
Response to Reviewers, AMT-2018-96, "Towards variational
retrieval of warm rain from passive microwave observations"
David Ian Duncan et al.

General response

Thanks to all three reviewers for the helpful comments and suggestions offered to improve the manuscript. The reviewer com-

ments follow, in italics, with the authors’ responses following each along with quoted sections of text whenever the manuscript

has been changed.

1 Reviewer 15

1.1 Specific comments

1. You describe a lack of evaporation model, but included in the 2C-Rain-Profile algorithm is an evaporation model (Lebsock

and L’Ecuyer, 2011, Sec. 3.4.2). Therefore, it may be difficult for a reader to discern from the text where exactly your algorithm

deviates from the evaporation included in the CloudSat algorithm that information is derived from. Could you please clarify

this a bit when making caveats that no evaporation model is included in the algorithm (e.g. P14L19-20, P26L2)?10

1. The text has been amended to make clear that some evaporation may be implicit due to the shape of the CloudSat-derived

profile shapes: "...other than that implicit in the shape of the RWC profile (Fig. 2)."

2. Based on discussion and results from Figures 9 and 10, the goodness of fit provides a cursory estimate for trustworthiness

of the retrieval. Figures 7 and 8 could be better served by including the goodness of fit estimates as there are locations north of

53 with 1DVAR rain retrievals but no discernable reflectivities from CloudSat in the lowest few kilometers of the troposphere.15

Those estimates coupled with the visual information of the reflectivity vertical profiles would provide further backing to that

claim.

2. This is a good suggestion, and one that we entertained, but for the figures being quite busy already. Below is a sample of

adding the quality of fit into the line plot of Fig. 7, which gives an idea of how well the retrieval converged for the pixels in

question. If this is felt to be a significant aid to interpretation of the figure then it can be added to one or both of the plots, but20

in the authors’ estimation those particular figures are already quite densely packed with information. The light rain in question

near 53N appears to be supercooled water primarily, which is perhaps why the forward model does relatively poorly fitting the

Tbs in that area. To emphasize, this is why a strong (�2 < 1) threshold is used in the final analysis with GPROF, and thus many

of those pixels would not supplant the GPROF result.
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Figure 1. The second panel from Fig. 7, with quality of fit included as a dotted line (y-axis is shared, with �2 unit-less).

3. Along the lines of Point 2, was there any sensitivity analysis performed on the -8 K threshold used for higher frequency

scattering by ice detection (P13L17) in the retrieval?

Some ad hoc sensitivity testing was done with this threshold when initially testing the algorithm, but nothing formal. It

was found that a combination of the 166GHz and 183±7 was best for looking for an ice scattering signature since the 183±3

channel usually had a lesser response due to water vapor absorption. Values like -10 and -6K were used initially, but one5

tended to toss aside pixels in which convergence could be reached while the other caused too many non-warm rain events to

have retrievals attempted. The use of a threshold is mainly to help save some processing time by not attempting retrievals which

are almost assuredly outside the scope of the forward model.

4. In Section 5.3, rain rates are excluded below 0.2 mm/hr for statistical calculations. It would be good to at least get an

idea of the “distribution’s tail” that exists from 0.2 mm/hr to e.g. 0.01 mm/hr. Though this manuscript is not intended to be an10

operational algorithm description and validation, it would be useful for the reader to understand the relative performance of

1DVAR compared to DPR or PR estimates in this regime specifically (which, for the latter at least, is essentially null in Berg,

L’Ecuyer, and Haynes (2010), Figure 3).

4. The main reason this was avoided was not because the 1DVAR rain rate distribution has a long tail, but rather the distri-

bution of DPR averaged into the GMI footprint, as 81 DPR pixels were weighted to determine the rain rate for the GMI FOV.15

This makes comparison with the 1DVAR rain rates, and determining whether they agree that it is raining or not, difficult if

a threshold is not used. For example, the table below gives the percentage of GMI pixels from a given month for which the

1DVAR and DPR rain rates are above certain cutoff values. The number of 1DVAR raining pixels does not change markedly

depending on cutoff value, but the DPR-based result does change quite a lot.

Table 1. Percentage of GMI pixels in Sept 2014 with rain rates above some given cutoffs.

Cutoff [mmhr�1] 1DVAR-only DPR-only Either

0.005 7.30 15.4 27.3

0.05 7.02 9.32 20.9

0.20 6.19 5.34 15.9
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1.2 Technical comments

1. P3L25-26: “providing the best information content for sensing precipitation of any extant passive sensor”: this statement

should probably have a citation or be restated as it currently conveys a quantitative information content estimate.

This has been modified to use weaker language, as the initial statement was indeed too strong without an appropriate citation:

"...providing information content for sensing liquid hydrometeors and some frozen hydrometeors (Birman et al., 2017)"5

2. P4L24: This should perhaps be rephrased to the National Weather Service operates.

Done: "The National Weather Service operates a dual-pol radar..."

3. P7L7: Please specify in the text the two years of CloudSat data.

This has been added: "...warm rain, 2014 and 2015."

4. Figure 3: Please include units on the figure.10

Done

5. P28-31: Some references are missing DOIs. P30L21 has a malformed DOI.

References have been updated to all contain DOIs.

2 Review 2

2.1 Minor comments15

1) CloudSat has trouble seeing the lowest km, as acknowledged on page 16, lines 1-2. But the proposed retrieval makes use of

CloudSat rain profiles to generate a relationship between RWP and surface rain rate (page 13, lines 6-10). Surely the proposed

retrieval is thus also affected by these errors? In any case, it would be good to explain briefly how the CloudSat rain rates are

generated and hence what assumptions are being made.

1) Yes, the drizzle rate calculation is indeed affected by these errors. A quick explanation of how the Lebsock algorithm20

calculates rain rates has been added to description of 2C-RAIN-PROFILE: "The rain rate is calculated via a Z-R relationship

that is dependent on cloud type, with lower rain rates primarily a function of near-surface reflectivity while higher rain rates

are more a function of path integrated attenuation (Lebsock and L’Ecuyer, 2011, Fig. 6)."

2) On page 11: "Figure 5 translates the simple model containing in situ DSD data into error covariances matrices usable by

the retrieval, via Eq. 2". This is not stricly true. Equation 2 gives only the derivation of the diagonal elements of the covariance25

matrix. Please also define how the off-diagonal elements are computed.

2) The analysis method used to extract the covariances from the DSD forward model simulations is a bit convoluted so

as to permit the formulation of dynamically scaling covariances. In practice, this meant calculating error variances and their

respective correlations for different quantiles of the distribution. To formulate the covariance matrix each time, the algorithm

interpolates the sigmas and correlation coefficients, then computes the full covariance matrix from these constituents. To reflect30

this without getting too bogged down in the details, the text has been modified thus: "...via Eq. 4 and the attendant correlation

coefficients between channels’ errors."

3



3) On page 11, this sentence is not clear: "To apply these analyses of in situ data as realistically as possible, the errors

and DSD assumptions derived from extratropical and tropical sites are dependent on the observed latitude." How is this done?

How does this relate to what is shown in figure 5? What is the relationship between "extratropical and tropical sites" and

"dependent on observed latitude"? All needs to be explained in a little more detail, or perhaps rephrased to be clearer.

3) This has been rephrased and expanded to clarify: "To apply these analyses of in situ data as realistically as possible, the5

errors and DSD assumptions derived from extratropical and tropical sites are treated separately. The errors and assumptions

applied depend on the observed latitude, with 30� latitude acting as the separator. Fig. 5 displays errors using the extratropical

sites’ data."

4) On page 11, line 14 (and corrspondingly, in Figure 6) please define the criteria for non-convergence used in the non-

raining algorithm. More generally the phrases "not converged" and the notation "X2 < 1" crop up throughout the paper and10

it needs to be clear whether these are one and the same, or whether "not converged" has any further meaning. For example,

depending on the solver being used, there can be many other failure modes for a variational retrieval.

4) A sentence has been added to the opening paragraph of Section 4: "Non-convergence for each stage is defined by either

failure to converge within 10 iterations or very poor fit (�2 > 4.0)."

5) Page 11, line 27-28 the observation error covariance matrix "Sy for the non-raining retrieval is the same as that given15

by Duncan and Kummerow (2016)". The reader needs a few sentences to describe how this is constructed. It should not be

necessary to have to go to the cited paper.

5) The following text has been added: "The non-raining observation error covariances account for misplacement of cloud

and water vapor in the atmospheric column, as well as surface pressure, wind direction, salinity, and emissivity model errors;

the channel variances for non-raining cases are given in Table 2."20

6) Further, the a-priori error covariance matrix Sa for the non-raining retrieval needs a brief description and quantification

(see point 9).

6) In the next paragraph we have added the following. If readers are interested in the specific values used for each variable,

these are visible in the code which is available through the archived copy on Zenodo. "A priori covariances for wind speed and

water vapour were derived from reanalysis data; as reanalysis cloud water is not representative, only the covariance between25

LWP and the first PC of water vapour is included."

7) The X2 statistic of equation 3 is inexact, with a number of consequences. The true Chi squared test for the consistency

of an optimal variational retrieval given the specified error covariance matrices (see Rodgers, 2000, equation 12.9, as cited

in the manuscript) would replace the observation error covariance matrix Sy in this manuscript’s approximate Chi squared

test with Sy(KSaKt + Sy)-1Sy. Here K (Rodgers’ notation) would correspond to the Jacobian of the observation operator (the30

derivatives of f(x,b) in this manuscript) and Sa the error covariance of the a-priori. The issues are, first, that it is confusing to

label a test X2 when it is not the true test - and a word of explanation could be given - why did the authors choose this less

exact formulation? Second, when the a-priori error covariance in observation space is small relative to the observation errors

(i.e. KSaKt > Sy) the manuscript’s inexact Chi squared becomes a poor measure of convergence - broadly, the retrieval will

not get much closer to the observations, but this is OK because it is consistent with the specified errors. Third, the true Chi35
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squared test could have given a powerful statistical tool for assessing the validity of the assumed error covariance matrices,

which would have been very useful for understanding the retrieval methodology.

7) This comment prompted a great deal of discussion. Taking the points in order:

1. We were more interested in the fit to TBs alone, hence why it is referred to as the fit metric. But you are right that this

is confusing, and the text now tries to clarify this: "The fit metric (�2) is normalised by the number of channels used, and5

indicates the quality of fit between the retrieved state’s simulated TBs and those observed. Note that this is not a true �2 test

(Rodgers, 2000, Eq. 12.9), but instead used to gauge fit to the observations alone."

2. This point should not be a concern for the retrieval because �2 as defined is not used to determine convergence. In fact,

Eq. 5.33 from Rodgers is used (D2
i <<m), a formulation that requires S�y in its calculation. Thus computation of the ’true’

�2 would be trivial for us to perform for future development of the 1DVAR algorithm.10

3. We agree that use of the ’true’ �2 test could be interesting to compare against the fit to TBs [(y� f(x))TS�1
y (y� f(x))]

to examine the validity of our error assumptions, though this is currently outside the scope of this study on an experimental

retrieval.

