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1. Abstract 15 

Air pollution has had an increasingly powerful impact on the everyday life of humans. Ever more 16 

people are aware of the health problems that may result from inhaling air which contains dust, 17 

bacteria, pollens or fungi. There is a need for real-time information about ambient particulate 18 

matter. Devices currently available on the market can detect some particles in the air but cannot 19 

classify them according to health threats. Fortunately, a new type of technology is emerging as a 20 

promising solution. 21 

Laser based bio-detectors are opening a new era in aerosol research. They are capable of 22 

characterizing a great number of individual particles in seconds by analyzing optical scattering and 23 

fluorescence characteristics. In this study we demonstrate the application of Artificial Neural 24 

Networks (ANNs) to real-time analysis of single particle fluorescence fingerprints acquired using 25 

BARDet (a Bio-AeRosol Detector). 48 different aerosols including pollens, bacteria, fungi, spores, and 26 

non-biological substances were characterized. An entirely new approach to data analysis using a 27 

decision tree comprising 22 independent neural networks was discussed. Applying confusion 28 

matrices and ROC analysis the best sets of ANNs for each group of similar aerosols was determined. 29 

As a result,  a very high accuracy of aerosol classification in real-time was achieved. It was found that 30 

for some substances that have characteristic spectra almost each particle can be properly classified. 31 

Aerosols with similar spectral characteristics can be classified specific clouds with high probability. In 32 

both cases the system recognized aerosol type with no mistakes.  33 

In the future, it is planned that performance of the system may be determined under real 34 

environmental conditions, involving characterization of fluorescent and non-fluorescent particles. 35 

2. Introduction 36 

Ambient air contains a variety of particles such as dust, bacteria, pollens, fungi and other 37 

particles of biological and non-biological origin (Pöhlker et al., 2013; Górny, 2004). Aerosols are 38 

involved in various atmospheric processessuch as ice nuclei formation, precipitation and global 39 

climate effects (Deguillaume et al., 2008; Fröhlich-Nowoisky et al., 2016; Gabey et al., 2010; Pósfai 40 

and Buseck, 2010; Fuzzi et al., 2015). They also greatly influence human health (Davidson et al., 2005; 41 

Pope and Dockery, 2006; Michaels, 2017; Shiraiwa et al., 2012). Therefore, the characterization of 42 

ambient air is important for estimating potential health hazards and environmental impact 43 

(Mauderly and Chow, 2008; Lim et al., 2005). Standard methods of aerosol composition assessment 44 

usually include microscopic inspection or molecular analysis of filters (Miaskiewicz-Peska and 45 

Lebkowska, 2012), tape or liquid trapped particles. Nevertheless, they suffer from low time 46 
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resolution due to periodical and relatively long analytical procedures. They are also ineffective for the 47 

detection of non-culturable microorganisms (Blais-Lecours et al., 2015; Trafny et al., 2014). 48 

The detection and classification of biological particles is possible using fluorescence techniques 49 

due to the presence of proteins, NADH, and some vitamins that emit light when excited with UV light 50 

(Lakowicz, 2006). This feature is utilized in single particle fluorescence detectors. In the flowing air 51 

each particle is characterized for size/shape using light scattering as well as fluorescence properties. 52 

This approach ensures continuous measurement and immediate response. Thus the analysis process 53 

can be facilitated and accelerated compared with other commonly used analytical procedures (Hill et 54 

al., 1999; Choi et al., 2014; Taketani et al., 2013; Feugnet et al., 2008). Besides advantages such as 55 

reagentless and real time particle characterization, the laser based methods do not provide 56 

information on the chemical composition of aerosol. 57 

Several studies using single particle fluorescence detectors have demonstrated that fluctuations 58 

of aerosol concentration and variations in its fluorescence properties are highly dependent on the 59 

season, day, time, location and place occupancy (Gabey et al., 2011; Huffman et al., 2010; Pinnick et 60 

al., 2004; Bhangar et al., 2014; Fennelly et al., 2017). Each single particle passing the instrument is 61 

labelled with a time stamp, scattering properties (size and/or shape) and fluorescence 62 

characteristics. It is obvious that continuous single particle measurements bring a new potential and 63 

quality to environmental research. However, particles of the same type and batch display slightly 64 

different spectral characteristics due to variations in biochemical composition, size, age of population 65 

