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1. Abstract 15 

Air contamination has had stronger and stronger impact on everyday life of humans. An 16 

increasing number of people are aware of the health problems that may result from inhaling air 17 

which contains dust, bacteria, pollens or fungi. There is a need for real-time information about 18 

ambient particulate matter. The devices, currently available on the market, can to detect some 19 

particles in the air, but cannot classify them by the health threats. Fortunately, a new type of 20 

technology is emerging as a promising solution. 21 

Laser based bio-detectors are opening a new era in aerosol research. They are capable of 22 

characterizing a great number of individual particles in seconds by analyzing optical scattering and 23 

fluorescence characteristics. In this study we demonstrate application of Artificial Neural Network 24 

(ANN) to real-time analysis of single particle fluorescence fingerprints acquired using BARDet (Bio-25 

aerosol detector). The  48 different aerosols including pollens, bacteria, fungi, spores, and non-26 

biological substances were characterized. An entirely new approach to data analysis using decision 27 

tree comprising 22 independent neural networks was discussed. Applying confusion matrices and 28 

ROC analysis the best sets of ANN’s for each group of similar aerosols has been determined. As a 29 

result an impressive effectiveness of aerosol classification in real-time was achieved. It was found 30 

that for some substances that have characteristic spectra almost each particle can be properly 31 

classified. The aerosols with similar spectral characteristics can be classified as a specific cloud with 32 

high probability. In both cases the system recognized aerosol type with no mistake. 33 

 34 

2. Introduction 35 

The ambient air contains a variety of particles like dust, bacteria, pollens, fungi and other parts of 36 

biological and non-biological origin(Pöhlker et al., 2013; Górny, 2004). The aerosols are involved in 37 

various atmospheric processes like ice nuclei formation, precipitation and global climate effects 38 

(Deguillaume et al., 2008; Fröhlich-Nowoisky et al., 2016; Gabey et al., 2010; Pósfai and Buseck, 39 

2010; Fuzzi et al., 2015). They also strongly influence human health (Davidson et al., 2005; Pope III 40 

and Dockery, 2006; Michaels, 2017; Shiraiwa et al., 2012). Therefore, the characterization of ambient 41 

air is important for estimating potential health hazards and environmental impact (Mauderly and 42 

Chow, 2008; Lim et al., 2005). Standard methods of aerosol composition assessment usually include 43 

microscopic inspection or molecular analysis of filter (Miaskiewicz-Peska and Lebkowska, 2012), tape 44 

or liquid trapped particles. Nevertheless, they suffer from low time resolution due to periodical and 45 

relatively long analytical procedures. They are also ineffective for the detection of non-culturable 46 
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microorganisms (Blais-Lecours et al., 2015; Trafny et al., 2014). 106 

The detection and classification of biological particles is possible using fluorescence techniques 107 

due to the presence of proteins, NADH, and some vitamins that emit light when excited with UV light 108 

(Lakowicz, 1999). This feature is utilized in single particle fluorescence detectors. In the flowing air 109 

each particle is characterized for size/shape using light scattering as well as fluorescence properties. 110 

This approach ensures continuous measurement and immediate response. Thus the analysis process 111 

can be facilitated and accelerated compared with other commonly used analytical procedures (Hill et 112 

al., 1999; Choi et al., 2014; Taketani et al., 2013; Feugnet et al., 2008). 113 

Several studies using single particle fluorescence detectors demonstrated that fluctuations of 114 

aerosol concentration and variations in its fluorescence properties are strongly dependent on the 115 

season, day time, location and a place occupancy (Gabey et al., 2011; Huffman et al., 2010; Pinnick et 116 

al., 2004; Bhangar et al., 2014; Fennelly et al., 2018). Each single particle passing the instrument is 117 

labelled with the time, scattering properties (size and/or shape) and fluorescence characteristics. It is 118 

obvious that continuous single particle measurements bring a new potential and quality to 119 

environmental research. However, particles of the same type and batch display slightly different 120 

spectral characteristics due to variations in biochemical composition, size, age in a population 121 

