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Abstract. The CNES/DLR project MERLIN is a future IPDA lidar satellite mission that aims at measuring methane dry-air 

mixing ratio columns (����
) in order to improve surface flux estimates of this key greenhouse gas. To reach a 1 % relative 10 

random error on ����
 measurements, MERLIN signal processing performs an averaging of data over 50 km along the satellite 

trajectory. This article discusses how to process this horizontal averaging in order to avoid the bias caused by the non-linearity 

of the measurement equation and measurements affected by random noise and horizontal geophysical variability. Three 

averaging schemes are presented: averaging of columns of ����
, averaging of columns of Differential Absorption Optical 

Depth (DAOD) and averaging of signals. The three schemes are affected both by statistical and geophysical biases that are 15 

discussed and compared and correction algorithms are developed for the three schemes. These algorithms are tested and their 

biases are compared on modeled scenes from real satellite data. To achieve the accuracy requirements that are limited to 0.2 

% relative systematic error (for a reference value of 1780 ppb), we recommend performing the averaging of signals corrected 

from the statistical bias due to the measurement noise and from the geophysical bias mainly due to variations of methane 

optical depth and surface reflectivity along the averaging track. The proposed method is compliant with the mission relative 20 

systematic error requirements dedicated to averaging algorithms of 0.06 % (±1 ppb for ����
= 1780	ppb) for all tested scenes 

and all tested ground reflectivity values. 

1 Introduction 

Methane (CH4) is the second most important anthropogenic greenhouse gas after carbon dioxide (CO2) (IPCC, 2013). Despite 

its key role in global warming there are still uncertainties in the cause of the observed large fluctuations in the growth rate of 25 

atmospheric methane. Measuring atmospheric CH4 concentration on a global scale with both high precision and accuracy is 

necessary to improve the surface flux estimate and thus, develop the knowledge of the global methane cycle (Kirschke et al., 

2013; Saunois et al., 2016). 

The Methane Remote Sensing Lidar Mission (MERLIN - website: https://merlin.cnes.fr/) is a joint French and German space 

mission with a launch scheduled for 2024 (Ehret  et al., 2017). This mission is dedicated to the measurement of the integrated 30 
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methane dry-air volume mixing ratio (����
). The German Space Agency (DLR) is responsible for the payload while the French 

Space Agency (CNES) is responsible for the platform (MYRIADE Evolution product line). The Payload Data Processing 

center is under CNES responsibility with significant contribution from DLR.  

MERLIN’s active measurement is based on a space-borne Integrated Path Differential Absorption (IPDA) lidar. Just like a 

Differential Absorption Lidar (DIAL), MERLIN’s IPDA lidar uses the difference in transmission between an on-line pulse 5 

with a frequency accurately set in the trough of several CH4 absorption lines and an off-line pulse whose wavelength has a 

negligible CH4 absorption (Ehret et al., 2008). Furthermore, the two wavelengths are set close enough in such a way that the 

differential effects of any other interaction, excluding CH4 absorption, are minimized. Figure 1 shows the positioning of the 

two wavelengths. However, unlike a DIAL, MERLIN’s IPDA lidar provides the column content of a specific trace gas along 

the line of sight and not the range resolved profile of CH4. This column integrated methane mixing ratio can be retrieved from 10 

the return signals after they are backscattered on a hard target such as the surface of the Earth or dense clouds. The much 

higher backscatter signal from these targets allows for a system with a relatively small power-aperture product as compared to 

a DIAL which has to rely on atmospheric backscatter. 

The MERLIN measurements require a well-defined processing that ensures the final performance of the mission. The 

processing chain is divided into four levels. Level 0 (L0) consists of raw data (backscattered signals and auxiliary data), level 15 

1 (L1) processes the vertically resolved products and the Differential Absorption Optical Depth (DAOD) values for both 

individual calibrated signal shot pairs and for a horizontal averaging window. Level 2 (L2) computes the ����
 for both 

individual calibrated signal shot pairs and for a horizontal averaging window, additionally using operational analyses from 

Numerical Weather Prediction (NWP) centers. Note that in the presence of clouds, two products are provided, the first one 

that computes the average for clear-sky shot only, and the other one that averaged all shots. Finally, level 3 (L3) produces ����
 20 

maps using a Kalman filter approach (Chevallier et al., 2017).  

To reach a usable precision, space-borne IPDA lidar missions often require an averaging of measurements along the orbit’s 

ground track (Grant et al. 1988). This process of averaging data horizontally is a general concern for IPDA lidar missions. The 

data processing of the NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) mission 

considers averaging of multiple lidar measurements along track over 10 seconds (70 km with no gaps) to reduce the random 25 

error on the carbon dioxide mixing ratio: ����
 (Jucks et al., 2015). Likewise, MERLIN’s averaging process is included into 

L1 and L2 algorithms in order to reduce the relative random error (RRE) of DAOD and ����
 (Figure 2). For the MERLIN 

mission, measurements are averaged over a nominal window length of 50 km corresponding to about 150 shot pairs to reach 

a RRE of approximately 20 ppb. 

The non-linearity of the equation relating calibrated signals and DAOD in combination with both the statistical noise inherent 30 

to any measurement and the varying geophysical quantities (altitude, pressure, reflectivity) of the sounded scene increase the 

relative systematic error (RSE or bias) and impairs measurement accuracy. Werle et al. (1993) describes RRE reduction when 

averaging signal using the concept of Allan variance. Up to an optimal integration time, measurement variance reduces because 
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the measurement is dominated by white noise. For greater integration times, the estimation is biased due to drifts inherent to 

the measurement systems. The aim of the present article is not to correct biases caused by real system drift but to correct biases 

that are caused by the non-linearity of the IPDA lidar measurement equation.  

MERLIN must reach an unprecedented precision and accuracy on ����
 with a targeted relative random error (RRE) of 1 % 

(18 ppb). The targeted RSE must remain under 0.2 % (±3 ppb) in 68 % of cases, a limited budget of 0.06 % (±1 ppb for a ����
 5 

of 1780 ppb) is allocated to biases introduced by averaging algorithms with algorithms to correct these averaging biases. To 

reach the RRE target, the level 1 and 2 of MERLIN’s signal processing requires a horizontal averaging of data over 50 km 

along track (Kiemle et al., 2011). Thus, the single shot on-line and off-line random error is reduced by a factor of √150 ≈ 12. 

For instance, for the typical target reflectivity (0.1), the on-line and off-line signal to noise ratios are of the order of 6.1 and 

16.5 respectively (resp.) and the equivalent SNRs for the averaged signals are resp. 79.6 and 197.2. This process greatly 10 

decreases the RRE of the ����
. 

Section 2 gives an overview of the IPDA measurement and MERLIN data processing. Section 3 defines and compares biases 

of several averaging schemes (described below) and suggests correction algorithms. Section 4 presents a comparative 

evaluation of these averaging schemes and associated bias correction procedures using modeled scenes based on real satellite 

data. And finally, in section 5, the results of the simulation are described and a "best approach" algorithm (i.e. the least biased 15 

on tested scenes) is proposed for MERLIN processing chain. 

2 Overview of IPDA measurement and the MERLIN processing chain 

2.1 IPDA measurement 

MERLIN active measurement is based on a short pulse Integrated Path Differential Absorption (IPDA) lidar. The column 

content of methane between the satellite and the “hard” target (ground, vegetation, clouds...) is retrieved by measuring the 20 

light that is reflected by the scattering surface which is illuminated by two laser pulses with a slight wavelength difference. 

Figure 2 schematically shows the principle of the nadir-viewing space-borne lidar MERLIN. The pulse-pair repetition rate is 

20 Hz and the sampling distance is 350 m considering a ground spot velocity of about 7 km/s. The on-line and off-line ground 

spots are separated by about 2 m which is negligible compared to the ground diameter of the spots of about 100 m (90 % 

encircled energy). Shot-pairs will be averaged over a 50 km window (about 150 shots pairs). The on-line wavelength ��� 25 

(1645.552 nm; 6076.998 cm-1) is positioned in the trough of one of the methane absorption line multiplets whereas the off-line 

wavelength ���� (1645.846 nm; 6075.903 cm-1), which serves as reference, is positioned such that that the methane absorption 

is negligible (Figure 1). Both wavelengths are close enough so that interactions with the ground and the atmosphere and 

instrumental response can be considered identical, notably for reflectivity, which is defined as the ratio of the power reflected 

toward the satellite receiver to that incident on the “hard” target. The difference is thus mostly sensitive to the difference in 30 

methane absorption. 
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2.2 MERLIN processing chain 

When the off-line and on-line radiation reach the photodetector (Avalanche Photo Diode), it is converted to photo-electrons 

and to an electrical current. The measured raw signal obtained is the sum of the lidar signal and a background signal that is 

produced by background light, detector dark current and electronic offset. This background signal must be estimated to be 

removed from the raw signal. In the presence of measurement noise, when the SNR is low, this process of background signal 5 

removal can lead to a negative estimated lidar signal. 