(Agranovski et al., 2003), degradation (Hernandez et al., 2016) or stress level (Lee et al., 2010) and 66 

the particle position within the instrument’s interrogation point (Pan et al., 2011). Simpler statistical 67 

analyses, such as data averaging and graphical spectra representation, are not sufficient. Therefore, 68 

the huge amount of data and occurring spectral variations require more advanced algorithms 69 

supporting automatic data classification. Various analytical methods of particle discrimination and 70 

classification have been applied. It has been shown that Principal Component Analysis (PCA), Linear 71 

Discriminant Analysis (LDA), Hierarchical cluster Analysis (HCA) of fluorescence spectra greatly 72 

increase discrimination of particles compared with methods based on spectra averaging or 73 

fluorescence threshold (Leśkiewicz et al., 2016; Kaliszewski et al., 2013; Pan et al., 2012; Savage et al., 74 

2017; Crawford et al., 2015). Artificial neural networks (ANNs) comprise an emerging analytical 75 

approach that is becomeing more widely and successfully applied in various life domains such as 76 

chemical analysis (Borecki et al., 2008), image recognition (Antowiak and Chałasińska-Macukow, 77 

2003), data mining and weather forecasting (Purnomo et al., 2017). It has been shown that ANNs can 78 

be applied in bio-aerosol classification (Kohlus and Bottlinger, 1993). However, it usually requires 79 

more user input compared to other analytical procedures (Ruske et al., 2017).  80 

This paper focuses on the application of ANNs for real time discrimination of bio-aerosols based 81 

on single particle fluorescence characteristics. We demonstrate a new approach to data analysis 82 

using ANNs which allows automation of data preparation procedures and minimum user 83 

involvement.      84 

 85 

3. Materials and methods 86 

3.1. Experiment 87 

3.1.1. BioAeRosol Detector (BARDet) 88 

Detailed information concerning the construction and parameters of the instrument used for 89 

the experiments was presented in our previous work (Kaliszewski et al., 2016). In general, the 90 

ambient air is continuously drawn through the nozzle. It is focused with a sheath flow of filtered air. 91 
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Particles in the focused air pass through the BARDet’s chamber where they are interrogated by a 92 

16mW CW laser beam generated by a diode laser operating at 375 nm wavelength (CUBE, Coherent). 93 

The backward and forward scattered signals are detected with two PMTs (H6780, Hamamatsu) 94 

mounted at the 35oand 145o angles to the laser beam axis.  95 

The fluorescence of particles is measured at a 90o
 angle to the laser beam with 32 channel PMT 96 

(A10766, Hamamatsu). The longpass filter with cutting edge at 400 nm (Edmund Optics) separates 97 

the fluorescence signal from scattered light. The multichannel PMT measures fluorescence in 18 98 

active channels in a range of 415.4-643.5 nm. The channels are grouped in 7 bands. Such a solution 99 

extends the dynamic range of measured spectra and, assures a high S/N ratio, and also reduces the 100 

possibility of signal saturation. The remaining channels are not used. The band configuration is 101 

presented in Table 1. 102 

 103 
Table 1. Configuration of bands in the multichannel PMT. 104 

 105 

BARDet’s Fluorescence Bands Bandwidth [nm] 

B1 415.4 – 429.3 

B2 443.1 – 456.8 

B3 470.5 – 484.2 

B4 497.8 – 524.9 

B5 538.3 – 565.0 

B6 578.3 – 604.6 

B7 617.6 – 643.5 

 106 

3.1.2. Aerosols 107 

For the tests, dry powders of harmless substances were used since they did not need a 108 

specialized aerosol protection chamber. In order to achieve a reliable aerosol classification, the ANNs 109 

need to be trained possibly using a large number of measurement data. Therefore, various particle 110 

types, that can be easily aerosolized, were tested.  Samples such as pollens, fungi, bacteria, spores 111 

and plant debris naturally occur in the atmosphere. Biofluororphores such as riboflavin, cellulose, 112 

amino acids and proteins were also characterized since they are present in biological materials. The 113 

group of bacterial growth media was investigated due to their powerful influence on bacteria 114 

fluorescence especially if they are not sufficiently washed. This can occur in the case of intentionally 115 

released bacterial aerosols. Due to technical limitations, samples other than pharmaceutical could 116 

not be aerosolized in this study. The aerosols of flours, and fluorescent non-biological substances 117 

such as paper dust, AC fine Test Dust and talc were analyzed since they can occur especially in indoor 118 

and public places. Non-fluorescent particles were not a subject of the research since they can be 119 

automatically discarded as non-biologically applying given fluorescence thresholds.  120 