(Agranovski et al., 2003), degradation or stress level (Lee et al., 2010) and the particle position within 122 

instrument’s interrogation point (Pan et al., 2011). The simple statistics, like data averaging and 123 

graphical spectra representation, are not sufficient. Therefore, the huge amount of data and 124 

occurring spectral variations require more advanced algorithms supporting automatic data 125 

classification. Various analytical methods of particle discrimination and classification were applied. It 126 

has been shown that Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), 127 

Hierarchical cluster Analysis (HCA) of fluorescence spectra strongly increases discrimination of 128 

particles compared with methods based on spectra averaging or fluorescence threshold (Leśkiewicz 129 

et al., 2016; Kaliszewski et al., 2013; Pan et al., 2012; Hernandez et al., 2016). Artificial neural 130 

network (ANN) is an emerging analytical approach that becomes more widely and successfully 131 

applied in various life domains like chemical analysis (Borecki et al., 2008), image recognition 132 

(Antowiak and Chałasińska-Macukow, 2003), data mining and weather forecasting (Purnomo et al., 133 

2017). It has been shown that ANN can be applied in bio-aerosol classification (Kohlus and Bottlinger, 134 

1993). However, it usually requires more user input comparing to other analytical procedures (Ruske 135 

et al., 2017).  136 

This paper focuses on the application of ANN for real time discrimination of bio-aerosols based 137 

on single particle fluorescence characteristics. We demonstrated a new approach to data analysis 138 

using ANN allowing automatization of data preparation procedures and minimum user involvement.      139 

 140 

3. Materials and methods 141 

3.1. Experiment 142 

3.1.1. BioAeRosol Detector (BARDet) 143 

The detailed information concerning construction and parameters of the instrument used for 144 

the experiments was presented in our previous work (Kaliszewski et al., 2016). In general, the 145 

ambient air is continuously drawn through the nozzle. It is focused with sheath flow of filtered air. 146 

Particles in the focused air pass through the BARDet’s chamber where they are interrogated by a 147 

16mW CW laser beam generated by a diode laser operating at 375 nm wavelength (CUBE, Coherent). 148 

The backward and forward scattered signals are detected with two PMT’s (H6780, Hamamatsu) 149 

mounted at the 35oand 145o angle to the laser beam axis.  150 

Deleted: )151 

Deleted: (152 

Deleted: )153 

Deleted: (154 

Deleted: )155 

Deleted: (156 

Deleted: )157 

Deleted: (158 

Deleted: )159 

Deleted: (160 

Deleted: )161 

Deleted: (162 

Deleted: )163 

Deleted: (164 

Deleted: )165 

Deleted: (166 

Deleted: )167 

Deleted: (168 

Deleted: )169 

Field Code Changed

Deleted: (170 

Formatted: German (Germany)

Deleted: )171 

Formatted: German (Germany)

Formatted: German (Germany)

Field Code Changed

Deleted: (172 

Formatted: German (Germany)

Formatted: German (Germany)

Formatted: German (Germany)

Field Code Changed

Deleted: basing 173 



3 
 

The fluorescence of particles is measured at a 90o
 angle to the laser beam with 32 channel PMT 174 

(A10766, Hamamatsu). The longpass filter with cutting edge at 400 nm (Edmund Optics) separates 175 

the fluorescence signal from scattered light. The multichannel PMT measures fluorescence in 18 176 

active channels in the range of 415.4-643.5 nm. The channels are grouped in 7 bands. The remaining 177 

channels are not used. The band configuration is presented in Table 1. 178 

 179 
Table 1. Configuration of bands in the multichannel PMT. 180 

 181 

BARDet’s Fluorescence Bands Bandwidth [nm] 

B1 415.4 – 429.3 

B2 443.1 – 456.8 

B3 470.5 – 484.2 

B4 497.8 – 524.9 

B5 538.3 – 565.0 

B6 578.3 – 604.6 

B7 617.6 – 643.5 

 182 

3.1.2. Aerosols 183 

For the tests, dry powders of harmless substances were used, since they did not need a 184 

specialized aerosol protection chamber. In order to achieve reliable aerosol classification the ANN’s 185 

needs to be trained using possibly large number of measurement data. Therefore, various particle 186 

types,  that can be easily aerosolized, were tested.  Samples like pollens, fungi, bacteria, spores and 187 

leaves scraps naturally occur in the atmosphere. Biofluororphores like riboflavin, cellulose, 188 

aminoacids and proteins were also characterized since they are present in biological materials. The 189 

group of bacterial growth media was investigated due to their strong influence on bacteria 190 

fluorescence especially if they are not sufficiently washed. This can occur in case of intentionally 191 

released bacterial aerosols. Due to technical limitations the other than pharmaceutical samples could 192 

be aerosolized in this study. The aerosols of flours, and fluorescent non-biological substances like 193 

paper dust, AC fine Test Dust and talc were analyzed since they can occur especially in indoor and 194 

public places. The non-fluorescent particles were not a subject of the research since they can be 195 

automatically discarded as non-biological applying given fluorescence threshold.  196 