For the sake of conciseness, we introduce for any variable � the notation ���,��� that represents interchangeably the on-line or 

off-line variables ���  or ���� . Measuring the on-line and off-line pulse energies denoted ���,���  (resp. ���  or ���� ), it is 

possible to compute the DAOD of methane, and then, retrieve ����
 for the sounded column. We denote ���,���  the 

measurements after normalization by the laser pulse energies, denoted ���,���, and range � which is the distance from satellite 10 

to reflective target: 

���,��� =
���,���⋅��

���,���  .           (1) 

The quantity ���,��� will be referred to as calibrated signals in the following sections of the present article. The DAOD used 

in this study, in which contribution of other gas are neglected, is denoted � and is computed as (2): 

� =
�

�
⋅ ln �����

���� = −
�

�
⋅ ln(��) ,          (2) 15 

where �� is the relative two-way transmission. From �, we can derive ����
 from Eq. (3) (Ehret et al., 2008 ; Kiemle et al., 

2011): 

����
=

�

���
=

∫ ������(�)⋅��(�,�)⋅��
�
�����

∫ ��(�,�)⋅��
�
�����

 ,         (3) 

where ����� denotes the target pressure where the laser beam hits the ground, � and � are the pressure and temperature profiles 

and vmr���(�)  is the dry-air volume mixing ratio profile of methane. The weighting function ��(�, �)  describes the 20 

measurement sensitivity of ����
 along the vertical and ���  is the integrated weighting function of the column. These 

quantities are computed from meteorological and spectroscopic data and the �� is given by the following equation: 

��(�, �) =
���(�,�)�����(�,�)

�(�)⋅(���������⋅����(�,�))
 .         (4) 

�� denotes the molecular masses of the chemical species �, ���� is the dry-air volume mixing ratio of water vapor, �(�) 

stands for the acceleration of gravity – treated as altitude and hence p dependent – and here, ���,��� are the cross sections for 25 

the on-line or off-line wavelengths (not to be confused with the standard deviation notation � used elsewhere in this article).  

As previously mentioned, in order to reach the targeted 1 % relative random error on ����
 measurements, the signal processing 

of MERLIN requires a horizontal averaging of data. However, we will show in next section that the non-linearity of Eq. (2) in 

combination with the measurement noise and the variability of the observed scene (surface elevation, reflectivity, meteorology) 

along the averaging window induces biases on the average ����
. 30 
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2.3 MERLIN measurement noise 

As will be seen in the following sections, the noise that affects the measurement is one of the factors that induce the averaging 

bias on the retrieved methane mixing ratio. The noise originates from the detector noise, shot noise and speckle noise. In the 

case of MERLIN system, the dominant noise is the detector noise which is considered to be normal as it is mainly thermal 

noise. Then, due to the high number of photons within the signal (approximately 103 for dark current and lidar signal) the 5 

Poisson statistics approximates a shifted Gaussian distribution very well (central limit theorem). Furthermore, according to 

Kiemle et al. (2011), the laser speckle is not the dominant source of the statistical fluctuation and is even negligible thanks to 

the relatively large field-of-view and surface spot size. The normality of the noise on calibrated signals ���,��� is also justified 

by real measurements (out of the scope of this paper). The noise model used to generate the simulated signals is based on 

MERLIN system parameters and is presented in the Appendix A. 10 

3 Averaging schemes and bias correction: a theoretical approach 

3.1 Definitions 

In the following, we will use the triangular bracket notation to denote the arithmetic sample mean 〈�〉 =
�

�
∑ ��

��
���  of the 

quantity � and Δ�� = �� − 〈�〉 will represent the deviation of the ��� quantity to this arithmetic mean. By extension, when we 

use a weighted sample mean of the quantity �, weighted by a quantity �, we will denote it 〈�〉�[�] = ∑ ��[�] ⋅ ��
��
��� , where 15 

��[�] = ��/ ∑ ��
��
���  are the normalized weights used. The expected value of a random variable � will be denoted �[�], and 

the fact that � follows a normal distribution of mean value � and variance �� will be denoted �~	�(�, ��). 

We are interested in the retrieval of the column integrated methane concentration on a 50 km horizontal section along the 

satellite track. This quantity will be hereafter denoted ����
�������

 (where � stands for target). The information that we can compute 

using the satellite measurements is the shot-by-shot ����,� (� is the shot index) which is related to the shot-by-shot volume 20 

mixing ratio of methane vmr���,�(�) and the shot-by-shot weighting function ���(�) by Eq. (3). For the purpose of building 

the data processing chains, all the quantities must be described on a gridded model (vertical and horizontal discretization) of 

the atmosphere. This grid is composed of (�� ⋅ ��) cells where �� is the number of vertical layers of the model and �� is the 

number of shots that we want to average along the satellite path. To model the atmosphere, the pressure at the interface of each 

layer (at each �� + 1 levels) uses a hybrid-sigma coordinate system and are denoted ��,�. Note that the standard notation for 25 

indices will be kept consistent throughout this article. The first index (often denoted �) will represent the shot index and the 

second index (often denoted �) will represent the layer index (or level index). The term “level” stands for the pressure vertical 

level. The pressure thickness of every layers, denoted Δ��,�, is then derived from the pressure at every level. 

The discrete form of Eq. (3) is: 
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����,� =
∑ ������,�,�⋅���,�⋅���,�

��
���

∑ ���,�⋅���,�
��
���

 .          (5) 

In order to define the average value ����
�������

, we must define average values for the volume mixing ratio of methane and the 

weighting function. As the two quantities are intensive properties, it is necessary to multiply them by the pressure thickness to 

get the corresponding additive quantity. The average volume mixing ratio and the average weighting function of the ��� layer 

are thus given by: 5 

vmr���
����������

�
= ∑ ��,� ⋅ vmr���,�,�

��
���  ,          (6) 

�������
� = ∑ ��,� ⋅ ���,�

��
���  ,           (7) 

where the weights are defined as: 

��,� =
���,�

∑ ���,�
��
���

 .            (8) 

The pressure thickness, as an extensive property, is averaged arithmetically and the average value is denoted Δ�����
�. Then, we 10 

can define the average column integrated methane concentration as: 

����
�������

=
∑ ������������,�⋅��������⋅������

�
��
���

∑ ��������⋅�������
��
���

 .          (9) 

3.2 Averaging schemes and types of biases 

There are several ways to average the ����
 provided the shot by shot calibrated signals ��

��,���. Table 1 presents four different 

averaging schemes: averaging of columns of ����
 (AVX – first line of Table 1) , averaging of columns of DAOD and IWF 15 

(AVD – second line of Table 1), averaging of signals (AVS – third line of Table 1) and averaging of quotients (AVQ – fourth 

line of Table 1). Since these four averaging schemes do not average the same physical quantity, they are differently biased.  

There are two main causes of bias on the retrieved ����
: the statistical bias and geophysical biases. The statistical bias which 

affects every shot individually is not produced by the averaging process and must be taken into account for shot by shot 

measurement. It is induced by the random nature of the measurement of on-line and off-line signals into non-linear equations. 20 

Figure 3 illustrates the statistical bias on the DAOD, when on-line and off-line signals follow normal distributions. It highlights 

that, in this case, the DAOD derived from these signals is no longer normally distributed and it indicates a bias and a skewness. 

The second main sources of bias are called geophysical biases. These biases are induced by the process of averaging. The 

successive averaged shots do not sound the same portion of atmosphere (surface pressure and gas concentrations vary), they 

are not reflected on the same surface (reflectivity varies) and the elevation of the scattering surface is not constant in general 25 

(altitude and hard target surface pressure vary). All these variations of geophysical quantities induce several biases on the 

average values. 

The first scheme, AVX, directly averages the column mixing ratios of methane. Every shot is impacted by the statistical bias 

developed in section 3.3.1. Furthermore, since a column with a high total molecular content and another with less molecules 
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would count the same in the averaged mixing ratio, the uniform weighting of methane concentrations leads to the creation of 

a bias that is called geophysical bias of type 1 described in section 3.4.1. 