8) In section 4.3, the source of the a-priori for the warm rain retrieval does not seem to be described. This would be helpful

for its own sake, but also to support section 6.2 which describes what happens when the a-priori is changed - but with respect15

to what?

8) The following has been amended/added after the first paragraph of the section, and made a new paragraph to aid readabil-

ity. Specifics about the PCs of water vapour, RWC, and PIWC are deemed not useful, as there is no easy physical interpretation

for the reduced-space and unit-less variables. Qualitatively, the fact that water vapour and cloud water variables have to be

more tightly constrained (i.e. 40% of the variance used in the non-raining retrieval, which comes from ERA-Interim statistics)20

is perhaps the most salient for readers.

"Even with four variables, the a priori errors on LWP and PC1 of water vapour are decreased, to 10 gm�2 and 60% smaller,

respectively, so as to discourage unphysical behaviour in the retrieval, with the prior for LWP coming from the non-raining

retrieval. These tighter constraints help to avoid a tendency of the retrieval to push humidity and cloud water to very high levels

in some cases. A priori errors on the profiles of RWC and PIWC come from global CloudSat statistics that produced Fig. 2.25

Raining scenes can exhibit 1.5-3.5 degrees of freedom for signal (DFS) given these four retrieved parameters, indicating that

even with four variables the problem is information-limited."

9) In section 4.3, the a-priori error covariance matrix is not introduced, but it is essential for understanding the character

of the retrieval algorithm (essentially what are the relative sizes of KSaKt and Sy, i.e. how closely does it attempt to fit the

observations). For example, the description, "Even with four variables, the a priori errors on LWP and PC1 of water vapour30

are decreased" is not precise enough, especially since there is currently no quantification of the non-raining error covariance

matrix (see point 6)

9) This is addressed in response to 8) above. But in addition, the suggestion that comparison of KSaKT and Sy would be

worthwhile is well taken, and will inform future development. However, since the Jacobian (K) and Sy change scene by scene
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as well as iteration to iteration, it is hard to think of a good way to compare these matrices in a systematic way that would shed

light on the retrieval behaviour rather than muddying the waters.

10) In table 2, does the first row of data correspond to Sy for the non-raining retrieval? If so it would be helpful to state this

explicitly. If not, this would be a good place to illustrate it.

10) Yes, this is correct. The figure caption has been amended to state this explicitly: "The first line (RWP=0) shows the5

non-raining algorithm’s error variances."

11) Page 14, line 16: "if neither converges" - please be more precise on how this is defined.

11) As with the clarification for the non-raining retrieval, comment 4) above, this is based on poor fit to TBs or too many

iterations. Non-convergence is thus treated the same for raining retrievals as for non-raining.

2.2 Technical comments10

1) Figure 5 caption makes use of the notation Sy before it has been introduced.

To link this better with the rest of the manuscript, the following was added to the figure caption: "These error covariances

make up Sy,rain(RWP ), a constituent of the total Sy from Eq. 3, described later in Section 4.3."

3 Review 3

3.1 Specific comments15

Page 3, lines 1-9: As pointed the authors point out, there are important implications for this work in all-sky radiance data

assimilation (DA). It is also important to note that aside from characterization of the observation and forward model errors,

there are also limitations in the simulation of cloud fields in NWP models. Nearly all NWP models contain crude microphysics,

not allowing the DA system to take full advantage of the information content provided by passive microwave measurements.

This is a good point, and the following sentence has been added to this paragraph to highlight this: "NWP models often20

contain crude microphysics that limits their ability to accurately simulate clouds’ radiative properties."

Section 3.1: Partitioning the drizzle onset by other environmental parameters (TPW/SST) is a good way to deal with the fact

that methods which use a single LWP threshold in all conditions (e.g., Wentz and Spencer 1998) do not work very well for

warm clouds (Greenwald et al. 2018).

Thanks for making us aware of that recent Greenwald et al. paper. To strengthen the motivation of regime-dependent drizzle25

onset the following sentence was added to this section: "A constant precipitation onset value can lead to pervasive systematic

biases in cloud and rain retrievals (Greenwald et al., 2018)."

Section 6.2: For me, the bottom line in the usefulness of a 1DVar retrieval is knowing whether it relies too much on the a

priori information. One way to quantify how much the 1Dvar retrievals depend on this information is to compute the matrix Da

= 1-A, where A = Dy K (K is the kernel matrix), and where Dy = Sa K^T(K Sa K^T + Sy ) ^(-1), which uses the same notation30

as in eq (3). Da provides a measure of the contributions of the combined measurements relative to the a prior information. It
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varies between 0 and 1, where 0 means the retrieval is relying completely on the combined measurements and 1 means the

retrieval relies completely on the a priori state.

The trace of the A matrix was used to examine the degrees of freedom for signal seen in the retrieval. This was not explored

in much detail here due to space, but saw further discussion in Duncan (2017). As mentioned in Section 4.3, we saw anything

from 1.5 to 3.5 DFS in raining pixels, signaling that the trace of Da can range from 0.5 to 2.5.5

A 1DVar retrieval also provides a means of computing the retrieval error, which may also be useful. Have the authors

considered computing this error?

Yes, and indeed the posterior error variances are output by the retrieval already, which can be seen in the sample output files

available with the archived code on Zenodo. The tricky thing with analysing these posterior errors is that it requires conversion

from the reduced space (PC1 of RWC, etc.) back into something meaningful (such as rain rate) to be of real use. This is far10

from trivial given the baked in assumptions about DSD and fall speed, for instance, and so thus far we have not attempted to

do this for rainfall. These retrieval error statistics for non-raining retrievals were examined in depth in Duncan and Kummerow

(2016).

Page 2, lines 16-17: It’s not clear to me why only a 1DVar retrieval and not other retrieval techniques should be “sensitive

to rainfall below the detectability of the DPR.” Is there a past study that demonstrates this comparative sensitivity?15

For clarification the word "variational" was removed from that sentence. It was not meant that only a VAR retrieval would

have this sensitivity, rather that the operational Bayesian retrieval (GPROF) does not because it is limited to the sensitivity of

the radar due to its reliance on DPR for its a priori. Other retrieval methods could potentially also demonstrate this sensitivity

if they are treating the surface state more accurately than GPROF does.

Page 2, lines 20-27: I feel that the description of the Bayesian method is a bit over- simplified. A very good overview of the20

method is described in Evans et al. (1995; JAM).

This citation has been added to this section for an interested reader. The description of Bayesian retrieval is admittedly very

brief, but it is not a focus of the paper while other papers contain fuller descriptions.

Page 3, line 13: “ For a rain retrieval . . .”

Fixed25

Page 4, lines 6-7: What spatial resolution are the brightness temperatures convolved to?

The L1CR product produces co-registered TBs but these are not convolved, so the input radiances used are in fact all at the

native resolution. This is certainly a limitation of the algorithm (touched upon tangentially as beam-filling in Section 6.2) but

also keeps it consistent with the approach used by GPROF.

Page 5, line 1: I don’t necessarily agree with the general statement that “passive radiances at typical frequencies contain30

almost no information on the vertical structure of hydrometeors.” This is probably true for shallow warm clouds, but not for

deep convective clouds. Studies have shown there is in fact some vertical information available (see, e.g., Smith et al. 1992;

Evans et al. 1995).

This has been amended from "almost no information" to "little information"

Page 5, first paragraph of section 3.1: This paragraph contains well known information that could be removed.35
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The authors felt it worthwhile to keep this paragraph intact, as it motivates the method described and might not be common

knowledge for all readers.

Page 5, Figure 1: You might consider using color instead of grayscale.

This figure has been modified to use the same colorscale as Fig. 2, which both keeps some consistency amongst the figures

and allows differentiation of areas with no data, now shown in black. The updated figure and caption are given below.

Figure 2. Drizzle onset value of LWP, separated by SST and TPW. Regimes with little data are assigned the maximum value, 300 gm�2, in

line with Wang et al. (2017), while regimes with no data are given in black.
5

Page 6, lines 1-2: I would mention somewhere that the retrieved LWP is actually the total LWP, that is, rain water path plus

cloud liquid water path.

This particular instance of "LWP" has been amended to "total LWP"

Page 6, line 4: I’m assuming the “observations” are the GMI observations?

Yes, "observations" here has been modified to "GMI observations" to make this explicit.10

Page 6, line 5: This part of the sentence is a bit confusing. What do you mean by “precipitation frequency?”

The precipitation frequency from CloudSat is the overall frequency of non-zero precipitation retrieved from the CloudSat

PIA-based retrieval of Haynes et al., and the threshold was tuned until GMI exhibited the same overall precipitation frequency

in each TPW/SST bin.

Page 15, line 19: “excepting” should be “except”15

Fixed

Page 16, lines 19-20: The sentence beginning with “The few pixels raining hardest...” sounds awkward. Consider rewriting

as “The few pixels containing the largest rain rates...”

Fixed
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Page 18, last sentence: The meaning of the sentence beginning with “Here a threshold of...” is unclear. Would it be possible

to rewrite this sentence?

In line with a comment from Reviewer 1, this has been modified to: "Here a threshold of 0.2mmh�1 defines non-zero rain

to avoid the distribution’s tail that arises from averaging of DPR data into the GMI footprint." For further explanation see

comment 4 from Reviewer 1 above.5

Page 24, line 1: What about radio interference at 10 GHz?

It’s true that RFI can exist at the GMI 10.65GHz band, but it is much more prevalent over land and thus not a big factor for our

oceanic retrievals (Draper, 2018). This citation has also been updated to a newer Draper paper which is more comprehensive.

Page 25, line 15: Should “yet” be at the end of the sentence?

It’s perhaps a bit on the poetic side, but it is grammatically correct.10
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Abstract. An experimental retrieval of oceanic warm rain is presented, extending a previous variational algorithm to provide

a suite of retrieved variables spanning non-raining through predominantly warm raining conditions. The warm rain retrieval

is underpinned by hydrometeor covariances and drizzle onset data derived from CloudSat. Radiative transfer modelling and

analysis of drop size variability from disdrometer observations permit state-dependent observation error covariances that scale

with columnar rainwater during iteration. The state-dependent errors and nuanced treatment of drop distributions in precipitat-5

ing regions are novel and may be applicable for future retrievals and all-sky data assimilation methods. This retrieval method

can effectively increase passive microwave sensors’ sensitivity to light rainfall that might otherwise be missed.

