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Abstract. An experimental retrieval of oceanic warm rain is presented, extending a previous variational algorithm to provide

a suite of retrieved variables spanning non-raining through predominantly warm raining conditions. The warm rain retrieval

is underpinned by hydrometeor covariances and drizzle onset data derived from CloudSat. Radiative transfer modelling and

analysis of drop size variability from disdrometer observations permit state-dependent observation error covariances that scale

with columnar rainwater during iteration. The state-dependent errors and nuanced treatment of drop distributions in precipitat-5

ing regions are novel and may be applicable for future retrievals and all-sky data assimilation methods. This retrieval method

can effectively increase passive microwave sensors’ sensitivity to light rainfall that might otherwise be missed.

Comparisons with space-borne and ground radar estimates are provided as a proof of concept, demonstrating that a passive-

only variational retrieval can be sufficiently constrained from non-raining through warm rain conditions. Significant deviations

from forward model assumptions cause non-convergence, usually a result of scattering hydrometeors above the freezing level.10

However, for cases with liquid-only precipitation, this retrieval displays greater sensitivity than a benchmark operational re-

trieval. Analysis against passive and active products from the Global Precipitation Measurement (GPM) satellite shows substan-

tial discrepancies in precipitation frequency, with the experimental retrieval observing more frequent light rain. This approach

may be complementary to other precipitation retrievals, and its potential synergy with the operational passive GPM retrieval is

briefly explored. There are also implications for data assimilation, as all 13 channels on the GPM Microwave Imager (GMI)15

are simulated over ocean with fidelity in warm raining conditions.

1 Introduction

Global observation of precipitation depends heavily on passive measurements of hydrometeors at microwave wavelengths.

Active sensors possess certain advantages relative to passive sensors, but a full global picture of precipitation is currently im-

possible from active sensors alone as they yield limited spatial coverage and may miss near-surface precipitation due to ground20

clutter effects. While ground radar networks cover some landmasses, a satellite platform is necessary for global observation of

rainfall. Accurate observation of the hydrologic cycle at a high spatiotemporal resolution is a worthy goal (Hou et al., 2014),

and a task that realistically requires passive microwave rainfall retrievals.
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Retrieval of precipitation from passive microwave observations is an under-constrained problem (Stephens and Kummerow,

2007). This is due to many factors, including unknown distributions of ice, mixed phase, and liquid hydrometeors, as well

as their horizontal distribution within the sensor field of view (FOV), coupled with limited channels which possess non-

independent information content. In effect, there are more unknowns than pieces of independent information, and thus many

assumptions are necessary to make the problem tractable. This has historically been done via algorithms built on empirical5

relationships (Hilburn and Wentz, 2008; Wilheit and Chang, 1980) or algorithms based on Bayesian principles with Gaussian-

distributed parameters (Bauer and Schlüssel, 1993; Iturbide-Sanchez et al., 2011; Kummerow et al., 2015), of which variational

(VAR) methods form a subset (Rodgers, 2000).

The patterns and magnitude of precipitation over much of the tropical oceans are largely agreed upon, a result of the co-

ordinated study of tropical precipitation from the Tropical Rainfall Measuring Mission (TRMM), which launched in 199710

(Kummerow et al., 2000). In contrast, the stratocumulus regions and high latitude oceans remain areas of disagreement be-

tween different observing platforms and among global models (Behrangi et al., 2012, 2016; Rapp et al., 2013; Stephens et al.,

2010). The launch of the Global Precipitation Measurement (GPM) core observatory in 2014 (Hou et al., 2014) increased the

observational capability of sensing global precipitation, but since the Dual-frequency Precipitation Radar (DPR) has limited

sensitivity to the light precipitation so prevalent at high latitudes, uncertainty remains (Skofronick-Jackson et al., 2017). In15

theory, a passive retrieval is sensitive to rainfall below the detectability threshold of DPR, and is also not susceptible to ground

clutter that may obscure shallow clouds and precipitation (Liu et al., 2016). Thus a passive-only algorithm may be better suited

to retrieval of the light rain rates that are characteristic of high latitude oceans and stratocumulus regions.

GPM’s operational passive algorithm, the Goddard Profiling (GPROF) algorithm (Kummerow et al., 2015), leverages the

synergy of co-located radar and radiometer observations from GPM to calculate the precipitation rate expectation value for20

all GPM constellation radiometers. The Bayesian scheme uses the brightness temperature (TB) vector to find an average set

of atmospheric profiles that match what the radar would have seen, based on the a priori database (e.g. Evans et al., 1995).

While highly versatile, one weakness of this approach is that it misses hydrometeors below the detectability threshold of the

radar, even if the TBs exhibit signal where the radar does not (GPM Science Team, 2017). Further, while this type of approach

gives a satisfactory average answer, it does not explicitly model radiation coming from the surface and atmosphere, blunting25

the measurements’ effective signal to noise ratio by including many surface states and cloud types in the Bayesian average

(Duncan et al., 2017).

Warm rain—precipitation driven primarily by collision-coalescence below the freezing level—is particularly challenging to

sense from satellite platforms. Passive microwave algorithms are built to exploit the differential signals of emission from liquid

drops and scattering from large drops and mixed phase or frozen hydrometeors, but in the absence of significant emission30

or scattering, the signal may be from cloud alone or a combination of factors (Stephens and Kummerow, 2007). In spite of

these challenges, warm rain is not an insignificant player in the global hydrologic cycle. Warm rain constitutes a majority of

precipitating clouds in stratocumulus regions (Lebsock and L’Ecuyer, 2011; Mülmenstädt et al., 2015) and 20% of total rainfall

over the Tropical oceans is from warm clouds (Liu and Zipser, 2009). While not missed entirely by current passive retrievals,

some of this emission signal may be missed or misattributed due to its relative subtlety.35
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The operational data assimilation (DA) community is also invested in passive microwave radiances in precipitating con-

ditions. Successful assimilation of “all-sky” radiances from microwave radiometers can yield a more accurate analysis state

from which numerical weather prediction (NWP) models can run (Geer et al., 2017). However, the same factors that cause the

retrieval problem to be under-constrained are also relevant for DA schemes (Wang et al., 2012). Thus, microwave radiances

from raining or cloudy pixels are often not included in the data assimilation. If radiances are included, they are accompanied by5

large observation errors (Lean et al., 2017), diminishing the information content added to the analysis state. NWP models often

contain crude microphysics that limits their ability to accurately simulate clouds’ radiative properties. Assimilation of satellite

radiances is typically done with prescribed and uncorrelated errors—a poor assumption for nearby frequencies especially—

although there has been movement towards including correlated observation errors (Bormann et al., 2011, 2016; Weston et al.,

2014).10

Variational methods for retrievals and DA schemes alike should include realistic estimates of the errors for both the a priori

state and observation vector. Whereas prior knowledge from model data or observations can inform a priori error covariances,

error covariances applied to the observation vector are more complex, as they should include instrument noise, forward mod-

elling error, and also forward model parameter error as explored by Duncan and Kummerow (2016). For a rain retrieval, the

assumption of a drop size distribution (DSD) is a large source of error for the forward model but difficult to quantify because the15

true DSD is almost never known. This is effectively a forward model parameter error, assuming that the DSD is not retrieved.

As shown by Lebsock and L’Ecuyer (2011), choosing an inappropriate DSD can greatly impact the results of a retrieval, as

variations in drizzle rates over ocean are largely explained by variations in drop number concentrations (Comstock et al., 2004).