The second scheme, AVD, computes the ratio of the mean DAOD and the mean IWF. It is also impacted by the statistical bias 

(cf. section 3.3.1). However, this scheme takes into account the fact that every column does not present the same molecular 

content as DAOD and IWF are averaged separately. Thus, it is not impacted by geophysical bias of type 1. 5 

The third scheme, AVS, averages signals before computing relative transmissions, DAOD and ����
. The statistical bias is 

only applicable to the resulting average signals such that, this bias is highly reduced compared to AVX and AVD (cf. section 

3.3.2). However, geophysical biases are increased. First, when the DAOD varies from shot to shot – due to altitude (or surface 

pressure) variations or methane concentration variations for instance – the DAOD computed from average signals is not 

representative of the true mean DAOD. This is called geophysical bias of type 2 presented in section 3.4.2. Secondly, for the 10 

AVS scheme, the average DAOD is weighted by the off-line signal strength. Consequently, the variance of the average 

quantities is reduced. However, a correlation between methane concentration and reflectivity adds a bias to the retrieved 

quantities. This bias is called geophysical bias of type 3 and will also be discussed in section 3.4.2. 

The fourth scheme, AVQ, averages transmissions before computing average DAOD (and average ����
). The transmissions 

for every column are averaged with a uniform weighting. Note that the major drawback of this scheme is that it mixes several 15 

bias sources that cannot be easily corrected. Indeed the averaging being made inside the logarithm, it is not possible to separate 

into two terms the bias due to the measurement noise and the variation of geophysical parameters of the scene (cf. Appendix 

B). This scheme will not be considered in the next sections. 

In the following, for each averaging scheme of Table 1 (except averaging of quotients), we will quantify separately the 

statistical bias and the geophysical biases and will in the end combine them in order to determine the total bias for various 20 

scenarios. 

3.3 Statistical bias 

3.3.1 Statistical bias on AVX and AVD 

The averaging of columns (either ����
or DAOD) needs DAODs to be computed for every couple of calibrated signals 

(����, ���). However, as the measurements are affected by random noise and the IPDA lidar equation (Eq. (2)) is not linear, a 25 

bias appears when computing the DAOD (Figure 3). Let's define the estimator of  the DAOD �� as follows: 

�� =
�

�
⋅ ln �

����

���� .            (10) 

The total noise contributions affecting off-line and on-line signals are statistically independent. Thus, for each single shot, the 

calibrated signals ��� and ���� can be considered as independent random variables. Furthermore, due to the relatively high 

number of photons in a single pulse, we can assume that these random variables are normally distributed around a mean value 30 

���,��� and with a standard deviation ���,���. 
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Under the normality assumption, Eq. (10) can be decomposed into three terms: 

�� =
�

�
⋅ ln �

���������⋅����

�������⋅��� � =
�

�
⋅ ln �

����

���� +
�

�
⋅ ln �1 +

����

������� −
�

�
⋅ ln �1 +

���

������ ,    (11) 

where ���,��� follow standard normal distributions. And the signal-to-noise ratios are defined as:  

�����,��� =
���,���

���,��� .           (12) 

The first term of Eq. (11) is the parameter that needs to be estimated (i.e. the unbiased DAOD) and the two last terms are error 5 

terms that correspond to the bias of �� due to the non-linearity of the function: 

������������ =
�

�
⋅ � �ln �1 +

����

�������� −
�

�
⋅ � �ln �1 +

���

������� .       (13) 

The task is now to evaluate this bias to remove, or at least reduce it. Analytically, under the normal distribution hypothesis, 

the expected values are defined by: 

� �ln �1 +
���,���

�����,����� =
�

√��
∫ ln �1 +

�

�����,���� ⋅
��

	������,��� ��
��

� d� .      (14) 10 

Providing that �����,��� are high enough, we can use a Taylor expansion of the logarithm around zero so that the bias can be 

approximated by the following formula (Bösenberg, 1998): 

������������ ≈
�

�
�

�

(�����)�	
−

�

��������
�
	
� .         (15) 

The assumption that the calibrated signals follow a normal distribution does not rigorously hold when the DAOD is computed. 

Indeed, over dark surfaces (low reflectivity), the SNR may happen to be so low that either one or both calibrated signals ���� 15 

and ���  takes negative values, hence, DAOD is undefined. This can actually happen as the calibrated signal ���,���  is 

computed from the raw signal that correspond to a photon count (positive quantity) from which the estimated background 

energy has been subtracted. Whenever one of the calibrated signals is negative, the corresponding couple (����, ���) must be 

discarded. And as the lowest calibrated signals are systematically discarded from the averaging set the average measurement 

is biased. This bias can be corrected by considering equations (11) and (13) with ���,��� as a left-truncated normal distribution 20 

with a mean value of zero, a variance of one and a left-truncation at −�����,��� (Johnson et al., 1994). When done so it comes 

that: 

� �ln �1 +
���,���

�����,����� =
�

√�������������,�����
∫ ln �1 +

�

�����,���� ⋅
��

	������,��� ��
��

� d� ,    (16) 

where Φ is the standard normal cumulative distribution function. 

To correct the bias due to the non-linearity of the IPDA lidar equation, the SNR must be estimated. Once done, the bias 25 

correction scheme would either need to estimate the bias directly from the approximate Taylor expansion formula of Eq. (15) 

or estimate the bias using Eq. (13) and a numerical computation of Eq. (16). Typically, for MERLIN observations, the error 

made by the Taylor expansion of Eq. (15) instead of using Eq. (16) is lower than 1 ppb on the ����
 for a surface reflectivity 

value greater than 0.1 (������ ≈ 16 and ����� ≈ 7) as shown on Figure 4. Table 2 shows the error made by using the Taylor 

expansion instead of computing the truncated normal integral. For values of reflectivity smaller than 0.1, it would be preferable 30 
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to use the exact formula for the bias presented in equations (13) and (16). Further study (not presented here) shows that for 

very low reflectivity, the estimation of the noise induced bias is really sensitive to an error on the SNR and this correction is 

no longer applicable in practice. The way statistical bias on the DAOD is translated to bias on ����
 will be treated in section 

3.5. 

3.3.2 Statistical bias on AVS 5 

The third averaging scheme defined on Table 1, AVS, averages on-line and off-line calibrated signals separately. The 

corresponding estimator of the average DAOD is written: 

����� =
�

�
⋅ ln �

〈����〉

〈���〉
� .            (17) 

Consistently with section 3.3.1, we consider the individual calibrated signals to be normal random variables of mean ��
��,��� 

and standard deviation ��
��,���. The parameters of the distributions depend on the shot � since each shot is considered as the 10 

realization of a different distribution depending on the geophysical parameters of the scene (reflectivity, atmospheric 

transmission, surface pressure). The successive measurements are considered independent and, as the sum of independent 

normal random variables, is a normal random variable. We introduce ���,��� the average random variable: 

���,��� = 〈���,���〉	~	� ����,���, ����,����
�
� ,        (18) 

where the mean and variance of ���,��� are: 15 

���,��� = 〈���,���〉 ,           (19) 

����,����
�

=
�

��
∑ ���

��,����
��

���  .          (20) 

The empirical estimate of the SNR of the equivalent measurement ���,��� on the whole averaging window can be written: 

�����
��,��� =

���,���

���,��� = �∑ ��
��,����

��� � �∑ �
��

��,���

����
��,����

�
�
��� �

�
�

�

 .       (21) 

Given these definitions, we can write the bias due to shot random variations as in Eq. (13): 20 

��������������� = �������� −
�

�
⋅ ln �

����

���� =
�

�
⋅ � �ln �1 +

����

�����
����� −

�

�
⋅ � �ln �1 +

���

�����
���� ,    (22) 

Provided an estimation of the shot-by-shot SNR, we can estimate the bias of Eq. (22) with the same methods than in section 

3.3.1, either considering the simplified Taylor expansion approximation (Eq. (15)), or the more accurate integral of truncated 

normal distribution (Eq. (13) and (16)). Compared to AVX and AVD schemes, the equivalent SNRs, when averaged 

horizontally on 150 shot pairs, are considerably larger and as a consequence, the bias is considerably smaller. The Taylor 25 

expansion approximation holds really well and an error on the estimation of SNR has a negligible impact on the bias estimation. 
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3.4 Geophysical bias 

3.4.1 Geophysical bias of type 1 on AVX 

Considering an arithmetic averaging for both AVX and AVD schemes yields different results, since the former scheme 

averages concentrations and the latter averages quantities that are proportional to number of molecules of methane. Whereas 

the AVX scheme computes the arithmetic mean of ����
 (Eq. (23)), the AVD scheme computes average ����

 weighted by the 5 

IWF (Eq. (24)): 

����
���������

= 〈
�

���
〉 = 〈����

〉 ,           (23) 

and 

����
���������

=
〈�〉

〈���〉
= 〈����

〉�[���] ,          (24) 

where  10 

��[���] =
����

∑ ����
��
���

 .            (25) 

For the AVX scheme, the quantity that is averaged is the column concentration which is an intensive property. If a uniform 

weighting is considered, there is the same contribution from columns with many molecules as from ones with less molecules. 