The samples used for this study are listed in Table 2. To perform numerous experiments, 121 

disposable vials were used, one for each aerosol sample. This prevented cross contamination 122 

between measured samples. The aerosols were generated from modified 50 ml Falcon tubes placed 123 
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on the vortex. The vials in the lower part contained two connectors for silicon tubes. Vortexed 124 

particles were entrained and formed an aerosol cloud inside the Falcon tube. The aerosolized 125 

particles were aspirated from the vial to BARDet’s aerosol inlet. Each tube contained about 50 mg of 126 

the dry powder sample. During aerosol generation, filtered air was supplied into the vial to 127 

compensate for the BARDet’s flow. The concentration of the aerosols was adjusted with vibration 128 

frequency of the vortex. The measurement started after the aerosol reached a homogeneous 129 

concentration. The experimental setup is shown in Figure 1.  130 

 131 

Table 2. List of all substances used in the experiment.  132 

 133 
 Abbreviation Name Size  [µm] AF Source Group 

1 FM 
Fluoromax green 
fluorescent 7 um 
microspheres  6.25±0.91 0.92±0.02 

Thermo scientific standard 1 

2 RIB Riboflavin 2.22±1.82 0.88±0.09 Sigma-Aldrich standard 2 

3 BGP 
Cynodon dactylon 

(Bermuda grass)  28.35±0.6 0.97±0.01 
Duke Sci. Corp. 

pollens 

4 CP Zea mays (Corn)  78.13±1.22 0.95±0.01 Duke Sci. Corp. 

5 CA 
Corylus avellana 
(Common hazel) 27.71±1.33 0.67±0.04 

(*OC) 

6 LP Lycopodium  30.67±1.2 0.94±0.01 Fluka 

7 PPP 
Poa pratrensis 
(Kentucky 
bluegrass)  30.62±0.87 0.94±0.01 

Sigma-Aldrich 

8 RP 
Ambrosia 
(Ragweed) 19.48±0.78 0.99±0.01 

Duke Sci. Corp. 

9 SCP Secale cereale (Rye) 44.8±2.01 0.94±0.01 Sigma-Aldrich 

10 SP Picea (Spruce)  70.09±4.16 0.88±0.02 (*OC) 

11 AA 
Abies alba (Silver 
fir) 84.56±12.77 0.92±0.02 

(*OC) 

12 UDP 
Urtica dioica 
(Common nettle)  14.99±1.26 0.9±0.05 

(*OC) 

13 PSP 
Pinus sylvestris 
(Scots pine) 39.29±1.44 0.93±0.02 

(*OC) 

14 PNP 
Pinus nigra (Black 
pine) 44.97±1.33 0.88±0.03 

(*OC) 

15 LPP 
Lycopodium  
(Poland)  28.66±0.6 0.95±0.01 

(*OC) 

16 PMP 
Broussonetia 
papyrifera (Paper 
mulberry ) 13.57±0.88 0.94±0.04 

Duke Sci. Corp. 

17 ATP 
Artemisia tridentata 
(Big Sagebrush) 22.53±0.42 0.96±0.01 

Sigma-Aldrich 

18 AAP 
Artemisia 
absynthium 
(Wormwood) 18.37±1.51 0.96±0.02 

Sigma-Aldrich 

19 CPP Chenopodium  27.29±0.97 0.98±0.01 (*OC) 

20 BWF Buck wheat flour 
25.17±15.76 0.82±0.06 

MELVIT Poland 
(*RS)  

flours 

21 PF Potato flour 
21.23±3.11 0.96±0.03 

KUPIEC Poland 
(*RS)  
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22 RF Rice flour 
18.22±6.23 0.6±0.07 

MELVIT Poland 
(*RS)  

23 TF Tapioca flour 
12.91±3.41 0.7±0.06 

COCK BRAND 
(*RS)  

24 WF Wheat flour 
20.57±4.36 0.62±0.07 

MELVIT Poland 
(*RS)  