Unfortunately, the distribution of drops in the forward model significantly affects the resultant rain rate and has an effect on

the TB vector, but is not readily retrievable from a single sensor (Mace et al., 2016).20

To be clear, variational precipitation retrieval is a very difficult problem to solve for all conditions. This is implicit in the

empirical estimate of rain rate in Iturbide-Sanchez et al. (2011) or how CloudSat has no variational retrieval that spans all

precipitation types. To make the problem tractable, here we limit the problem to the most straightforward extension to a non-

raining retrieval over ocean—that of warm rain. To combat the underconstrained nature of these retrievals, the experimental

retrieval described herein is applied to the GMI sensor. GMI possesses lower frequency imager channels and four higher25

frequency channels more sensitive to scattering from smaller particles, providing information content for sensing liquid hy-

drometeors and some frozen hydrometeors (Birman et al., 2017). Additionally, GMI is a good testbed sensor in that it is well

calibrated (Draper et al., 2015) and co-locations with DPR are readily available for analysis.

This study builds upon the ocean algorithm developed for the GMI described by Duncan and Kummerow (2016), the Col-

orado State University 1D variational algorithm (CSU 1DVAR), with several augmentations to extend its applicability into30

warm raining conditions. The satellite instruments and datasets used in this study are detailed next. Section 3 addresses three

key impediments to a variational precipitation retrieval and offers solutions. Section 4 describes the experimental algorithm’s

innovations that permit retrieval of warm rain. Section 5 presents a few case studies of GMI overpasses compared against

independent rainfall estimates from space-borne and ground radars; statistical analysis comparing 1DVAR rainfall frequency
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with DPR is also given. Section 6 provides a discussion of limitations, sensitivities, and implications of the retrieval, and the

paper closes with a brief summary and conclusions.

2 Data

The GPM core observatory holds two instruments: the GPM Microwave Imager (GMI) and the Dual-frequency Precipitation

Radar (DPR). GPM is in a non-Sun synchronous orbit at an inclination of 65◦ and was launched in February 2014. Compared5

to its predecessor, TRMM, the higher inclination orbit allows for observation of latitudes well outside the Tropics. GMI is a 13

channel passive microwave radiometer containing channels from 10 to 183 GHz at horizontal (H) and vertical (V) polarisations

(Draper et al., 2015). All 13 channels are used in the algorithm described, with TBs coming from the co-registered L1CR

product. DPR is a dual-frequency precipitation profiling radar observing at Ku (13.6 GHz) and Ka (35 GHz) bands with a 12

dBZ sensitivity threshold. This study uses GPM V05 brightness temperatures and level 2 products. Both the normal scan (NS)10

Ku-band only and matched scan (MS) Ku- and Ka-bands combined products are used in this study.

The CloudSat mission’s payload is a 94 GHz cloud profiling radar (Stephens et al., 2002). CloudSat was launched in 2007

and flies in the A-Train constellation (L’Ecuyer and Jiang, 2010). At a higher frequency than DPR and with greater radar

sensitivity, CloudSat is sensitive to clouds and light rain not seen by DPR, though its signal can attenuate in moderate to heavy

precipitation. CloudSat’s small footprint permits highly limited spatial sampling. For light precipitation, CloudSat provides15

the best observational record currently available from satellite, and is thus complementary to GPM observations. CloudSat’s

overpasses coincident with GPM were determined using the CloudSat-GPM Coincidence Dataset version 1C (Turk, 2016).

The warm rain retrieval from CloudSat (Lebsock and L’Ecuyer, 2011) is leveraged to construct a priori states usable by

a variational retrieval. This algorithm and the associated data product, 2C-Rain-Profile, yields profiles of rain water content,

cloud water content, and precipitating ice water content as well as surface rain rate. 2C-Rain-Profile uses a variational approach20

to match observed radar reflectivities with a two-stream forward model that includes multiple scattering. It employs a variable

DSD chosen specifically for its applicability to warm rain scenes that are dominated by small drops. The rain rate is calculated

via a Z-R relationship that is dependent on cloud type, with lower rain rates primarily a function of near-surface reflectivity

while higher rain rates are more a function of path integrated attenuation (Lebsock and L’Ecuyer, 2011, Fig. 6). CloudSat’s

single frequency radar is supplemented by visible optical depth information from another A-Train sensor to constrain the25

retrieval of cloud water path.

The GPM Ground Validation team collects data from certain NEXRAD (Next Generation Radar) sites matched with GPM

overpasses (GPM Science Team, 2015). The National Weather Service operates a dual-pol radar site on the island of Middleton,

Alaska at 59◦N. This radar site is ideal for comparisons due to its essentially oceanic location at a latitude frequently sampled

by GPM. This ground radar will be referred to as PAIH, its station identifier, hereafter. Ground radar rain rates used in the30

analysis are from the polarimetric Z-R algorithm (Bringi et al., 2004).
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3 Impediments

The main impediments to variational retrieval of precipitation over ocean from passive microwave observations can be distilled

down to three factors. In this section, the key impediments to a successful retrieval are enumerated, described, and given

solutions. Each is directly tied to an element of the retrieval as described in the following section.

First, it is difficult to differentiate between cloud and drizzle drops from radiances alone, necessitating an assumed partition5

between cloud water and rainwater in the absence of significant scattering. Second, passive radiances at typical imager fre-

quencies contain little information on the vertical structure of hydrometeors. Third, the TBs do not contain enough information

to solve for the DSD parameters, but the scattering properties, fall speed, and resultant rain rate of hydrometeors are dependent

upon their size distribution. Importantly, the impact on radiances caused by the hydrometeors’ distribution depends on the mass

of hydrometeors in the atmospheric column.10

3.1 Partitioning non-scattering liquid

At typical imager wavelengths, cloud droplets lie well within the Rayleigh scattering regime, being instead good emitters of

radiation due to their dielectric properties. Mie theory dictates that scattering is proportional to the size parameter (x= 2πr/λ)

to the fourth power for a given radius r and wavelength λ. Even for an effective radius of 100 µm, thought to exist in typical

drizzle clouds, the size parameter x is equal to 0.19 at 89 GHz, just on the verge between the Rayleigh and Mie scattering15

regimes. Thus for many drizzle cases, the actual radiometric observations at GMI frequencies will not diverge significantly

from simulated observations that neglect scattering.

A simple absorbing/emitting forward model can be run due to the lack of scattering from cloud and drizzle drops. In fact,

the predominant lack of scattering from drizzle holds for pristine and polluted regimes, as cloud top effective radii are usually

less than 30 µm even for precipitating clouds (Lebsock et al., 2008). However, because non-raining and raining clouds exhibit20

similar signals, this requires an assumption of partitioning between cloud and rain water emission from passive microwave

algorithms. In contrast, a radar algorithm such as that used by CloudSat is more skilful at differentiating between cloud and

rain drops because radar backscatter is very sensitive to drop size.

A constant precipitation onset value can lead to pervasive systematic biases in cloud and rain retrievals (Greenwald et al.,

2018). Therefore, to calculate regime-dependent values for the onset of drizzle from liquid clouds, CloudSat data are used.25

Precipitation frequency observed by CloudSat was analysed and compared to the distribution of total LWP as retrieved by the

CSU 1DVAR non-raining retrieval for GMI. CloudSat data were averaged to approximate the GMI field of view (FOV). The

non-raining 1DVAR retrievals that exhibited very poor fits to GMI observations were assumed precipitating, and the retrievals

with high LWP were designated precipitating until the precipitation frequency matched the CloudSat-derived results in each

total precipitable water (TPW) and sea surface temperature (SST) regime, effectively ensuring that precipitation frequency30

mirrors that of CloudSat. This approach implicitly assumes that clouds with higher LWP are more likely to be precipitating,

an assumption broadly true in studies of A-Train data (Chen et al., 2011; L’Ecuyer et al., 2009; Stephens and Haynes, 2007).