The samples used for this study are listed in Table 2. To perform numerous experiments, 197 

disposable vials were used, one for each aerosol sample. It prevented cross contamination between 198 

measured samples. The aerosols were generated from modified 50 ml Falcon tubes placed on the 199 

vortex. The vials in the lower part contained two connectors for silicon tubes. Vortexed particles 200 

were entrained and formed an aerosol cloud inside the Falcon tube. The aerosolized particles were 201 

aspirated from the vial to BARDet’s aerosol inlet. Each tube contained about 50 mg of the dry 202 

powder sample. During aerosol generation filtered air was supplied into the vial to compensate the 203 

BARDet’s flow. The concentration of the aerosols was adjusted with vibration frequency of the 204 

vortex. The measurement started after the aerosol reached homogeneous concentration. The 205 
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experimental setup is shown in figure 1.  208 

 209 

Table 2. List of all substances used in experiment.  210 

 211 
 Abbreviation Name Size  AF Source Group 

1 FM7 
Fluoromax 
microspheres 7 um 6,25±0,91 0,92±0,02 

Thermo scientific standard 1 

2 Rib Riboflavin 2,22±1,82 0,88±0,09 Sigma-Aldrich standard 2 

3 BGP Bermuda grass pollen 28,35±0,6 0,97±0,01 Duke Sci. Corp. 

pollens 

4 CP Corn pollen 78,13±1,22 0,95±0,01 Duke Sci. Corp. 

5 CA 
Corylus avellana 
pollen 27,71±1,33 0,67±0,04 

(*OC) 

6 LP Lycopodium pollen 30,67±1,2 0,94±0,01 Fluka 

7 PPP Poa pratrensis pollen 30,62±0,87 0,94±0,01 Sigma-Aldrich 

8 RP Ragweed pollen 19,48±0,78 0,99±0,01 Duke Sci. Corp. 

9 SCP Secale cereale pollen 44,8±2,01 0,94±0,01 Sigma-Aldrich 

10 SP Spruce pollen 70,09±4,16 0,88±0,02 (*OC) 

11 AA Abies alba pollen 84,56±12,77 0,92±0,02 (*OC) 

12 UDP Urtica dioica pollen 14,99±1,26 0,9±0,05 (*OC) 

13 PSP Pinus sylvestris pollen 39,29±1,44 0,93±0,02 (*OC) 

14 PNP Pinus nigra pollen 44,97±1,33 0,88±0,03 (*OC) 

15 LPP 
Lycopodium pollen 
(Poland)  28,66±0,6 0,95±0,01 

(*OC) 

16 PMP 
Paper mulberry 
pollen 13,57±0,88 0,94±0,04 

Duke Sci. Corp. 

17 ATP 
Artemisia tridentata 
pollen 22,53±0,42 0,96±0,01 

Sigma-Aldrich 

18 AAP 
Artemisia 
absynthium pollen 18,37±1,51 0,96±0,02 

Sigma-Aldrich 

19 CPP Chenopodium pollen 27,29±0,97 0,98±0,01 (*OC) 

20 BWF Buck wheat flour 
25,17±15,76 0,82±0,06 

MELVIT Poland 
(*RS)  

flours 

21 PF Potato flour 
21,23±3,11 0,96±0,03 

KUPIEC Poland 
(*RS)  

22 RF Rice flour 
18,22±6,23 0,6±0,07 

MELVIT Poland 
(*RS)  

23 TF Tapioca flour 
12,91±3,41 0,7±0,06 

COCK BRAND 
(*RS)  

24 WF Wheat flour 
20,57±4,36 0,62±0,07 

MELVIT Poland 
(*RS)  