For this scheme, a variation of IWF from shot to shot (i.e. variation of altitude and/or surface pressure) leads to an 

overestimation of the methane content of columns that contain fewer molecules in the average ����
. This bias will be called 15 

geophysical bias of type 1 and is simply corrected by introducing the weighted average by the IWF. This has to be taken into 

account when computing the statistical bias for this scheme as will be introduced in section 3.5. 

On the contrary, the AVD scheme averages the extensive properties of DAOD and IWF separately. Thus, when the DAODs 

are averaged, the molecule amount is preserved such that the AVD scheme is not affected by a type 1 geophysical bias. 

3.4.2 Geophysical bias of type 2 and 3 on AVS 20 

Once the bias induced by the random nature of the measurement has been subtracted the resulting estimator is still biased by 

the effects of horizontal variations of geophysical quantities. Indeed, using Eq. (22), we are left with: 

���������� = ����� − ��������������� =
�

�
⋅ ln �

����

���� ,        (26) 

where ���� and ���, as defined by Eq. (19), are the average of signal expected values. Successive shot-pairs are not sounding 

the same column of atmosphere, such that altitude, reflectivity and CH4 concentration vary horizontally. Unlike for the AVX 25 

and AVC schemes where the ratio is computed separately, for the AVS scheme, the changing reflectivity or atmospheric 

transmission does not cancel out directly when computing the ratio of signals. Although measurement random noise is 

significantly reduced, a geophysical noise appears. We can rewrite Eq. (26) as: 

���������� = −
�

�
⋅ ln �∑

��
���

∑ ��
����

���

⋅ exp(−2 ⋅ ��)
��
��� � = −

�

�
⋅ ln�∑ ��[�

���] ⋅ ��
���

��� � .     (27) 
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Using a Taylor expansion of Eq. (27), it is possible to show that ���������� approximately equals the mean of the single-shot DAODs 

weighted by the ��[�
���]: 

���������� = ∑ ��[�
���] ⋅ ��

��
��� + ���� ,           (28) 

where ���� is the residual error of the linear approximations when averaging DAODs instead of transmissions. This term will 

be called type 2 geophysical bias. Equations (27) and (28) lead to: 5 

���� = −
�

�
⋅ ln�∑ ��[�

���] ⋅ exp(−2 ⋅ ��)
��
��� � − ∑ ��[�

���] ⋅ ��
�
���  .       (29) 

Note that when the DAOD is constant all along the averaging scene, ����  is exactly zero. Furthermore, when ����  is 

horizontally constant, ���� is approximately the variance of the DAOD. In fact, the term ���� is twofold: on the one hand, it is 

linked to DAOD fluctuations and, on the other hand, to the correlation between DAOD and reflectivity fluctuations. These 

correlations might occur for instance if there are covariations between topography (and thus DAOD) and surface type (e.g. 10 

snow – low reflectivity - over mountain tops – low surface pressure and thus low DAOD). In the general case, ���� is not zero 

and can be estimated using ���������� from Eq. (26), corrected for the statistical bias only, to compute a first order estimate for ����
: 

 ����

(�)
=

�����������

〈���〉
�[����]	

 ,            (30) 

Using ���� instead of ���� which is unknown, and estimating ���� as: 

����
(�)

≈ −
�

�
⋅ ln�∑ ��[�

���] 	 ⋅ exp�−2 ⋅ ����

(�)
⋅ �����

��
��� � − ���������� .      (31) 15 

This process could be turned into an iterative correction. However, the first order estimate is sufficiently accurate in all cases 

(not shown). 

According to Eq. (28), we notice that the AVS scheme, corrected for type 2 geophysical bias, computes an average DAOD 

weighted by the off-signal strength. Since the main cause of variation of the off-line received power is the variation of surface 

or hard target reflectivity, the transmissions associated to brighter scenes count more in the average than the transmissions of 20 

darker scenes. The AVS scheme averages the measurements in such a way that a greater weight is given to high SNR signals. 

Consequently, this DAOD estimate is more precise (lower standard deviation) but also biased. This bias is called type 3 

geophysical bias and will be defined in section 3.5. 

3.5 From biases on DAOD to biases on ����
 

In sections 3.3 and 3.4, the statistical and geophysical biases on DAOD have been derived. Here we are interested in translating 25 

biases on DAOD to biases on ����
 that we want to estimate. As shown by Eq. (3), ����

 is obtained by dividing the DAOD by 

the IWF. This needs the IWF to be averaged horizontally consistently with the DAOD averaging scheme. Not only, the 

computation of the average IWF with consistent weights is important to compute ����
, but it is also needed by the data users 

for the assimilation to transport models.   
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For the AVD scheme, the DAODs are arithmetically averaged with a uniform weight. Hence, the IWF must be averaged in the 

same fashion. A shot-by-shot DAOD bias according to Eq. (13) translates into a statistical bias on ����
 as follows: 

�������� �����
���������

� =
〈������������〉

〈���〉
 .          (32) 

For the AVX scheme, ����
 is computed for every shot. The statistical bias on every shot is the quotient of the bias on the shot 

DAOD over the shot IWF. However, when horizontally averaging the statistical bias on ����
, the type 1 geophysical bias must 5 

be taken into account (section 3.4.1). The average bias should be weighted by the shot-by-shot IWF as in Eq. (24):  

�������������
���������

� = 〈
������������

���
〉�[���] .         (33) 

For the AVS scheme, the IWF must be weighted consistently with the averaging scheme. Equation (28) shows that the average 

DAOD is weighted by the off-line signal strength. As presented in third line of Table 1, in order to keep the mixing ratio of 

methane consistent, the averaging of the IWF must also be weighted by ��[�
���]. Consistently, the translation of bias on the 10 

DAOD to bias on the ����
 considers the same weighting for IWF. The statistical bias translates from Eq. (22) to: 

�������������
���������

� =
���������������

〈���〉
�[����]

 .          (34) 

Concerning geophysical biases, a type 2 geophysical bias (due to the linearization of DAOD variations and the correlation of 

signal and transmission fluctuations) described by Eq. (31) becomes: 

�������������
���������

� =
����

(�)

〈���〉
�[����]	

 .           (35) 15 

The geophysical bias of type 3, caused by the higher sensitivity to the spots with higher reflectivity, could be written as: 

�������������
���������

� =
〈�����〉

�[����]

〈���〉
�[����]

−
〈�����〉

〈���〉
 .         (36) 

Indeed, the AVS scheme does not measure the “true” concentration of CH4 on the 50 km window. The weighting by ��[�
���] 

implies that greater weight is granted to shots measuring brighter targets. This could be detrimental to the measurement if there 

were a strong correlation between reflectivity and CH4 concentration on a global scale, which should not be the case. For 20 

assimilation or inverse modelling to models with a higher resolution than 50 km, the weighting could also be taken into account 

in the forward model for the XCH4. 

4 Methodology to test averaging algorithms and their bias corrections 

4.1 Data sets (latitude, longitude, altitude, surface pressure, relative reflectivity) 

The three averaging schemes and their associated bias will be tested on scenes modeled from real satellite data in terms of 25 

geophysical properties. For this purpose, we are interested in simulating the calibrated signals ��
��,���  and the integrated 

weighting function ����, both on a 50 km scale. To be computed, the signals require the weighting functions for every shot 

(���,�), the volume mixing ratio of methane (vmr���,�,�), both defined on the pressure grid (��,�), and the target reflectivity 
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(��) for every shot. The integrated weighting function is computed from ���,� (and ��,�). The data sets are built from satellite 

data provided by the SPOT-5 satellite for latitude, longitude and relative reflectivity, the Shuttle Radar Topography Mission 

(SRTM) digital elevation map data for topography and European Centre for Medium-Range Weather Forecasts (ECMWF) 

analyses for surface pressure from which we deduce the pressure grid on 150 shots and 19 levels. 

