africa, Equatorial Africa and Southern Africa are separately com-

pared with XCO2 from the two satellites. CT2016 agrees well with measurements from the two instruments in terms of

pattern and amplitude. However, this agreement deteriorates over Equatorial and Southern Africa in terms of amplitude. It is

also found that there is a seasonal dependent bias between them which is negative during dry seasons while it is positive during10

wet seasons. This indicates results of CT2016 are mostly lower than the GOSAT observation. High spatial mean of seasonal

mean RMSD of 1.91 during DJF and 1.75 ppm during MAM and low RMSD of 1.00 and 1.07 ppm during SON in the model

XCO2 with respect to GOSAT and OCO-2 are observed respectively thereby indicating better agreement between CT and the

satellites during autumn. CT2016 has the ability to capture monthly time series and seasonal cycles. However, XCO2 from

CT2016 is lower than GOSAT observations over North Africa during all seasons whereas XCO2 from CT2016 is higher than15

that of GOSAT over Equatorial and Southern Africa with the exceptions of DJF over Equatorial Africa and SON over Southern

Africa. In addition, CT2016 simulates lower XCO2 than the observations over some regions (e.g., Congo, South Sudan and

southwestern Ethiopia) and during summer season over the whole continent following large vegetation uptake. In contrast,

XCO2 from CT16NRT17 is higher than that of OCO-2 over North Africa whereas it is lower than that of OCO-2 during DJF

and SON over Equatorial and Southern Africa respectively.20
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In general, XCO2 from NOAA CT shows a very small bias with respect to GOSAT and OCO-2 observation over Africa’s

land mass. Moreover, there is a good agreement between CT simulation and observations in terms spatial distribution, monthly

average time series and seasonal climatology. However, there are some discrepancies between the model and the two XCO2

datasets from GOSAT and OCO-2 implying that the accuracy of the model data needs further improvements for the rain forest

regions (e.g., Congo) through assimilation of in-situ observations and tuning of the model through process studies. Further5

work may also be needed to improve the XCO2 from satellites and models in the extreme parts of XCO2 distribution.
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