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Abstract. Detection and quantification of greenhouse-gas emissions is important for both compliance and environment conser-

vation. However, despite several decades of active research, it remains predominantly an open problem, largely due to model

errors and assumptions that appear at each stage of the inversion processing chain. In 2015, a controlled-release experiment

headed by Geoscience Australia was carried out at the Ginninderra Controlled Release Facility, and a variety of instruments

and methods were employed for quantifying the release rates of methane and carbon dioxide from a point source. This paper5

proposes a fully Bayesian approach to atmospheric tomography for inferring the methane emission rate of this point source us-

ing data collected during the experiment from both point- and path-sampling instruments. The Bayesian framework is designed

to account for uncertainty in the parametrisations of measurements, the meteorological data, and the atmospheric model itself

when doing inversion using Markov chain Monte Carlo (MCMC). We apply our framework to all instrument groups using

measurements from two release-rate periods. We show that the inversion framework is robust to instrument type and meteoro-10

logical conditions. From all the inversions we conducted across the different instrument groups and release-rate periods, our

worst-case median emission rate estimate was within 36% of the true emission rate. Further, in the worst case, the closest limit

of the 95% credible interval to the true emission rate was within 11% of this true value.
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1 Introduction

Methane (CH4) is an important transition fuel for decarbonisation of the global energy system (International Energy Agency,

2017). As countries increase the renewable energy mix into their existing electricity networks, CH4 can firm up network

stability and supply (International Energy Agency, 2017; Jenkins et al., 2018). Utilisation of biogas or natural gas with carbon

capture and storage offers a lower cost pathway to achieve deep decarbonisation targets (Sepulveda et al., 2018). One of the5

disadvantages of CH4, however, is that its global warming potential is much greater than that of carbon dioxide (CO2), so that

only a few percent of losses of CH4 into the atmosphere can negate any climate-change mitigation advantages from reducing

conventional coal-fired power production (Kinnon et al., 2018). For this reason, it is critical that losses of CH4 along the supply

chain are accurately accounted for to ensure public confidence in climate-change mitigation benefits of switching to natural gas.

Unfortunately, while several types of instrumentation are available to aid the detection and estimation of fugitive emissions,10

harnessing acquired data for reliable emission detection and quantification remains a notoriously difficult problem.

Several controlled release experiments of CH4 and CO2 have been conducted in order to improve techniques for estimating

greenhouse gas emissions (Flesch et al., 2004; Lewicki and Hilley, 2009; Loh et al., 2009; Etheridge et al., 2011; Humphries

et al., 2012; van Leeuwen et al., 2013; Luhar et al., 2014; Jenkins et al., 2016; Ars et al., 2017). Building on this body of work,

in 2015 a CH4 and CO2 controlled-release experiment was held at the Ginninderra Controlled Release Facility in Canberra,15

Australia (Feitz et al., 2018). This large multidisciplinary, multi-institutional blind-release trial (i.e., the participants did not

know the true release rate) simultaneously assessed eight different CH4 emission-rate estimation techniques, using data from

both mobile and stationary instrumentation. These eight techniques included tracer ratio techniques; backwards Lagrangian

stochastic modelling; forward Lagrangian stochastic modelling; Lagrangian stochastic footprint modelling; and atmospheric

tomography techniques. A full description of the methods and results is given in Feitz et al. (2018).20

Every group involved in the analysis presented in Feitz et al. (2018) used a unique combination of instrumentation and

estimation technique when carrying out the analysis, making it hard to establish the respective merits (or otherwise) of the

employed techniques from the inversion results. Nonetheless, an interesting observation from the study is that none of the

eight techniques deployed during the blind release trial had a leakage uncertainty range (95% interval) that included the true

emission rate, while some estimates (including one obtained using atmospheric tomography) were factors of 2 or more off25

from the true value. Given that atmospheric methane concentration and meteorological instrument measurement uncertainty is

generally low for each of the different approaches, it suggests that the techniques that were used did not adequately account

for the variability of atmospheric measurements or the uncertainty introduced through parametrisation of atmospheric mixing

conditions (e.g., Monin-Obukhov lengths and/or Pasquill stability classes; see Sect. 3.1) and atmospheric dispersion/transport

model uncertainty.30

A number of studies have highlighted the importance of atmospheric-model error in estimating emission rates or fluxes

(e.g., Chevallier et al., 2010; Basu et al., 2018). For example, Peylin et al. (2002) showed that flux estimates are sensitive to the

chosen spatio-temporal resolution of the fluxes and the chosen transport model. Uncertainty in the meteorological fields driving

the transport model is also known to play a big role (e.g., Miller et al., 2015). While ensemble inversions are frequently used to
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highlight the sensitivity of the results to atmospheric models and meteorological fields, learning unknown parameters associated

with transport concurrently with the emission rate is not often done. This is largely due to the computational implications of

such an approach. Key here are the use of surrogate models (or emulators) to obtain simplified transport representations.

For example, Lucas et al. (2017) use decision/regression trees as a surrogate for FLEXPART-WRF, which allows for quick

simulation at various parameter settings that can in turn be used to make inference. For the Ginninderra data we employ the5

more traditional Gaussian plume model, which can be seen as a surrogate for a full-blown transport model. While known

to work well in the small domain (an area of approximately 100× 100 m) setting we consider (e.g., Riddick et al., 2017),

importantly this plume model is quick to simulate from, giving us the opportunity to calibrate it while estimating the emission

release rate (e.g., Borysiewicz et al., 2012). As we see in our sensitivity analysis of our results in Sect. 6, “online plume-model

calibration” is crucial for obtaining accurate emission-rate estimates with our data.10

The transport model plays an important role in inverse modelling. Calibration of the transport model from observations can

be done within the classic inverse theory framework of Tarantola (2005). This framework is in turn seated within a Bayesian

paradigm, which underpins several of the inversion systems in place today; see, for example, Flesch et al. (2004); Humphries

et al. (2012); Hirst et al. (2013); Ganesan et al. (2014); Luhar et al. (2014); Houweling et al. (2017); White et al. (2018).

Inference in such cases is often done using sampling techniques such as Markov chain Monte Carlo (MCMC) or importance15

sampling (Rajaona et al., 2015). Quick evaluation of the transport/dispersion model (or surrogate) is crucial when repeatedly

evaluating it within an MCMC framework; the Gaussian plume model is hence a popular choice in these frameworks (e.g.,

Jones et al., 2016; Wang et al., 2017). MCMC is also our method of choice for Bayesian atmospheric tomography, because it

allows relatively easy computation of posterior distributions of parameters that are deeply nested within a hierarchical model.