SPOT-5 was a CNES satellite launched in 2002 and operated until 2015 (Gleyzes et al., 2003). Amongst the 5 spectral bands 5 

of the High Resolution Geometric (HRG) instrument, it has a spectral band in the Short Wave InfraRed domain (1.55 to 1.7 

µm) with a spatial resolution of 20 m. This band includes the MERLIN laser wavelength and, as we expect spectral variations 

of surface albedo to have rather low spectral variations, we use the “Spot SYSTEM SCENE level 1A” product (images using 

radiometric corrections, equivalent radiance in W.m-2.Sr-1.µm-1) as a proxy of surface reflectivity. Indeed, as we were careful 

to select images with no clouds, we neglect the effect of atmospheric extinction on the SPOT-5 measurements. Note that we 10 

are interested here in a description of the reflectivity variations in the 50 km averaging window, not by the absolute value of 

reflectivity. This is why we consider this SPOT-5 product as suitable, and we will anyway scale it to any prescribed value of 

surface reflectivity in the simulations described hereafter. The topography is taken from the SRTM digital elevation model 

(Jarvis et al., 2008), which has a spatial resolution of about 90 m. Surface pressure is taken from ECMWF 4D variational 

analyses from the long window daily archive and interpolated at SRTM grid points. A correction from difference between 15 

ECMWF Integrated Forecasting System (IFS) model topography and SRTM altitude is applied. In order to make both SRTM 

and SPOT-5 data consistent, the three selected SPOT-5 images are first process by a low pass convolution, to obtain a 90 m 

spatial resolution, and then projected into the SRTM geometry. Note that the spatial resolution thus obtained is also close to 

MERLIN single shot footprint. Table 3 summarizes the data sets content and resolutions. 

Three sites have been selected to be representative of topographic variability; they are located in the neighborhood of three 20 

French cities: Toulouse, Millau and Chamonix. The different characteristics of the three samples are described in Table 4. 

Figure 5 and Figure 6 show the variation of surface pressure and relative variations of reflectivity along the averaging scheme. 

Toulouse presents a medium variation of geophysical parameters (altitude and thus surface pressure), Millau presents a high 

variation and Chamonix a very high variation. Figure 7 shows the global cumulative distribution of standard deviations of 

altitude of SRTM database worldwide. We notice that 67 %, resp. 97 % of the scenes present a lower altitude standard deviation 25 

than the one considered on the Millau, resp. Chamonix data. 

For sensitivity study purpose, the reflectivity relative variations from the SPOT-5 data set are multiplied by a reference mean 

reflectivity that can be chosen to obtain the usable scene reflectivity. Four mean reflectivity values will be considered: 0.1 

(vegetation), 0.05 (mixed water/vegetation), 0.025 (sea/ocean), 0.016 (ice/snow). 

The pressure grid ��,� and the pressure thickness grid Δ��,� are obtained from surface pressure ��
���� from ECMWF analyses 30 

data set using a hybrid-sigma coordinate system. 

The methane volume mixing ratio, vmr���,�,�,  is arbitrarily set to values assumed to be realistic. For every shot � and layer �: 

�
vmr���,�,� = 1780	ppb if	��,� < (max���

����� − min���
�����)/2

vmr���,�,� = 1880	ppb otherwise
 .      (37) 
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This replicates the possible correlation between methane concentration and altitude (more methane in valleys and less over 

mountain tops). 

Finally, the weighting functions are calculated, as described in Eq. (4), from methane absorption cross-sections and 

meteorological data (Δ��,� , temperature, humidity). They are computed using CH4 absorption cross-sections from the 4A 

radiative transfer model (Scott and Chédin, 1981; Chéruy et al., 1995)  on a reference winter mid-latitude atmosphere from the 5 

Thermodynamic Initial Guess Retrieval (TIGR) data set (Chevallier et al., 2000). The sensitivity to the thermodynamic 

condition of the atmosphere has been tested and is negligible here (not shown). 

 

4.2 Overall test framework 

The aim of the simulation is to compare the biases of the estimated ����
 for several averaging schemes and to evaluate the 10 

accuracy of the bias correction. A global description of the simulation is presented on Figure 8. Each simulation case considers 

a typical number of �� = 150 double-shots per averaging window, approximately corresponding to 50 km along the satellite 

ground track. It relies on a description of the geophysical scene in terms of surface pressure ��
����, reflectivity �� , an arbitrary 

CH4 concentration field vmr���,�,�, and weighting functions ���,� (cf. section 4.1). Then, the on-line and off-line calibrated 

signals are computed from surface reflectivity and a random noise simulation and the weighting functions are integrated (cf. 15 

section 4.3). Next, we proceed to the computation of average ����
 on 50 km resolution with the different averaging schemes 

(AVQ not simulated) and the correction algorithms presented in Section 4.4 and Table 5. 

In order to estimate the bias, the computation of an average column integrated methane concentration ����
 from the shot-by-

shot volume mixing ratio profiles, vmr���,�(�), is needed and will be computed as ����
�������

 in Eq. (9). 

In order to assess the performance of averaging schemes and bias correction algorithms, the standard deviation and mean of 20 

the difference Δ� between the ����
������������

 estimated from one of the studied averaging scheme and the target value ����
�������

 

must be computed over a set of � simulations. The number of simulation � has to be high enough to compute the residual 

bias (empirical mean of Δ�) with sufficient accuracy. Let’s denote � the standard deviation of the distribution of the variable 

Δ�, �� = 〈Δ�〉 the empirical mean over � samples (i.e. the empirical estimate of the bias of the averaging scheme). To get 

an estimate of the expected value of Δ� with an accuracy of 0.1 ppb with 90 % confidence, it requires approximately � =25 

300000 samples, according to the central limit theorem. 

The typical standard deviation can also be evaluated from the sample and is approximately 22 ppb for the typical case (mean 

reflectivity of 0.1). 
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4.3 Simulation of on-line and off-line lidar calibrated signals and IWF 

Once the scene parameters are defined on the 50 km averaging window and the atmosphere is modeled, the on-line and off-

line calibrated signals must be simulated. We first have to compute the deterministic values of the calibrated signals without 

noise and simulate the random noise that affects them. The values of the signals are determined by the scene reflectivity (for 

both on-line and off-line signals) and by the atmospheric transmission (on-line signals only). From the weighting functions, 5 

the methane field and the pressure field, we compute the reference DAOD, denoted ��
����, as the numerator of Eq. (5). Then 

the transmission for each double-shot according to: 

(��
����)² = exp(−2 ⋅ ��

����) .          (38) 

From them, considering the reflectivity, we are able to determine the relative value of the on-line and off-line mean calibrated 

signals: 10 

��
��� = �� ,            (39) 

��
�� = �� ⋅ (��

����)² ,            (40) 

where � is the shot index, �� is the transmission and �� is the reflectivity. Note that any constant affecting both on-line and off-

line signals can be disregarded here. 

Then, Gaussian random noise has to be added to the values of the signals. It is computed from the SNR that depends on the 15 

number of photon reaching the detector (i.e. ��
��,���). Figure 9 shows the theoretical dependence of the SNR to the reflectivity 

according to instrument characteristics and Appendix A presents the noise model used. 

The ���� are simply computed by integrating the ���,� on all pressure layers as the denominator of Eq. (5). 

4.4 Tested averaging algorithms and bias corrections 

The simulation tested the three averaging schemes describes in section 3.2: AVX (Table 1, line 1), AVD (Table 1, line 2) and 20 

AVS (Table 1, line 3). Table 5 details the computational steps used for averaging, statistical bias and geophysical bias 

evaluation for the three schemes. For the AVX and AVD schemes, as explained in section 3.3.1, signal couples with at least 

one negative calibrated signal must be discarded to compute the shot DAOD. However, since signals are averaged first for the 

AVS scheme, the probability that one of the averaged signal is negative is extremely small. Thus, no negative calibrated signal 

discarding is needed for the AVS scheme.  25 

Concerning statistical bias evaluation, a SNR estimation is needed. It is directly estimated from instrument parameters and on-

line and off-line calibrated signal strength. Once the SNR is estimated, as described in section 3.3, there are two options to 

evaluate the statistical bias either using the Taylor expansion approximation or the numerical integral of a truncated normal 

distribution. Contrary to AVS, where Taylor expansion and numerical integral make negligible difference, for AVX and AVD, 

it is better to use the numerical integral as it is more accurate, and this is what is done here. 30 

Type 1 geophysical bias, that affects the AVX scheme, is already compensated by weighting the average ����
 and the average 

statistical bias by the IWF. The AVD scheme is not affected by geophysical biases. However, type 2 and type 3 geophysical 
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biases affects the AVS scheme. Type 2 geophysical bias is evaluated by Eq. (35) using the first order ����
 of Eq. (30). The 

type 3 geophysical bias is not evaluated and will not be corrected because a correlation between reflectivity and CH4 

concentration is unlikely to occur. Indeed, on a sub 50 km scale the typical atmospheric transport should smear out the CH4 

concentration very effectively over areas larger than the small scale reflectivity jumps even if this is not true for narrow valleys. 