25 Trp Tryptophan 15,42±8,96 0,81±0,08 Sigma-Aldrich 

amino acids 
and proteins 

26 Phe Phenylalanine 10,41±5,31 0,73±0,11 Sigma-Aldrich 

27 BSA 
Bovine Serum 
Albumin 63,8±30,49 0,43±0,05 

POCH Poland 

28 OVA Ovalbumin 26,45±5,31 0,83±0,07 POCH Poland 

29 Ambio 

Bif. animalis, S. 
boulardii, S. 
thermophilus, 
L. casei, L. bulgaricus 

27,97±4,42 0,84±0,03 AMBIO Probiotyk, 
Lab. Galenowe 
Poland (*P)  

bacteria in 
medium 

  

30 LCB 
Lactobacillus 
bulgaricus 51,16±19,33 0,68±0,08 

LakciBios, ASA 
Poland (*P)  
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31 LF 
Bifidobacterium 
animalis, L. 
acidophilus 

32,62±8,45 0,82±0,07 Linex forte, LEK 
Pharmaceuticals 
d.d. Slovenia 

(*P)  

  

32 BA Bacteriological Agar 49,47±10,03 0,74±0,07 Sigma-Aldrich 

medium 
33 BAB Blood Agar Base 18,78±2,11 0,71±0,12 Sigma-Aldrich 

34 LB Luria broth 15,11±6 0,67±0,07 Sigma-Aldrich 

35 NB Nutrient broth 42,67±9,21 0,69±0,03 Sigma-Aldrich 

36 BTSTG 
Bacillus thuringiensis 
spores technical 
grade 

7,13±5,95 0,72±0,12 
 Agricultural 

Bacterial 
spore with 
admixtures 

  

37 SB 
Saccharomyces 
boulardii 57,82±7,56 0,69±0,05 

Enterol, Biocodex 
France (*P)  funghi with 

admixtures 
38 SC 

Saccharomyces 
cerevisiae 21,33±5,55 0,76±0,07 

Dr. Oetker 
Germany (*RS)  

39 LS Lycoperdon spores 14,52±0,62 0,92±0,02 (*OC) fungal spores 

40 JGSS 
Johnsons grass smut 
spores 6,91±0,34 0,98±0,02 

Duke Sci. Corp. 
smut spore 

(fungal spore) 
41 BGSS 

Bermuda grass smut 
spores 6,47±0,27 0,97±0,02 

Duke Sci. Corp. 

42 ACFTD AC Fine Test Dust 3,47±2,34 0,87±0,09 Duke Sci. Corp. 

other 

43 NT Nivea talc 14,33±4,71 0,77±0,09 Nivea Baby (*RS)  

44 PPD Printer paper dust 

76,37±18,89 0,43±0,11 

XEROX Laserprint 
collected from 
paper shredder 
 (*RS)  

45 PTD Paper towel dust 

73,45±25,65 0,56±0,15 

Merida Poland 
collected from 
crushed towel 
(*RS)  

46 Cin Cinnamon 
23,97±4,39 0,78±0,05 

Kamis Poland 
(*RS)  

47 Cel Celulose 82,86±14,28 0,25±0,04 Sigma-Aldrich 

48 GGL Ground Green Leaves 
18,03±4,3 0,77±0,09 

Dried and ground 
Oak (*OC) 

 228 

*OC – pollens collected from trees, flowers and grass at the region of Warsaw during vegetative 229 

seasons in  2015 and 2016.  230 

*RS – Regular shops in Warsaw where common goods are purchased. 231 

*P – Pharmacy shops in Warsaw 232 

 233 
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 244 
Figure 1.  Setup of aerosol generation, data recording and analysis.  245 

 246 

3.1.3. Aerosol microscopy 247 

For microscopy analysis the aerosols were generated as described above and collected by 248 

impaction on a glass microscopic slide. The visualization of the samples was performed using Nikon 249 

Eclipse Ti-U microscope with 10x objective. The images were recorded with 5 megapixel DS-Fi1 250 

camera. The aerosol equivalent diameters and circularity were analyzed automatically using NIS-251 