It is also ideally suited for the case of point-source emissions, where the dimensionality of the latent space is low (unlike, for20

example, when doing regional emission quantification).

Atmospheric tomography, a term inspired from medical imaging, combines data from a collection of measurement sites with

Bayesian inversion to detect and quantify emissions. The primary contribution of this article is an extension of the atmospheric

tomography technique described in Sect. 2.4.2 of Feitz et al. (2018). In Feitz et al. (2018), atmospheric tomography was

only used on one type of instrument and did not account for uncertainty in the transport model. The technique we propose25

accounts for uncertainty in our data, in our process models, and in our parameters; is applicable to both point and path-

sampling instruments; and takes into account instrument-specific bias. Inference is made on all unknown parameters using

MCMC and uncertainty in the transport-model parameters are propagated to our posterior inferences on the release rate. We

demonstrate the efficacy and utility of the unifying Bayesian framework on data from point- and path-referenced instruments

used in the Ginninderra experiment. A secondary contribution is the curated provision of a data set containing a large portion of30

the Ginninderra data at a five-minute resolution, which we hope will serve as a resource for other researchers to validate their

own emission-rate estimation techniques on. The data and scripts required to reproduce the results in this article are available

from https://github.com/Lcartwright94/BayesianAT.

The remainder of the article is organised as follows. Section 2 gives an overview of the experimental setup and the data

collected during the 2015 Ginninderra experiment. Section 3 describes the atmospheric transport model used, while Sect. 435
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details the hierarchical model we employ and the Bayesian methodology we develop for emission-rate estimation. Section

5 gives the results from application of our Bayesian atmospheric tomography technique on the Ginninderra data. Section 6

examines how our results would change if certain components in our model (e.g., relating to the plume model) are (erroneously)

assumed fixed and known. Section 7 concludes.

2 The 2015 Ginninderra release experiment5

A full description of the experimental setup, measurement techniques and quantification methods used in the 2015 Ginninderra

release experiment are given in Feitz et al. (2018). Briefly, CH4 (together with CO2 and nitrous oxide), was released from

a small chamber located in a fallow agricultural field from 23 April to 12 June 2015, and 23 to 24 June 2015. A variety of

CH4 sensors were placed around the release chamber. The measurement data considered in this study were obtained from two

Picarro G2201-i analysers (positioned in the predominant upwind (NW) and downwind (SE) location of the release cham-10

ber, labelled Picarro.West and Picarro.East, respectively), four eddy covariance (EC) towers equipped with Li-COR 7700 open

path CH4 sensors (labelled EC.A, EC.C, EC.D, and EC.E, respectively), two scanning FTIR analysers with four retro-reflectors

terminating six measurement paths (labelled P1 to P6, respectively), and a scanning GasFinder 2 Boreal laser with seven re-

flectors forming seven measurement paths (labelled R1 to R7, respectively); see the left panel of Fig. 1. Meteorological data

was collected from EC.A equipped with a Vaisala HMP50 relative humidity and temperature sensor, a CSI EC150 CO2-H2O15

sensor, a Li-COR 7700 CH4 sensor, a Kipp and Zonen CNR4 radiometer, a CSI CSAT3 sonic anemometer, and a Gill Wind-

Sonic anemometer. Wind speed and wind direction were measured by the CSAT3 sonic anemometer and the Gill WindSonic

anemometer. As part of data quality control, horizontal wind speed and wind direction data from the two instruments were

compared, with no arising issues. Both sonic anemometers were using factory calibration. Wind directions were determined by

manually aligning the sonic anemometers so that the reference direction was true north. Data from CSAT3 sonic anemometer20

was logged at 10 Hz, and data from the Gill WindSonic anemometer at 1 Hz.

The gases were released at a height of 0.3 m, and the standard CH4 release rate was 5.8 g min−1, limited mostly to daylight

hours. On brief occasions, the CH4 release rate varied between 2.9 and 20 g min−1 to enable testing of mobile CH4 sensor

platforms. Towards the end of the experiment (8 to 12 June), the CH4 release rate was decreased from 5.8 to 5.0 g min−1 and

the setup for the Boreal laser measurements was modified with the number of retro-reflectors and paths reduced to six (labelled25

R8 to R13, respectively; see the right panel of Fig. 1). The location of all other CH4 sensors did not change over the duration

of the experiment. The Picarro analysers were not deployed until 21 May, and the CH4 release rate on 23 and 24 June was

constantly varied. Hence, in this article we only consider data between 21 May and 12 June, excluding 26 and 27 May where

the release rate was also constantly varied.

The data set used to obtain the results presented in Sect. 5 was compiled by pooling together the separate meteorological30

and concentration data sets used in the Ginninderra experiment. A common resolution of five minutes was chosen, that is,

all measurements of concentration and meteorological variables were averaged over a regular set of five-minute intervals.

Measured CH4 concentrations were then matched with corresponding meteorological measurements by time and placed into
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Figure 1. Left: Layout of instruments in the 2015 Ginninderra release experiment between 21 May and 7 June 2015. Right: Layout of

instruments between 8 and 12 June 2015. R1 to R13 are the paths formed between the Boreal laser and reflectors; P1 to P6 are the paths

formed between the FTIR spectrometers and retro-reflectors; EC.A to EC.E are the EC towers; and Picarro.East and Picarro.West are the

Picarro analysers. All coordinates are relative to EC.A, which is situated at the origin.

long-table format, with each row corresponding to a unique data point. For path measurements, two extra columns were used

to denote the end-point coordinates of the paths.

Initial pre-processing was carried out to provide a complete data set without outliers. First, data containing missing values

considered critical for emission-rate estimation (in particular, air temperature, air pressure, wind speed, and wind direction)

were removed from the data set. Second, data points corresponding to upwind measurements that were more than three median5

absolute deviations away from the instrument’s median upwind measured concentration, were determined to be outliers, and

hence removed. A point measurement was classified as upwind if the angle subtended from the source by a line joining the

instrument location to the plume centreline was more than 45◦. A path measurement was classified as upwind if the angles

subtended at every point along the path were more than 45◦.

3 Transport modelling10

In this section we detail the plume model employed, and how it is used to supply model-predicted concentrations for the path

measurements.
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Table 1. Stability classes to which observations within the Ginninderra experiment are allocated, and the corresponding values of aki , bki , cki ,

and dki used to construct the horizontal (σyi,ki), and vertical (σzi,ki) standard deviations of the plume when xi is in m.