25 Trp Tryptophan 15.42±8.96 0.81±0.08 Sigma-Aldrich 

amino acids 
and 

proteins 

26 Phe Phenylalanine 10.41±5.31 0.73±0.11 Sigma-Aldrich 

27 BSA 
Bovine Serum 
Albumin 63.8±30.49 0.43±0.05 

POCH Poland 

28 OVA Ovalbumin 26.45±5.31 0.83±0.07 POCH Poland 

29 AMBAMB 

Bif. animalis, S. 
boulardii, S. 
thermophilus, 
L. casei, L. 
bulgaricus 27.97±4.42 0.84±0.03 

AMBIO Probiotyk, 
Lab. Galenowe 
Poland (*P)  

bacteria in 
medium 30 LCB 

Lactobacillus 
bulgaricus 51.16±19.33 0.68±0.08 

LakciBios, ASA 
Poland (*P)  

31 LF 
Bifidobacterium 
animalis, L. 
acidophilus 

32.62±8.45 0.82±0.07 

Linex forte, LEK 
Pharmaceuticals 
d.d. Slovenia 

(*P)  

32 BA Bacteriological Agar 49.47±10.03 0.74±0.07 Sigma-Aldrich 

medium 
33 BAB Blood Agar Base 18.78±2.11 0.71±0.12 Sigma-Aldrich 

34 LB Luria broth 15.11±6 0.67±0.07 Sigma-Aldrich 

35 NB Nutrient broth 42.67±9.21 0.69±0.03 Sigma-Aldrich 

36 BTSTG 
Bacillus 
thuringiensis spores 
technical grade 7.13±5.95 0.72±0.12 

 Agricultural 
Bacterial 

spore with 
admixtures 

37 SB 
Saccharomyces 
boulardii 57.82±7.56 0.69±0.05 

Enterol, Biocodex 
France (*P)  fungi with 

admixtures 
38 SC 

Saccharomyces 
cerevisiae 21.33±5.55 0.76±0.07 

Dr. Oetker 
Germany (*RS)  

39 LS Lycoperdon spores 
14.52±0.62 0.92±0.02 

(*OC) 
fungal 
spores 

40 JGSS 
Johnsons grass 
smut spores 6.91±0.34 0.98±0.02 

Duke Sci. Corp. smut spore 
(fungal 
spore) 41 BGSS 

Bermuda grass smut 
spores 6.47±0.27 0.97±0.02 

Duke Sci. Corp. 

42 ACFTD AC Fine Test Dust 3.47±2.34 0.87±0.09 Duke Sci. Corp. 

other 

43 NT Nivea talc 14.33±4.71 0.77±0.09 Nivea Baby (*RS)  

44 PPD Printer paper dust 

76.37±18.89 0.43±0.11 

XEROX Laserprint 
collected from 
paper shredder 
 (*RS)  

45 PTD Paper towel dust 

73.45±25.65 0.56±0.15 

Merida Poland 
collected from 
crushed towel 
(*RS)  

46 CIN Cinnamon 
23.97±4.39 0.78±0.05 

Kamis Poland 
(*RS)  

47 CEL Celulose 82.86±14.28 0.25±0.04 Sigma-Aldrich 



6 
 

48 GGL 
Ground Green 
Leaves 18.03±4.3 0.77±0.09 

Dried and ground 
Oak (*OC) 

 134 

*OC – pollens collected from trees, flowers and grass at the region of Warsaw during vegetative 135 

seasons in 2015 and 2016.  136 

*RS – Regular shops in Warsaw where common goods are purchased. 137 

*P – Pharmacy shops in Warsaw 138 

 139 

 140 
Figure 1.  Setup of aerosol generation, data recording and analysis.  141 

 142 

3.1.3. Aerosol microscopy 143 

For microscopy analysis the aerosols were generated as described above and collected by 144 

impaction on a glass microscopic slide. The visualization of the samples was performed using a Nikon 145 

Eclipse Ti-U microscope with 10x objective. The images were recorded with a 5-megapixel DS-Fi1 146 

camera. The aerosol equivalent diameters and circularity were analyzed automatically using NIS-147 

Elements 64bit 3.22.10 software. The threshold of particle outline was corrected manually to obtain 148 

the visually best fit.  149 

 150 

3.1.4. Data acquisition method and pre-processing 151 

The fluorescence of each particle was recorded in 7 bands. This creates a time series of the 152 

signals which has to be pre-processed before further analysis. There are two steps in gathering data. 153 

The first one is performed by the internal BARDet’s software which is responsible for controlling the 154 

instrument and the acquisition of raw signals. Then data is forwarded to a pre-processing module in 155 

the analysis software. Its first task is to extract valuable signals from the noise (three sigma rule). 156 