Figure 1 shows the drizzle onset values of liquid water path (LWP) used in this study, subset by TPW and SST. These drizzle
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Figure 1. Drizzle onset value of LWP, separated by SST and TPW. Regimes with little data are assigned the maximum value, 300 gm−2, in

line with Wang et al. (2017), while regimes with no data are given in black.

onset values are in general agreement with some in the literature (Chen et al., 2011; Lebsock et al., 2008; Mülmenstädt et al.,

2015; Wentz and Spencer, 1998; Wang et al., 2017) and lower than some others (Iturbide-Sanchez et al., 2011; Kida et al.,

2010), though direct comparison is difficult due to the subdivision by environmental regime done here. The GPM V05 passive

algorithm (i.e. GPROF) employs the above method to improve detection of light rain below the sensitivity limits of DPR (GPM

Science Team, 2017).5

3.2 Profiles of hydrometeors

Profiles of hydrometeor species are required to run a realistic radiative transfer (RT) scheme as part of the forward model.

Further, the surface rain rate depends on the rainwater content in the lowest atmospheric level, not a column total. Vertical

information is however effectively nonexistent in the TB vector, as the emissivity of drops is not strongly tied to temperature or

pressure. Global model data are insufficient to aid in vertical constraints due to the spatiotemporal heterogeneity of clouds and10

precipitation. Instead, principal component (PC) analysis can reduce the dimensionality of the problem, simplifying treatment

of hydrometeor profiles in the retrieval.

Two years of data from the CloudSat 2C-Rain-Profile product (Lebsock and L’Ecuyer, 2011) were analysed to determine the

principal components that best describe hydrometeor profile variability for warm rain, 2014 and 2015. These are separated by

SST and lightly smoothed, with the first PC of rain water content (RWC) and precipitating ice water content (PIWC) shown in15
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Figure 2. First principal components of RWC and PIWC from CloudSat for warm rain scenes, shown as path quantities per layer, RWP and

PIWP respectively, to match the units expected by CRTM.

Fig. 2. The first PCs of RWC and PIWC describe 63% and 51% of the total variability, respectively. Covariances between the

PCs of RWC and PIWC are also calculated and included in the a priori covariance matrix for raining scenes.

Attempting to retrieve more than one PC of each species is unproductive and can lead to non-convergent retrievals. The

second PC of each species is effectively a vertical redistribution of the first PC in altitude, i.e. more RWC near the surface and

less RWC higher up or vice versa. Since the TB vector is, to first order, sensitive to total columnar liquid, inclusion of more5

PCs is not useful for a passive retrieval, a topic explored further in Sect. 6.

3.3 Drop size distributions

For this study, the normalised gamma distribution is used to characterise raindrop distributions (Testud et al., 2001). This

functional form, given below as the number concentration of drops as a function of drop diameter, N(D), approximates DSDs

found in nature with fidelity (Bringi et al., 2003) though not perfectly (Thurai et al., 2017). The normalised gamma distribution10

allows comparison of DSDs with different rain rates and water contents due to the normalised intercept parameter (Nw). The

median volume diameter (D0) is related to the mass-weighted mean diameter (Dm) via the shape parameter (µ), and Γ is the

gamma function.

N(D) =Nwf(µ)(
D

Dm
)µe−(µ+4)D/Dm where f(µ) = 6

44

(µ+4)µ+4

Γ(µ+4) ,
Do
Dm

= µ+3.67
µ+4 , Nw = 3.674RWC

πρwDo4
(1)
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In situ disdrometer measurements from GPM Ground Validation field campaigns are used to quantify the error in forward

modeled TBs given a range of DSDs. These observations are split into extratropical and tropical locations. The extratropical

sites are near Seattle and Helsinki, from the OLYMPEX (Houze Jr et al., 2017) and Light Precipitation Validation Experiment

campaigns, respectively. The tropical observations are from Gan Island, Manus Island, and Darwin, Australia. All these sites

are an oceanic subset of those used by Dolan et al. (2018), providing the parameters that describe a modified gamma distribution5

along with liquid water content. Following Dolan et al. (2018), PC analysis of the disdrometer data reveals leading modes of

variability in the DSD parameters that suggest convective and stratiform regimes of rainfall, coloured in Fig. 3. Representative

values of these parameters will be used in the retrieval and are separated into these regimes and by location, i.e. tropical or

extratropical. For the extratropics, the assumed DSD parameters are µ=9 and D0=0.75 mm for the stratiform case, and µ=-1

and D0=1.8 mm for the convective case; they are µ=7 and D0=0.83 mm, µ=0.5 and D0=1.6 mm for tropical stratiform and10

convective cases, respectively.

Figure 3. Disdrometer data from extratropical (top row) and tropical (bottom row) ocean sites. Blue and orange points were determined via

PC analysis to be analogous to stratiform and convective DSDs, respectively, whereas black points did not fall into those categories.

To test the DSD variability’s effect on radiances, the disdrometer data were used in a simple model with Eddington absorption

(Kummerow, 1993) and Mie scattering modules. The RT model was run with a prescribed atmosphere and surface state, with

a 150 gm−2 liquid cloud from 925 to 850 hPa. GMI frequencies and viewing geometry are assumed. Rainwater exists below

the cloud base, with the RWC values coming from the disdrometer data and distributed evenly. As seen next, the RT model15
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diagnoses different radiometric characteristics of the stratiform and convective DSDs, leading the analysis here and the retrieval

described later to delineate between the two.

Figure 4. Correlations of TB at GMI frequencies with the DSD parameters (Eq. 1) as well as rain rate (RR) and RWC, as derived from

disdrometer measurements run through a RT model. Convective DSDs (top) and stratiform DSDs (bottom) are shown for extratropical ocean

cases.

Figure 4 shows the correlation between TBs at GMI frequencies and three of the DSD parameters (µ, D0, Nw) as well as

RWC and rain rate, broken up into the stratiform and convective regimes from the high latitude data from Fig. 3, using the

simple model described above. The strong positive correlations between low frequency TBs and RWC reveal why it makes more5

sense to retrieve RWC than any of the DSD parameters, which exhibit weaker correlations that are more channel dependent.

As radiances correlate most strongly with rainwater content and weakly with parameters representing the rain’s microphysical

properties, the spectrum of DSD variability requires simplification to reduce the inverse problem’s dimensionality. This binary

classification is a way to simplify the problem without treating all DSDs as the same, in line with there being limited signal to

solve for the DSD but some information related to the DSD existing in the TBs.10

To view the competing radiance signals more quantitatively, the two DSD regimes’ impacts on TB are enumerated via

a simple model in Table 1. Nearly identical to the model setup used above, here we first run the clear sky case, then with

100 gm−2 liquid cloud, then simulate a 100 gm−2 rain cloud. The rain cloud has a fixed RWC but the DSD varies as per the

regimes defined above for the extratropical case. To pull apart the signals, no cloud water was included, and the model was

run once with rainwater emission artificially set to zero and scattering turned off in another run. Notable are the similar signals15

between cloud alone and stratiform rain, and the strong channel dependence of the signals from rainwater.