Stability Class (ki) Stability Condition aki bki cki dki

A Extremely unstable 0.17993 0.94470 24.167 2.5334

B Moderately unstable 0.14506 0.93198 18.333 1.8096

C Slightly unstable 0.11025 0.91465 12.500 1.0857

D Neutral 0.084739 0.86974 8.3330 0.72382

E Slightly stable 0.075005 0.83660 6.2500 0.54287

F Moderately stable 0.054370 0.81558 4.1667 0.36191

3.1 Gaussian plume dispersion modelling

As outlined in Sect. 1, we use a transport model that is simply parameterised, and easy to evaluate, so that it can be calibrated

online. One of the simplest models that works well on the short distances we consider is the Gaussian plume dispersion model

(e.g., Wark et al., 1998, Chapter 4). Here the true emission rate is denoted by Q in g s−1, the height of the CH4 point source

by H in m, and the total number of observations by N . The classic Gaussian plume model is given by5

C(xi,yi,zi,Q,Ui,H,θki) =
Q

2πUiσyi,kiσzi,ki
exp

(
− y2i

2σ2
yi,ki

)[
exp

(
− (zi−H)2

2σ2
zi,ki

)
+ exp

(
− (zi +H)2

2σ2
zi,ki

)]
, (1)

where C is the model-predicted concentration in g m−3 of CH4 at a single spatial point (xi,yi,zi) in m along the direction

of the plume corresponding to the ith measurement; Ui is the wind speed associated with the ith measurement in m s−1;

ki ∈ {A,B,C,D,E,F} represents the Pasquill stability class (a categorisation reflective of the expected level of horizontal

and/or vertical spread of the atmospheric particles after emission; see Pasquill, 1961) associated with the ith measurement; and10

θki are plume-specific parameters used the construct the standard deviations σzi,ki and σyi,ki . These standard deviations of the

plume in the vertical and horizontal directions are given by

σzi,ki = akix
bki
i ,

σyi,ki = 0.4651xi tan(νi),

respectively, where νi = 0.01745(cki − dki ln(xi/1000)). Note that the coefficients aki , bki , cki ,dki correspond to the ith mea-15

surement and depend on the stability class associated with that measurement, ki ∈ {A,B,C,D,E,F}. Values for these coeffi-

cients by stability class are given in Wark et al. (1998, Chapter 4) and shown here in Table 1 for completeness. We collect the

plume-specific parameters in θki ≡ (aki , bki , cki ,dki)
′ where ′ denotes the transpose operator.

The stability class to which an observation is allocated is classically based on (i) the Monin-Obukhov length (the theoretical

height at which turbulence is produced by buoyancy and mechanical forces in equal amounts; see Sienfeld and Pandis (2006),20
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Figure 2. Predicted (blue) and observed (red) enhancements in ppm at EC.A between May 21 and June 7 2015 when scaling σyi,ki by 1,

2.5, and 4, respectively. The mean-squared errors (MSE) between the observed and the predicted enhancements are also shown. Of the three,

the best agreement between predicted and observed values occurs when σyi,ki is scaled by 2.5.

Chapter 16), and (ii) an effective roughness length. The Monin-Obukhov length (L-value) is given by L=−u3∗ξ̄v/(qg(w∗ξ∗v)s)

(Jacobson, 2005, Chapter 8), where u∗ is the frictional velocity, ξ̄v is the mean virtual potential temperature, (w∗ξ∗v)s is the

surface virtual potential temperature flux, q is the von Kármán constant, and g is the acceleration due to gravity. In our case

we used WindTrax (http://www.thunderbeachscientific.com/windtrax.html) to determine the L-value for each observation; we

provide the L-values with the compiled data. We set the effective roughness length z0 = 0.01 m, corresponding to a relatively5

flat area, with short or no grass, and minimal buildings/trees/other obstacles; see Sienfeld and Pandis (2006, Chapter 16) and

World Meteorological Organisation (2008, Chapter 5). This is a suitable choice for the Ginninderra site. We used the results of

Golder (1972) to allocate a stability class to each observation based on the L-values provided by WindTrax and z0 = 0.01 m.

The coefficients typically used for each stability class could be off by a factor of 2 or more (Wark et al., 1998, Chapter 4). To

show that this is also the case with our categorisation scheme, in Fig. 2 we show the Gaussian-plume-model predicted outputs10

together with the observed data enhancements (see Sect. 4.1) at one of our measurement locations (namely, EC.A) between 21

May and 7 June, when scaling σyi,ki by 1, 2.5, and 4, respectively. Clearly, with no scaling the predicted plume is too narrow,

while with a scaling of 4 is too broad. A scaling of 2.5 gives good agreement. Importantly, since in Eq. (1) Q only serves to

scale the predicted concentrations (i.e., make them larger or smaller by a constant factor), it is apparent that this plume scaling

factor is identifiable, in the sense that we can learn it from the data while estimating the emission rate (provided the source is15

active). Online plume-model calibration fits naturally within the MCMC framework discussed in Sect. 4.

3.2 Low wind speeds

It is well known that the Gaussian plume model is less accurate for low wind speeds (e.g., Turner, 1994, Chapter 2). One

reason for this is that the wind-speed Ui is in the denominator of the scaling coefficient of Eq. (1); hence, the plume model

prediction becomes very sensitive to Ui as it tends towards zero. This is problematic as Ui, although often assumed known,20

7

http://www.thunderbeachscientific.com/windtrax.html


is an average calculated from noisy measurements taken over some time span (in our case five minutes), and is thus itself

noisy. From Eq. (1) we see that, when conditioned on all other parameters, the variance of Ci is proportional to the variance

of the inverse of Ui, which can be very large for small Ui. Instead of removing data at low wind speeds as is often done (e.g.,

Feitz et al., 2018), we analyse the theoretical relationship between the variance of the inverse wind speed and Ci. We then use

this relationship to discount low wind-speed model-predictions in the Bayesian framework in a principled manner. While the5

analyst still needs to choose a cutoff below which to model this relationship, in separate studies we found that our inferences

are not particularly sensitive to the chosen cutoff. Moreover, we found that downweighting instead of excluding was necessary

for making inference when not many observations associated with high wind speeds were available.

Each wind speed Ui is an average of a number of wind speeds (say nUi
) recorded over five minutes. Therefore Ui is a

sample mean, and thus an unbiased estimator of the true (population) mean wind speed, say µUi , over this time interval. By the10

Central Limit Theorem, √nUi(Ui−µUi)
D−→ Gau(0,σ2

Ui
), where D implies convergence in distribution, Gau(µ,σ2) denotes

the Gaussian distribution with mean µ and variance σ2, and σ2
Ui

is the variance of the wind speeds over the ith time interval,

which was derived from the raw (disaggregated) data. We can then use the delta method (e.g., Casella and Berger, 2002,

Chapter 5) to deduce that

√
nUi

(
1

Ui
− 1

µUi

)
D−→ Gau

(
0,

(
d

dµUi

(
1

µUi

))2

σ2
Ui

)
.15

Hence, the variance of 1/Ui is approximately

(
d

dµUi

(
1

µUi

))2

σ2
Ui

=
1

µ4
Ui

σ2
Ui
∝ 1

µ4
Ui

.