After that a normalization procedure is required. It is performed first by subtracting the average value 157 

of the signal and then normalizing it to its standard deviation. The main goal was to analyze the shape 158 

of the emission spectrum (not signal strength). An example visualization of input data is shown in 159 

Figure 2.  160 

The data acquisition process started after the stabilization of the aerosol generation rate which 161 

was measured by the device.  It was important not to exceed one particle per 2 ms of data integration 162 

BARDet - real time data 
collection and analysis

External computer - data presentation

Aerosol inlet

Aerosol

Filtered air

Vortex - fast vibration
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time in a 20 us measurement window. Finally, a total of 114,779 spectral characteristics of 48 163 

aerosols was gathered, which gives on average 2391 (standard deviation 437) fluorescence 164 

characteristics per substance. From the recorded data 80% was used as a training data set and 20% as 165 

a test data set. 166 

 167 

 168 

 169 

 170 

Figure 2.  Example, normalized 50 subsequent fluorescence characteristics of NT (A), FM (C) and 171 

LCB (E) and corresponding averaged normalized intensities of NT (B), FM (D) and LCB (F). Error bars 172 

represent standard deviation of measurements. 173 

 174 

3.2. Data analysis 175 

3.2.1. ANN (Artificial Neural Network) 176 

3.2.1.1. Basics 177 

 178 
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There are many types of Artificial Neural Networks (ANNs), but in this paper only the 179 

backpropagation algorithm is demonstrated because it is one of the most practical ones. The main 180 

concept of this algorithm is based on a model of the neuron that has two tasks. It aggregates signals 181 

(1) and then processes them by an activation function (2), which, in this research, is a sigmoid. The 182 

result of such single processing is a new signal 𝑧𝑗 propagated to other neurons (Figure 3). 183 

 184 
Figure 3.  Mathematical model of single neuron cell. 185 

 186 

 𝑎𝑗 = ∑ 𝑤𝑗𝑖𝑧𝑖

𝑖

 (1) 

 187 

𝑎𝑗- aggregated signal, 𝑤𝑗𝑖- weight that connects neuron i with j, 𝑧𝑖- signal (input).   188 

 189 

 
𝑔(𝑎𝑗) =

1

1 + 𝑒−𝛽𝑎𝑗
 

(2) 

 190 

𝑔(𝑎𝑗) – sigmoidal function, 𝛽- parameter (steepness) of sigmoid curve. 191 

 192 

The structure of a neural network is formed by layers of neurons: input, hidden and output. In 193 

this research input neurons constitute a fluorescence spectrum and output neurons represent 194 

substances. Most computations are carried out in the hidden layers (no more than two layers were 195 

examined). The schematic representation of neuron layers is presented in Figure 4.  196 

 197 
Figure 4. Typical topology of an artificial neural network.  198 

 199 

The described algorithm constitutes the supervised learning method that requires training data 200 
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for a teaching process. This allows one to calculate an error between the target shown and the ANN 201 

response. Every problem is related to minimizing output error which is calculated as Mean Squared 202 

Error (3). 203 

 
𝐸 =

1

2
∑(𝑦𝑘 − 𝑡𝑘)2

𝑐

𝑘=1

 
(3) 

E – Mean Squared Error, 𝑡𝑘- observed value (target), 𝑦𝑘- calculated response, k-output neuron, c – 204 

number of output neurons. 205 

The gradient descent method is used to find a minimum of error function. Error is dependent on 206 

network weights 𝛥𝑤𝑗𝑖 which might be adjusted (4). In order to update weights correctly, firstly one 207 

needs to propagate error backwards by calculating partial derivatives 𝛿𝑗  (5) (Figure 5). All 208 

mathematical details are well described by C. M. Bishop (Bishop, 1995). 209 

 210 

Figure 5. Model of backward error propagation. 211 

 𝛥𝑤𝑗𝑖(𝑡) = −𝜂𝛿𝑗𝑧𝑖 + 𝑚𝛥𝑤𝑗𝑖(𝑡 − 1) (4) 

𝜂- learning rate, m - momentum, t - iteration.  212 

 213 

𝛿𝐸

𝛿𝑤𝑗𝑖
=

𝛿𝐸

𝛿𝑎𝑗

𝛿𝑎𝑗

𝛿𝑤𝑗𝑖
= 𝛿𝑗𝑧𝑖  

 