Comparisons with space-borne and ground radar estimates are provided as a proof of concept, demonstrating that a passive-

only variational retrieval can be sufficiently constrained from non-raining through warm rain conditions. Significant deviations

from forward model assumptions cause non-convergence, usually a result of scattering hydrometeors above the freezing level.10

However, for cases with liquid-only precipitation, this retrieval displays greater sensitivity than a benchmark operational re-

trieval. Analysis against passive and active products from the Global Precipitation Measurement (GPM) satellite shows substan-

tial discrepancies in precipitation frequency, with the experimental retrieval observing more frequent light rain. This approach

may be complementary to other precipitation retrievals, and its potential synergy with the operational passive GPM retrieval is

briefly explored. There are also implications for data assimilation, as all 13 channels on the GPM Microwave Imager (GMI)15

are simulated over ocean with fidelity in warm raining conditions.

1 Introduction

Global observation of precipitation depends heavily on passive measurements of hydrometeors at microwave wavelengths.

Active sensors possess certain advantages relative to passive sensors, but a full global picture of precipitation is currently im-

possible from active sensors alone as they yield limited spatial coverage and may miss near-surface precipitation due to ground20

clutter effects. While ground radar networks cover some landmasses, a satellite platform is necessary for global observation of

rainfall. Accurate observation of the hydrologic cycle at a high spatiotemporal resolution is a worthy goal (Hou et al., 2014),

and a task that realistically requires passive microwave rainfall retrievals.
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Retrieval of precipitation from passive microwave observations is an under-constrained problem (Stephens and Kummerow,

2007). This is due to many factors, including unknown distributions of ice, mixed phase, and liquid hydrometeors, as well

as their horizontal distribution within the sensor field of view (FOV), coupled with limited channels which possess non-

independent information content. In effect, there are more unknowns than pieces of independent information, and thus many

assumptions are necessary to make the problem tractable. This has historically been done via algorithms built on empirical5

relationships (Hilburn and Wentz, 2008; Wilheit and Chang, 1980) or algorithms based on Bayesian principles with Gaussian-

distributed parameters (Bauer and Schlüssel, 1993; Iturbide-Sanchez et al., 2011; Kummerow et al., 2015), of which variational

(VAR) methods form a subset (Rodgers, 2000).

The patterns and magnitude of precipitation over much of the tropical oceans are largely agreed upon, a result of the coordi-

nated study of tropical precipitation from the Tropical Rainfall Measuring Mission (TRMM), which launched in 1997 (Kum-10

merow et al., 2000). In contrast, the stratocumulus regions and high latitude oceans remain areas of disagreement between dif-

ferent observing platforms and among global models (Behrangi et al., 2012; Rapp et al., 2013; Behrangi et al., 2016; Stephens et al., 2010)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Behrangi et al., 2012, 2016; Rapp et al., 2013; Stephens et al., 2010).

The launch of the Global Precipitation Measurement (GPM) core observatory in 2014 (Hou et al., 2014) increased the observa-

tional capability of sensing global precipitation, but since the Dual-frequency Precipitation Radar (DPR) has limited sensitivity

to the light precipitation so prevalent at high latitudes, uncertainty remains (Skofronick-Jackson et al., 2017). In theory, a15

variational passive retrieval is sensitive to rainfall below the detectability threshold of DPR, and is also not susceptible to

ground clutter that may obscure shallow clouds and precipitation (Liu et al., 2016). Thus a passive-only algorithm may be

better suited to retrieval of the light rain rates that are characteristic of high latitude oceans and stratocumulus regions.

GPM’s operational passive algorithm, the Goddard Profiling (GPROF) algorithm (Kummerow et al., 2015), leverages the

synergy of co-located radar and radiometer observations from GPM to calculate the precipitation rate expectation value for20

all GPM constellation radiometers. The Bayesian scheme uses the brightness temperature (TB) vector to find an average set

of atmospheric profiles that match what the radar would have seen, based on the a priori database
:::::::::::::::::::
(e.g. Evans et al., 1995).

While highly versatile, one weakness of this approach is that it misses hydrometeors below the detectability threshold of the

radar, even if the TBs exhibit signal where the radar does not (GPM Science Team, 2017). Further, while this type of approach

gives a satisfactory average answer, it does not explicitly model radiation coming from the surface and atmosphere, blunting25

the measurements’ effective signal to noise ratio by including many surface states and cloud types in the Bayesian average

(Duncan et al., 2017).

Warm rain—precipitation driven primarily by collision-coalescence below the freezing level—is particularly challenging to

sense from satellite platforms. Passive microwave algorithms are built to exploit the differential signals of emission from liquid

drops and scattering from large drops and mixed phase or frozen hydrometeors, but in the absence of significant emission30

or scattering, the signal may be from cloud alone or a combination of factors (Stephens and Kummerow, 2007). In spite of

these challenges, warm rain is not an insignificant player in the global hydrologic cycle. Warm rain constitutes a majority of

precipitating clouds in stratocumulus regions (Lebsock and L’Ecuyer, 2011; Mülmenstädt et al., 2015) and 20% of total rainfall

over the Tropical oceans is from warm clouds (Liu and Zipser, 2009). While not missed entirely by current passive retrievals,

some of this emission signal may be missed or misattributed due to its relative subtlety.35
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The operational data assimilation (DA) community is also invested in passive microwave radiances in precipitating con-

ditions. Successful assimilation of “all-sky” radiances from microwave radiometers can yield a more accurate analysis state

from which numerical weather prediction (NWP) models can run (Geer et al., 2017). However, the same factors that cause the

retrieval problem to be under-constrained are also relevant for DA schemes (Wang et al., 2012). Thus, microwave radiances

from raining or cloudy pixels are often not included in the data assimilation. If radiances are included, they are accompanied by5

large observation errors (Lean et al., 2017), diminishing the information content added to the analysis state.
:::::
NWP

::::::
models

:::::
often

::::::
contain

:::::
crude

:::::::::::
microphysics

:::
that

::::::
limits

::::
their

:::::
ability

::
to

:::::::::
accurately

:::::::
simulate

:::::::
clouds’

:::::::
radiative

:::::::::
properties.

:
Assimilation of satellite

radiances is typically done with prescribed and uncorrelated errors—a poor assumption for nearby frequencies especially—

although there has been movement towards including correlated observation errors (Bormann et al., 2011, 2016; Weston et al.,

2014).10

Variational methods for retrievals and DA schemes alike should include realistic estimates of the errors for both the a priori

state and observation vector. Whereas prior knowledge from model data or observations can inform a priori error covariances,

error covariances applied to the observation vector are more complex, as they should include instrument noise, forward mod-

elling error, and also forward model parameter error as explored by Duncan and Kummerow (2016). For a raining
:::
rain

:
retrieval,

the assumption of a drop size distribution (DSD) is a large source of error for the forward model but difficult to quantify be-15

cause the true DSD is almost never known. This is effectively a forward model parameter error, assuming that the DSD is

not retrieved. As shown by Lebsock and L’Ecuyer (2011), choosing an inappropriate DSD can greatly impact the results of a

retrieval, as variations in drizzle rates over ocean are largely explained by variations in drop number concentrations (Comstock

et al., 2004). Unfortunately, the distribution of drops in the forward model significantly affects the resultant rain rate and has

an effect on the TB vector, but is not readily retrievable from a single sensor (Mace et al., 2016).20

To be clear, variational precipitation retrieval is a very difficult problem to solve for all conditions. This is implicit in the

empirical estimate of rain rate in Iturbide-Sanchez et al. (2011) or how CloudSat has no variational retrieval that spans all pre-

cipitation types. To make the problem tractable, here we limit the problem to the most straightforward extension to a non-raining

retrieval over ocean—that of warm rain. To combat the underconstrained nature of these retrievals, the experimental retrieval

described herein is applied to the GMI sensor. GMI possesses lower frequency imager channels and four higher frequency25

channels more sensitive to scattering from smaller particles, providing the best information content for sensing precipitation

of any extant passive sensor
:::::
liquid

:::::::::::
hydrometeors

::::
and

:::::
some

:::::
frozen

::::::::::::
hydrometeors

::::::::::::::::::
(Birman et al., 2017). Additionally, GMI is

a good testbed sensor in that it is well calibrated (Draper et al., 2015) and co-locations with DPR are readily available for

analysis.

This study builds upon the ocean algorithm developed for the GMI described by Duncan and Kummerow (2016), the Col-30

orado State University 1D variational algorithm (CSU 1DVAR), with several augmentations to extend its applicability into

warm raining conditions. The satellite instruments and datasets used in this study are detailed next. Section 3 addresses three

key impediments to a variational precipitation retrieval and offers solutions. Section 4 describes the experimental algorithm’s

innovations that permit retrieval of warm rain. Section 5 presents a few case studies of GMI overpasses compared against

independent rainfall estimates from space-borne and ground radars; statistical analysis comparing 1DVAR rainfall frequency
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with DPR is also given. Section 6 provides a discussion of limitations, sensitivities, and implications of the retrieval, and the

paper closes with a brief summary and conclusions.

2 Data5

The GPM core observatory holds two instruments: the GPM Microwave Imager (GMI) and the Dual-frequency Precipitation

Radar (DPR). GPM is in a non-Sun synchronous orbit at an inclination of 65� and was launched in February 2014. Compared

to its predecessor, TRMM, the higher inclination orbit allows for observation of latitudes well outside the Tropics. GMI is a 13

channel passive microwave radiometer containing channels from 10 to 183GHz at horizontal (H) and vertical (V) polarisations

(Draper et al., 2015). All 13 channels are used in the algorithm described, with TBs coming from the co-registered L1CR10

product. DPR is a dual-frequency precipitation profiling radar observing at Ku (13.6GHz) and Ka (35GHz) bands with a 12

dBZ sensitivity threshold. This study uses GPM V05 brightness temperatures and level 2 products. Both the normal scan (NS)

Ku-band only and matched scan (MS) Ku- and Ka-bands combined products are used in this study.

The CloudSat mission’s payload is a 94GHz cloud profiling radar (Stephens et al., 2002). CloudSat was launched in 2007

and flies in the A-Train constellation (L’Ecuyer and Jiang, 2010). At a higher frequency than DPR and with greater radar15

sensitivity, CloudSat is sensitive to clouds and light rain not seen by DPR, though its signal can attenuate in moderate to heavy

precipitation. CloudSat’s small footprint permits highly limited spatial sampling. For light precipitation, CloudSat provides

the best observational record currently available from satellite, and is thus complementary to GPM observations. CloudSat’s

overpasses coincident with GPM were determined using the CloudSat-GPM Coincidence Dataset version 1C (Turk, 2016).