Therefore, conditional on all other terms in Eq. (1), the variance of the model-predicted concentrations increases as a quartic

of the true inverse wind speed. This is important, as it means that model predictions at low wind speeds, say less than 1 m s−1,

could be highly uncertain; we show a way of handling this uncertainty when we detail the Bayesian inversion model in Sect. 4.20

3.3 Predicted concentrations for point and path measurements

The plume model given by Eq. (1) sets the x-axis as its centreline and the CH4 source at the origin. The predicted plume-model

concentration at a physical location (x̃i, ỹi, z̃i) is thus found by first applying a spatial shift and time-dependent rotation (by

wind direction) to (x̃i, ỹi, z̃i) in order to obtain (xi,yi,zi), which is then used to compute a model-predicted concentration

(conditional on Q, Ui, H , and θki ). Conversion to ppm is done via the ideal gas law.25

Let Ci be a model-predicted concentration (i= 1,2, . . . ,N ). If Ci corresponds to a point measurement, then one needs only

to evaluate Eq. (1) at the transformed point-measurement location to obtain a predicted concentration. If Ci corresponds to a

path measurement, however, it represents an average of concentrations along the path. Denote the transformed end points of

the straight-line path in the horizontal plane as (xi,1,yi,1) and (xi,2,yi,2), respectively. The line between the given points in
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the horizontal plane can be parametrised by ρi(s) = (ρx,i(s),ρy,i(s))
′, where

ρx,i(s) = sxi,2 + (1− s)xi,1, s ∈ [0,1],

ρy,i(s) = syi,2 + (1− s)yi,1, s ∈ [0,1],

so that

Ci =
1

Ti

1∫
0

C(ρx,i(s),ρy,i(s),zi,Q,Ui,H,θki)

∥∥∥∥dρi(s)
ds

∥∥∥∥ ds, (2)5

where Ti ∈ R+ is the path length and ‖·‖ is the standard Euclidean norm. In our case, Ti =
∥∥∥ dρi(s)

ds

∥∥∥ is not a function of s, and

so Eq. (2) simplifies to Ci =
∫ 1

0
C(ρx,i(s),ρy,i(s),zi,Q,Ui,H,θki)ds. This integral can be approximated numerically over a

fine partitioning of J segments P = {[s0,s1], [s1,s2], . . . , [sJ−1,sJ ]}, where 0 = s0 < s1 < · · ·< sJ−1 < sJ = 1. Then

Ci ≈
J∑
j=1

C(ρx,i(s
∗
j ),ρy.i(s

∗
j ),zi,Q,Ui,H,θki)∆s,

where ∆s ≡ sj − sj−1 = 1/J and s∗j =
sj+sj−1

2 . In our experiments we set J = 100.10

4 Bayesian atmospheric tomography

We are ultimately interested in obtaining a range of plausible values for the emission rate, Q, a posteriori, (i.e., after we have

observed some data). In this section we present a hierarchical statistical model that relates Q to the observed concentrations

via the Gaussian plume model. Although Q itself is univariate, the model contains several other unknown parameters that

capture our uncertainty about the physical and the measurement processes; inferences on these parameters and Q are made15

simultaneously. For ease of exposition we adopt the terminology of Berliner (1996) to describe the model, which we also

summarise graphically in Fig. 3. The top layer in the hierarchy is the data model (the model for the observations, Y , Sect. 4.1),

the middle layer is the process model (the model for Q, Sect. 4.2), and the bottom layer is the parameter model (the unknown

parameters not of direct interest, τ , ωy,ωz , Sect. 4.3). In Sect. 4.4 we outline the MCMC strategy we use to make inference

with the model.20

4.1 The data model

Let Ỹ ≡ (Ỹ1, Ỹ2, . . . , ỸN )′ denote the measured concentrations averaged over five-minute intervals. We model each of these

averaged measurements as Ỹi = Ci +Xi + εi, where Ci is the ith Gaussian plume-predicted concentration, Xi is the sum

of the ith CH4 background concentration and instrument-specific bias, and εi denotes the random error associated with the

ith observed CH4 concentration. The background concentration and bias can be explicitly modelled and predicted (Ganesan25

et al., 2015). Here, as in Zammit-Mangion et al. (2015), we estimate Xi as the 5th percentile of all the measurements from

9



Figure 3. Directed acyclic graph showing the conditional dependence relationships between the data (enhancements) Y and the error com-

ponents ε (Sect. 4.1), the emission rate Q (Sect. 4.2), and the unknown parameters τ ,ωy, and ωz (Sect. 4.3).

Figure 4. Left: Raw averaged concentrations, plotted by instrument and against wind direction. Right: Enhancements obtained by subtracting

off the background and instrument-specific bias.

the instrument associated with the ith measurement. Figure 4 compares the raw averaged concentrations to those corrected for

background and instrument-specific bias, which we term enhancements, when plotted against wind direction (in degrees East

of North).

Now, let Y ≡ (Y1,Y2, . . . ,YN )′ denote the enhancements. It is straightforward to verify that

Yi = Ỹi−Xi5

= Ci + εi, i= 1, . . . ,N.

Therefore, Yi is made up of two main components of variability: the Gaussian plume-predicted concentration and a random

error term. We assume that the εi, i= 1, . . . ,N, are Gaussian and independent, but that they are not identically distributed.

Specifically, εi contains two components of variation, one pertaining to the error characteristics of the instrument, and one to

10



the stability class with which we have categorised the measurement. Recall also from Sect. 3.2 that we model the variance of

the predicted concentrations to be proportional to a quartic of the true mean inverse wind speed for Ui < 1 m s−1.

First, we capture instrument-specific measurement error characteristics and stability-condition-specific variation by intro-

ducing an auxiliary variable mi (mi = 1,2, . . . ,M ), where M is the total number of unique combinations of stability class and

instrument type, and consider M different precision (i.e., inverse variance) parameters {τmi} that need to be estimated, one for5

each combination. Second, we take the influence of low wind speeds into account by assuming that the precision of εi is τmi

multiplied by Ûi, where, for Ui > 0,

Ûi =

U
4
i 0< Ui < 1,

1 Ui ≥ 1,
(3)

which encapsulates our prior belief that observed model-measurement mismatch variability at low wind speeds (in this case

under 1 m s−1) are dominated by the low wind speed.10

Putting these two components together, we have that, conditional on the instrument type and stability class encoded in mi,

εi |mi ∼ Gau(0,1/(Ûiτmi
)), i= 1, . . . ,N.