𝛿𝑗 = 𝑔′(𝑎𝑗) ∑ 𝑤𝑘𝑗𝛿𝑘

𝑘

 

 

(5) 

The learning rate factor determines the size of the steps while the momentum parameter 214 

enables the local minimum to be omitted by adding a fraction of the weight correction from the last 215 

step.  216 

After the correction of all weights of the ANN, the output error is examined, and the procedure 217 

starts again unless an error level is low enough and there is no overfitting. All data are divided into 218 

three different sets: training, test and validation. For calculations during the learning process, only 219 

the first two are used. In order to determine whether it is time to stop the teaching process, one has 220 

to observe an error in the test set. There will be a moment when this error comes to be constant or 221 

starts increasing due to the overfitting of training data (Figure 6). The validation data set may be 222 

useful for comparing different models or just to verify the current model on a completely separate 223 

set of data.  224 
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 225 

Figure 6. Example of error minimizing during the training process. 226 

3.2.1.2. Implementation of ANN for BARDet 227 

There are statistical commercial software packages available that provide ANN modules as one 228 

of the methods to analyze the data. It is worthwhile noting that customized software was developed 229 

for this research. This approach helped us to understand ANNs in depth and led to the development 230 

of software that is not only responsible for data pre-processing and network training, but also 231 

(mainly) for solving a real time classification problem.  232 

Ruske et al. in their studies (Ruske et al., 2017) compared various algorithms to analyze single 233 

particle data and noted that an ANN requires much more user input. However, we present a method 234 

to overcome this inconvenience by automating the process and implementing procedures which 235 

simplify and improve the analysis.  236 

The main disadvantage of an ANN is the fact that it is a parametrized algorithm. How well it 237 

works depends strictly on a proper choice of the best possible factors, which may be different for 238 

each problem. There are two types of factors that influence the ANN outcome. The first one 239 

corresponds to the architecture of the ANN which comprises a number of layers, neurons and an 240 

activation function parameter. The second one determines the learning process: momentum and 241 

learning rate. The latter can be tuned during the learning process to make it much faster. The “bold 242 

driver” procedure was chosen for that purpose. It continuously increases the learning rate unless an 243 

error is higher from that before the change. If it is, the algorithm radically decreases the learning rate 244 

and obtains weights from the last step again. Teaching an ANN is a stochastic process initiated by 245 

using randomly chosen initial weights. It was found that the best procedure for this investigation 246 

would be to conduct all optimization processes that way. Therefore, the parameters of the ANN, 247 

responsible both for structure and learning process, are randomly selected until the desired result is 248 

reached. In fact, the calculations are carried out automatically and simultaneously for several models 249 

by means of multi core-oriented software. The benefits of this approach are time saving and high 250 

levels of efficiency and effectiveness in finding the best model. The latter is especially important, 251 

because the goal is to create a model that produces the best results, which doesn’t necessary mean 252 
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creating a more complicated network (more neurons or layers). 253 

3.2.2. Model evaluation 254 

The main goal of the analysis described in this paper is to find a solution to the bio-aerosol 255 

classification problem. When a training process ends, a final model is created, a network, which has a 256 

unique structure and a set of weights. One can create many of them and make a comparison only by 257 

using the final error. It is not the best solution, because the goal is to distinguish patterns in data 258 

consistently, not to produce a network with a minimal error. That is why there is a need to make a 259 

final analysis of the results and evaluate the model in accordance with the best classification 260 

performance. 261 

The standard method for visualization of results is a confusion matrix which will be necessary for 262 

Receiver Operating Characteristics (ROC) analysis (Fawcett, 2006). It simply shows what fraction of 263 

population for each class is predicted correctly or not. Each element from the data set is assigned to 264 

one of the following fits of the confusion matrix: True Positive (TP), True Negative (TN), False 265 

Negative (FN) and False Positive (FP). If it belongs to TP and TN, it was classified correctly. 266 

The ROC graphs are very simple but useful tools for discovering whether a classifier is worth 267 

using or if it makes a random classification. It is based on two rates from the confusion matrix: hit 268 

rate (6) and false alarm rate (7). 269 

 

ℎ𝑖𝑡 𝑟𝑎𝑡𝑒 (𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒)

=
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(6) 

 270 

 

𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚 𝑟𝑎𝑡𝑒 (𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒)

