Supplementary Information

Traffic-related air pollution near roadways: discerning local impacts from background

- Nathan Hilker¹, Jonathan M. Wang¹, Cheol-Heon Jeong¹, Robert M. Healy², Uwayemi Sofowote², Jerzy
- Debosz², Yushan Su², Michael Noble², Anthony Munoz², Geoff Doerksen³, Luc White⁴, Céline Audette⁴,
- Dennis Herod⁴, Jeffrey R. Brook^{1,5}, Greg J. Evans¹
- ¹Southern Ontario Centre for Atmospheric Aerosol Research, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3E5, Canada
- ²Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment Conservation and Parks, Etobicoke,
- ON, M3P 3V6, Canada
- ³Air Quality Policy and Management Division, Metro Vancouver, Burnaby, BC, V5H 0C6, Canada
- ⁴Air Quality Research Division, Environment and Climate Change Canada, Ottawa, ON, K1A 0H3, Canada
- ⁵Air Quality Research Division, Environment and Climate Change Canada, Ontario, ON, M3H 5T4, Canada
- Correspondence to: Greg J. Evans (greg.evans@utoronto.ca)

27 S1 Data availability

The availability of pollutant data following quality assurance is displayed in Table S1, divided by site and season. The winter season is defined as containing the months of December, January, and February in full. Spring is March, April, and May; summer is June, July, and August; and lastly fall is September, October, and November.

31

Pollutant	C:4a	2015		2016				2017	
	Site	Summer	Fall	Winter	Spring	Summer	Fall	Winter	Spring
	NR-TOR-1	91	99	100	96	96	93	100	99
	BG-TOR-1	47	93	95	98	98	100	100	99
NO	NR-TOR-2	100	92	98	63	99	100	1	49
NO _x	BG-TOR-2	100	61	100	100	88	99	100	99
	NR-VAN	96	82	96	97	98	97	92	96
	BG-VAN	98	98	98	98	98	24	0	0
	NR-TOR-1	64	94	96	80	79	75	79	80
	BG-TOR-1	0	0	0	71	92	94	94	96
<u> </u>	NR-TOR-2	91	91	91	91	97	100	96	99
0	BG-TOR-2	91	88	92	91	82	72	80	91
	NR-VAN	96	48	95	83	92	98	92	96
	BG-VAN	98	98	98	96	98	24	0	0
	NR-TOR-1	61	99	98	95	96	94	100	99
	BG-TOR-1	0	0	0	43	98	100	100	100
CO	NR-TOR-2	100	100	99	100	91	47	97	100
CO_2	BG-TOR-2	91	86	100	73	85	67	0	27
	NR-VAN	80	84	90	96	100	71	62	97
	BG-VAN	0	0	0	0	0	0	0	0
	NR-TOR-1	91	97	100	92	95	91	97	92
	BG-TOR-1	47	88	95	98	98	100	99	99
0	NR-TOR-2	100	94	99	100	100	100	97	99
O_3	BG-TOR-2	96	98	79	100	95	99	100	99
	NR-VAN	96	82	96	95	98	97	91	95
	BG-VAN	98	97	97	98	98	24	0	0
	NR-TOR-1	89	97	100	97	96	98	100	89
	BG-TOR-1	44	93	95	100	97	100	100	99
PM _{2.5}	NR-TOR-2	97	100	99	99	100	95	95	99
	BG-TOR-2	97	97	87	100	95	99	100	99
	NR-VAN	94	83	98	99	81	98	92	97

32 Table S1: Percentage of valid data by site, pollutant, and season.

	BG-VAN	99	99	100	100	100	24	0	0
	NR-TOR-1	90	96	99	87	0	78	100	90
	BG-TOR-1	0	0	0	40	97	100	100	99
	NR-TOR-2	80	80	98	99	99	99	96	95
UFP	BG-TOR-2	79	72	96	97	27	4	0	0
	NR-VAN	97	85	78	96	88	95	91	89
	BG-VAN	98	66	95	100	97	25	0	0
	NR-TOR-1	91	99	100	97	89	95	100	99
	BG-TOR-1	0	0	0	58	95	99	100	100
ЪС	NR-TOR-2	100	97	97	97	99	94	86	99
вс	BG-TOR-2	100	98	96	100	87	99	85	99
	NR-VAN	92	84	98	99	99	100	94	97
	BG-VAN	98	100	97	96	99	25	0	0

57	Table S2: Average pollutant concentrations measured at the NR-TOR-1 site, aggregated based on whether an air mass originated
58	upwind or downwind of the station, along with the downwind-upwind difference.