We detail the prior distribution for τmi in Sect. 4.3.1.

4.2 The process model

The process of interest in this application is the emission rate,Q, which we assume is constant. Since in this applicationQ≥ 0,15

we model it using a half-normal prior distribution (a Gaussian distribution with mean zero truncated from below at zero),

p(Q) =


√
2

σQ
√
π

exp
(
− Q2

2σ2
Q

)
, Q ∈ [0,∞)

0 otherwise,
(4)

with a standard deviation parameter, σQ, which is known and fixed. In our case we fixed σQ to 1.5 g s−1 (90 g min−1) which

results in a relatively uninformative prior distribution.

While addressing nonnegativity, half-normal priors do not contain a point mass at zero, and thus do not encode a prior20

belief that there is a possibility of having exactly a zero emission rate. As a consequence, a posterior estimate or even a

credible interval that includes zero is not possible. A spike-and-slab distribution (Mitchell and Beauchamp, 1998) consisting

of a diffuse uniform distribution with a point-mass at zero, could be alternatively used at the cost of a slightly more complex

model.

4.3 The parameter model25

Our parameter model is divided into two parts, one pertaining to the precision parameters {τmi} in the random-error component

in the data model, and the other to the standard-deviations in the Gaussian-plume dispersion models which, as shown in

Sect. 3.1, are also uncertain.
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4.3.1 The precision parameters

For conjugacy with the Gaussian likelihood, we model each τmi
using a Gamma prior distribution, with shape parameter α,

and rate parameter β:

p(τmi
) =

βα

Γ(α)
τα−1mi

e−βτmi , i= 1, . . . ,N.

In our application we set α= 1.058 and β = 0.621. These values were chosen through quantile-matching, such that the 1st and5

99th percentiles of the distribution of 1/
√
τmi are approximately 0.35 ppm and 6.5 ppm, respectively (giving a mode close to

0.7 ppm). Values for these percentiles were selected based on prior exploratory data analysis of the measurements that were

taken upwind of the source.

4.3.2 The Gaussian plume model parameters

From separate studies into the reliability of the model values for σyi,ki and σzi,ki , briefly discussed in Sect. 3.1, we concluded10

that these parameters could indeed be off by factors of two or more and that, if they are off, they are so by similar amounts for

each stability class. These factors correspond to vertical shifts of the Pasquill stability curves when plotted on a log-log scale

(e.g., Wark et al., 1998, Chapter 4). We thus replaced σyi,ki and σzi,ki in Eq. (1) with σ̃yi,ki and σ̃zi,ki , respectively, where

σ̃yi,ki ≡ ωyσyi,ki and σ̃zi,ki ≡ ωzσzi,ki ,

and ωy,ωz ∈ R+ are scaling parameters for σyi,ki and σzi,ki , respectively (Borysiewicz et al., 2012).15

We use Gamma prior distributions for ωy and ωz . In our application we set the shape parameters equal to 1.6084, and the rate

parameters equal to 0.7361. These parameters give approximate 1st and 99th percentiles of 0.1 and 8, respectively, and a mode

close to 1 (representative of no scalar influence on σyi,ki or σzi,ki ). This reflects our prior belief that the standard deviations

could be up to an order of magnitude off from those derived using classical Pasquill stability-class theory.

4.4 Bayesian inference20

Let Y ≡ (Y1,Y2, . . . ,YN )′ denote the N observed enhancements. Similarly, define U ≡ (U1,U2, . . . ,UN )′ and Θ≡
(θk1 ,θk2 , . . . ,θkN )′. Further, let τ ≡ (τ1, τ2, . . . , τM )′ be the M parameters associated with each combination of instrument

type and stability class. The posterior distribution of the emission rate Q is then given by

p(Q | Y ,U ,H,Θ)∝
∞∫
0

∞∫
0

∫
RM+

p(Y ,τ ,ωy,ωz |Q,U ,H,Θ)p(Q) dτ dωy dωz

= p(Q)

∞∫
0

∞∫
0

∫
RM+

p(Y |Q,τ ,ωy,ωz,U ,H,Θ)p(τ )p(ωy)p(ωz)dτ dωy dωz,25
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where p(Q) is given by Eq. (4) and p(Y |Q,τ ,ωy,ωz,U ,H,Θ) is the likelihood, which is Gaussian.

Computation of the posterior distribution p(Q | Y ,U ,H,Θ) involves a high-dimensional integral that is analytically in-

tractable. We therefore use MCMC, specifically a Gibbs sampler, to obtain samples from the posterior distributions of Q, τ ,

ωy , and ωz (see Gelman et al., 2013, for a comprehensive introduction to MCMC). The Gibbs sampler samples each parameter

one at a time from their respective full conditional distributions, where conditioning is done using the most recent samples of5

all other parameters.

In the case of τ , use of Gamma prior distributions leads to full conditional distributions that are also Gamma. Hence,

sampling τ is straightforward. However, the prior distributions on the other parameters are not conjugate priors, and hence the

full conditional distributions for each of these are not available in closed form. We therefore use standard Metropolis-within-

Gibbs to sample from these conditional distributions, with Gaussian proposals and adaptive scaling during the early stages of10

the MCMC algorithm. Specifically, for each parameter, the standard deviation of the proposal was increased or decreased as

appropriate whenever the acceptance rate fell below 10% or exceeded 80%.

5 Results and Discussion

5.1 Observing system simulation experiment

In this section we discuss results from applying our model to simulated data in an observing system simulation experiment15

(OSSE). To mimic the conditions in the real experiment, we simulated enhancements using the actual Boreal and EC instrument

locations, meteorological observations from the Ginninderra data, and realistic variances for the random-error components. We

considered the two release-rate periods separately, using a 6 g min−1 emission rate in the first, and a 12 g min−1 emission

rate in the second. As in the real experiment, the first Boreal laser/reflector setup (seven paths) was used in the first release-

rate period, while the second setup (six paths) was used in the second release-rate period; the EC tower locations were kept20

constant for both periods. We set the precisions τmi
= 4 for mi = 1, . . . ,M , and the scaling factors ωy = ωz = 2 to assess the

algorithm’s ability to calibrate the plume on-line. Following data simulation, we used MCMC to generate 60000 samples, left

out 20000 of these as burn-in, and used a thinning factor of 10. Adaptation of the Metropolis samplers was only done during

burn-in. Convergence was assessed through visual inspection of the MCMC trace plots.