The warm rain retrieval from CloudSat (Lebsock and L’Ecuyer, 2011) is leveraged to construct a priori states usable by20

a variational retrieval. This algorithm and the associated data product, 2C-Rain-Profile, yields profiles of rain water content,

cloud water content, and precipitating ice water content as well as surface rain rate. 2C-Rain-Profile uses a variational approach

to match observed radar reflectivities with a two-stream forward model that includes multiple scattering. It employs a variable

DSD chosen specifically for its applicability to warm rain scenes that are dominated by small drops.
:::
The

::::
rain

:::
rate

::
is
:::::::::
calculated

::
via

::
a
::::
Z-R

::::::::::
relationship

:::
that

::
is
:::::::::

dependent
:::
on

:::::
cloud

::::
type,

:::::
with

:::::
lower

::::
rain

::::
rates

::::::::
primarily

:
a
::::::::

function
::
of

::::::::::
near-surface

::::::::::
reflectivity25

::::
while

::::::
higher

::::
rain

::::
rates

::::
are

::::
more

::
a
:::::::
function

:::
of

::::
path

::::::::
integrated

::::::::::
attenuation

:::::::::::::::::::::::::::::::
(Lebsock and L’Ecuyer, 2011, Fig. 6).

:
CloudSat’s

single frequency radar is supplemented by visible optical depth information from another A-Train sensor to constrain the

retrieval of cloud water path.

The GPM Ground Validation team collects data from certain NEXRAD (Next Generation Radar) sites matched with GPM

overpasses (GPM Science Team, 2015). NEXRAD
:::
The

:::::::
National

:::::::
Weather

:::::::
Service operates a dual-pol radar site on the island30

of Middleton, Alaska at 59�N. This radar site is ideal for comparisons due to its essentially oceanic location at a latitude

frequently sampled by GPM. This ground radar will be referred to as PAIH, its station identifier, hereafter. Ground radar rain

rates used in the analysis are from the polarimetric Z-R algorithm (Bringi et al., 2004).
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3 Impediments

The main impediments to variational retrieval of precipitation over ocean from passive microwave observations can be distilled

down to three factors. In this section, the key impediments to a successful retrieval are enumerated, described, and given

solutions. Each is directly tied to an element of the retrieval as described in the following section.5

First, it is difficult to differentiate between cloud and drizzle drops from radiances alone, necessitating an assumed partition

between cloud water and rainwater in the absence of significant scattering. Second, passive radiances at typical imager fre-

quencies contain almost no
::::
little

:
information on the vertical structure of hydrometeors. Third, the TBs do not contain enough

information to solve for the DSD parameters, but the scattering properties, fall speed, and resultant rain rate of hydromete-

ors are dependent upon their size distribution. Importantly, the impact on radiances caused by the hydrometeors’ distribution10

depends on the mass of hydrometeors in the atmospheric column.

3.1 Partitioning non-scattering liquid

At typical imager wavelengths, cloud droplets lie well within the Rayleigh scattering regime, being instead good emitters of

radiation due to their dielectric properties. Mie theory dictates that scattering is proportional to the size parameter (x= 2⇡r/�)

to the fourth power for a given radius r and wavelength �. Even for an effective radius of 100 µm, thought to exist in typical15

drizzle clouds, the size parameter x is equal to 0.19 at 89GHz, just on the verge between the Rayleigh and Mie scattering

regimes. Thus for many drizzle cases, the actual radiometric observations at GMI frequencies will not diverge significantly

from simulated observations that neglect scattering.

A simple absorbing/emitting forward model can be run due to the lack of scattering from cloud and drizzle drops. In fact,

the predominant lack of scattering from drizzle holds for pristine and polluted regimes, as cloud top effective radii are usually5

less than 30 µm even for precipitating clouds (Lebsock et al., 2008). However, because non-raining and raining clouds exhibit

similar signals, this requires an assumption of partitioning between cloud and rain water emission from passive microwave

algorithms. In contrast, a radar algorithm such as that used by CloudSat is more skillful
:::::
skilful at differentiating between cloud

and rain drops because radar backscatter is very sensitive to drop size.

To
::
A

:::::::
constant

::::::::::
precipitation

:::::
onset

:::::
value

:::
can

::::
lead

:
to
::::::::
pervasive

:::::::::
systematic

:::::
biases

::
in
:::::
cloud

::::
and

:::
rain

::::::::
retrievals

::::::::::::::::::::
(Greenwald et al., 2018).10

::::::::
Therefore,

:::
to calculate regime-dependent values for the onset of drizzle from liquid clouds, CloudSat data are used. Precipi-

tation frequency observed by CloudSat was analysed and compared to the distribution of
:::
total

:
LWP as retrieved by the CSU

1DVAR non-raining retrieval for GMI. CloudSat data were averaged to approximate the GMI field of view (FOV). The non-

raining 1DVAR retrievals that exhibited very poor fits to
::::
GMI

:
observations were assumed precipitating, and the retrievals with

high LWP were designated precipitating until the precipitation frequency matched the CloudSat-derived results in each total

precipitable water (TPW) and sea surface temperature (SST) regime, effectively ensuring that precipitation frequency mirrors

that of CloudSat. This approach implicitly assumes that clouds with higher LWP are more likely to be precipitating, an assump-

tion broadly true in studies of A-Train data (Chen et al., 2011; L’Ecuyer et al., 2009; Stephens and Haynes, 2007). Figure 1

shows the drizzle onset values of liquid water path (LWP) used in this study, subset by TPW and SST. These drizzle onset values5
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Figure 1. Drizzle onset value of LWP, separated by SST and TPW. Regimes with no
:::
little

:
data are assigned the maximum value, 300 gm�2

:
,

:
in
::::
line

:::
with

::::::::::::::
Wang et al. (2017),

:::::
while

::::::
regimes

::::
with

::
no

:::
data

:::
are

::::
given

::
in
:::::
black.

are in general agreement with some in the literature (Chen et al., 2011; Lebsock et al., 2008; Mülmenstädt et al., 2015; Wentz and Spencer, 1998)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Chen et al., 2011; Lebsock et al., 2008; Mülmenstädt et al., 2015; Wentz and Spencer, 1998; Wang et al., 2017) and

lower than some others (Iturbide-Sanchez et al., 2011; Kida et al., 2010), though direct comparison is difficult due to the sub-

division by environmental regime done here. The GPM V05 passive algorithm (i.e. GPROF) employs the above method to

improve detection of light rain below the sensitivity limits of DPR (GPM Science Team, 2017).

3.2 Profiles of hydrometeors10

Profiles of hydrometeor species are required to run a realistic radiative transfer (RT) scheme as part of the forward model.

Further, the surface rain rate depends on the rainwater content in the lowest atmospheric level, not a column total. Vertical

information is however effectively nonexistent in the TB vector, as the emissivity of drops is not strongly tied to temperature or

pressure. Global model data are insufficient to aid in vertical constraints due to the spatiotemporal heterogeneity of clouds and

precipitation. Instead, principal component (PC) analysis can reduce the dimensionality of the problem, simplifying treatment15

of hydrometeor profiles in the retrieval.

Two years of data from the CloudSat 2C-Rain-Profile product (Lebsock and L’Ecuyer, 2011) were analysed to determine the

principal components that best describe hydrometeor profile variability for warm rain. ,
:::::
2014

:::
and

:::::
2015.

:
These are separated by

SST and lightly smoothed, with the first PC of rain water content (RWC) and precipitating ice water content (PIWC) shown in

Fig. 2. The first PCs of RWC and PIWC describe 63% and 51% of the total variability, respectively. Covariances between the20

PCs of RWC and PIWC are also calculated and included in the a priori covariance matrix for raining scenes.
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Figure 2. First principal components of RWC and PIWC from CloudSat for warm rain scenes, shown as path quantities per layer, RWP and

PIWP respectively, to match the units expected by CRTM.

Attempting to retrieve more than one PC of each species is unproductive and can lead to non-convergent retrievals. The

second PC of each species is effectively a vertical redistribution of the first PC in altitude, i.e. more RWC near the surface and

less RWC higher up or vice versa. Since the TB vector is, to first order, sensitive to total columnar liquid, inclusion of more

PCs is not useful for a passive retrieval, a topic explored further in Sect. 6.25

3.3 Drop size distributions

For this study, the normalized
:::::::::
normalised gamma distribution is used to characterize

::::::::::
characterise raindrop distributions (Testud

et al., 2001). This functional form, given below as the number concentration of drops as a function of drop diameter, N(D),

approximates DSDs found in nature with fidelity (Bringi et al., 2003) though not perfectly (Thurai et al., 2017). The normalized

:::::::::
normalised gamma distribution allows comparison of DSDs with different rain rates and water contents due to the normalized30

:::::::::
normalised intercept parameter (Nw). The median volume diameter (D0) is related to the mass-weighted mean diameter (Dm)

via the shape parameter (µ), and � is the gamma function.

N(D) =Nwf(µ)(
D

Dm
)
µ
e
�(µ+4)D/Dm where f(µ) = 6

44
(µ+4)µ+4

�(µ+4) , Do
Dm

=
µ+3.67
µ+4 , Nw =

3.674RWC
⇡⇢wDo

4 (1)

In situ disdrometer measurements from GPM Ground Validation field campaigns are used to quantify the error in forward

modeled TBs given a range of DSDs. These observations are split into extratropical and tropical locations. The extratropical
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sites are near Seattle and Helsinki, from the OLYMPEX (Houze Jr et al., 2017) and Light Precipitation Validation Experiment5

campaigns, respectively. The tropical observations are from Gan Island, Manus Island, and Darwin, Australia. All these sites are

an oceanic subset of those used by ?
:::::::::::::::
Dolan et al. (2018), providing the parameters that describe a modified gamma distribution

along with liquid water content. Following ?
:::::::::::::::
Dolan et al. (2018), PC analysis of the disdrometer data reveals leading modes of

variability in the DSD parameters that suggest convective and stratiform regimes of rainfall, coloured in Fig. 3. Representative

values of these parameters will be used in the retrieval and are separated into these regimes and by location, i.e. tropical or10

extratropical. For the extratropics, the assumed DSD parameters are µ=9 and D0=0.75mm for the stratiform case, and µ=-1

and D0=1.8mm for the convective case; they are µ=7 and D0=0.83mm, µ=0.5 and D0=1.6mm for tropical stratiform and

convective cases, respectively.

Figure 3. Disdrometer data from extratropical (top row) and tropical (bottom row) ocean sites. Blue and orange points were determined via

PC analysis to be analogous to stratiform and convective DSDs, respectively, whereas black points did not fall into those categories.

To test the DSD variability’s effect on radiances, the disdrometer data were used in a simple model with Eddington absorption

(Kummerow, 1993) and Mie scattering modules. The RT model was run with a prescribed atmosphere and surface state, with

a 150 gm
�2 liquid cloud from 925 to 850 hPa. GMI frequencies and viewing geometry are assumed. Rainwater exists below

the cloud base, with the RWC values coming from the disdrometer data and distributed evenly. As seen next, the RT model

diagnoses different radiometric characteristics of the stratiform and convective DSDs, leading the analysis here and the retrieval

described later to delineate between the two.
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Figure 4. Correlations of TB at GMI frequencies with the DSD parameters (Eq. 1) as well as rain rate
:::
(RR)

:
and RWC, as derived from

disdrometer measurements run through a RT model. Convective DSDs (top) and stratiform DSDs (bottom) are shown for extratropical ocean

cases.