Pollutant	Downwind N	Downwind μ±95%CI	Upwind N	Upwind μ±95%CI	Δ (Downwind – Upwind)
NO [ppb]	2378	37.8 ± 1.1	1787	2.9 ± 0.3	34.9
NO ₂ [ppb]	2303	21.2 ± 0.4	1748	10.7 ± 0.4	10.5
CO [ppb]	2015	364.4 ± 5.4	1577	226.6 ± 3.2	137.8
CO ₂ [ppm]	2305	437.3 ± 1.0	1763	416.4 ± 1.1	20.9
O ₃ [ppb]	2313	15.3 ± 0.4	1771	33.2 ± 0.8	-17.9
PM _{2.5} [µg m ⁻³]	2377	7.68 ± 0.21	1801	9.01 ± 0.27	-1.33
UFP [cm ⁻³]	1839	56975 ± 1671	1313	15305 ± 513	41670
BC [µg m ⁻³]	2338	2.13 ± 0.06	1775	0.73 ± 0.03	1.40

Table S3: Average pollutant concentrations measured at the NR-TOR-2 site, aggregated based on whether an air mass originated
from upwind or downwind of the station, along with the downwind-upwind difference.

Pollutant	Downwind N	Downwind $\mu \pm 95\%$ CI	Upwind N	Upwind $\mu \pm 95\%$ CI	Δ (Downwind – Upwind)
NO [ppb]	1970	6.0 ± 0.2	5242	3.2 ± 0.1	2.8
NO ₂ [ppb]	1671	8.5 ± 0.2	4210	10.4 ± 0.2	-1.9
CO [ppb]	1990	247.9 ± 3.6	5165	246.8 ± 1.9	1.1
CO ₂ [ppm]	1938	423.1 ± 0.7	4994	421.4 ± 0.5	1.7
O ₃ [ppb]	2090	24.2 ± 0.3	5439	28.7 ± 0.3	-4.5
PM _{2.5} [µg m ⁻³]	2036	3.80 ± 0.12	5435	9.01 ± 0.15	-5.21
UFP [cm ⁻³]	1974	12878 ± 398	5087	16676 ± 220	-3798
BC [µg m ⁻³]	2059	0.63 ± 0.02	5299	0.81 ± 0.02	-0.18

69 Table S4: Average pollutant concentrations measured at the NR-VAN site, aggregated based on whether an air mass originated 70 from upwind or downwind of the station, along with the downwind-upwind difference.

	Pollutant	Downwind N	Downwind $\mu \pm 95\%$ CI	Upwind N	Upwind $\mu \pm 95\%$ CI	∆ (Downwind – Upwind)
	NO [ppb]	2472	56.6 ± 2.5	1887	9.7 ± 0.7	46.8
	NO ₂ [ppb]	2475	21.9 ± 0.4	1890	11.5 ± 0.3	10.4
	CO [ppb]	2222	414.3 ± 12.8	1615	210.1 ± 4.5	204.2
	CO ₂ [ppm]	2338	461.6 ± 3.3	1829	414.5 ± 1.2	47.1
	O ₃ [ppb]	2454	9.4 ± 0.4	1861	19.7 ± 0.5	-10.3
	PM _{2.5} [µg m ⁻³]	2460	8.81 ± 0.26	1742	5.57 ± 0.19	3.23
	UFP [cm ⁻³]	2314	29960 ± 776	1784	14060 ± 381	15900
	BC [µg m ⁻³]	2547	2.48 ± 0.07	1909	0.84 ± 0.04	1.64
71						
72						
73						
74						
75						
76						
77						
78						
79						
80						
81						
82						
83						
Q1						
0 4 85						
02						
00						
87						
88						
89						
90						
01						
<i>9</i> 1						