In an attempt to circumvent the issue of DSD variability while accounting for the inherent forward model uncertainty of

assuming a DSD, these errors are quantified in a way intended to reduce the dimensionality of the problem without ignoring
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Table 1. Effects on TB at top of atmosphere from cloud water and rainwater alone. Surface conditions are SST=281 K and wind=5 ms−1,

with water vapour and temperature profiles representative of such an ocean scene. Liquid water path is 100 gm−2 for both rain and cloud

water. In both cases the hydrometeors reside between 925 to 975 hPa. GMI’s 183 GHz channels are not included due to the invariance of

water vapour here. Radiometric signals from rainwater are separated into emission (emis.) and scattering (scat.) as described in the text, with

the net effect also given. All units are ∆K except for the top row, which is in K.

10V 10H 19V 19H 23V 37V 37H 89V 89H 166V 166H

Clear sky [K] 160.16 82.80 178.53 104.79 199.25 204.04 133.86 243.35 192.73 269.36 261.03

Cloud +0.40 +0.65 +1.02 +1.77 +1.29 +2.73 +5.29 +5.28 +13.1 +1.40 +3.64

Strat. rain (net) +0.58 +0.96 +1.73 +3.02 +2.27 +5.02 +10.37 +5.58 +26.11 +0.12 +4.72

Conv. rain (net) +2.10 +3.61 +4.10 +8.30 +4.17 +5.33 +16.4 +2.18 +16.9 +0.29 +2.83

Strat. rain (emis.) +0.59 +0.97 +1.80 +3.11 +2.42 +5.90 +11.5 +15.2 +37.6 +3.10 +8.16

Conv. rain (emis.) +2.44 +4.02 +6.34 +10.9 +7.70 +13.7 +26.5 +11.7 +29.0 +1.83 +4.79

Strat. rain (scat.) -0.01 -0.01 -0.07 -0.09 -0.15 -0.88 -1.08 -9.59 -11.54 -2.98 -3.44

Conv. rain (scat.) -0.34 -0.41 -2.24 -2.68 -3.53 -8.34 -10.2 -9.51 -12.1 -1.54 -1.96

it. This stems from the TB vector containing information on the DSD, but not enough to be solved for explicitly. The forward

model parameter error, given below as the variance (σ2) per frequency (ν) stemming from an assumed drop distribution (e.g.

convective, DSDconv) is defined as:

σ2
conv(ν) = var(TB(ν,DSDconv)−TB(ν,DSDactual)) (2)

Figure 5 translates the simple model containing in situ DSD data into error covariance matrices usable by the retrieval,5

via Eq. 2 and the attendant correlation coefficients between channels’ errors. Shown are error covariance matrices calculated

for both stratiform and convective DSD observations at the extratropical sites for two nominal rain water path (RWP) values.

These values are in line with DSDs connected to collision-coalescence processes (Dolan et al., 2018) and thus appropriate for

warm rain. To apply these analyses of in situ data as realistically as possible, the errors and DSD assumptions derived from

extratropical and tropical sites are treated separately. The errors and assumptions applied depend on the observed latitude, with10

30◦ latitude acting as the separator. Fig. 5 displays errors using the extratropical sites’ data.

The result of this analysis is an estimate of forward model error at GMI frequencies caused by the assumption of a DSD for

rain in each regime. Since this analysis used the observed variability of the DSD parameters for given RWC values, the resultant

error covariance matrices can be scaled as a function of RWC in the retrieval without further assumptions. The inclusion of

covariances between channels’ errors (i.e. off-diagonal matrix elements) is key, as many of the errors caused by assuming a15

DSD are highly correlated between nearby channels.
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Figure 5. Error covariances due to DSD variability observed at extratropical ocean sites. The RWP values of 50 and 150 gm−2 are nom-

inal. Covariances are in units of K, with negative covariances given as −
√
|Sy|, to aid interpretation. These error covariances make up

Sy,rain(RWP ), a constituent of the total Sy from Eq. 3, described later in Section 4.3.

4 Retrieval description

The following subsections detail how the retrieval algorithm treats non-raining, drizzling, and warm raining pixels. Its pro-

gression through these outcomes is described via flowchart in Fig. 6. The non-raining retrieval is always run first, with either

non-convergence or high retrieved LWP signalling the need for the warm rain retrieval to be run. Non-convergence for each

stage is defined by either failure to converge within 10 iterations or very poor fit (χ2 > 4.0). Drizzle is effectively an in-between5

case, where the non-raining forward model is sufficient to match the observed TB vector but the retrieved LWP exceeds the

drizzle onset threshold (Fig. 1). All 13 GMI channels are used in every case.
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Figure 6. Algorithm flowchart for the 1DVAR for warm rain.

4.1 Non-raining algorithm

The CSU 1DVAR (Duncan and Kummerow, 2016) was originally developed as a non-scattering retrieval for the so-called

“ocean suite” parameters over water: total precipitable water, 10 m wind speed, cloud LWP, and SST. It is a variational (optimal

estimation) algorithm that iterates to find an optimal geophysical state that best matches the observed TB vector within the

bounds of a priori knowledge of the geophysical state (Rodgers, 2000). This is done via a physical forward model tailored5

to the radiometric sensitivities of the variables being retrieved, using Gauss-Newton iteration. Mathematically, the iterative

process endeavours to find a state vector (x) that minimises a cost function (Φ) and yields a metric of fit (χ2) to the observed

radiances:

Φ = (y− f(x,b))TS−1
y (y− f(x,b)) + (x−xa)TS−1

a (x−xa), χ2 = (y− f(x,b))TS−1
y (y− f(x,b))/Nchan (3)

Here y is the observation vector, f is the forward model, b contains all non-retrieved elements of the forward model, xa is the10

a priori state vector, and Sa and Sy represent the error covariance matrices of the a priori and observation vectors, respectively.

Sy for the non-raining retrieval is the same as that given by Duncan and Kummerow (2016). The non-raining observation
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error covariances account for misplacement of cloud and water vapour in the atmospheric column, as well as surface pressure,

wind direction, salinity, and emissivity model errors; the channel variances for non-raining cases are given in Table 2. The

cost function balances knowledge of the prior state with confidence in the observations to find an optimal retrieved state. The

fit metric (χ2) is normalised by the number of channels used, and indicates the quality of fit between the retrieved state’s

simulated TBs and those observed. Note that this is not a true χ2 test (Rodgers, 2000, Eq. 12.9), but instead used to gauge fit5

to the observations alone.

The non-raining CSU 1DVAR solves for six parameters: wind speed, liquid water path, SST, and coefficients of the first

three PCs of water vapour. Just as described in Sect. 3.2, PCs reduce the dimensionality of the water vapour profile. To make

the problem more Gaussian, LWP is retrieved in logarithm space but with effectively no constraint by the prior. The a priori

states for SST, wind, and water vapour come from a global model, as do sea level pressure and the temperature profile. For10

this study, the GEOS5 FP-IT model (Lucchesi, 2013) was used. A priori covariances for wind speed and water vapour were

derived from reanalysis data; as reanalysis cloud water is not representative, only the covariance between LWP and the first PC

of water vapour is included.

The forward model for the CSU 1DVAR uses the Community Radiative Transfer Model (CRTM) v2.3.3 coupled with the

FASTEM6 emissivity model (Liu and Weng, 2013; Kazumori and English, 2015). There are 16 vertical layers from the surface15

up to 100 hPa. Cloud liquid water is evenly distributed from 925 to 850 hPa with a cloud drop effective radius of 12 µm, a

value consistent with observations (Lebsock et al., 2008).

4.2 Drizzle

Drizzle is poorly characterised by passive measurements alone, and so the drizzle retrieval depends heavily on CloudSat data.