Figure 4 shows the correlation between TBs at GMI frequencies and three of the DSD parameters (µ, D0, Nw) as well as

RWC and rain rate, broken up into the stratiform and convective regimes from the high latitude data from Fig. 3, using the5

simple model described above. The strong positive correlations between low frequency TBs and RWC reveal why it makes more

sense to retrieve RWC than any of the DSD parameters, which exhibit weaker correlations that are more channel dependent.

As radiances correlate most strongly with rainwater content and weakly with parameters representing the rain’s microphysical

properties, the spectrum of DSD variability requires simplification to reduce the inverse problem’s dimensionality. This binary

classification is a way to simplify the problem without treating all DSDs as the same, in line with there being limited signal to10

solve for the DSD but some information related to the DSD existing in the TBs.

To view the competing radiance signals more quantitatively, the two DSD regimes’ impacts on TB are enumerated via

a simple model in Table 1. Nearly identical to the model setup used above, here we first run the clear sky case, then with

100 gm
�2 liquid cloud, then simulate a 100 gm

�2 rain cloud. The rain cloud has a fixed RWC but the DSD varies as per the

regimes defined above for the extratropical case. To pull apart the signals, no cloud water was included, and the model was15

run once with rainwater emission artificially set to zero and scattering turned off in another run. Notable are the similar signals

between cloud alone and stratiform rain, and the strong channel dependence of the signals from rainwater.

In an attempt to circumvent the issue of DSD variability while accounting for the inherent forward model uncertainty of

assuming a DSD, these errors are quantified in a way intended to reduce the dimensionality of the problem without ignoring

it. This stems from the TB vector containing information on the DSD, but not enough to be solved for explicitly. The forward20

model parameter error, given below as the variance (�2) per frequency (⌫) stemming from an assumed drop distribution (e.g.
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Table 1. Effects on TB at top of atmosphere from cloud water and rainwater alone. Surface conditions are SST=281K and wind=5ms
�1,

with water vapour and temperature profiles representative of such an ocean scene. Liquid water path is 100 gm
�2 for both rain and cloud

water. In both cases the hydrometeors reside between 925 to 975 hPa. GMI’s 183GHz channels are not included due to the invariance of

water vapour here. Radiometric signals from rainwater are separated into emission (emis.) and scattering (scat.) as described in the text, with

the net effect also given. All units are �K except for the top row, which is in K.

10V 10H 19V 19H 23V 37V 37H 89V 89H 166V 166H

Clear sky [K] 160.16 82.80 178.53 104.79 199.25 204.04 133.86 243.35 192.73 269.36 261.03

Cloud +0.40 +0.65 +1.02 +1.77 +1.29 +2.73 +5.29 +5.28 +13.1 +1.40 +3.64

Strat. rain (net) +0.58 +0.96 +1.73 +3.02 +2.27 +5.02 +10.37 +5.58 +26.11 +0.12 +4.72

Conv. rain (net) +2.10 +3.61 +4.10 +8.30 +4.17 +5.33 +16.4 +2.18 +16.9 +0.29 +2.83

Strat. rain (emis.) +0.59 +0.97 +1.80 +3.11 +2.42 +5.90 +11.5 +15.2 +37.6 +3.10 +8.16

Conv. rain (emis.) +2.44 +4.02 +6.34 +10.9 +7.70 +13.7 +26.5 +11.7 +29.0 +1.83 +4.79

Strat. rain (scat.) -0.01 -0.01 -0.07 -0.09 -0.15 -0.88 -1.08 -9.59 -11.54 -2.98 -3.44

Conv. rain (scat.) -0.34 -0.41 -2.24 -2.68 -3.53 -8.34 -10.2 -9.51 -12.1 -1.54 -1.96

convective, DSDconv) is defined as:

�2
conv(⌫) = var(TB(⌫,DSDconv)�TB(⌫,DSDactual)) (2)

Figure 5 translates the simple model containing in situ DSD data into error covariance matrices usable by the retrieval,

via Eq. 2
:::
and

:::
the

::::::::
attendant

:::::::::
correlation

::::::::::
coefficients

:::::::
between

::::::::
channels’

:::::
errors. Shown are error covariance matrices calculated25

for both stratiform and convective DSD observations at the extratropical sites for two nominal rain water path (RWP) values.

These values are in line with DSDs connected to collision-coalescence processes (?)
::::::::::::::::
(Dolan et al., 2018) and thus appropriate

for warm rain. To apply these analyses of in situ data as realistically as possible, the errors and DSD assumptions derived from

extratropical and tropical sites are dependent
:::::
treated

:::::::::
separately.

::::
The

:::::
errors

::::
and

::::::::::
assumptions

:::::::
applied

::::::
depend

:
on the observed

latitude,
:::::

with
::
30�

::::::
latitude

::::::
acting

::
as

:::
the

::::::::
separator.

::::
Fig.

:
5
:::::::
displays

::::::
errors

::::
using

:::
the

:::::::::::
extratropical

:::::
sites’

:::
data.30

The result of this analysis is an estimate of forward model error at GMI frequencies caused by the assumption of a DSD for

rain in each regime. Since this analysis used the observed variability of the DSD parameters for given RWC values, the resultant

error covariance matrices can be scaled as a function of RWC in the retrieval without further assumptions. The inclusion of

covariances between channels’ errors (i.e. off-diagonal matrix elements) is key, as many of the errors caused by assuming a

DSD are highly correlated between nearby channels.

4 Retrieval description5

The following subsections detail how the retrieval algorithm treats non-raining, drizzling, and warm raining pixels. Its pro-

gression through these outcomes is described via flowchart in Fig. 6. The non-raining retrieval is always run first, with either
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Figure 5. Error covariances due to DSD variability observed at extratropical ocean sites. The RWP values of 50 and 150 gm
�2 are nom-

inal. Covariances are in units of K, with negative covariances given as �
p

|Sy|, to aid interpretation.
:::::
These

::::
error

:::::::::
covariances

::::
make

:::
up

::::::::::::
Sy,rain(RWP ),

:
a
:::::::::

constituent
::
of

::
the

::::
total

:::
Sy ::::

from
::
Eq.

::
3,
::::::::
described

:::
later

::
in

::::::
Section

:::
4.3.

non-convergence or high retrieved LWP signalling the need for the warm rain retrieval to be run.
:::::::::::::::
Non-convergence

::
for

:::::
each

::::
stage

::
is

::::::
defined

:::
by

:::::
either

:::::
failure

::
to

::::::::
converge

:::::
within

:::
10

::::::::
iterations

::
or

::::
very

::::
poor

::
fit

:::::::::
(�2 > 4.0).

:
Drizzle is effectively an in-between

case, where the non-raining forward model is sufficient to match the observed TB vector but the retrieved LWP exceeds the

drizzle onset threshold (Fig. 1). All 13 GMI channels are used in every case.

4.1 Non-raining algorithm

The CSU 1DVAR (Duncan and Kummerow, 2016) was originally developed as a non-scattering retrieval for the so-called5

“ocean suite” parameters over water: total precipitable water, 10m wind speed, cloud LWP, and SST. It is a variational (optimal

estimation) algorithm that iterates to find an optimal geophysical state that best matches the observed TB vector within the

bounds of a priori knowledge of the geophysical state (Rodgers, 2000). This is done via a physical forward model tailored
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Figure 6. Algorithm flowchart for the 1DVAR for warm rain.

to the radiometric sensitivities of the variables being retrieved, using Gauss-Newton iteration. Mathematically, the iterative

process endeavours to find a state vector (x) that minimizes
::::::::
minimises

:
a cost function (�) and yields a metric of fit (�2) to the10

observed radiances:

�= (y� f(x,b))TS�1
y (y� f(x,b))+ (x�xa)

TS�1
a (x�xa), �2

= (y� f(x,b))TS�1
y (y� f(x,b))/Nchan (3)

Here y is the observation vector, f is the forward model, b contains all non-retrieved elements of the forward model, xa is the

a priori state vector, and Sa and Sy represent the error covariance matrices of the a priori and observation vectors, respectively.

Sy for the non-raining retrieval is the same as that given by Duncan and Kummerow (2016). The
::::::::::
non-raining

::::::::::
observation

::::
error

::::::::::
covariances

::::::
account

:::
for

::::::::::::
misplacement

::
of

:::::
cloud

:::
and

:::::
water

::::::
vapour

::
in

:::
the

:::::::::::
atmospheric

:::::::
column,

::
as

::::
well

::
as

::::::
surface

::::::::
pressure,

::::
wind

::::::::
direction,

:::::::
salinity,

:::
and

:::::::::
emissivity

:::::
model

::::::
errors;

:::
the

:::::::
channel

::::::::
variances

::
for

::::::::::
non-raining

:::::
cases

:::
are

:::::
given

::
in

::::
Table

::
2.
::::
The

:
cost

function balances knowledge of the prior state with confidence in the observations to find an optimal retrieved state. The fit5

metric (�2) is normalized
:::::::::
normalised

:
by the number of channels used

:
,
:::
and

::::::::
indicates

:::
the

::::::
quality

::
of

:::
fit

:::::::
between

:::
the

::::::::
retrieved

:::::
state’s

::::::::
simulated

::::
TBs

::::
and

:::::
those

::::::::
observed.

:::::
Note

:::
that

::::
this

::
is

:::
not

::
a
::::
true

::
�2

::::
test

::::::::::::::::::::::
(Rodgers, 2000, Eq. 12.9),

:::
but

::::::
instead

:::::
used

::
to

:::::
gauge

::
fit

::
to

:::
the

::::::::::
observations

:::::
alone.
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The non-raining CSU 1DVAR solves for six parameters: wind speed, liquid water path, SST, and coefficients of the first

three PCs of water vapour. Just as described in Sect. 3.2, PCs reduce the dimensionality of the water vapour profile. To make10

the problem more Gaussian, LWP is retrieved in logarithm space but with effectively no constraint by the prior. The a priori

states for SST, wind, and water vapour come from a global model, as do sea level pressure and the temperature profile. For

this study, the GEOS5 FP-IT model (Lucchesi, 2013) was used.
::
A

:::::
priori

::::::::::
covariances

:::
for

::::
wind

::::::
speed

:::
and

:::::
water

::::::
vapour

:::::
were

::::::
derived

::::
from

:::::::::
reanalysis

::::
data;

::
as

:::::::::
reanalysis

:::::
cloud

::::
water

::
is
:::
not

::::::::::::
representative,

::::
only

:::
the

:::::::::
covariance

:::::::
between

:::::
LWP

:::
and

:::
the

::::
first

:::
PC

::
of

:::::
water

::::::
vapour

:
is
::::::::
included.