5 Results 5 

5.1 Comparison of averaging schemes 

5.1.1 Bias of averaging schemes without bias correction 

The first results presented here are respective biases of each averaging scheme without any bias correction. Figure 10 shows 

the bias on the average ����
 on the three scenes (Toulouse, Millau and Chamonix) for the three averaging schemes that have 

been studied: averaging of signals (AVS), averaging of DAOD and IWF separately (AVD) and averaging of ����
 (AVX), 10 

without any correction. The bias due to measurement noise and due to geophysical variation appears on the results as it is not 

yet subtracted. For the AVS scheme we compare the results with the uniformly weighted average IWF and the average of the 

IWF weighted by the off-line calibrated signal strength: ��[�
���]. For the AVD scheme, a uniform weight is considered. And, 

for the AVX scheme, we compare the uniformly weighted average ����
 (Eq. (23)) and the average ����

 weighted by the IWF: 

��[���] (Eq. (24)). The mean reflectivity is set to the typical value of 0.1. 15 

For the AVS scheme on Toulouse and Millau scenes where there are medium to high variations of geophysical quantities, the 

bias is contained in the ±1	ppb range. However, it is higher on the Chamonix scene where there are very high variations of 

geophysical parameters. As expected, the bias for the AVS scheme is mainly impacted by the variations of the geophysical 

parameters over the scene. Note that, on the Chamonix scene, the weighting of the average IWF by the off-line calibrated 

signal strength reduces this bias. 20 

On the contrary, the bias of the AVD and AVX schemes is not affected by the geophysical variations but is mainly driven by 

the measurement noise which essentially depend on the scene mean reflectivity. As shown in section 3.4.1, the AVD scheme 

with uniform weighting and the AVX scheme weighted by the integrated weighting function (��[���] weights) show the 

same bias. Although the comparison between the AVX scheme weighted uniformly (light red on Figure 10) and the AVD 

(green on Figure 10) shows that their biases are close when variations of surface pressure (main cause of variations of IWF) 25 

are low (Toulouse, Millau) but become significant when variations are higher (Chamonix). 

Without any correction and for the typical reflectivity, the AVS scheme is less biased than the AVD and AVX schemes. 

However, as we have seen in previous sections, there are ways to estimate the biases and to correct them. The following section 

will show the results after estimation and correction of the bias induced by the measurement noise. 
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5.1.2 After correction of statistical bias 

As explained in section 3.4, the random nature of the measurement associated with the non-linearity of the measurement 

equation implies that the estimation of the ����
 is biased. The statistical bias corrections for AVS, AVD and AVX is based on 

an estimation of the on-line and off-line SNRs for the measured calibrated signals (cf. section 4.4 and Table 5). Figure 11 

shows the residual biases, after subtraction of estimated statistical bias, for the three averaging schemes, with and without 5 

relevant weightings, on the three studied scenes and for the typical reflectivity of 0.1. The chosen estimation of the bias is done 

by numerically computing the integral of the truncated Gaussian distribution (section 3.3). 

We see that the biases of the AVD and AVX schemes are significantly reduced (absolute value decrease by 85 to 90 %) on 

every scene. The residual bias is caused by the fact that the SNR are estimated from the noisy calibrated signals so that the 

estimation of the bias is not perfectly accurate. This implies that the calibrated signal outcomes from the lower part of the 10 

distribution leads to a high error on the estimated bias. This effect could be slightly compensated if instead of discarding all 

the negative or null calibrated signals (extremely rare for a reflectivity value of 0.1 over 150), we discarded calibrated signals 

higher than a strictly positive threshold (e.g. 0.01, not shown). This would lead to a better correction and thus, a lower bias but 

at the cost of discarding more single shot observations. 

For the AVS scheme, as the signals are averaged first, the equivalent SNR is very high (�����
��� ≈ 190 and �����

�� ≈ 90) on 15 

the scenes with a mean reflectivity of 0.1. Consequently, the bias due to the equivalent measurement noise is really low (about 

0.1 ppb) and this bias correction has only a small effect on the residual bias. 

Taking into account the correction of the bias induced by the measurement noise, the AVS scheme still present a lower bias 

on Toulouse and Millau scenes than the bias of AVX and AVD schemes. However, on the Chamonix scene, where the 

geophysical variations are very high, AVX and AVD schemes are less biased than AVS.  20 

5.1.3 After correction of geophysical biases 

The biases induced by the variation of the geophysical parameters (cf. section 3.4) does not affect the AVD scheme as the 

additive properties of DAOD and IWF are averaged separately. The variation of the IWF affects the bias of the AVX scheme 

and has already been corrected by introducing the ��[���] weights when directly averaging mixing ratios. The AVS scheme 

is the one most affected by the variations of the geophysical variations as seen in section 5.1.1. 25 

Figure 12 shows the residual bias after the corrections of the statistical bias induced by the measurement noise and by the 

variations of geophysical parameters (cf. section 4.4 and Table 5). We notice that the residual bias for the AVS scheme is 

considerably reduced when the average weighting function is weighted by the off-line calibrated signal strength. Furthermore, 

the iterative estimation of the bias converges at the first iteration of Eq. (26) to Eq. (31). 

Once geophysical biases are subtracted, the three scenes present a low bias. The mean residual bias on the three scenes for the 30 

AVD and AVX schemes is approximately −2.1 ± 0.1	ppb , whereas for the AVS scheme, it is approximately −0.09 ±

0.09	ppb. After all corrections, even on highly structured scenes, AVS is the least biased scheme of the three studied schemes. 
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When the average IWF is consistently weighted with the ��[�
���] weights, the geophysical induced bias is almost completely 

removed. 

5.2 Impact of the mean reflectivity on the residual bias 

All results presented above are computed for scenes with a mean reflectivity of 0.1 which roughly correspond to a vegetation 

cover. For the purpose of choosing the least biased algorithm to compute average ����
, it is interesting to test the robustness 5 

to reflectivity. Indeed, reflectivity is the main driver for the expected value of SNR: low reflectivity scenes lead to lower SNR 

and consequently higher bias. Table 6 and Table 7 show the residual bias comparing four different reflectivity values: 0.1 

(vegetation), 0.05 (mixed sea/vegetation), 0.025 (sea/ocean) and 0.016 (ice/snow). Table 6 gives the residual bias for the AVD 

scheme (the AVX scheme present similar results) and Table 7 shows the residual bias for the AVS scheme where the average 

IWF is weighted by the off-line calibrated signal strength (��[�
���] weights) and corrected of the bias due to geophysical 10 

variations from shot-to-shot. For both tables, Taylor expansion bias correction (Eq. (15)) or numerical computation of the 

expectation (so-called integral truncated normal distribution Eq. (16) and Eq. (13)) are compared. 

First, as seen in Table 6 (AVD scheme), the Taylor bias correction does not succeed in quantifying the bias on any of the four 

mean reflectivity values. The uncertainties are too high and prevent quantitative analysis of the results. This is due to the fact 

that there are some calibrated signals that are really close to zero and for which the SNR is underestimated and thus the bias 15 

(and standard deviation) overestimated. This could be mitigated by the choice of a higher threshold of usable calibrated signal 

before the computation of the DAOD (not shown). The results when using the integral bias correction on AVD are more 

physical. However, they also show an over estimation of the bias especially for low reflectivity values. In every case for the 

AVD scheme, the bias threshold is exceeded. 

Table 7 gives the results of robustness of the AVS scheme to decreasing reflectivity. Unlike the AVD scheme, the AVS scheme, 20 

when all corrections are made, presents satisfying results for all reflectivity values and every scene, the biases remain contained 

into the threshold interval of ±1 ppb. The effect of the decreasing reflectivity has a very small impact on the residual bias. 

To summarize, the best algorithm to limit the bias for MERLIN processing algorithms is clearly the AVS scheme with an 

average IWF weighted by the off-line calibrated signal strength and both correction of the geophysical bias and the bias induced 

by the measurement noise (either Taylor or integral bias correction). On every scene and for all expected reflectivity values, 25 

this algorithm is compliant with the averaging bias specifications of the MERLIN mission. Note that this conclusion holds in 

the case where all the 150 shots are considered; in the case of a partially cloudy window where only a subsample of clear sky 

shots are averaged, AVS will still be the best averaging scheme, but the performance will be decreased. 

6 Conclusions 

The French-German space-borne IPDA lidar mission MERLIN will measure the average integrated column dry-air mixing 30 

ratio of methane (����
) on a 50 km scale. The processing algorithms must limit both the relative random error (RRE) and the 
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relative systematic error (RSE) on the ����
. As the IPDA technique relates the signal measurements to the ����

 by a non-

linear equation, a simple and naive averaging can lead to high biases. 

