Addition of a fast GC to SIFT-MS for analyses of individual monoterpenes in mixtures

Supplementary Material

Michal Lacko^{1,2}, Nijing Wang³, Kristýna Sovová¹, Pavel Pásztor¹, Patrik Španěl¹

¹The Czech Academy of Science, J. Heyrovský Institute of Physical Chemistry, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic

²Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 3, 121 16 Prague, Czech Republic ³Air Chemistry Department, Max-Planck-Institut für Chemie, Hahn-Meitner-Weg 1, 55128 Mainz, Germany

Correspondence to: Michal Lacko (michal.lacko@jh-inst.cas.cz)

Figure S1: Chromatograms of a monoterpene mixture analysed by the MXT-1 column for different profiles of the heating voltage. Profiles were analysed by SIFT-MS using the H₃O⁺ reagent ion.

	H ₃ O ⁺		NO ⁺		O 2 ^{+.}	
	rate	Products (b.r.)	k	Products (b.r.)	k	Products (b.r.)
α-pinene	2.3ª,	$C_6H_9^+$ (30 ^a , 39 ^b),	2.0ª,	$C_7 H_8^+ (16^b),$	2.0ª,	$C_7H_8^+$ (18 ^a , 22 ^b),
-	2.4 ^{a*}	$C_{10}H_{17}^+$ (67 ^a , 61 ^b)	2.0 ^{a*} ,	$C_{10}H_{16}^{+}$ (85 ^a , 77 ^b)	1.9 ^{a*} ,	$C_7H_9^+$ (52 ^a , 56 ^b),
			2.3 ^b		2.1 ^b	$C_9H_{13}^+$ (12 ^a , 12 ^b)
β-pinene	2.4ª,	$C_6H_9^+$ (33 ^a , 40 ^b),	2.1ª,	$C_{10}H_{16}^+$ (93 ^a , 89 ^b)	2.1ª,	$C_7H_9^+$ (56 ^a , 19 ^b),
	2.6 ^{a*}	$C_{10}H_{17}^+$ (64 ^a , 60 ^b)	2.2 ^{a*} ,		2.1ª*,	$C_9H_{13}^+$ (49 ^b),
			2.1 ^b		2.0 ^b	$C_{10}H_{16}^{+}(11^{a})$
R-limonene	2.6ª,	$C_6H_9^+$ (22 ^a , 29 ^b),	2.2ª,	$C_{10}H_{16}^+$ (91 ^a , 89 ^b)	2.2ª,	$C_5H_8^+$ (10 ^b),
	2.6^{a^*}	$C_{10}H_{17}^+$ (73 ^a , 68 ^b)	2.2 ^{a*} ,		2.1ª*,	$C_7H_8^+$ (10 ^b),
			2.2 ^b		2.2 ^b	$C_7H_9^+$ (26 ^a , 30 ^b),
						$C_7 H_{10}^+$ (11 ^a , 12 ^b),
						$C_8H_{11}^+$ (11 ^b),
						$C_9H_{13}^+$ (14 ^a , 13 ^b),
						$C_{10}H_{16}^+$ (11 ^a , 11 ^b)
3-carene	2.3ª,	$C_6H_9^+$ (19 ^a , 24 ^b),	2.1ª,	$C_{10}H_{16}^{+}$ (86 ^a , 81 ^b)	2.0ª,	$C_7H_8^+$ (11 ^b),
	$2.4^{a^{*}}$	$C_{10}H_{17}^+$ (78 ^a , 76 ^b)	2.0 ^{a*} ,		2.0 ^{a*} ,	$C_7H_9^+$ (41 ^a , 45 ^b),
			2.2 ^b		1.9 ^b	$C_9H_{13}^+$ (20 ^a , 20 ^b),
						$C_{10}H_{16}^{+}$ (14 ^a)
myrcene	2.6ª,	$C_6H_9^+$ (26 ^a , 30 ^b),	2.3ª,	$C_7H_8^+$ (11 ^b),	2.2ª,	$C_5H_9^+$ (10 ^b),
	$2.7^{a^{*}}$	$C_{10}H_{17}^+$ (59 ^a , 58 ^b)	2.2^{a^*} ,	$C_7H_9^+$ (22 ^a , 34 ^b),	2.2^{a^*} ,	$C_7H_8^+$ (70 ^b),
			2.2 ^b	$C_{10}H_{16}^{+}$ (61 ^a , 55 ^b)	2.2 ^b	$C_7 H_9^+$ (61 ^a)
camphene	2.4ª,	$C_6H_9^+$ (14 ^b),	2.1ª,	$C_{10}H_{16}^+$ (87 ^a , 79 ^b),	2.0ª,	$C_7H_9^+$ (13 ^a , 19 ^b),
	$2.6^{a^{*}}$	$C_{10}H_{17}^+$ (88 ^a , 86 ^b)	2.1^{a^*} ,	$NO^{+}C_{10}H_{16}$ (11 ^b)	2.1^{a^*} ,	$C_8H_{11}^+$ (10 ^b),
			2.3 ^b		2.2 ^b	$C_9H_{13}^+$ (44 ^a , 49 ^b)
α-terpinene		$C_6H_9^+$ (10 ^b),	2.0 ^b	$C_{10}H_{16}^+$ (87 ^a , 99 ^b),	2.0 ^b	$C_7H_9^+$ (16 ^b),
		$C_{10}H_{17}^+$ (87 ^b)				$C_9H_{13}^+$ (42 ^b),
						$C_{10}H_{16}^{+}(33^{b})$
γ-terpinene		$C_6H_9^+$ (17 ^b),	2.1 ^b	$C_{10}H_{15}^+$ (18 ^b),	1.9 ^b	$C_7H_8^+$ (12 ^b),
		$C_{10}H_{17}^+$ (81 ^b)		$C_{10}H_{16}^+$ (87 ^a , 75 ^b),		$C_7H_9^+$ (46 ^b),
						$C_9H_{13}^+$ (21 ^b),
						$C_{10}H_{16}^{+}(14^{b})$