=
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

 

(7) 

Each discrete classifier has a threshold level that assigns an element to a positive or negative 271 

class. The points on the ROC graph (Figure 7) represent the classifier for many thresholds. The most 272 

desirable curve will be obtained when the true positive rate is high, and the false positive rate is low 273 

(convex line).  The random classifier, in turn, has a hit rate equal to a false alarm rate despite 274 

threshold variation (diagonal line). To identify an ROC analysis with one coefficient, the area under 275 

the curve (AUC) may be used. The higher value of AUC results in better performance (0.5 means 276 

random, 1 - excellent). 277 
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 278 

Figure 7. ROC graph with an example of classifier (blue). 279 

The confusion matrix and ROC analysis described above were defined for two class problems 280 

(positive, negative). There is a straightforward way to expand it for multi-class problems. One needs 281 

to take a desired class versus all other classes. Then it will be possible to compare how good the 282 

classifier for specific classes within one model is. 283 

4. Results 284 

4.2. ANN performance 285 

The first attempts were made to distinguish all substances using only one neural network model. 286 

The tests revealed that it is impossible due to the huge number of samples (48 aerosols) and only a 287 

few of them presented significantly different fluorescence spectra which allow accurate 288 

characterization. The remaining substances are then misclassified. Therefore, we decided to use a 289 

more practical approach to this problem, which would be to create several groups (considering 290 

information about aerosols), but we did not want to make any classes a priori. Although the ANN 291 

type demonstrated needs training, which requires a set of known classes, further tests showed that 292 

there is a possibility of finding similarities between substances through the analysis of confusion 293 

matrices. It was achieved after many trials of matching substances, which were not well separated, 294 

into new groups and checking if they are good enough on ROC graphs. Consequently, this procedure 295 

was also applied to those new groups. 296 

 297 

All examples demonstrated below were calculated on the test data sets, not training data. In the 298 

first presented (Figure 8), which tries to classify all of the 48 substances (group 0), four aerosols 299 

reached a very high accuracy of separation (AUC>0,9). The best separation was achieved for 300 

fluorescent microspheres (FM). In this case 98.5% of all FM particles were correctly classified. 301 

Similarly, an efficient separation was achieved for riboflavin (RIB), Talc (NT) and Lactobacillus 302 

bulgaricus (LCB). The remaining aerosols were divided into 3 separate groups that gather the most 303 

similar substances (group 1-3) (Table 3). The subsequent groups up to 21 represent individual ANNs 304 

leading to the final classification of the aerosol. In practice separation is done not by one confusion 305 

matrix (ANN) but by all of them in sequence (22 ANNs combined in a decision tree). For example, if 306 
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an ANN classifies unknown substance into any of 22 groups it means that decision process is not 307 

ended but from that moment another ANN classifies this substance. However, each new ANN is 308 

trained using only a subsection of the data excluding the data from other groups. 309 

   310 

Table 3. Exemplary confusion matrix of all aerosols classified by the first ANN.  311 

 312 

    predicted 

    

FM RIB NT LCB group 3 group 1 group 2 

true 

FM 98.5 0 0 0.3 0.1 0 1.1 

RIB 0.1 91 0.5 3.1 1.2 0.6 3.4 

NT 0 0.1 86.5 0 9.3 0.3 3.8 

LCB 1 1.6 0.6 72.7 3.9 10.7 9.5 

group 3 0 0.7 6.6 0.6 63.3 12 16.8 

group 1 0.2 1 1 7.9 12.5 61.6 15.8 

group 2 0.1 1.2 3.8 6.6 17.6 13.2 57.4 

 

 313 

Figure 8. (A) ROC and (B) error progress of ANN that classifies all samples.  314 

Table 4 and Figure 9 show results achieved for two substances that have a very similar spectrum 315 

and the AUCs calculated are not much higher than in a random classifier. This example clearly shows 316 

why we are not always able to classify every single particle of aerosol with 100% accuracy. However, 317 

just a representative number (several dozen) of measured particles (a cloud) allows the proper 318 

prediction of aerosol types within a few seconds. This is easy to observe during real time detection, 319 

because counts allocated in a confusion matrix tend to reach a stable state quite quickly. 320 

 321 

 predicted 

 BWF CEL 

true 
BWF 54.8 45.2 

CEL 45.6 54.4 

Table 4. Confusion matrix of two substances that have very similar spectra. 322 
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 323 