Elements 64bit 3.22.10 software. The threshold of particles outline was corrected manually to obtain 252 

visually best fit.  253 

 254 

3.1.4. Data acquisition method and pre-processing 255 

The fluorescence of each particle was recorded in 7 bands. It creates a time series of the signals 256 

which has to be pre-processed before further analysis. There are two steps of gathering data. First 257 

one is performed by internal BARDet’s software, which is responsible for controlling the instrument 258 

and the acquisition of raw signals. Then data is forwarded to a pre-processing module of analysis 259 

software. Its first task is to extract valuable signals from the noise (three sigma rule). Then a 260 

normalization procedure is required. It is realized first  by subtracting the average value of signal and 261 

then it normalizing to its standard deviation. The main goal was to analyze shape of emission 262 

spectrum (not signal strength). An exemplary visualization of input data is shown in figure 2.  263 

The data acquisition process started after stabilization of aerosol generation rate which was 264 

measured by the device.  It was important to not exceed one particle per 2 ms of data integration 265 

time at 20 us measurement window. Finally, it was gathered a total of 114 779 spectral characteristics 266 

of 48 aerosols which gives in average almost 2400 fluorescence characteristics per substance.  267 

 268 

 269 

 270 

BARDet - real time data 
collection and analysis

External computer - data presentation

Aerosol inlet

Aerosol

Filtered air

Vortex - fast vibration
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 278 

 279 

 280 

Figure 2.  Normalized 50 subsequent fluorescence characteristics of NT (A), FM7 (C) and LCB (E) 281 

and corresponding averaged normalized intensities of NT (B), FM7 (D) and LCB (F). Error bars 282 

represent standard deviation of measurements. 283 

 284 

3.2. Data analysis 285 

3.2.1. ANN (Artificial Neural Network) 286 

3.2.1.1. Basics 287 

 288 

There are many types of Artificial Neural Networks (ANN), but in this paper only the 289 

backpropagation algorithm is demonstrated because it is one of the most practical ones. The main 290 

concept of this algorithm is based on a model of neuron that has two tasks. It aggregates signals (1) 291 

and then processes them by an activation function (2), which, in this research, is a sigmoid. The result 292 

of such single processing is a new signal 𝑧𝑗  propagated to other neurons (Figure 3). 293 
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 295 
Figure 3.  Mathematical model of single neuron cell. 296 

 297 

 𝑎𝑗 = ∑ 𝑤𝑗𝑖𝑧𝑖

𝑖

 (1) 

 298 

𝑎𝑗- aggregated signal, 𝑤𝑗𝑖- weight that connects neuron i with j, 𝑧𝑖- signal (input).   299 

 300 

 
𝑔(𝑎𝑗) =

1

1 + 𝑒−𝛽𝑎𝑗
 

(2) 

 301 

𝑔(𝑎𝑗) – sigmoidal function, 𝛽- parameter (steepness) of sigmoid curve. 302 

 303 

The structure of neural network is formed by layers of neurons: input, hidden and output. In this 304 

research input neurons are fluorescence spectrum and output neurons represent substances. In 305 

hidden layers (one and two hidden layers were examined) mostly actual computations are done. The 306 

schematic representation of neuron layers is presented in Figure 4.  307 

 308 
Figure 4. Typical topology of artificial neural network.  309 

 310 

The described algorithm is the supervised learning method that requires training data for a 311 

teaching process. This allows one to calculate an error between the showed target and the ANN 312 

response. Every problem is related to minimizing output error which is calculated as Mean Squared 313 

Error (3). 314 
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𝐸 =

1

2
∑(𝑦𝑘 − 𝑡𝑘)2

𝑐

𝑘=1

 
(3) 

E – Mean Squared Error, 𝑡𝑘- observed value (target), 𝑦𝑘- calculated response, k-output neuron, c – 318 

number of output neurons. 319 

Gradient descent method is used to find a minimum of error function. Error is dependent on 320 

network weights 𝛥𝑤𝑗𝑖  which might be adjusted (4). In order to update weights correctly, the first one 321 

needs to propagate error backward by calculating partial derivatives 𝛿𝑗  (5) (Figure 5). All 322 

mathematical details are well described by Ch. M. Bishop book (Bishop, 1995). 323 

 324 

Figure 5. Model of backward error propagation. 325 

 𝛥𝑤𝑗𝑖(𝑡) = −𝜂𝛿𝑗𝑧𝑖 + 𝑚𝛥𝑤𝑗𝑖(𝑡 − 1) (4) 