Table S1: Summary of reaction rate constants and branching ratios of investigated monoterpenes. All presented rate constants have units of 10⁻⁹ cm³s⁻¹. Only significant products are given, for witch branching ratios are at least 10%.

^a (Schoon et al., 2003); ^b (Wang et al., 2003); ^c Present result based on SIFT-MS measurements; ^d Present result based on fastGC-SIFT-MS measurements; * theoretical data based on the method of Su and Chesnavitch (Su and Chesnavich, 1982); b.r. stands for branching ratio; Dimension of rate constants is 10⁻⁹ cm³s⁻¹.

Figure S2: Chromatograms of individual monoterpenes analysed using the MXT-1 column at a constant temperature of column ~40 °C. The profile is associated with the profile shown in the bottom of Figure S1. Profiles were analysed by SIFT-MS using the H_3O^+ reagent ion. Intensity of α -pinene was reduced.

Figure S3: Chromatograms of a monoterpene mixture analysed by the MXT- Volatiles column for different heating voltages. Profiles were analysed by SIFT-MS using the H₃O⁺ reagent ion.

Figure S4: Sample no. 1 (Pincea punges)

Figure S5: Sample no. 2 (Abies concolor)

Figure S6: Sample no. 3 (Pinus nigra)

References

Schoon, N., Amelynck, C., Vereecken, L., and Arijs, E.: A selected ion flow tube study of the reactions of H_3O^+ , NO^+ and O_2^+ with a series of monoterpenes, International Journal of Mass Spectrometry, 229, 231-240, 2003. Su, T., and Chesnavich, W. J.: Parametrization of the ion–polar molecule collision rate constant by trajectory calculations, The Journal of Chemical Physics, 76, 5183-5185, 1982.

Wang, T., Španěl, P., and Smith, D.: Selected ion flow tube, SIFT, studies of the reactions of H_3O^+ , NO^+ and O_2^+ with eleven $C_{10}H_{16}$ monoterpenes, Int. J. Mass Spec., 228, 117-126, 2003.