We made inference on Q, as well as all other parameters in the model, for the Boreal- and EC-simulated data and the25

two emission rate settings. Table 2 shows the posterior median emission rates, the 95% posterior credible intervals for the

emission rate, as well as the intervals for the plume standard-deviation scaling parameters ωy, and ωz . In all cases, we see that

the true (simulated) emission rate is captured within our posterior credible intervals, and that the median estimates are very

close to the true values. Interestingly, we see that while the plume-scaling coefficients have been accurately recovered in most

cases, the posterior uncertainty over ωy for the Boreals is very wide. This suggests that ωy might not be identifiable for path30

measurements, possibly because the averaging effect of the line integral renders the measured concentration insensitive to a

specific plume width in the horizontal direction.
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Table 2. Posterior median emission rates in g min−1, and the posterior 95% credible intervals of the emission rate in g min−1, ωy , and ωz

from the OSSE. Results shown are from simulated data corresponding to the Boreals (B) and EC towers (E) when the emission rate is 6 g

min−1 (E1 and B1) and 12 g min−1 (E2 and B2).

Median Q Q ωy ωz

B1 6.0718 (5.7847,6.3511) (0.17978,7.1675) (1.8871,2.1378)

E1 6.0369 (5.5695,6.5300) (1.7510,2.1051) (1.7382,2.2167)

B2 12.122 (11.820,12.409) (0.17451,6.7320) (1.9066,2.0295)

E2 11.756 (10.884,12.761) (1.7785,2.0533) (1.7810,2.2151)

5.2 Application to the Ginninderra data set

In this section we discuss results from applying our model to enhancements from the compiled Ginninderra data. We considered

several settings. In the first setting, we estimated the emission rate separately for each of the four instrument types, and for

each release-rate period (5.8 g min−1 and 5.0 g min−1) when the source was active. In addition, for each release-rate period we

estimated the emission rate for all the instruments combined, yielding a total of ten inversion results. In the second setting we5

estimated the emission rate for the same ten cases, but for periods when the source was switched off. In the third setting we again

considered the same ten cases, but using only measurements that were taken when upwind of the source. These three settings

serve to demonstrate how our inferences adapt to the various settings one might encounter in the field. In particular, online

plume calibration is almost impossible in the latter two settings, and we expect this to result in large posterior uncertainties

on the scaling coefficients, and also the emission rate in the third setting. In the second setting downwind measurements are10

present. Therefore, while online plume calibration is again almost impossible since there is no active source, the absence of

a source (Q= 0) should be reflected in our posterior inferences (recall, however, that use of a half-normal prior distribution

precludes the possibility of a zero emission rate being estimated; see Sect. 4.2).

As in the OSSE, we generated 60000 MCMC samples, left out 20000 of these as burn-in, and used a thinning factor of 10. In

line with what we observed in the OSSE, our initial results showed that, more often than not, ωy is not identifiable (leading to15

wide posterior distributions and poor MCMC mixing) when attempting to estimate the emission rate with the source switched

on with path measurements. We therefore chose to fix ωy = 1 (but not ωz) for path measurements, and this choice is reflected

in all the results discussed below.

The left panel of Fig. 5 summarises our results for Q in the first setting (both upwind and downwind measurements with

the source switched on); full results are given in the first ten rows of Table A1. While our posterior inferences are reflective20

of the true underlying emission rate, unlike in the OSSE we see that with the real data the true values were not always

captured within our 95% posterior credible intervals. This suggests that there are other important factors at play (e.g., with the

meteorological data such as ambient temperature or wind direction, that we assume are fixed and known) that are not (or not

fully) accounted for in our model. A close inspection of the residuals at EC.A revealed mild deviations from our Gaussianity
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Figure 5. Left: posterior empirical distributions of the emission rate Q in g min−1, for the Boreals (B), FTIRs (F), EC towers (E), Picarro

analysers (P), and the ensemble of all instruments (BFEP), for each release-rate period (1 and 2) during the Ginninderra experiment. The 5.8

g min−1 release-rate period is shown in red (B1, F1, E1, P1, and BFEP1), while the 5.0 g min−1 release-rate period is shown in blue (B2,

F2, E2, P2, and BFEP2). The vertical dashed lines denote the respective true emission rates, the black dots denote the median estimates, and

the black vertical bars denote the upper and lower limits of the 95% posterior credible intervals. Right: same as the left panel but showing

results obtained using measurements taken when the methane point source was inactive. We can recover a reasonable range of estimates for

the emission rate, with no 95% posterior credible interval being far from the true emission rate. Further, we see that the posterior emission

rate credible intervals move towards zero when the source is inactive, as desired.

assumption, while posterior predictive distributions on left-out EC tower data in a re-analysis revealed coverage probabilities

(specifically, empirical probabilities computed from the quantity of validation data falling into the 68% and 95% prediction

intervals, respectively) that are slightly too large. Nevertheless, our worst-case scenario, obtained with the combination of all

instruments in the 5.0 g min−1 release-rate period, had an interval limit which was only 0.55 g min−1 (approximately 11%)

off from the true value, while all posterior medians were within 36% of the true value (within 22% if one ignored results from5

the Picarro analysers during the 5.0 g min−1 release-rate period). This is encouraging because a single, common inference

method was used to obtain the inferences from data at a common temporal resolution – no manual instrument-specific tuning
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was carried out. The approach thus seems relatively robust to instrument type; in Sect. 6 we show this is no longer the case

once certain components in our model are assumed fixed and known.

The first ten rows of Table A1 also show the 95% posterior credible intervals for ωy and ωz. None of the obtained credible

intervals for ωy contain 1, and the results corroborate the conclusion from our exploratory data analysis in Sect. 3.1 that a

plausible value for ωy is about 2 or 3. This result lends credence to our ability to calibrate the Pasquill stability-class curves5

corresponding to σyi,ki while estimating the emission rate with point measurements. There was less agreement on ωz in the

inversions, suggesting that something more complex than a simple scaling is required (or that the model used for σzi,ki is, in

this case, inappropriate) for calibrating the Pasquill stability-class curves corresponding to σzi,ki . Nonetheless, in Sect. 6 we

show that our emission-rate estimates from point measurements were relatively less sensitive to the assumption ωz = 1 than to

the assumption ωy = 1.10

The right panel in Fig. 5 summarises our results for Q in the second setting (both upwind and downwind measurements

with the source switched off), while full results are given in the second set of ten rows in Table A1. Recall from Sect. 4.2 that

due to the choice of prior over Q (a half-normal distribution), it is not possible for the 95% credible interval to include zero.