:
15

The forward model for the CSU 1DVAR uses the Community Radiative Transfer Model (CRTM) v2.3.3 coupled with the

FASTEM6 emissivity model (Liu and Weng, 2013; Kazumori and English, 2015). There are 16 vertical layers from the surface

up to 100 hPa. Cloud liquid water is evenly distributed from 925 to 850 hPa with a cloud drop effective radius of 12 µm, a

value consistent with observations (Lebsock et al., 2008).

4.2 Drizzle20

Drizzle is poorly characterized
:::::::::::
characterised

:
by passive measurements alone, and so the drizzle retrieval depends heavily on

CloudSat data. Conditions in which the non-raining (non-scattering) retrieval converges with a high quality of fit (�2 < 1) are

not necessarily non-raining for the reasons mentioned in Sect. 3.1. Thus, if retrieved LWP is greater than the CloudSat-derived

drizzle onset threshold (Fig. 1), LWP is partitioned into cloud and rain water. Not all extra water is partitioned into drizzle,

with some of the extra water remaining as cloud water as discussed by Wentz and Spencer (1998). RWP is defined thus, with25

LWPdriz determined from Fig. 1 using the a priori SST and TPW states:

RWP = �LWP (1� 1p
�LWP

), where �LWP = LWP �LWPdriz(SST,TPW ) (4)

The resultant drizzle rate is a function of RWP. Because no information exists on the drops’ distribution or altitude, a simple

regression relationship derived from the 2C-Rain-Profile dataset is used to calculate a rain rate, linearly related to RWP and

subset by SST regime. In most regimes the relationship is on order of 70 gm�2 of RWP per 1mmh
�1 of rain rate. Relative to30

the CloudSat estimate, this regression relationship tends to underestimate heavy rain rates and slightly overestimate light rain

rates.

The predominantly non-scattering scenario with drizzle is quite common, especially at high latitudes, and forms a plurality

of global scenes with retrieved rain. Shallow clouds with high liquid water contents often converge well in the non-scattering

retrieval if there is a lack of significant snow or mixed phase hydrometeors. The high frequency channels on GMI—166GHz

and higher—are sensitive to scattering from frozen hydrometeors (Gong and Wu, 2017). Because this retrieval is for warm

rain only, a significant departure between observed and simulated TB at 166V, 166H, and 183±7V is a sign that the warm rain5

retrieval should not be run because the forward model is inadequate (Fig. 6). In the algorithm, this condition is met if the mean

observed minus simulated TB of those three channels is less than �8K, in which case missing values are output.
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4.3 Warm rain retrieval

For cases where the non-scattering retrieval fails, or cases in which LWP > LWPdriz but �2 > 1.0, indicating a fit to the

TBs that exceeds assumed errors, the warm rain retrievals are run subsequent to the non-scattering retrieval. The number of10

retrieved parameters drops from six to four: PC1 of RWC, PC1 of PIWC, LWP, and PC1 of water vapour. This is necessary due

to the limited information content afforded by the TB vector in raining conditions, where sensitivity to the surface and water

vapour are superseded by signals from hydrometeors. The a priori wind and SST are thus held constant; attempting to retrieve

wind speed or SST tends to degrade retrieval of the other parameters.

Even with four variables, the a priori errors on LWP and PC1 of water vapour are decreased,
::
to
::::::::::::
10 gm

�2 and
::::
60%

:::::::
smaller,15

::::::::::
respectively,

:
so as to discourage unphysical behaviour in the retrieval,

::::
with

:::
the

:::::
prior

:::
for

:::::
LWP

::::::
coming

:::::
from

:::
the

::::::::::
non-raining

:::::::
retrieval.

:::::
These

::::::
tighter

:::::::::
constraints

::::
help

::
to

:::::
avoid

:
a
::::::::
tendency

::
of

:::
the

:::::::
retrieval

::
to

::::
push

::::::::
humidity

:::
and

:::::
cloud

:::::
water

::
to

::::
very

::::
high

:::::
levels

::
in

::::
some

::::::
cases.

::
A

:::::
priori

:::::
errors

:::
on

:::
the

::::::
profiles

:::
of

:::::
RWC

:::
and

::::::
PIWC

:::::
come

::::
from

::::::
global

::::::::
CloudSat

:::::::
statistics

::::
that

::::::::
produced

::::
Fig.

:
2.

Raining scenes can exhibit 1.5-3.5 degrees of freedom for signal (DFS) given these four retrieved parameters, indicating that

even with four variables the problem is information-limited.20

A key element of the rain retrieval is its dynamic observation error covariance matrix. In theory, Sy should contain all the

uncertainties of the forward model, forward model parameters, and instrument noise. In practice, this means adding the non-

scattering retrieval’s errors with the errors for a given RWP. As described in Sect. 3.3, the forward model error caused by

assuming a DSD is a function of RWP. Dynamic adjustment of observation errors based on the retrieved scene’s characteristics

is not commonly done in either retrievals or DA schemes; an analogue is Lean et al. (2017), which uses a proxy for cloud amount25

to determine errors, a scheme akin to a dynamic error assignment though not specific to DSD assumptions. Interestingly, the

largest errors given by Lean et al. (2017) are at the 19H and 37H channels for GMI, in line with the results of Fig. 5 for large

RWP.

The vertical distribution of RWC is also assumed by virtue of using only one PC of RWC. This too affects forward model

errors, and was quantified by similar analysis of CloudSat retrievals, also as a function of RWP. These values are added to the5

Sy,rain(RWP ) depicted in Fig. 5. This particular error source has little impact on the retrieval as channel errors are effectively

zero for most channels, maximizing at 3.5K2 for high RWP at 36H in the convective case. Because the errors add in quadrature,

these are mostly insignificant.

Summing Sy,non�scat +Sy,rain(RWP ) yields the observation error covariance matrix used in the iteration (though some

care needs to be taken to ensure that it remains positive definite). Because RWP is retrieved, the matrix is updated with10

every iteration. This complicates the iteration process, but it is based in the physics of the situation—heavier rainfall begets

larger uncertainties. Examples of observation error channel variances are given in Table 2 for randomly selected RWP values

from an extratropical case with both (i.e. convective and stratiform) DSD assumptions. Note that the DSD assumptions and

corresponding errors depend on latitude—retrievals within the tropics (30�N to 30�S) use a different DSD from those in the

extra tropics, as described in Sect. 3.3.15
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Table 2. GMI channel error variances used during iteration for randomly chosen pixels from the scene in Fig. 7. The square roots of error

variances are given so as to be in K, and RWP is given in gm
�2.

:::
The

:::
first

:::
line

::::::::
(RWP=0)

:::::
shows

::
the

:::::::::
non-raining

:::::::::
algorithm’s

::::
error

:::::::
variances.

DSD RWP 10V 10H 19V 19H 23V 36V 36H 89V 89H 166V 166H 183±3 183±7

- 0 1.51 1.13 1.86 2.43 2.60 1.43 2.32 1.61 3.42 1.83 2.71 5.61 3.22

Stra. 18 1.52 1.14 1.87 2.44 2.61 1.45 2.35 1.63 3.47 1.84 2.72 5.61 3.23

Stra. 309 1.54 1.19 2.02 2.81 2.76 2.07 4.23 2.03 3.51 1.98 2.80 5.61 3.24

Conv. 79 1.63 1.64 2.02 2.93 2.71 1.63 3.21 1.69 3.62 1.85 2.73 5.61 3.24

Conv. 195 2.26 3.43 2.86 4.91 3.24 2.37 5.27 1.97 3.91 1.98 2.80 5.61 3.24

The stratiform and convective rain retrievals are run side by side. Whichever converges with a better fit to observations

(lower �2) is output. If neither converges, the output is either that from the non-scattering retrieval, i.e. non-scattering drizzle,

or missing values (see Fig. 6). The convective case is treated the same as the stratiform case—only the DSD parameters and

observation errors differ. For both cases, the resultant rain rate is averaged from the three lowest altitude layers of RWC in the

forward model. This includes the standard assumption that drops reach their terminal fall speed. No explicit evaporation model20

is included due to the lack of true vertical information
:
,
::::
other

::::
than

::::
that

::::::
implicit

::
in
:::
the

:::::
shape

:::
of

:::
the

:::::
RWC

:::::
profile

:::::
(Fig.

::
2).

The forward model for warm rain builds upon the non-raining forward model but requires some modification, as CRTM does

not currently support functional variations in DSD. Thus, the warm rain forward model uses both CRTM and the Eddington

absorption model (Kummerow, 1993) with Mie code modules. The Eddington codes are the same codes used for the GPROF a

priori database creation and the RT simulations described in Sect. 3.3. In practice, this means calling CRTM and then running25

Eddington twice—once with the RWC and PIWC profiles included and once without—then differencing the two and adding

this to the CRTM-derived TB vector. This avoids forward model discontinuity between raining and non-raining pixels, but is

not ideal and computationally expensive.

5 Proof of concept

5.1 Case studies with space-borne radars30

CloudSat’s sensitivity to light rain rates makes it a useful point of comparison, although the orbits of GPM and CloudSat result

in limited high quality matchups. This section includes one case with GMI, DPR, and CloudSat observations in the North

Atlantic, and one case with GMI and CloudSat off the coast of France.

Figure 7 compares the CSU 1DVAR, GPROF, DPR, and CloudSat rain rates for a coincident overpass in the North Atlantic

on June 1st, 2015. The figure’s projection orients the CloudSat ribbon horizontally, with CloudSat reflectivities shown at the

top of the figure. GPROF and DPR underestimate rainfall relative to CloudSat whereas the CSU 1DVAR estimates are closer in

magnitude to CloudSat, as seen in the line plot within Fig. 7. DPR misses the majority of the raining pixels seen by CloudSat,5

as the reflectivites are generally below DPR’s detection threshold. From 49�N to 51.5�N, the region of overlap for the three
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sensors, the CloudSat 2C-Rain-Profile product has a mean rain rate of 1.30mmh
�1 whereas GPROF and DPR NS measure

0.58 and 0.13mmh
�1, respectively. The CSU 1DVAR mean for the same pixels is 1.87mmh

�1, though a few pixels failed

to converge. This is an encouraging result, showing that warm rain from the variational algorithm is of the same order as that

from CloudSat.10

The freezing level is denoted by a grey line in the top panel of Fig. 7, calculated from ancillary data. This lies above most of

the cloud tops seen by CloudSat, indicating that most of the clouds are probably liquid. The CSU 1DVAR converges for many

of these pixels, excepting
:::::
except a few near 52�N and 50�N, where CloudSat shows stronger convection and radar echoes

above the freezing level. The GPM and CloudSat overpasses were 10min apart, which may explain some incongruity in the

pixels that converged, especially with regard to convective clouds.15

Figure 8 provides a closer look of a raining system in the Atlantic, a scene from March 30th, 2016 off the coast of France.