93 S3 Implications for using downwind-upwind analysis for estimating local TRAP concentrations

For the stations positioned on flat terrain (NR-VAN and NR-TOR-1), the average difference between downwind and upwind pollutant concentrations, Method 2, has yielded larger local concentrations for all pollutants (with the exception of $PM_{2.5}$) when compared with methods 1 and 3. Recall that Method 1 generates local concentrations, $C_{L,1}$ via:

97
$$\overline{C}_{L,1} = \overline{C}_{NR} - \overline{C}_{BG}$$
, (1)

98 where C_{NR} and C_{BG} are concentrations explicitly measured at near-road and background locations, respectively. Whereas 99 Method 2 determines local concentrations, $C_{L,2}$, from:

100
$$\overline{C}_{L,2} = \overline{C}_{DW} - \overline{C}_{UW}$$
, (2)

where C_{DW} and C_{UW} are pollutant concentrations measured when air masses are originating downwind and upwind from the roadway at a near-road receptor, respectively. Presumably, average concentrations measured at near-road locations during upwind conditions are similar to those at nearby background locations, as neither receptor is impacted significantly by local sources during these times. Given this, the average difference between local concentrations generated using methods 1 and 2 is approximated with the following equality:

106
$$\overline{C}_{UW} \approx \overline{C}_{BG} \Rightarrow \overline{C}_{L,2} - \overline{C}_{L,1} \approx \overline{C}_{DW} - \overline{C}_{NR}$$
, (3)

107 The above equalities state, in other words, that if average upwind concentrations at a near-road location are roughly equivalent 108 to average background concentrations, then the difference between local TRAP concentrations inferred through methods 2 and 109 1 should be similar to the difference between average downwind and total near-road concentrations.

Firstly, to test the assumption C $_{UW} \approx C_{BG}$, these concentrations were calculated at NR-VAN, BG-VAN, NR-TOR-1, and BG-TOR-1 and are reported in Table S5.

- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119

120

121

123	Table S5: Average upwind concentrations at NR-	VAN and NR-TOR-1, compared	d with average pollutant concentrations measured
-----	--	----------------------------	--

124 at BG-VAN and BG-TOR-1.

Pollutant	C _{UW} NR-VAN	C _{bg} BG-VAN	C _{UW} NR-TOR-1	C _{BG} BG-TOR-1
NO [ppb]	9.7	9.2	2.9	3.5
NO ₂ [ppb]	11.5	14.2	10.7	10.8
CO [ppb]	210.1	228.9	226.6	210.6
CO ₂ [ppm]	414.5		416.4	420.3
O ₃ [ppb]	19.7	15.9	33.2	24.7
PM _{2.5} [μg m ⁻³]	5.57	5.41	9.01	7.86
UFP [cm ⁻³]	14060	12880	15305	11968
BC [µg m ⁻³]	0.84	0.66	0.73	0.58

The differences in background pollutant quantities measured through these two methods agree fairly well with one another, with maximum differences of ~20%. Hence, the assumption that these two average quantities are approximately equivalent appears to be valid. The differences in Table S5 are not large enough to explain the discrepancies observed between methods 1 and 2 in Table 5. Table S6 shows the differences between C _{DW} and C _{NR} at NR-VAN and NR-TOR-1, as well as differences between methods 2 and 1 at these sites, and the similarities are evident. Therefore, the aforementioned equality in Eq. (3) appears valid. Furthermore, Method 2 appears to over-predict average local concentrations by factors of ~1.7 and ~1.4 (neglecting PM_{2.5}) at NR-VAN and NR-TOR-1, respectively.

133

134 Table S6: Average near-roar road and downwind concentrations at NR-VAN and NR-TOR-1, along with differences between these 135 two average quantities, and differences between average local quantities inferred through methods 2 and 1.