Conditions in which the non-raining (non-scattering) retrieval converges with a high quality of fit (χ2 < 1) are not necessarily20

non-raining for the reasons mentioned in Sect. 3.1. Thus, if retrieved LWP is greater than the CloudSat-derived drizzle onset

threshold (Fig. 1), LWP is partitioned into cloud and rain water. Not all extra water is partitioned into drizzle, with some of

the extra water remaining as cloud water as discussed by Wentz and Spencer (1998). RWP is defined thus, with LWPdriz

determined from Fig. 1 using the a priori SST and TPW states:

RWP = δLWP (1− 1√
δLWP

), where δLWP = LWP −LWPdriz(SST,TPW ) (4)25

The resultant drizzle rate is a function of RWP. Because no information exists on the drops’ distribution or altitude, a simple

regression relationship derived from the 2C-Rain-Profile dataset is used to calculate a rain rate, linearly related to RWP and

subset by SST regime. In most regimes the relationship is on order of 70 gm−2 of RWP per 1 mmh−1 of rain rate. Relative to

the CloudSat estimate, this regression relationship tends to underestimate heavy rain rates and slightly overestimate light rain

rates.30

The predominantly non-scattering scenario with drizzle is quite common, especially at high latitudes, and forms a plurality

of global scenes with retrieved rain. Shallow clouds with high liquid water contents often converge well in the non-scattering

retrieval if there is a lack of significant snow or mixed phase hydrometeors. The high frequency channels on GMI—166 GHz
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and higher—are sensitive to scattering from frozen hydrometeors (Gong and Wu, 2017). Because this retrieval is for warm

rain only, a significant departure between observed and simulated TB at 166V, 166H, and 183±7V is a sign that the warm rain

retrieval should not be run because the forward model is inadequate (Fig. 6). In the algorithm, this condition is met if the mean

observed minus simulated TB of those three channels is less than −8 K, in which case missing values are output.

4.3 Warm rain retrieval5

For cases where the non-scattering retrieval fails, or cases in which LWP > LWPdriz but χ2 > 1.0, indicating a fit to the

TBs that exceeds assumed errors, the warm rain retrievals are run subsequent to the non-scattering retrieval. The number of

retrieved parameters drops from six to four: PC1 of RWC, PC1 of PIWC, LWP, and PC1 of water vapour. This is necessary due

to the limited information content afforded by the TB vector in raining conditions, where sensitivity to the surface and water

vapour are superseded by signals from hydrometeors. The a priori wind and SST are thus held constant; attempting to retrieve10

wind speed or SST tends to degrade retrieval of the other parameters.

Even with four variables, the a priori errors on LWP and PC1 of water vapour are decreased, to 10 gm−2 and 60% smaller,

respectively, so as to discourage unphysical behaviour in the retrieval, with the prior for LWP coming from the non-raining

retrieval. These tighter constraints help to avoid a tendency of the retrieval to push humidity and cloud water to very high levels

in some cases. A priori errors on the profiles of RWC and PIWC come from global CloudSat statistics that produced Fig. 2.15

Raining scenes can exhibit 1.5-3.5 degrees of freedom for signal (DFS) given these four retrieved parameters, indicating that

even with four variables the problem is information-limited.

A key element of the rain retrieval is its dynamic observation error covariance matrix. In theory, Sy should contain all the

uncertainties of the forward model, forward model parameters, and instrument noise. In practice, this means adding the non-

scattering retrieval’s errors with the errors for a given RWP. As described in Sect. 3.3, the forward model error caused by20

assuming a DSD is a function of RWP. Dynamic adjustment of observation errors based on the retrieved scene’s characteristics

is not commonly done in either retrievals or DA schemes; an analogue is Lean et al. (2017), which uses a proxy for cloud amount

to determine errors, a scheme akin to a dynamic error assignment though not specific to DSD assumptions. Interestingly, the

largest errors given by Lean et al. (2017) are at the 19H and 37H channels for GMI, in line with the results of Fig. 5 for large

RWP.25

The vertical distribution of RWC is also assumed by virtue of using only one PC of RWC. This too affects forward model

errors, and was quantified by similar analysis of CloudSat retrievals, also as a function of RWP. These values are added to the

Sy,rain(RWP ) depicted in Fig. 5. This particular error source has little impact on the retrieval as channel errors are effectively

zero for most channels, maximizing at 3.5 K2 for high RWP at 36H in the convective case. Because the errors add in quadrature,

these are mostly insignificant.30

Summing Sy,non−scat +Sy,rain(RWP ) yields the observation error covariance matrix used in the iteration (though some

care needs to be taken to ensure that it remains positive definite). Because RWP is retrieved, the matrix is updated with

every iteration. This complicates the iteration process, but it is based in the physics of the situation—heavier rainfall begets

larger uncertainties. Examples of observation error channel variances are given in Table 2 for randomly selected RWP values
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Table 2. GMI channel error variances used during iteration for randomly chosen pixels from the scene in Fig. 7. The square roots of error

variances are given so as to be in K, and RWP is given in gm−2. The first line (RWP=0) shows the non-raining algorithm’s error variances.

DSD RWP 10V 10H 19V 19H 23V 36V 36H 89V 89H 166V 166H 183±3 183±7

- 0 1.51 1.13 1.86 2.43 2.60 1.43 2.32 1.61 3.42 1.83 2.71 5.61 3.22

Stra. 18 1.52 1.14 1.87 2.44 2.61 1.45 2.35 1.63 3.47 1.84 2.72 5.61 3.23

Stra. 309 1.54 1.19 2.02 2.81 2.76 2.07 4.23 2.03 3.51 1.98 2.80 5.61 3.24

Conv. 79 1.63 1.64 2.02 2.93 2.71 1.63 3.21 1.69 3.62 1.85 2.73 5.61 3.24

Conv. 195 2.26 3.43 2.86 4.91 3.24 2.37 5.27 1.97 3.91 1.98 2.80 5.61 3.24

from an extratropical case with both (i.e. convective and stratiform) DSD assumptions. Note that the DSD assumptions and

corresponding errors depend on latitude—retrievals within the tropics (30◦N to 30◦S) use a different DSD from those in the

extra tropics, as described in Sect. 3.3.

The stratiform and convective rain retrievals are run side by side. Whichever converges with a better fit to observations

(lower χ2) is output. If neither converges, the output is either that from the non-scattering retrieval, i.e. non-scattering drizzle,5

or missing values (see Fig. 6). The convective case is treated the same as the stratiform case—only the DSD parameters and

observation errors differ. For both cases, the resultant rain rate is averaged from the three lowest altitude layers of RWC in the

forward model. This includes the standard assumption that drops reach their terminal fall speed. No explicit evaporation model

is included due to the lack of true vertical information, other than that implicit in the shape of the RWC profile (Fig. 2).

The forward model for warm rain builds upon the non-raining forward model but requires some modification, as CRTM does10

not currently support functional variations in DSD. Thus, the warm rain forward model uses both CRTM and the Eddington

absorption model (Kummerow, 1993) with Mie code modules. The Eddington codes are the same codes used for the GPROF a

priori database creation and the RT simulations described in Sect. 3.3. In practice, this means calling CRTM and then running

Eddington twice—once with the RWC and PIWC profiles included and once without—then differencing the two and adding

this to the CRTM-derived TB vector. This avoids forward model discontinuity between raining and non-raining pixels, but is15

not ideal and computationally expensive.

5 Proof of concept

5.1 Case studies with space-borne radars

CloudSat’s sensitivity to light rain rates makes it a useful point of comparison, although the orbits of GPM and CloudSat result

in limited high quality matchups. This section includes one case with GMI, DPR, and CloudSat observations in the North20

Atlantic, and one case with GMI and CloudSat off the coast of France.