Figure 9. ROC (A) and error progress (B) of ANN which classify two very similar samples. 324 

 325 

4.3. Classification tree 326 

Finally, to achieve the best possible classification, a decision tree was created (Figure 10). It 327 

comprises not one, but 22 models. The process of creating them is not replicable in terms of the 328 

exact factors used for ANN generation. However, this is not essential, because the decision tree is 329 

based on ANN results (classification ability), which should be possibly the highest. Therefore, the final 330 

result will be the same. It is difficult to present confusion matrices and ROC graphs for all neural 331 

networks in this paper. Therefore, only the most interesting one has been discussed. Here, each node 332 

represents a network that classifies a group of aerosols. The aerosols on the left side of the diagram 333 

show the most distinct differences, thus they are easy to classify (Level 0). On the right side (Level 1-334 

5), this task is much more demanding due to a similar spectrum and the separation is less probable in 335 

accordance with single particles, although it is still very useful from a practical point of view for 336 

aerosol cloud discrimination. 337 
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 338 
Figure 10. The decision tree consists of 22 ANNs separating 48 substances. 339 

At first glance one can see that FM and RIB are very well recognized, but that was expected 340 

because these are standards of fluorescence. Surprisingly, NT and LCB aerosols were also separated 341 

from the others (level 0 network). Further analysis of the tree structure identifies a correlation 342 

between samples and their real categories. It is especially noticeable for pollens, which are allocated 343 

to a separate branch of that tree, and all stems from group 1. Most of them were classified on the 344 

third level. Interestingly all grass pollens (AAP, ATP, BGP, PPP) belong to the same group, 6. Similarly, 345 
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both Lycopodium pollens from different regions of the word show a close correlation, although Abies 346 

alba, which is a tree, was classified in the same group. Flours, Smut Spores and Papers are dispersed 347 

between different levels, but particular groups belong to the same branch of the tree. However, some 348 

of the samples are scattered on the whole tree area and do not correspond to any group. 349 

It should be noted that the result is a system of 22 ANNs that work simultaneously. In 350 

comparison to the training process, which is rather time consuming and has to be empirically 351 

optimized, this cluster of learned ANNs delivers high performance. Input data is processed by a single 352 

ANN in milliseconds. This performance makes the neural network a great tool as a splitting node in 353 

the classification tree. Compared to our previous results, where Principal Component Analysis was 354 

applied to analyze data from BARDet (Kaliszewski et al., 2016), the ANNs allowed much better 355 

discrimination between various bio-aerosols.  356 

5. Summary 357 

In this paper the possibility of applying an Artificial Neural Network (ANN) for real time 358 

classification of biological aerosols was investigated. The spectral characteristics of bio-aerosols were 359 

collected using the BARDet instrument. The database consisted of 48 substances. Finally, 22 neural 360 

networks were trained and combined into a decision tree. This allowed aerosols to be 361 

characterizedin real time. Tests revealed that only certain substances have such characteristic 362 

fluorescence spectra that allow correct classification of almost each particle. However, in all other 363 

cases the system was able to recognize a particular aerosol accurately with no mistake, but a 364 

representative number of several dozens of particles in a cloud was necessary. Further 365 

approximation was based on decision tree analysis where each node corresponded to a separate 366 

learned ANN. The best sets of ANNs for each group of similar aerosols were discovered utilizing 367 

confusion matrices and ROC analysis. Our intention was to make a complete system which detects 368 

and classifies substances without creating groups a priori. This attitude helped us to create a 369 

powerful analytical tool that works automatically, and the results of classification are immediately 370 

available on the operator’s screen.  371 

This study proved that it is possible to create a tool for a highly effective analysis of bio-aerosols 372 

using multiple ANNs combined into a decision tree. Our approach allowed us to automate and speed 373 

up the analysis, which reduced time and the amount of computing power needed. In a future study 374 

the database will be extended to obtain potentially a vast variety of samples including 375 

atmospherically relevant bacteria and fungi. In the next step, the actual performance of the system 376 

will be determined under real environmental conditions, which will be most challenging due to the 377 

presence of unknown fluorescent and non-fluorescent particles.  378 

 379 

Data availability 380 

he experimental aerosol data can be provided upon request. The software for automatic data 381 

analysis cannot be publicly provided at this moment since it is a subject of negotiations with a 382 

company. 383 
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