Clearly, however, the intervals for Q are close to zero and are suggestive of a small emission rate. As expected, the plume

standard-deviation scaling parameters are not well-constrained in this setting when the source is off: Narrow credible intervals15

on the emission rate here are only possible when the measurement is largely insensitive to the plume shape. This is indeed the

case for the Boreal paths, some of which pass very close to the source. With other instrument configurations, uncertainty in

the plume scalings dominates. In some cases (FTIRs and Picarro analysers in the 5.0 g min−1 release-rate period) our MCMC

algorithm did not converge after the 60000 samples; these results are thus omitted from Fig. 5 and Table A1.

The bottom ten rows in Table A1 give full results in the third setting (upwind measurements only with the source switched20

on). In this setting the 95% posterior credible intervals produced for the emission rates are very wide (most with a range of over

100 g min−1), as are those produced for ωy and ωz: Our posterior distributions are largely uninformative. This was expected

since upwind measurements contain no information on both the emission rate and the plume model parameters. These results

from upwind measurements serve as verification, and confirm that we are indeed relying on useful information from downwind

measurements when making inference on the emission rate and other parameters that appear within our model.25

6 Sensitivity of results to model components

As detailed throughout Sect. 4, the Bayesian model we employ contains many parameters that are updated using MCMC.

A natural question to ask is whether all these parameters do need to be updated, and what the effects on the emission rate

inferences are when instead some of these are assumed fixed and known. Specifically, we are interested in seeing what happens

when: (i) considering only one single precision parameter τ for all of the data regardless of stability class and/or instrument30

group; (ii) considering one τmi
per instrument group only; (iii) not accounting for plume-model variability in low wind speeds

(i.e., setting Û = 1); (iv) not updating ωy when using point measurements; (v) not updating ωz; and (vi) not updating both ωy
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and ωz when using point measurements. The 95% credible intervals for Q in g min−1 for all these settings and for each of the

10 groupings considered in Sect. 5 are given in Table A2.

Grouping the precision parameters {τmi} by instrument only (instead of by instrument and stability class) had a slightly

negative impact on the emission-rate estimates obtained during the second release-rate period, but less so during the first

release-rate period. Assuming (and fixing) ωz = 1 for both the point and path measurements also did not have a serious impact5

on the emission-rate estimates. Note that this does not mean that these components are not relevant in the general model – for

example, from our estimates of ωz in Table A1 we see ωz = 1 would be a plausible choice for this experiment if one opted to

fix ωz (while ωy = 1 would not be).

On the other hand several components in our model appear to be crucial to obtaining reasonable emission-rate estimates.

Using a single precision parameter to capture all observed variability due to measurement error and the stability-class categori-10

sation clearly had a negative impact on our emission-rate estimates. Similarly, assuming the variability of the measurements

is independent of wind speed when doing inversion resulted in 95% posterior credible intervals on the emission rate that are

considerably shifted in the negative direction. A similar observation was made by Feitz et al. (2018, p. 207) when analysing

data from the Boreal lasers. There, observations with wind speeds below 1.5 m s−1 were removed to mitigate this effect.

The scaling factor ωy is clearly also crucial for obtaining emission-rate estimates of practical significance for point measure-15

ments, with the ensuing emission-rate estimates often being off by nearly a factor of two when ωy = 1 is assumed. As expected,

the width of the credible intervals on the emission rate decreased substantially when ωy = ωz = 1 was assumed, indicating that

ωy and ωz play a big role in quantifying uncertainty on the emission rate. Therefore, as noted in other studies discussed in

Sect. 1, incorporating uncertainty in the transport model by treating parameters within the model itself as uncertain (note that

this is different from adding another component of variability in the data model, as is often done) is likely to have a positive20

impact on emission-rate estimates and uncertainty quantification.

7 Conclusions

In this article we have proposed a fully Bayesian model for atmospheric tomography that takes into account uncertainty in

the data measurement process, the physical processes, and parameters appearing in the transport model, when estimating the

emission rate. We see that the model is robust to different instrument types and configurations, and provides useful inferences25

on the emission rate and the plume dispersion model used. When applied to the Ginninderra data using a variety of instruments

in different release-rate periods, we obtain 95% posterior credible intervals on the emission rate that either encapsulate the true

emission rate, or that have a limit which is no more than 11% from the true value.

The methods developed in this study are ideal for quantifying local-scale leaks from industrial facilities or from the sub-

surface (e.g., well heads, buried pipelines or gas leakage up geological fractures and faults) where a surface leak has been30

detected but needs to be quantified. It can be used where physical access to the source location is limited, e.g., gas bubbling

from a creek or where measurement is hazardous. Depending on the circumstance, detection of leakage can take many dif-

ferent forms, from visible bubble detection, optical gas imaging, handheld sniffers, noise detection, helicopters equipped with
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lasers, drones equipped with gas sensors, to monitoring die-off in vegetation using remote sensing techniques. Surface leakage

typically expresses as small, concentrated hotspots if sourced from the subsurface (Feitz et al., 2014; Forde et al., 2019), for

which the quantification approach outlined in this article is ideally suited. Equipment placement can be optimised around the

leakage site (i.e., prevailing upwind/downwind) for optimal quantification.

In most applications the number of sources, nor the source location, is known. As such, the framework we construct should5

be seen as a foundational building block that needs to be extended appropriately for each specific application. For example, if

the source location is not known, then source localisation can be incorporated into the Bayesian framework as discussed by

Humphries et al. (2012). If there are multiple possible sites, and these locations are not known, then the framework needs to

be further extended to incorporate multiple Gaussian plume models (one for each site), and joint localisation/inversion will be

required. While these extensions are straightforward both mathematically and computationally, in practice they are unlikely to10

be effective for detection of leakage over large spatial scales. Gas fields or geological storage sites can cover areas of tens to

hundreds of square kilometres. Unless there is a high density of sensors (≈ 100 m scale, van Leeuwen et al., 2013; Jenkins et al.,

2016), the sensitivity of detection will be poor (Wilson et al., 2014; Luhar et al., 2014). It is however relatively straightforward

to effectively extend the methodology to when the emission is from an area, rather than a point source.

Our work is closely connected to other atmospheric tomography techniques, but with some small, significant, differences.15

Luhar et al. (2014) used a backward Lagrangian particle model to simulate the trajectories of methane and carbon dioxide

backwards in time to localise the source and estimate the emission rates. Their approach yielded good quality estimates for the

methane emission rates, but highly uncertain estimates for the carbon dioxide emission rates and source location parameters.