Figure 7 compares the CSU 1DVAR, GPROF, DPR, and CloudSat rain rates for a coincident overpass in the North Atlantic

on June 1st, 2015. The figure’s projection orients the CloudSat ribbon horizontally, with CloudSat reflectivities shown at the
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top of the figure. GPROF and DPR underestimate rainfall relative to CloudSat whereas the CSU 1DVAR estimates are closer in

magnitude to CloudSat, as seen in the line plot within Fig. 7. DPR misses the majority of the raining pixels seen by CloudSat,

as the reflectivites are generally below DPR’s detection threshold. From 49◦N to 51.5◦N, the region of overlap for the three

sensors, the CloudSat 2C-Rain-Profile product has a mean rain rate of 1.30 mmh−1 whereas GPROF and DPR NS measure

0.58 and 0.13 mmh−1, respectively. The CSU 1DVAR mean for the same pixels is 1.87 mmh−1, though a few pixels failed5

to converge. This is an encouraging result, showing that warm rain from the variational algorithm is of the same order as that

from CloudSat.

The freezing level is denoted by a grey line in the top panel of Fig. 7, calculated from ancillary data. This lies above most

of the cloud tops seen by CloudSat, indicating that most of the clouds are probably liquid. The CSU 1DVAR converges for

many of these pixels, except a few near 52◦N and 50◦N, where CloudSat shows stronger convection and radar echoes above10

the freezing level. The GPM and CloudSat overpasses were 10 min apart, which may explain some incongruity in the pixels

that converged, especially with regard to convective clouds.

Figure 8 provides a closer look of a raining system in the Atlantic, a scene from March 30th, 2016 off the coast of France.

In this figure, CloudSat reflectivities show a complex scene with multiple cloud layers and cloud depths ranging from 1 km

to 8 km. The second panel holds retrieval results from 2C-Rain-Profile, colour-coded to differentiate between liquid and ice15

portions of the cloud. CloudSat shows significant rainwater content near the surface that translates into rain rates of about

4 mmh−1. This is in contrast to the GPROF rain rates, which are all less than 0.5 mmh−1. As with the previous case, this is

not surprising because GPROF’s a priori database is based upon DPR and most of the CloudSat reflectivities seen from 46◦N

to 47◦N in Fig. 8 are below the sensitivity limit of DPR. This raining system is on the edge of the GMI swath, so no DPR data

are available.20

The CSU 1DVAR mostly performs well in this scene. On the right of the figure where the clouds are shallow and mostly

liquid, it retrieves rain rates on the order of CloudSat and much higher than GPROF. As the cloud deepens and non-liquid

hydrometeors dominate, it fails to converge—the forward model is insufficient due to the transition away from warm rain. In

fact, the apparent overestimation of rain rates on the right side of the figure may be due to CloudSat missing some rainwater;

GMI senses total columnar liquid, whereas CloudSat is mostly blind in the lowest kilometer of the atmosphere and thus may25

miss rainwater near the surface (Liu et al., 2016).

On the northern edge of the retrieved rain band in Fig. 8 exists a transition zone with low retrieved rain rates in an area

with moderate CloudSat rainfall. This violates the assumptions of the forward model, but not strongly enough to cause non-

convergence. Instead, the scattering signal of mixed phase hydrometeors appears to cancel out the rain drops’ emission signal,

and the algorithm reaches convergence with limited rainfall, albeit with a fairly poor fit. As with the previous case, about 9 min30

elapsed between the overpasses, so the characteristics of the clouds and precipitation may have evolved. The plane parallel

forward model could also be a cause of discrepancies at the rain band’s edge.
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Figure 7. GPM and CloudSat rain rates for coincident overpasses in the North Atlantic on June 1st, 2015. The top panel shows CloudSat

reflectivities with a grey line indicating the freezing level. The second panel gives rainfall rates along the CloudSat track. For the bottom

panels, black along the CloudSat track indicates no rain and grey is snow or mixed phase precipitation. Black pixels for the 1DVAR signify

non-convergence. In the final panel, black stippling marks the extent of the DPR NS swath.

5.2 Case studies with ground radar

In this section two GPM overpasses of the PAIH ground radar are examined. Due to GPM’s orbit and the radar’s location south

of Alaska, it is an ideal location for comparisons between high latitude oceanic GPM observations and a polarimetric ground
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Figure 8. Shallow rain and mixed phase cloud off the coast of France, March 30th 2016. The top panel is CloudSat reflectivities while the

second panel shows 2C-Rain-Profile RWC and PIWC profile retrievals from the same scene. The bottom two panels contrast CloudSat rain

rates with those of the CSU 1DVAR and GPROF. Colour conventions follow those of Fig. 7.

radar. For this analysis, the focus is on precipitation away from the coastline, as emission from nearby land is a contaminating

factor in precipitation retrievals; indeed the CSU 1DVAR does not run if a pixel contains land contamination.

The first case, shown in Fig. 9, is from an overpass on July 12th, 2015 with scattered showers visible from PAIH. DPR does a

fairly good job of seeing these showers, although it misses some of the lightest raining pixels observed by PAIH. GPROF picks
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up the strongest region of rainfall but underestimates the rain rate relative to PAIH and misses the weaker showers. This scene

proves challenging for the CSU 1DVAR as well. This region is covered with retrieved liquid cloud, including some pixels

above the drizzle onset threshold that fit the forward model well. Contrasting these pixels with PAIH, some are not raining

to the surface while others are below the drizzle threshold but do indeed seem to be raining. The few pixels containing the

largest rain rates according to PAIH, DPR, and GPROF do not converge in the iteration, in line with significant mixed phase or5

frozen hydrometeors present and echo top heights of 3 km to 5 km observed by DPR. So while this scene is nearly ideal for the

CSU 1DVAR rain retrieval, in that it rarely violates the assumptions of the forward model, the assumption of a drizzle onset

threshold proves too simplistic to accurately capture drizzling versus non-drizzling liquid clouds in this scene.

Figure 9. Middleton Island (PAIH) radar compared with GPM products and CSU 1DVAR retrievals from July 12th, 2015. The left column

contains CSU 1DVAR retrievals of rain rate and cloud liquid water path, and quality of fit (χ2). The right column contains rain rates from

GPROF, DPR, and the ground radar. Colour conventions follow those of Fig. 7.

Figure 10 shows a second ground radar matchup with GPM, from June 29th, 2015. A stronger band of rain is identified

consistently by DPR and GPROF, and they agree on the general magnitude of precipitation, but PAIH is slightly higher. The10

CSU 1DVAR gets the right general shape of this rain band but mostly overestimates the rain rates compared to the other

estimates. Examination of the fit metric (χ2) shows that much of this band exhibited relatively poor fits to the observations.