	NR-VAN					NR-TOR-1				
Pollutant	C _{NR}	$C_{\rm DW}$	C _{DW} - C _{NR}	C _{L,2} - C _{L,1}	$C_{L,2}/C_{L,1}$	C _{NR}	$C_{\rm DW}$	C _{DW} - C _{NR}	C _{L,2} - C _{L,1}	$C_{L,2}\!/C_{L,1}$
NO [ppb]	36.9	56.6	19.7	23.8	2.0	24.6	37.8	13.2	13.4	1.6
NO ₂ [ppb]	21.5	21.9	0.4	5.3	2.0	19.3	21.2	1.9	1.8	1.2
CO [ppb]	349.7	414.3	64.6	108.5	2.1	328.4	364.4	36.0	34.7	1.3
CO ₂ [ppm]	439.8	461.6	21.8	-	-	436.8	437.3	0.5	6.5	1.5
PM _{2.5} [µg m ⁻³]	7.79	8.81	1.02	0.97	1.4	9.39	7.68	-1.71	-2.82	-0.9
UFP [cm ⁻³]	27570	29956	2386	4334	1.4	39987	56975	16988	12065	1.4
BC [µg m ⁻³]	1.88	2.48	0.60	0.46	1.4	1.68	2.13	0.45	0.37	1.4

137 S4 Regression of near-road data with respect to wind speed

		NR-VA	NR-TOR	NR-TOR-1	
	Pollutant	c1	c2	c1	c2
	NO	2.56	0.83	1.56	0.51
	NO_2	1.62	0.40	1.50	0.46
	CO	2.53	0.81	1.54	0.50
	CO_2	2.36	0.76	2.05	0.88
	UFP	1.58	0.37	1.01	0.01
	BC	1.76	0.47	1.62	0.56
139	Average Values	2.02	0.59	1.55	0.49
140					
141					
142					
143					
144					
145					
146					
147					
148					
149					
150					
151					
152					
153					
154					
155					
156					
157					
158					

138 Table S7: Regression parameters for the wind-speed dependence of each TRAP measured at the near-road sites.

159 S5 Fraction of pollution attributable to local and background sources

224 Figure S4: Nitric oxide concentrations measured at each monitoring location in this study. Each site is separated by weekday and

225 weekend, and bars at near-road sites are stacked according to concentrations attributed to local and regional sources. Background

226 stations are presumed fully regional and therefore contain no local component.

229 Figure S5: Nitrogen dioxide concentrations measured at each monitoring location in this study. Each site is separated by weekday

230 and weekend, and bars at near-road sites are stacked according to concentrations attributed to local and regional sources.

231 Background stations are presumed fully regional and therefore contain no local component.

234 Figure S6: Carbon monoxide concentrations measured at each monitoring location in this study. Each site is separated by weekday

235 and weekend, and bars at near-road sites are stacked according to concentrations attributed to local and regional sources.

236 Background stations are presumed fully regional and therefore contain no local component.

239 Figure S7: Carbon dioxide concentrations measured at each monitoring location in this study. Each site is separated by weekday

240 and weekend, and bars at near-road sites are stacked according to concentrations attributed to local and regional sources.

241 Background stations are presumed fully regional and therefore contain no local component. Carbon dioxide data was not measured

²⁴² at BG-VAN, and so data from NR-VAN are omitted for clarity.

Figure S8: PM_{2.5} concentrations measured at each monitoring location in this study. Each site is separated by weekday and weekend, and bars at near-road sites are stacked according to concentrations attributed to local and regional sources. Background stations

247 are presumed fully regional and therefore contain no local component. Large discrepancies between regional contributions estimated

248 at near-road stations and average concentrations at respective background stations is likely a reflection upon the poor performance

249 of this methodology when applied to PM2.5-local components appear to be largely overestimated, and so this method is not

250 recommended for near-road particulate matter.

Figure S9: Ultrafine particle concentrations measured at each monitoring location in this study. Each site is separated by weekday and weekend, and bars at near-road sites are stacked according to concentrations attributed to local and regional sources.

255 Background stations are presumed fully regional and therefore contain no local component.