Three averaging schemes have been studied: averaging of ����
 (AVX), averaging of DAOD (AVD) and averaging of signals 

(AVS). For these averaging schemes, possible sources of bias can either be the measurement noise or the variation of the 

geophysical parameters on the averaging scene or both. 5 

The three schemes are sensitive to the bias induced by the measurement noise even if AVS is far less impacted for the typical 

reflectivity. This bias can be corrected by a formula introducing the estimated SNR on the measured signals if the SNR is high 

enough. The bias due to the variation of geophysical parameters does not affect the AVD scheme because it directly averages 

the desired additive quantities. On the contrary, the AVX scheme must average the concentration weighted by the integrated 

weighting function (IWF) in order to average a molecule number instead of averaging concentrations. The third scheme AVS 10 

measures the average ����
 weighted by the off-line signal strength which means that more weight to the measurements with 

high SNR is given when averaging. The bias of this scheme is sensitive to the variation of geophysical parameters (surface 

pressure and surface reflectivity). This bias is corrected using an iterative process with the uncorrected ����
 as first-guess. 

These averaging schemes and their bias corrections have been tested on scenes modeled from real satellite data in terms of 

altitude, surface pressure, weighting functions and relative variations of reflectivity. The three scenes present interesting 15 

characteristics as they show different geophysical variations that could impact averaging biases. Besides, the signals and 

random noise are simulated form geophysical parameters and instrument parameters. 

The simulation shows that the lowest biases are obtained for the AVS scheme using appropriate bias corrections and averaging 

weights. Furthermore, this scheme is robust to low reflectivity values unlike the AVX and AVD schemes which are highly 

sensitive to the accuracy of the SNR estimation. The best scheme, AVS, is compliant with the allocated averaging bias 20 

requirements (RSE) of 0.06 % (1 ppb for a ����
 of 1780 ppb) for the whole range of expected reflectivity values (from 0.1 

down to 0.016). 

The continuation of this study could evaluate the sensitivity of a poor (unprecise or biased) estimation of the SNR on the 

estimation of the bias due to measurement noise for low reflectivity values. Furthermore, the use of the LIDAR simulator and 

processor suites, currently in development at the LMD, could be beneficial to the evaluation of the biases, and more specifically 25 

of averaging biases, on a wider scale (many scenes, atmosphere types…) 

Appendix A: Signal generation and noise model 

The simulation of calibrated signal requires a noise model. The signal distribution is considered to be Gaussian first because 

the number of photons that reaches the photo-detector is high enough for the Poisson distribution to be considered as Gaussian. 

Secondly, the system is limited by the detector noise that is mainly thermal noise which is normally distributed. 30 
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The calibrated signals are produced using a pseudo-random number generator. The expected values of the calibrated signals 

distributions, ���,���, depend on the atmospheric transmission and the surface reflectivity as presented in Eq. (39) and (40). 

Then the standard deviation ���,��� is deduced from the SNR which is defined as: 

�����,��� =
���,���

���,��� ,           (A1) 

And the SNR model is described by: 5 

�����,��� = �
��

���⋅���⋅���

�

�
 ,           (A2) 

Where � is the number of photo-electron and �, �, and � are parameters computed from the MERLIN system parameters. This 

is illustrated on Figure 9. 

The number of photon is computed from the reflectivity and the atmospheric transmission. In the standard case (reflectivity of 

0.1 sr-1), its values are approximately 3000 for the off-line pulse and 1000 for the on-line pulse. 10 

The first term of the denominator corresponds to the detector noise, the second to the shot noise and the third to the speckle. 

Note that the speckle term has been neglected in this article whereas both detector noise and shot noise have been considered 

as they are dominant compared to speckle noise.  

Appendix B: Averaging of quotients 

The averaging of quotients estimates the average of the shot-by-shot two-way transmissions ��
�. Due to the measurement noise, 15 

we will suppose that, for the shot �, the on-line and off-line measured calibrated signals, resp. ��
�� and ��

���, are outcomes of 

normal distributions with mean values resp. denoted ��
�� and ��

���, and standard deviation resp. denoted ��
�� and ��

���. The ����
 

computed from averaging quotients can be defined as: 

����
���������

=
�

�

�
⋅��〈��〉

〈���〉
 ,            (B1) 

with the transmission defined as: 20 

〈��〉 =
�

�
∑

��
��

��
���

�
���  .            (B2) 

If we define the standardized signals corresponding to ��
�� and ��

��� as ��
�� and ��

���, the average transmission can be written: 

〈��〉 =
�

�
∑

��
�����

��⋅��
��

��
������

���⋅��
���

�
���  .           (B3) 

Then we can further separate the random part due to measurement noise and the deterministic part due to varying geophysical 

parameters as follows: 25 

〈��〉 =
�

�
∑ �

��
��

��
��� �1 +

��
��

��
�� ��

��� �1 +
��

���

��
��� ��

����
��

��
���  ,        (B4) 

〈��〉 = ���〈�����〉 ⋅
�

�
∑ ������� �1 +

��
��

��
�� ��

��� �1 +
��

���

��
��� ��

����
��

��
���  ,       (B5) 
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where 〈�����〉 is the average DAOD computed from noiseless mean signals and Δ�� the difference to the shot-by-shot DAOD. 

Then we can deduce the error of AVQ scheme as follows: 

����
���������

= ����
���� −

�

�〈���〉
⋅ ln �

�

�
∑ ������� �1 +

��
��

��
�� ��

��� �1 +
��

���

��
��� ��

����
��

��
��� � .    (B6) 

The corresponding bias is the expected value of the error term: 

���������
���������

� = −
�

�〈���〉
⋅ � �ln �

�

�
∑ ������� �1 +

��
��

��
�� ��

��� �1 +
��

���

��
��� ��

����
��

��
��� �� .    (B7) 5 

In equation (B5), the empirical average transmission is decomposed into two factors. The first is the transmission 

corresponding to the average DAOD from noiseless signals. The second factor is the average of multiplicative errors that are 

the deterministic error from geophysical variations on the averaging scene and the random factors due to the presence of 

measurement noise. As shown in Eq. (B7), the error sources are mixed into the non-linear function which makes them difficult 

to evaluate. It is possible to derive a suitable bias correction based on Eq. (B7) for AVQ but in the end it is not expected to be 10 

better than the other ones. Table 8 presents the biases for every averaging schemes presented before any bias correction is 

applied. 
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Averaging Scheme Acronym Definition Bias Characteristics 

Averaging of columns of 
����

 
AVX 

����
���������

= 〈
�

���
〉�[���] 

– Statistical bias due to measurement noise on every 
shot 

– Type 1 geophysical bias from averaging 
concentrations instead of molecular content 

Averaging of columns of 
DAOD and IWF 

AVD 
����
���������

=
〈�〉

〈���〉
 

– Statistical bias due to measurement noise on every 
shot 

Averaging of signals AVS 

����
���������

=

�

�
⋅ ln �

〈����〉

〈���〉
�

〈���〉�[����]

 

– Statistical bias due to measurement noise of the 
resulting signals on the averaging window 

– Type 2 geophysical bias due to linearization of the 
DAOD variations and correlation between DAOD 
and reflectivity variations  

– Type 3 geophysical bias due to the higher 
sensitivity to measurements with high off-line 
signal strength 

Averaging of quotients 
(not detailed in this paper 
due to bad performances) 

AVQ 

����
���������

=

�

�
⋅ ln 〈

����

���
〉

〈���〉
 

– Statistical bias due to measurement noise mixed 
with geophysical biases into the non-linear 
equation (cf. Appendix B) 

Table 1: Averaging schemes and characteristics of their biases 
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Reflectivity value 0.093 0.077 0.062 0.53 0.025 

Off-line SNR 15.1 13.1 10.9 9.5 4.8 

On-line SNR 6.1 5.2 4.2 3.6 1.8 

Error made by Taylor expansion (Eq. (15)) -1 ppb -2 ppb -5 ppb -10 ppb +50 ppb 

Table 2: Error on the statistical bias estimation by using the Taylor expansion instead of using truncated normal distribution (cf. 
Figure 4) 
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Geophysical parameter Origin Original grid 

resolution 

Interpolated grid resolution 

Coordinates (lat., lon.) 