Further analysis of the DPR and PAIH data in Fig. 10 indicates that the forward model assumptions were violated for many of

these raining pixels (not shown). DPR retrieved echo top heights of 1.5 km to 4.0 km, with bright bands evident in most pixels
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Figure 10. Middleton Island (PAIH) radar compared with GPM products and CSU 1DVAR retrievals from June 29th 2015. The left column

contains CSU 1DVAR retrievals of rain rate and cloud liquid water path, and quality of fit (χ2). The right column contains rain rates from

GPROF, DPR, and the ground radar. Colour conventions follow those of Fig. 7.

between 1.6 km and 1.8 km. The existence of these bright bands picked up by DPR demonstrates that there were significant

areas of mixed phase hydrometeors present, something absent from the forward model. Most of the raining pixels in the figure

reached convergence with the convective DSD assumptions but many still exhibit relatively poor fits to the observations. This

points to the utility of χ2 as a marker of trustworthiness for retrieved parameters (Elsaesser and Kummerow, 2008), suggesting

caution in interpreting such pixels that display errors larger than those assumed.5

5.3 Statistical analysis against DPR

Moving beyond case studies, twelve months of data from the 1DVAR retrieval were compared against DPR rain estimates to

assess the representativeness of the analysed cases. Only pixels within the DPR matched scan (MS), containing both Ku- and

Ka-band observations, were considered. DPR pixels were averaged into the GMI 23 GHz FOV via the same spatial weighting

scheme used to create the GPROF database. The matched data constitute over 120 million coincident observations spanning10

September 2014 through August 2015, 20 million of which contain positive rain rates in one or both datasets. Here a threshold

of 0.2 mmh−1 defines non-zero rain to avoid the distribution’s tail that arises from averaging of DPR data into the GMI

footprint.
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The 1DVAR retrieves rainfall in a significant percentage of pixels where DPR sees no precipitation. Of all pixels where the

1DVAR retrieved rain rates greater than 0.2 mmh−1, DPR saw zero rain in 44% of them, with an overall mean rain rate of

0.24 mmh−1 versus 1.43 mmh−1 from the 1DVAR. This discrepancy is biggest for the drizzle retrievals, where DPR retrieves

zero rain rates for 59% of GMI pixels found to be drizzling. However, of all these cases with zero DPR rain and positive

rain from the 1DVAR, 80% are below 2 mmh−1. This indicates that it is almost always light rain that the 1DVAR picks up,5

consistent with the sensitivity limitations of DPR. In the opposite view, the 1DVAR misses a relatively small percentage of

definite raining cases from DPR and effectively none at higher rain rates. The 1DVAR ascribes non-raining to only 2.3% of

DPR retrievals greater than 0.5 mmh−1 and a mere 0.03% of DPR retrievals greater than 2 mmh−1. This result speaks to the

sensitivity of the 1DVAR and its forward model, consistent with Duncan and Kummerow (2016).

Additional analysis elucidates some physical causes for 1DVAR versus DPR discrepancies beyond those of the sensors’10

differing sensitivities. For example, pixels where the 1DVAR fails to converge are more often characterised by the presence

of a detectable bright band and higher DPR-detected echo top heights. This is most stark for pixels screened out due to high

frequency scattering, which exhibit bright bands in 42% of their area on average and have echo top heights over double those

of 1DVAR-retrieved drizzle pixels, 5.3 versus 2.5 km. This fits the hypothesis that most precipitation missed by the 1DVAR

involves significant mixed phase or frozen hydrometeors. In fact, from the subset of pixels where both DPR and 1DVAR15

retrieved rain, the echo top heights bear out the algorithm’s large-scale separations. Mean echo top heights of 2.7 and 3.4 km

were found for converged stratiform and convective retrievals, respectively. The other main cause for discrepancy is sub-pixel

FOV heterogeneity. For pixels where DPR and 1DVAR agree that it is raining, DPR observes much less variability in sub-pixel

rain rates. These are therefore more aligned with the forward model, which assumes a plane parallel atmosphere. The sub-pixel

standard deviation of rain rates from DPR is 3.2 mmh−1 for failed 1DVAR retrievals, compared to 0.5 mmh−1 for pixels20

where the 1DVAR reached convergence.

6 Discussion

There are advantages and disadvantages to the variational approach when applied to precipitation retrieval. As shown in the

comparisons against radar estimates, the retrieval described here compares favourably in some cases and fails to converge in

others, sometimes for observations tens of kilometres apart. This is a function of the simple forward model’s ability or inability25

to adequately represent all radiometrically significant constituents associated with oceanic rainfall. However, the simplicity of

the forward model is dictated by the limited information content from the observed TB vector. This is the fundamental catch-22

of precipitation retrieval with limited information. Additionally, the 1DVAR approach will perform poorly if the relationship

between state and observation vectors surpasses moderately non-linear behaviour (Rodgers, 2000), a key upside of Bayesian

integration (Kummerow et al., 2015).30

Warm rain is difficult to observe with conventional validation sources and is a small fraction of the total precipitation in

many regions (Mülmenstädt et al., 2015), making it very challenging to validate. The limited case studies presented indicate

that the 1DVAR can outperform GPROF and the DPR in hand-picked situations, at least relative to CloudSat. It is beyond the
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scope of this study to exhaustively validate the retrieval, as it is experimental and not intended to be operational, meant instead

to suggest a possible way forward for future passive rainfall retrievals to reconcile the distribution of precipitation from the

GPM constellation (Skofronick-Jackson et al., 2017) with those of other estimates (Behrangi et al., 2016). With this in mind,

the following discussion probes the presented retrieval’s limitations, sensitivities, and implications.

6.1 Limitations5

This study has shown that DSD effects on forward model error can be dealt with, but other impediments such as partitioning

liquid water path are perhaps the main cause of errors with respect to radar rainfall estimates. A globally-derived drizzle onset

threshold can cause high and low biases side by side (Figs. 9 and 10), as the TBs cannot necessarily convey information on

cloud life cycle stage, microphysics, or environmental regime that will affect whether or not a cloud is raining. Similarly,

because GMI lacks profile information, there is no evaporation model, nor a physical model for drizzle rate. These aspects10

could conceivably be improved by more extensive use of ancillary data.

The simplicity of the forward model—which accounts for no spatial heterogeneity or 3D radiative transfer effects—is cer-

tainly a limitation. Beam-filling is a challenging obstacle for physical retrievals with an explicit forward model, and can cause

high biases in retrieved liquid water (Rapp et al., 2009). In the absence of independent sub-FOV observations, cloud fraction

parametrizations or TB-based metrics as a proxy for heterogeneity are not ideal or straightforward to apply during iteration,15

and neither is post-processing of rain rates after running a physical retrieval. This class of errors is not addressed here, and is

expected to cause a general high bias in retrieved liquid water and rain rates, consistent with Figs. 7 and 10.

6.2 Sensitivities

A few sensitivity experiments were conducted to investigate the retrieval’s robustness. Experiments conducted with additional

PCs of RWC and PIWC yielded approximately the same DFS as with one PC, demonstrating that retrieval of additional profile20

parameters is not possible with the information content available. In fact, the algorithm is quite insensitive to the specific shape

of the RWC profile employed. A separate experiment using the mean RWC profile from the PC analysis of CloudSat instead

of the first PC yielded almost identical results in the case studies examined (not shown), due to TBs and rain rate being tied

strongly to columnar liquid and not its distribution (Fig. 4).

Another possible sensitivity of variational retrievals is their dependency on the a priori state. To test this, the GPROF retrieval25

was run before the 1DVAR and its columnar rainwater used for the a priori value of RWP. This had a small impact, increasing

the number of raining pixels on average by about 5% but only changing the mean by 2% as the distribution of rain rates was

essentially the same. This more sophisticated prior led to greater convergence rates, with convergence for the stratiform and

convective cases 7% more likely. The cases studies shown in Figs. 7 and 9 can be compared with these modified a priori cases

seen in the supplementary Figs. A1 and A2, respectively.30

Also shown in Figs. A1 and A2 are the sensitivity experiments regarding the drizzle onset threshold. The threshold was

modified by adding and subtracting 50 gm−2 from the drizzle LWP value. This is a large perturbation, but is about 2σ of

typical LWP posterior errors and approximately the difference between non-precipitating and transitional cloud water paths
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reported by Lebsock et al. (2008). Increasing the drizzle onset threshold caused a decrease in raining pixels by about 30%,

while a decrease in the threshold caused an increase in raining pixels by 50%, with the number of points retrieved as drizzle

changing by a factor of two in each direction. This seems quite significant, but perturbations had a smaller impact on overall

accumulations, increasing the average rain rate 9% for the lower drizzle onset, and decreasing the rain rate 7% for the higher

onset. Because drizzle rates are generally insubstantial, changes to the drizzle onset threshold may have a large impact on the5

frequency of light rain but not on global accumulations, though the impacts may be substantial in persistently cloudy regions.