In this figure, CloudSat reflectivities show a complex scene with multiple cloud layers and cloud depths ranging from 1 km

to 8 km. The second panel holds retrieval results from 2C-Rain-Profile, colour-coded to differentiate between liquid and ice

portions of the cloud. CloudSat shows significant rainwater content near the surface that translates into rain rates of about

4mmh
�1. This is in contrast to the GPROF rain rates, which are all less than 0.5mmh

�1. As with the previous case, this is20

not surprising because GPROF’s a priori database is based upon DPR and most of the CloudSat reflectivities seen from 46�N

to 47�N in Fig. 8 are below the sensitivity limit of DPR. This raining system is on the edge of the GMI swath, so no DPR data

are available.

The CSU 1DVAR mostly performs well in this scene. On the right of the figure where the clouds are shallow and mostly

liquid, it retrieves rain rates on the order of CloudSat and much higher than GPROF. As the cloud deepens and non-liquid25

hydrometeors dominate, it fails to converge—the forward model is insufficient due to the transition away from warm rain. In

fact, the apparent overestimation of rain rates on the right side of the figure may be due to CloudSat missing some rainwater;

GMI senses total columnar liquid, whereas CloudSat is mostly blind in the lowest kilometer of the atmosphere and thus may

miss rainwater near the surface (Liu et al., 2016).

On the northern edge of the retrieved rain band in Fig. 8 exists a transition zone with low retrieved rain rates in an area30

with moderate CloudSat rainfall. This violates the assumptions of the forward model, but not strongly enough to cause non-

convergence. Instead, the scattering signal of mixed phase hydrometeors appears to cancel out the rain drops’ emission signal,

and the algorithm reaches convergence with limited rainfall, albeit with a fairly poor fit. As with the previous case, about 9min

elapsed between the overpasses, so the characteristics of the clouds and precipitation may have evolved. The plane parallel

forward model could also be a cause of discrepancies at the rain band’s edge.

5.2 Case studies with ground radar

In this section two GPM overpasses of the PAIH ground radar are examined. Due to GPM’s orbit and the radar’s location south

of Alaska, it is an ideal location for comparisons between high latitude oceanic GPM observations and a polarimetric ground

radar. For this analysis, the focus is on precipitation away from the coastline, as emission from nearby land is a contaminating

factor in precipitation retrievals; indeed the CSU 1DVAR does not run if a pixel contains land contamination.
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Figure 7. GPM and CloudSat rain rates for coincident overpasses in the North Atlantic on June 1st, 2015. The top panel shows CloudSat

reflectivities with a grey line indicating the freezing level. The second panel gives rainfall rates along the CloudSat track. For the bottom

panels, black along the CloudSat track indicates no rain and grey is snow or mixed phase precipitation. Black pixels for the 1DVAR signify

non-convergence. In the final panel, black stippling marks the extent of the DPR NS swath.

The first case, shown in Fig. 9, is from an overpass on July 12th, 2015 with scattered showers visible from PAIH. DPR does a

fairly good job of seeing these showers, although it misses some of the lightest raining pixels observed by PAIH. GPROF picks

up the strongest region of rainfall but underestimates the rain rate relative to PAIH and misses the weaker showers. This scene

proves challenging for the CSU 1DVAR as well. This region is covered with retrieved liquid cloud, including some pixels
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Figure 8. Shallow rain and mixed phase cloud off the coast of France, March 30th 2016. The top panel is CloudSat reflectivities while the

second panel shows 2C-Rain-Profile RWC and PIWC profile retrievals from the same scene. The bottom two panels contrast CloudSat rain

rates with those of the CSU 1DVAR and GPROF. Colour conventions follow those of Fig. 7.

above the drizzle onset threshold that fit the forward model well. Contrasting these pixels with PAIH, some are not raining

to the surface while others are below the drizzle threshold but do indeed seem to be raining. The few pixels raining hardest5

::::::::
containing

:::
the

::::::
largest

::::
rain

::::
rates

:
according to PAIH, DPR, and GPROF do not converge in the iteration, in line with significant

mixed phase or frozen hydrometeors present and echo top heights of 3 km to 5 km observed by DPR. So while this scene is
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nearly ideal for the CSU 1DVAR rain retrieval, in that it rarely violates the assumptions of the forward model, the assumption

of a drizzle onset threshold proves too simplistic to accurately capture drizzling versus non-drizzling liquid clouds in this scene.

Figure 9. Middleton Island (PAIH) radar compared with GPM products and CSU 1DVAR retrievals from July 12th, 2015. The left column

contains CSU 1DVAR retrievals of rain rate and cloud liquid water path, and quality of fit (�2). The right column contains rain rates from

GPROF, DPR, and the ground radar. Colour conventions follow those of Fig. 7.

Figure 10 shows a second ground radar matchup with GPM, from June 29th, 2015. A stronger band of rain is identified10

consistently by DPR and GPROF, and they agree on the general magnitude of precipitation, but PAIH is slightly higher. The

CSU 1DVAR gets the right general shape of this rain band but mostly overestimates the rain rates compared to the other

estimates. Examination of the fit metric (�2) shows that much of this band exhibited relatively poor fits to the observations.

Further analysis of the DPR and PAIH data in Fig. 10 indicates that the forward model assumptions were violated for many of

these raining pixels (not shown). DPR retrieved echo top heights of 1.5 km to 4.0 km, with bright bands evident in most pixels

between 1.6 km and 1.8 km. The existence of these bright bands picked up by DPR demonstrates that there were significant

areas of mixed phase hydrometeors present, something absent from the forward model. Most of the raining pixels in the figure

reached convergence with the convective DSD assumptions but many still exhibit relatively poor fits to the observations. This5

points to the utility of �2 as a marker of trustworthiness for retrieved parameters (Elsaesser and Kummerow, 2008), suggesting

caution in interpreting such pixels that display errors larger than those assumed.
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Figure 10. Middleton Island (PAIH) radar compared with GPM products and CSU 1DVAR retrievals from June 29th 2015. The left column

contains CSU 1DVAR retrievals of rain rate and cloud liquid water path, and quality of fit (�2). The right column contains rain rates from

GPROF, DPR, and the ground radar. Colour conventions follow those of Fig. 7.

5.3 Statistical analysis against DPR

Moving beyond case studies, twelve months of data from the 1DVAR retrieval were compared against DPR rain estimates to

assess the representativeness of the analysed cases. Only pixels within the DPR matched scan (MS), containing both Ku- and10

Ka-band observations, were considered. DPR pixels were averaged into the GMI 23GHz FOV via the same spatial weighting

scheme used to create the GPROF database. The matched data constitute over 120 million coincident observations spanning

September 2014 through August 2015, 20 million of which contain positive rain rates in one or both datasets. Here a threshold

of 0.2mmh
�1 defines positive

:::::::
non-zero

:
rain to avoid the distribution’s tail that arises from averaging

:
of

:::::
DPR

::::
data

::::
into

:::
the

::::
GMI

:::::::
footprint.

The 1DVAR retrieves rainfall in a significant percentage of pixels where DPR sees no precipitation. Of all pixels where the

1DVAR retrieved rain rates greater than 0.2mmh
�1, DPR saw zero rain in 44% of them, with an overall mean rain rate of

0.24mmh
�1 versus 1.43mmh

�1 from the 1DVAR. This discrepancy is biggest for the drizzle retrievals, where DPR retrieves

zero rain rates for 59% of GMI pixels found to be drizzling. However, of all these cases with zero DPR rain and positive5

rain from the 1DVAR, 80% are below 2mmh
�1. This indicates that it is almost always light rain that the 1DVAR picks up,

consistent with the sensitivity limitations of DPR. In the opposite view, the 1DVAR misses a relatively small percentage of
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definite raining cases from DPR and effectively none at higher rain rates. The 1DVAR ascribes non-raining to only 2.3% of

DPR retrievals greater than 0.5mmh
�1 and a mere 0.03% of DPR retrievals greater than 2mmh

�1. This result speaks to the

sensitivity of the 1DVAR and its forward model, consistent with Duncan and Kummerow (2016).10

Additional analysis elucidates some physical causes for 1DVAR versus DPR discrepancies beyond those of the sensors’

differing sensitivities. For example, pixels where the 1DVAR fails to converge are more often characterized
::::::::::
characterised

:
by

the presence of a detectable bright band and higher DPR-detected echo top heights. This is most stark for pixels screened out

due to high frequency scattering, which exhibit bright bands in 42% of their area on average and have echo top heights over

double those of 1DVAR-retrieved drizzle pixels, 5.3 versus 2.5 km. This fits the hypothesis that most precipitation missed by15

the 1DVAR involves significant mixed phase or frozen hydrometeors. In fact, from the subset of pixels where both DPR and

1DVAR retrieved rain, the echo top heights bear out the algorithm’s large-scale separations. Mean echo top heights of 2.7 and

3.4 km were found for converged stratiform and convective retrievals, respectively. The other main cause for discrepancy is

sub-pixel FOV heterogeneity. For pixels where DPR and 1DVAR agree that it is raining, DPR observes much less variability

in sub-pixel rain rates. These are therefore more aligned with the forward model, which assumes a plane parallel atmosphere.20

The sub-pixel standard deviation of rain rates from DPR is 3.2mmh
�1 for failed 1DVAR retrievals, compared to 0.5mmh

�1

for pixels where the 1DVAR reached convergence.

6 Discussion

There are advantages and disadvantages to the variational approach when applied to precipitation retrieval. As shown in the

comparisons against radar estimates, the retrieval described here compares favourably in some cases and fails to converge in25

others, sometimes for observations tens of kilometres apart. This is a function of the simple forward model’s ability or inability

to adequately represent all radiometrically significant constituents associated with oceanic rainfall. However, the simplicity of

the forward model is dictated by the limited information content from the observed TB vector. This is the fundamental catch-22

of precipitation retrieval with limited information. Additionally, the 1DVAR approach will perform poorly if the relationship

between state and observation vectors surpasses moderately non-linear behaviour (Rodgers, 2000), a key upside of Bayesian30

integration (Kummerow et al., 2015).