𝜂- learning rate, m - momentum, t - iteration.  326 

 327 

𝛿𝐸

𝛿𝑤𝑗𝑖
=

𝛿𝐸

𝛿𝑎𝑗

𝛿𝑎𝑗

𝛿𝑤𝑗𝑖
= 𝛿𝑗𝑧𝑖  

 

𝛿𝑗 = 𝑔′(𝑎𝑗) ∑ 𝑤𝑘𝑗𝛿𝑘

𝑘

 

 

(5) 

The learning rate factor determines the size of the steps while momentum parameter helps to 328 

skip local minimum by adding a fraction of the weight correction from the last step.  329 

After the correction of all weights of ANN, the output error is examined and the procedure 330 

starts again unless an error level is low enough and there is no overfitting. All data are divided into 331 

three different sets: training, test and validation. For calculations during the learning process, only 332 

the first two are used. In order to determine whether it is time to stop teaching process, one has to 333 

observe an error in the test set. There will be a moment when this error comes to be constant or 334 

starts increasing due to the overfitting of training data (Figure 6). The validation data set may be 335 

useful for confronting different models or just to verify the current model on completely separate set 336 

of data.  337 
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 341 

Figure 6. Example of error minimizing during training process. 342 

3.2.1.2. Implementation of ANN for BARDet 343 

There are statistical commercial software packages available that provide ANN modules as one 344 

of the methods to analyze the data. It is worthwhile noting that customized software was developed 345 

for this research. This approach helped to understand ANN in depth and let to the development of 346 

software that is not only responsible for data pre-processing and network training, but also (mainly) 347 

for solving a real time classification problem.  348 

Ruske et al. in their studies (Ruske et al., 2017) compared various algorithms to analyze single 349 

particle data and noted that ANN requires much more user input. However, we present the method 350 

to overcome this inconvenience by automatizing the process and implementing procedures, which 351 

simplifies and improves analysis.  352 

The main disadvantage of ANN is the fact that it is a parametrized algorithm. How well it works 353 

depends strictly on a proper choice of the best possible factors, which may be different for each 354 

problem. There are two types of factors that influence the ANN outcome. The first one corresponds 355 

to the architecture of ANN which comprises: number of layers, neurons and activation function 356 

parameter. The second one determines the learning process: momentum and learning rate. The last 357 

one can be tuned during the learning process to make it much faster. The “bold driver” procedure 358 

was chosen for that purpose. It continuously increases the learning rate unless an error is higher 359 

from that before the change. If it is, the algorithm radically decreases the learning rate and obtains 360 

weights from the last step again. Teaching ANN is a stochastic process caused by using randomly 361 

chosen initial weights. It was found that the best procedure for this investigation would be to make 362 

all optimization processes that way. Therefore, parameters of ANN, responsible both for structure 363 

and learning process, are randomly selected until the desired result is reached. In fact, the 364 

calculations are done automatically and simultaneously for several models due to multi core oriented 365 

software. The benefits of this approach are: time saving and high effectiveness of finding the best 366 

model. The last one is especially important, because the goal is to create a model that produces the 367 

best results, which doesn’t necessary mean creating a more complicated network (more neurons or 368 
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layers). 371 

3.2.2. Model evaluation 372 

The main goal of the analysis described in this paper is to find a solution to the bio-aerosol 373 

classification problem. When a training process ends, a final model is created: a network, which has a 374 

unique structure and a set of weights. One can create many of them and make a comparison only by 375 

a final error. It is not the best solution, because the goal is to distinguish patterns in data 376 

consistently, not to produce a network with a minimal error. That is why there is a need to make a 377 

final analysis of the results and evaluate the model in accordance with the best classification 378 

performance. 379 

The standard method for visualization of results is a confusion matrix which will be necessary for 380 

Receiver Operating Characteristics (ROC) analysis (Fawcett, 2006). It simply shows what fraction of 381 

population for each class is predicted correctly or not. Each element from the data set is assigned to 382 

one of the following fits of the confusion matrix : True Positive (TP), True Negative (TN), False 383 

Negative (FN) and False Positive (FP). If it belongs to TP and TN, it was classified correctly. 384 

 386 

The ROC graphs are very simple, but useful tools for discovering whether a classifier is worth 387 

using or if it makes a random classification. It is based on two rates from confusion matrix: hit rate (6) 388 

and false alarm rate (7). 389 

 