Figure 11. The same scene as Fig. 8, showing the difference of observed and simulated radiances, specifically at 37V (left) and 89H (middle)

channels, and quality of fit (right). Black signifies pixels that did not converge.

6.3 Implications

This study demonstrates that explicit forward modelling of warm rain in a passive-only variational algorithm can indeed work

if constructed and constrained properly. Observed radiances can be matched to modelled radiances successfully in a selection

of raining scenes if DSD variability is taken into account. Figure 11 shows observed minus simulated radiances for two GMI10

channels, with little difference exhibited between raining and non-raining cloudy pixels. Similarly, the bottom panel of Fig. 12

demonstrates that the 1DVAR realistically simulates all 13 GMI channels in raining conditions globally, typically within 2

to 3 K for the average channel without strong regional dependence. Though all-sky radiance assimilation is not a directly

comparable problem, this level of agreement with observed radiances has implications for how all-sky DA schemes could

better match radiances in raining conditions.15

Figures 12 and 13 offer a global, more climatological view of the warm rain retrieval, using the same 12 months of retrievals

located within the DPR MS swath from the analysis in Section 5.3. The frequency of converged 1DVAR raining retrievals

lies between 2-10% for much of the global ocean. This can be contrasted with the frequency of non-convergent retrievals

to approximate the relative frequency of warm rain versus all precipitation. However, while it bears similarity to the map of

GPROF rain rates in Fig. 13, the retrieval can fail for reasons other than precipitation not represented by the forward model.20
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Figure 12. One year of GMI 1DVAR retrievals gridded at 0.5◦ resolution. The panels show: frequency of pixels with a non-zero rain rate

(top), frequency of non-convergent pixels (middle), and the average root mean squared (RMS) errors between observed and simulated TB

over all 13 channels for raining retrievals only (bottom).

For instance, much of the United States’ coast exhibits a high frequency of non-convergent retrievals. This is a function of

radio frequency interference at 19 GHz, a documented issue for GMI radiances in that region (Draper, 2018). Similarly, the

algorithm relies on a χ2 threshold for output, and thus the relative frequency of retrieved warm rain will vary if using different

χ2 thresholds.

An unresolved question is how to reconcile the differences between CloudSat-derived and GPM-derived precipitation distri-5

butions over the global oceans (Skofronick-Jackson et al., 2017, Fig. 5). GPROF and DPR observe less precipitation accumu-

lation over the high latitude oceans and stratocumulus regions, for instance, a function of their limited sensitivities and sensor

resolution (Behrangi et al., 2012). To probe this question, the 1DVAR rain rates were added to GPROF to ascertain the impact
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Figure 13. One year of GMI 1DVAR retrievals gridded at 0.5◦ resolution. The top panel shows GPROF mean rain rates from GMI. The middle

panel shows a combination of GPROF plus 1DVAR-derived rain rates—the 1DVAR solution supersedes GPROF wherever it converged in

rain and non-raining conditions with χ2 < 1.0. The bottom panel shows the dominant modes of 1DVAR precipitation retrieved.

on the global rain distribution, seen in Fig. 13. For all raining and non-raining pixels where the 1DVAR converged, GPROF

values were supplanted by the 1DVAR rain rate and the averages recomputed. To be conservative, only 1DVAR retrievals with

a fit to observations within prescribed errors (χ2 < 1) were included. This results in more rain just about everywhere over the

global oceans, but it especially enhances accumulated rain in many regions where disagreements between CloudSat and GPM

are strongest.5

It is not surprising that 1DVAR-derived rainfall brings GMI retrieval totals more in line with those of CloudSat due to the

algorithm’s reliance on CloudSat data for drizzle onset thresholds. However, the relative simplicity of the 1DVAR’s forward

model and rainfall rate calculation—especially for drizzle—means that these results should be treated with caution. This should
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be considered as a naive estimate with potentially strong regional biases. Greater physical understanding and dedicated work

into rain rates from drizzle in different regions would be needed to provide such an estimate with confidence.

For the stated reasons, a Bayesian retrieval such as GPROF still has advantages over a variational scheme for operational

global products of precipitation. But it is conjectured that a blended Bayesian/variational approach may be preferable for current

generation radiometers, as warm rain’s relatively small signal to noise can be ascertained better by a variational algorithm while5

anything beyond warm rain is currently better handled via Bayesian integration. Hyperspectral passive microwave sensors could

provide better observational constraints for a variational algorithm in the future (Birman et al., 2017), but current sensors’

information content limitations dictate that sensing precipitation from a passive satellite platform requires many compromises

yet.

7 Summary and conclusions10

This study has explored the feasibility of extending variational passive microwave retrievals from non-raining/non-scattering

regimes into the simplest precipitation regimes to forward model, namely oceanic warm rain and drizzle. This extension of a

1DVAR retrieval was accomplished via use of CloudSat-derived a priori information for hydrometeor profiles and drizzle onset,

combined with a novel treatment of forward model errors caused by DSD assumptions. This augmentation of the retrieval

described by Duncan and Kummerow (2016) was applied to a year of GMI data to assess its performance. Proofs of concept15

in Sect. 5 demonstrated that the variational retrieval can add information on precipitation in selected scenes. This was judged

relative to an operational algorithm using Bayesian integration and a case in which drops exist between the sensitivity limits

of the CloudSat and GPM radars (Fig. 7), results that are in line with theory. Limitations and sensitivities of the experimental

retrieval were discussed in Sect. 6, with the drizzle onset threshold the key sensitivity. Limitations of the approach include the

crude forward model and the ambiguity of assigning drizzle or warm rain. The transition from cloud to drizzle and warm rain20

is continuous, reflected in a continuum of TB response, and delineation between raining or non-raining states has to rely on

quality of fit metrics to collapse this into algorithmic rules.

It is concluded that a variational retrieval can add information relative to operational precipitation products, albeit in limited

circumstances. Treatment of correlated forward model errors, especially those caused by DSD assumptions, is important—

analysis herein shows that errors vary strongly, depending on frequency, columnar rainwater, and meteorological regime (Fig. 5,25

Table 2). Collapsing the DSD variability to a binary classification was effective enough to permit convergence in a variety of

regimes and simulate radiances with fidelity (Figs. 11, 12), an approach that can be adapted as data on global DSD variability

improves. The rain rate estimates proffered by this experimental retrieval are admittedly simplistic due to beam-filling and

evaporation not being considered, and it remains to be seen whether such an approach can be extended to other types of

precipitation. However, it is conjectured that the variational approach described here could be useful for future operational30

precipitation retrievals and radiance assimilation schemes, a way to maximise the information currently available from passive

microwave sensors.
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Appendix A: Appendix figures

(a)

(b)

(c)

Figure A1. Sensitivity tests following Fig. 7. The panels show retrieved rain rates from the 1DVAR in cases with (a) LWP drizzle onset

threshold decreased 50 gm−2, (b) increased 50 gm−2, and (c) using GPROF columnar rain water for the a priori state.
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(a) (b) (c)

Figure A2. Sensitivity tests following Fig. 10. The panels show retrieved rain rates from the 1DVAR in cases with (a) LWP drizzle onset

threshold decreased 50 gm−2, (b) increased 50 gm−2, and (c) using GPROF columnar rain water for the a priori state.
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