Warm rain is difficult to observe with conventional validation sources and is a small fraction of the total precipitation in

many regions (Mülmenstädt et al., 2015), making it very challenging to validate. The limited case studies presented indicate

that the 1DVAR can outperform GPROF and the DPR in hand-picked situations, at least relative to CloudSat. It is beyond the

scope of this study to exhaustively validate the retrieval, as it is experimental and not intended to be operational, meant instead

to suggest a possible way forward for future passive rainfall retrievals to reconcile the distribution of precipitation from the

GPM constellation (Skofronick-Jackson et al., 2017) with those of other estimates (Behrangi et al., 2016). With this in mind,5

the following discussion probes the presented retrieval’s limitations, sensitivities, and implications.
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6.1 Limitations

This study has shown that DSD effects on forward model error can be dealt with, but other impediments such as partitioning

liquid water path are perhaps the main cause of errors with respect to radar rainfall estimates. A globally-derived drizzle onset

threshold can cause high and low biases side by side (Figs. 9 and 10), as the TBs cannot necessarily convey information on10

cloud life cycle stage, microphysics, or environmental regime that will affect whether or not a cloud is raining. Similarly,

because GMI lacks profile information, there is no evaporation model, nor a physical model for drizzle rate. These aspects

could conceivably be improved by more extensive use of ancillary data.

The simplicity of the forward model—which accounts for no spatial heterogeneity or 3D radiative transfer effects—is cer-

tainly a limitation. Beam-filling is a challenging obstacle for physical retrievals with an explicit forward model, and can cause15

high biases in retrieved liquid water (Rapp et al., 2009). In the absence of independent sub-FOV observations, cloud fraction

parametrizations or TB-based metrics as a proxy for heterogeneity are not ideal or straightforward to apply during iteration,

and neither is post-processing of rain rates after running a physical retrieval. This class of errors is not addressed here, and is

expected to cause a general high bias in retrieved liquid water and rain rates, consistent with Figs. 7 and 10.

6.2 Sensitivities20

A few sensitivity experiments were conducted to investigate the retrieval’s robustness. Experiments conducted with additional

PCs of RWC and PIWC yielded approximately the same DFS as with one PC, demonstrating that retrieval of additional profile

parameters is not possible with the information content available. In fact, the algorithm is quite insensitive to the specific shape

of the RWC profile employed. A separate experiment using the mean RWC profile from the PC analysis of CloudSat instead

of the first PC yielded almost identical results in the case studies examined (not shown), due to TBs and rain rate being tied25

strongly to columnar liquid and not its distribution (Fig. 4).

Another possible sensitivity of variational retrievals is their dependency on the a priori state. To test this, the GPROF retrieval

was run before the 1DVAR and its columnar rainwater used for the a priori value of RWP. This had a small impact, increasing

the number of raining pixels on average by about 5% but only changing the mean by 2% as the distribution of rain rates was

essentially the same. This more sophisticated prior led to greater convergence rates, with convergence for the stratiform and30

convective cases 7% more likely. The cases studies shown in Figs. 7 and 9 can be compared with these modified a priori cases

seen in the supplementary Figs. A1 and A2, respectively.

Also shown in Figs. A1 and A2 are the sensitivity experiments regarding the drizzle onset threshold. The threshold was

modified by adding and subtracting 50 gm
�2 from the drizzle LWP value. This is a large perturbation, but is about 2� of

typical LWP posterior errors and approximately the difference between non-precipitating and transitional cloud water paths

reported by Lebsock et al. (2008). Increasing the drizzle onset threshold caused a decrease in raining pixels by about 30%,

while a decrease in the threshold caused an increase in raining pixels by 50%, with the number of points retrieved as drizzle5

changing by a factor of two in each direction. This seems quite significant, but perturbations had a smaller impact on overall

accumulations, increasing the average rain rate 9% for the lower drizzle onset, and decreasing the rain rate 7% for the higher
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onset. Because drizzle rates are generally insubstantial, changes to the drizzle onset threshold may have a large impact on the

frequency of light rain but not on global accumulations, though the impacts may be substantial in persistently cloudy regions.

Figure 11. The same scene as Fig. 8, showing the difference of observed and simulated radiances, specifically at 37V (left) and 89H (middle)

channels, and quality of fit (right). Black signifies pixels that did not converge.

6.3 Implications10

This study demonstrates that explicit forward modelling of warm rain in a passive-only variational algorithm can indeed work

if constructed and constrained properly. Observed radiances can be matched to modelled radiances successfully in a selection

of raining scenes if DSD variability is taken into account. Figure 11 shows observed minus simulated radiances for two GMI

channels, with little difference exhibited between raining and non-raining cloudy pixels. Similarly, the bottom panel of Fig. 12

demonstrates that the 1DVAR realistically simulates all 13 GMI channels in raining conditions globally, typically within 215

to 3K for the average channel without strong regional dependence. Though all-sky radiance assimilation is not a directly

comparable problem, this level of agreement with observed radiances has implications for how all-sky DA schemes could

better match radiances in raining conditions.

Figures 12 and 13 offer a global, more climatological view of the warm rain retrieval, using the same 12 months of retrievals

located within the DPR MS swath from the analysis in Section 5.3. The frequency of converged 1DVAR raining retrievals lies20

between 2-10% for much of the global ocean. This can be contrasted with the frequency of non-convergent retrievals to approx-

imate the relative frequency of warm rain versus all precipitation. However, while it bears similarity to the map of GPROF rain

rates in Fig. 13, the retrieval can fail for reasons other than precipitation not represented by the forward model. For instance,

much of the United States’ coast exhibits a high frequency of non-convergent retrievals. This is a function of radio frequency

interference at 19GHz, a documented issue for GMI radiances in that region (Draper and Newell, 2015)
::::::::::::
(Draper, 2018). Simi-

larly, the algorithm relies on a �2 threshold for output, and thus the relative frequency of retrieved warm rain will vary if using5

different �2 thresholds.
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Figure 12. One year of GMI 1DVAR retrievals gridded at 0.5� resolution. The panels show: frequency of pixels with a non-zero rain rate

(top), frequency of non-convergent pixels (middle), and the average root mean squared (RMS) errors between observed and simulated TB

over all 13 channels for raining retrievals only (bottom).

An unresolved question is how to reconcile the differences between CloudSat-derived and GPM-derived precipitation distri-

butions over the global oceans (Skofronick-Jackson et al., 2017, Fig. 5). GPROF and DPR observe less precipitation accumu-

lation over the high latitude oceans and stratocumulus regions, for instance, a function of their limited sensitivities and sensor

resolution (Behrangi et al., 2012). To probe this question, the 1DVAR rain rates were added to GPROF to ascertain the impact

on the global rain distribution, seen in Fig. 13. For all raining and non-raining pixels where the 1DVAR converged, GPROF

values were supplanted by the 1DVAR rain rate and the averages recomputed. To be conservative, only 1DVAR retrievals with

a fit to observations within prescribed errors (�2 < 1) were included. This results in more rain just about everywhere over the5
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Figure 13. One year of GMI 1DVAR retrievals gridded at 0.5� resolution. The top panel shows GPROF mean rain rates from GMI. The middle

panel shows a combination of GPROF plus 1DVAR-derived rain rates—the 1DVAR solution supersedes GPROF wherever it converged in

rain and non-raining conditions
:::
with

:::::::
�2 < 1.0. The bottom panel shows the dominant modes of 1DVAR precipitation retrieved.

global oceans, but it especially enhances accumulated rain in many regions where disagreements between CloudSat and GPM

are strongest.

It is not surprising that 1DVAR-derived rainfall brings GMI retrieval totals more in line with those of CloudSat due to the

algorithm’s reliance on CloudSat data for drizzle onset thresholds. However, the relative simplicity of the 1DVAR’s forward

model and rainfall rate calculation—especially for drizzle—means that these results should be treated with caution. This should

be considered as a naive estimate with potentially strong regional biases. Greater physical understanding and dedicated work

into rain rates from drizzle in different regions would be needed to provide such an estimate with confidence.

For the stated reasons, a Bayesian retrieval such as GPROF still has advantages over a variational scheme for operational5

global products of precipitation. But it is conjectured that a blended Bayesian/variational approach may be preferable for current
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generation radiometers, as warm rain’s relatively small signal to noise can be ascertained better by a variational algorithm while

anything beyond warm rain is currently better handled via Bayesian integration. Hyperspectral passive microwave sensors could

provide better observational constraints for a variational algorithm in the future (Birman et al., 2017), but current sensors’

information content limitations dictate that sensing precipitation from a passive satellite platform requires many compromises10

yet.

7 Summary and conclusions

This study has explored the feasibility of extending variational passive microwave retrievals from non-raining/non-scattering

regimes into the simplest precipitation regimes to forward model, namely oceanic warm rain and drizzle. This extension of a

1DVAR retrieval was accomplished via use of CloudSat-derived a priori information for hydrometeor profiles and drizzle onset,15

combined with a novel treatment of forward model errors caused by DSD assumptions. This augmentation of the retrieval

described by Duncan and Kummerow (2016) was applied to a year of GMI data to assess its performance. Proofs of concept

in Sect. 5 demonstrated that the variational retrieval can add information on precipitation in selected scenes. This was judged

relative to an operational algorithm using Bayesian integration and a case in which drops exist between the sensitivity limits

of the CloudSat and GPM radars (Fig. 7), results that are in line with theory. Limitations and sensitivities of the experimental20

retrieval were discussed in Sect. 6, with the drizzle onset threshold the key sensitivity. Limitations of the approach include the

crude forward model and the ambiguity of assigning drizzle or warm rain. The transition from cloud to drizzle and warm rain

is continuous, reflected in a continuum of TB response, and delineation between raining or non-raining states has to rely on

quality of fit metrics to collapse this into algorithmic rules.

It is concluded that a variational retrieval can add information relative to operational precipitation products, albeit in limited

circumstances. Treatment of correlated forward model errors, especially those caused by DSD assumptions, is important—

analysis herein shows that errors vary strongly, depending on frequency, columnar rainwater, and meteorological regime (Fig. 5,

Table 2). Collapsing the DSD variability to a binary classification was effective enough to permit convergence in a variety of

regimes and simulate radiances with fidelity (Figs. 11, 12), an approach that can be adapted as data on global DSD variability5

improves. The rain rate estimates proffered by this experimental retrieval are admittedly simplistic due to beam-filling and

evaporation not being considered, and it remains to be seen whether such an approach can be extended to other types of

precipitation. However, it is conjectured that the variational approach described here could be useful for future operational

precipitation retrievals and radiance assimilation schemes, a way to maximise the information currently available from passive

microwave sensors.10

Code and data availability. The retrieval code referenced in this study is available (doi:10.5281/zenodo.1098212) along with sample output

files.
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Appendix A: Appendix figures

(a)

(b)

(c)

Figure A1. Sensitivity tests following Fig. 7. The panels show retrieved rain rates from the 1DVAR in cases with (a) LWP drizzle onset

threshold decreased 50 gm
�2, (b) increased 50 gm

�2, and (c) using GPROF columnar rain water for the a priori state.
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(a) (b) (c)

Figure A2. Sensitivity tests following Fig. 10. The panels show retrieved rain rates from the 1DVAR in cases with (a) LWP drizzle onset

threshold decreased 50 gm
�2, (b) increased 50 gm

�2, and (c) using GPROF columnar rain water for the a priori state.
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