ℎ𝑖𝑡 𝑟𝑎𝑡𝑒 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒)

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(6) 

 390 

 

𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 (𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒)

=
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

(7) 

Each discrete classifier has a threshold level that assigns an element to a positive or negative 391 

class. The points of ROC graph (Figure 7) represent the classifier for many thresholds. The most 392 

desired curve reaches the highest true positive rate with the lowest false positive rate (convex line). 393 

The random classifier, in turn, has a hit rate equal to a false alarm rate despite threshold variation 394 

(diagonal line). To identify ROC analysis with one coefficient, the area under the curve (AUC) may be 395 

used. The higher value of AUC results in better performance (0.5-means random, 1-excellent). 396 
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 406 

Figure 7. ROC graph with an example of classifier (blue). 407 

The confusion matrix and ROC analysis described above were defined for two class problems 408 

(positive, negative). There is a straightforward way to expand it for the multi-class problem. One 409 

needs to take a desired class versus all other classes. Then there is a possibility to compare how good 410 

the classifier for specific classes within one model is. 411 

4. Results 412 

4.2. ANN performance 413 

The first attempts were made to distinguish all substances using only one neural network model. 414 

The tests revealed that it is impossible due to the huge number of samples (48 aerosols) and only a 415 

few of them presented significantly different fluorescence spectra which allow accurate 416 

characterization. The remaining substances are then misclassified. Therefore, we decided to use a 417 

more practical approach to this problem, which would be to create several groups (considering 418 

information about aerosols), but we did not want to make any classes a priori. Although the 419 

demonstrated ANN type needs a training, which requires a set of known classes, further tests 420 

showed that there is a possibility to find similarities between substances through the analysis of 421 

confusion matrices. It was achieved after many trials of matching substances, which were not well 422 

separated, into new groups and checking if they are good enough on ROC graphs. Consequently, this 423 

procedure was also applied to those new groups. 424 

 425 

All examples demonstrated below were calculated on the test data sets, not training data. In the 426 

first presented network (Figure 8), which try to classify all of 48 substances (group 0), four aerosols 427 

reached very high accuracy of separation (AUC>0,9). The best separation was achieved for 428 

fluorescent microspheres (FM7). In this case 98.5% of all FM7 particles were correctly classified. 429 

Similarly,  an efficient separation was achieved for riboflavin (Rib), NT (Talc) and LCB (Lactobacillus 430 

bulgaricus). The remaining aerosols were divided into 3 separate groups that gather the most similar 431 

substances (group 1-3) (Table 3). The subsequent groups up to 21 represent individual ANNs leading 432 

to the final classification of the aerosol. In practice separation is done not by one confusion matrix 433 

(ANN) but by all of them in sequence (22 ANN’s combined in a decision tree). For example, if ANN 434 
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classifies unknown substance into any of 22 groups it means that decision process is not ended but 443 

from that moment another ANN classifies this substance. However, each new ANN is trained using  444 

only subsection of the data excluding the data from other groups. 445 

   446 

Table 3. Exemplary confusion matrix of all aerosols classified by the first ANN.  447 

 448 

    predicted 

    

FM7 Rib NT LCB group 3 group 1 group 2 

true 

FM7 98.5 0 0 0.3 0.1 0 1.1 

Rib 0.1 91 0.5 3.1 1.2 0.6 3.4 

NT 0 0.1 86.5 0 9.3 0.3 3.8 

LCB 1 1.6 0.6 72.7 3.9 10.7 9.5 

group 3 0 0.7 6.6 0.6 63.3 12 16.8 

group 1 0.2 1 1 7.9 12.5 61.6 15.8 

group 2 0.1 1.2 3.8 6.6 17.6 13.2 57.4 

 

 449 

Figure 8. (A) ROC and (B) error progress of ANN that classifies all samples.  450 

Table 4 and Figure 9 show results achieved for two substances that have very similar spectrum 451 

and calculated AUCs are not much higher than in a random classifier. This example clearly shows why 452 

we are not always able to classify each one particle of aerosol with 100% accuracy. However, just a 453 

representative number (several dozen) of measured particles (cloud) allows the proper prediction of 454 

aerosol types within a few seconds. This is easy to observe during real time detection, because 455 

counts allocated in confusion matrix tend to reach a stable state quite quickly. 456 