Relative reflectivity 

SPOT-5 20 m 90 m 

(surface pressure is corrected to take into account SRTM 

small scale variations of topography) 
Altitude SRTM 90 m 

Surface pressure ECMWF ~ 10 km 

Table 3: Data sets resolution characteristics 
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 Toulouse Millau Chamonix 

Latitude range 43.56° N–43.93° N 43.56° N–43.93° N 45.75° N–46.12° N] 

Longitude 1.62° E 3.06° E 7.22° E 

Altitude range (m) 108–321 359–902 473–2967 

Altitude mean (m) 223.1 697.4 1753.7 

Altitude standard deviation (m) 57.5 141.8 711.1 

Surface pressure range (hPa) 980.2–1000.9 922.7–973.9 748.2–965.0 

Surface pressure mean (hPa) 988.7 940.9 837.3 

Surface pressure standard deviation (hPa) 5.7 12.2 64.5 

Relative reflectivity range 0.68–1.65 0.49–1.50 0.35–1.61 

Relative reflectivity standard deviation 0.16 0.24 0.27 

Table 4: Characteristics of the data used for the simulation 
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 AVX scheme AVD scheme AVS scheme 

Averaging scheme – Discard negative signals 

– Table 1, line 1 

– Discard negative signals 

– Table 1, line 2 

– Table 1, line 3 

Statistical bias 

evaluation 

– Discard negative signals 

– SNR estimation 

– Bias evaluation:  

Option 1: Eq. (33) and (15) 

Option 2: Eq. (33), (16) and 

(13) 

– Discard negative signals 

– SNR estimation 

– Bias evaluation: 

Option 1: Eq. (32) and (15) 

Option 2: Eq. (32), (16) and 

(13) 

– SNR estimation 

– Equivalent window SNR by 

Eq. (21) 

– Bias evaluation: 

Option 1: Eq. (34) and (15) 

Option 2: Eq. (34), (16) and 

(13) 

Geophysical bias 

evaluation 

– None (Type 1 geophysical 

bias built-in �[���] 

weights of Table 1, line 1 

and Eq. (33)) 

–  None – Type 2 geophysical bias of 

Eq. (35) 

– Type 3 geophysical bias of 

Eq. (36) not estimated 

Table 5: Computational details about averaging schemes and bias evaluation 
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 Taylor Bias Correction (not usable) Integral Bias Correction 

Reflectivity 0.1 0.05 0.025 0.016 0.1 0.05 0.025 0.016 

Off-line 

SNR 

16.1 9.0 4.8 3.2 16.1 9.0 4.8 3.2 

On-line 

SNR 

6.5 3.4 1.8 1.1 6.5 3.4 1.8 1.1 

Toulouse 

(ppb) 

-6.70e-1 -9.02e4 -9.70e10 -5.11e9 -1.79    -4.28     207   416   

Millau 

(ppb) 

-1.52e2 -8.94e5 -6.27e7 -4.62e8 -2.43    9.69     204   442   

Chamonix 

(ppb) 

-1.19e1 -1.59e6 -4.35e9 -2.44e8 -2.05 8.24 197 498 

Uncertainty 

(ppb) 

±6.7e1 ±8.8e5 ±5.5e10 ±2.0e9 ±0.10 ±0.24 ±0.61 ±0.89 

Table 6: Resulting bias (in ppb) for AVD scheme after noise induced bias correction 
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 Taylor Bias Correction Integral Bias Correction 

Reflectivity 0.1 0.05 0.025 0.016 0.1 0.05 0.025 0.016 

Off-line SNR 16.1 9.0 4.8 3.2 16.1 9.0 4.8 3.2 

On-line SNR 6.5 3.4 1.8 1.1 6.5 3.4 1.8 1.1 

Toulouse (ppb) -0.01 -0.02 -0.03 -0.05 -0.03 -0.07 -0.03 -0.08 

Millau (ppb) -0.03 -0.03 -0.03 -0.05 -0.04 -0.08 -0.04 -0.08 

Chamonix (ppb) -0.51 -0.51 -0.50 -0.48 -0.53 -0.57 -0.50 -0.49 

Uncertainty (ppb) ±0.09 ±0.17 ±0.33 ±0.51 ±0.09 ±0.17 ±0.33 ±0.51 

Table 7: Resulting bias (in ppb) for AVS scheme after noise induced bias correction and geophysical induced bias correction 
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 AVX AVD AVS AVQ (on/off) AVQ (off/on) 

Toulouse (� = �. �) 17.09 17.09 0.15 -5.25 40.71 

Millau (� = �. �) 18.50 18.54 -0.14 -6.40 46.53 

Chamonix (� = �. �) 16.65 17.36 -17.00 -14.74 53.41 

Toulouse (� = �. ��) 71.30 71.30 0.42 -17.18 219.92 

Millau (� = �. ��) 72.63 72.67 0.10 -23.60 268.72 

Chamonix (� = �. ��) 65.77 67.28 -16.80 -31.93 259.48 

Toulouse (� = �. ���) 173.34 173.34 1.46 -122.17 1055.46 

Millau (� = �. ���) 173.31 173.29 1.05 -115.22 1022.00 

Chamonix (� =
�. ���) 

189.46 189.83 -16.03 -92.89 1025.43 

Toulouse (� = �. ���) 144.79 144.77 3.44 -273.53 1418.72 

Millau (� = �. ���) 184.98 184.84 2.87 -232.10 1457.83 

Chamonix (� =
�. ���) 

274.46 269.75 -14.56 -155.45 1596.10 

Table 8: Bias (in ppb) of several averaging biases before any bias correction schemes is applied on the three scenes, for four 
reflectivity values. 
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Figure 1: Laser frequency positioning of the on-line and off-line laser beams. The on-line frequency is positioned in the trough of 
one of the methane absorption line multiplets. The off-line frequency is positioned so that the methane absorption is negligible. 

  5 
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Figure 2: Principle schematics of the MERLIN IPDA lidar measurement. The lidar emits two laser beams with slightly different 
wavelengths (��� and ����). Every measurement corresponds to the small fraction of the two laser beams – called on-line and off-
line signals – that are reflected by a “hard” target (Earth’s surface, top of dense clouds) to the satellite receiver telescope. For clarity, 
the three averaging windows are represented with four measurements instead of 150. On every averaging window, geophysical 5 
parameters such as altitude (or scattering surface elevation when there are clouds) or reflectivity vary. 
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Figure 3: Effect of the Non-linearity on the DAOD Distribution for a low reflectivity (0.016 ice/snow cover). Panel (a) shows that the 
on-line and off-line calibrated signals are normally distributed. A significant part of on-line calibrated signals (orange) is negative 
which makes the corresponding double-shots unusable (undefined logarithm). Panel (b) shows that the DAODs corresponding to 5 
the usable calibrated signals are not normally distributed and it presents a bias and is skewed. The true DAOD is 0.53 whereas the 
mean of the distribution is about 0.54 which leads to a bias on the ����

 of approximately +34 ppb here. 
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Figure 4: Statistical bias induced by measurement noise. The on-line and off-line SNR drive the value of the statistical bias. The blue 
line is derived from the integration of the truncated normal distribution (Eq. (16) and (13)). The orange line is the Taylor 
development (Eq. (15)) only valid when reflectivity is high enough (i.e. high SNR). The expected bias computed from a simple Monte-
Carlo simulation (Yellow dots) shows that the integration approach is the most accurate. For reflectivity values of 0.1 (vegetation 5 
cover), integration (blue) and Taylor development (orange) differs of about 1 ppb (cf. Table 2 for some values). 
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Figure 5: Surface pressure of the three scenes from the data sets. Toulouse (resp. Millau, Chamonix) presents medium (resp. high, 
very high) variability (cf. Table 4). 
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Figure 6: Relative variations of reflectivity of the three scenes from the data set. Toulouse (resp. Millau, Chamonix) presents 
medium (resp. high, high) variability (cf. Table 4). 
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Figure 7: Global cumulative distribution of standard deviation of altitude obtained on SRTM. 46 % (resp. 67 %, resp. 97 %) of 
SRTM boxes present a lower standard deviation than Toulouse scene (resp. Millau scene, resp. Chamonix scene). The three scenes 
are representative of medium, high and very high variations of altitude. 

  5 
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Figure 8: Global description of the simulation. Data sets (blue) are described in section 4.1. Signals and IWF computation (orange) 
is described in section 4.3. Averaging strategies performed and their related bias corrections (green) are described in section 4.4 and 
Table 4. Target ����

 computation (red) is described in section 3.1. ��	is the scheme bias which is the difference between scheme 

and target ����
 and ������� is the residual bias when evaluated biases have been subtracted from the scheme bias. 5 
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Figure 9: On-line and off-line SNR computed from reflectivity according to instrument characteristics 
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Figure 10: Bias before correction for the three studied averaging scheme (red dotted lines: targeted bias ±1 ppb). 
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Figure 11: Residual bias after statistical bias correction for the three studied averaging scheme (red dotted lines: targeted bias ±1 
ppb). 
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Figure 12: Residual bias after noise induced bias and geophysical variation induced bias corrections for the three studied averaging 
scheme (red dotted lines: targeted bias ±1 ppb). 