 457 

 

predicted 

BWF Cel 

true 
BWF 54.8 45.2 

Cel 45.6 54.4 

Table 4. Confusion matrix of two substances that have very similar spectra. 458 
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 468 

Figure 9. ROC (A) and error progress (B) of ANN that classifies two very similar samples. 469 

 470 

4.3. Classification tree 471 

Finally, to achieve the best possible classification, the decision tree was created (Figure 10). It 472 

comprises not one, but 22 models. It is difficult to present confusion matrices and ROC graphs for all 473 

neural networks in this paper; therefore, only the most interesting one has been discussed. Here, 474 

each node represents a network that classifies a group of aerosols. The aerosols on the left side of 475 

the diagram show the most distinct differences, thus they are easy to classify (Level 0). In the right 476 

direction (Level 1-5) this task is much more demanding due to similar spectrum and the separation is 477 

less probable in accordance to single particles, although it is still very useful from a practical point of 478 

view for aerosol cloud discrimination. 479 
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 484 
Figure 10. Decision tree consists of 22 ANN separating 48 substances. 485 

At first glance one could see that FM7 and Rib are very well recognized, but that was expected, 486 

because these are standards of fluorescence. Surprisingly, NT and LCB aerosols were also separated 487 

from the others (Level 0 network). Further analysis of the tree structure identifies a correlation 488 

between samples and their real categories, especially it is noticeable for Pollens, which are allocated 489 

on a separate branch of that tree and all stems from group 1. Most of them were classified on the 490 

third level. Interestingly all grass pollens (AAP, ATP, BGP, PPP) belong to the same group 6. Similarly, 491 
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both Lycopodium pollens from different regions of the word show close correlation, however Abies 493 

alba, which is a tree, was classified to the same group. Flours, Smut Spores and Papers are dispersed 494 

between different levels, but particular groups belong to the same branch of the tree. However, some 495 

of samples, are scattered on the whole tree area and do not correspond to any group. 496 

It should be noted that the result is a system of 22 ANNs that works simultaneously. In 497 

comparison to the training process, which is rather time consuming and has to be empirically 498 

optimized, this cluster of learned ANN’s delivers high performance. Input data is processed by a 499 

single ANN in milliseconds. This performance makes neural network a great tool as a splitting node in 500 

the classification tree. Comparing to our previous results, where Principal Component Analysis was 501 

applied to analyze data from BARDet (Kaliszewski et al., 2016), the ANN allowed much better 502 

discrimination between various bio-aerosols.  503 

5. Summary 504 

In this paper the possibility of an application of the Artificial Neural Network (ANN) for a real 505 

time classification of biological aerosols was investigated. The spectral characteristics of bio-aerosols 506 

were collected using the BARDet instrument. The database consisted of 48 substances. Finally, 22 507 

neural networks were trained  and combined into a decision tree. It allowed to characterize aerosols 508 

in real time. Tests revealed that only several substances have such characteristic fluorescence 509 

spectra that allows correct classification of almost each particle. However, in all other cases the 510 

system was able to recognize a particular aerosol accurately with no mistake, but a representative 511 

number of several dozens of particles in a cloud was necessary. Further approximation was based on 512 

decision tree analysis where each node corresponded to a separate learned ANN. The best sets of 513 

ANN’s for each group of similar aerosols were discovered utilizing confusion matrices and ROC 514 

analysis. Our intentions were to make a complete system which detects and classifies substances 515 

without creating groups a priori. This attitude helped to create a powerful analytical tool that works 516 

automatically and the results of classification are immediately available on the operator’s screen.  517 

This study proved that it is possible to create a tool for a highly effective analysis of bio-aerosols 518 

using multiple ANNs combined into decision tree. Our approach allowed  to automate and speed up 519 

an  analysis, which reduced time and the amount of needed computing power. In a future study the 520 

database will be extended to obtain possibly vast variety of samples including atmospherically 521 

relevant bacteria and fungi. In the next step, the actual performance of the system will be 522 

determined under real environmental conditions. 523 

 524 

Data availability: The experimental aerosol data can be provided upon request. The software for 525 

automatic data analysis cannot be commonly provided at this moment since it is a subject of 526 

negotiations with a company. 527 

 528 
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