Twenty-three runs of the Lagrangian model required approximately one hour of computing time, and therefore their framework

becomes problematic with thousands of observations as we have in our study. More pertinently, online calibration of the20

atmospheric-transport model would be virtually impossible without the construction and use of a surrogate model or emulator

(e.g., Harvey et al., 2018). In the study of Humphries et al. (2012), carbon dioxide and nitrous oxide emission rates and source

locations were estimated relatively well. We do not consider the localisation problem, but otherwise extend their method to

handle various instrument types and a number of extra levels of uncertainty. The case in our sensitivity analysis in which we

fix ωy = ωz = 1 yields a model that is structurally very similar to that of Humphries et al. (2012); we see from our results that25

having this hard constraint is not a tenable assumption in practice. Our work also has close connections with that of Ars et al.

(2017) where the Pasquill stability class for an observation is chosen from a subset of appropriate stability classes, based on the

best fit of model predicted values to observed values. While this may help fit the Gaussian plume dispersion model to the data,

it does not take into account the uncertainty arising from stability-class choice. Further, if all plume model standard deviations

are off by a factor of two or more, there is a distinct possibility that no stability class yields a good fit. Online calibration of30

these standard deviations is needed to account for lack-of-fit arising from the the inherently simple Gaussian plume model.

Our results provide interesting insights into the design and monitoring of sensor networks for detecting and quantifying

methane emissions. For example, our sensitivity analysis in Sect. 6 showed that estimates using the two Picarro analysers were

particularly sensitive to assumptions made on the model plume parameters. Moreover, when uncertainty on these parameters

was considered, the release-rate estimates from these instruments tended to be uncertain. This is despite the Picarro analysers35
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being among the more accurate and expensive instruments used in the study. Uncertainty in our experiment is, as is often the

case, dominated by that in the transport model. Hence, the number of instruments used, the proximity of the instruments to the

source, and their configuration around the source, appear to be more important design criteria than instrument accuracy when

the inferential target is emission-rate quantification of a point source. In particular, having more (less expensive) instruments

set up to cover many more possible wind directions is better than having only one or two more expensive instruments with5

which to monitor emissions. If one is limited to using a small number of instruments, then those giving path measurements

are preferrable to those giving point measurements, as the former will be able to ‘capture’ a larger range of wind directions.

Our results also provide insight on the transport model used. For example, close inspection of our posterior inferences for τ

indicated that across all instrument groups and for both release-rate periods, the model-data mismatch was much lower for the

more neutral stability classes C and D, than for the more stable/unstable classes A and F.10

The fully Bayesian framework we adopt is adaptable to various scenarios. We envision, for example, that source localisation

(e.g., Humphries et al., 2012; Hirst et al., 2013) could be done in tandem with plume-model calibration within an inversion

framework, provided several instruments in suitable configurations (as in the Ginninderra experiment) are available. Future

work will also investigate how uncertainty in other meteorological variables such as wind-direction, as well as the stability-

class categorisation adopted (possibly via z0) could be incorporated within the model.15

Code and data availability. Software code and data are available at https://github.com/Lcartwright94/BayesianAT.
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Appendix A: Full results

Table A1. Posterior median emission rate in g min−1, and the posterior 95% credible intervals for the emission rate in g min−1, ωy , and ωz ,

for the Boreals (B), FTIRs (F), EC towers (E), Picarro analysers (P), and an ensemble of all instruments (BFEP), for each release-rate period

(5.8 g min−1 (1), and 5.0 g min−1 (2)) under various settings. Dashes correspond to parameters that were not updated via MCMC. Results

for which MCMC did not converge are marked as NA.

Setting Group Median Q Q ωy ωz

B1 5.9833 (5.4733,6.5593) — (3.2062,4.2104)

F1 6.7301 (6.1985,7.2937) — (1.4347,1.8164)

E1 6.6048 (6.2942,6.9537) (2.4946,2.7848) (1.0868,1.1954)

P1 4.9028 (4.2710,5.6136) (2.6065,3.6707) (0.41664,0.64341)

Source on BFEP1 5.9008 (5.7050,6.1038) (2.3360,2.5640) (1.1944,1.2989)

(Upwinds & Downwinds) B2 5.1552 (4.2571,6.1820) — (0.84608,1.1288)

F2 4.0525 (3.2838,4.8497) — (0.66723,1.0944)

E2 4.2017 (3.6297,4.8923) (1.4899,2.1671) (0.90941,1.0981)

P2 3.2135 (2.1071,4.7236) (2.0250,5.2798) (0.34677,0.63648)

BFEP2 3.9455 (3.5054,4.4543) (1.7138,2.5325) (0.97964,1.1437)

B1 0.52073 (0.40106,0.71608) — (1.3051,5.0262)

F1 0.72641 (0.36438,1.5935) — (1.2565,9.0531)

E1 1.6906 (0.95997,3.2742) (10.768,21.971) (3.1036,11.826)

P1 1.7798 (0.61237,5.6367) (3.3985,13.853) (0.31311,7.3589)

Source off BFEP1 0.65416 (0.52512,0.87510) (7.0545,12.789) (2.2381,5.3166)

(Upwinds & Downwinds) B2 0.52202 (0.31479,0.77494) — (0.84995,1.5319)

F2 NA NA — NA

E2 0.85549 (0.32681,3.3683) (2.3136,11.371) (0.50337,7.9746)

P2 NA NA NA NA

BFEP2 0.72846 (0.34557,1.5735) (2.7823,9.5185) (0.97971,7.1704)

B1 62.452 (2.7445,206.22) — (0.16883,6.8461)

F1 61.651 (3.2040,207.05) — (0.17249,6.5361)

E1 16.136 (7.5484,41.030) (4.5921,6.9288) (1.2708,8.7488)

P1 22.913 (2.0052,168.70) (0.15931,9.2038) (0.23560,7.7829)

Source on BFEP1 15.723 (7.1673,39.188) (4.7485,6.9568) (1.4798,8.8789)

(Upwinds only) B2 88.353 (5.6799,244.48) — (0.27891,6.0868)

F2 58.568 (2.7772,192.74) — (0.18217,6.4708)

E2 39.728 (3.2357,180.33) (0.23683,5.7448) (0.19650,6.8680)

P2 42.996 (1.9088,185.75) (0.13023,5.2626) (0.18403,6.9436)

BFEP2 37.909 (2.9071,186.65) (0.22048,5.4364) (0.28261,7.1149)
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Table A2. Posterior 95% credible intervals for the emission rates in g min−1 for the Boreals (B), FTIRs (F), EC towers (E) , Picarro analysers

(P), and an ensemble of all instruments (BFEP), for each release-rate period (5.8 g min−1 (1), and 5.0 g min−1 (2)), and for various alterations

to the model as detailed in Sect. 6. Dashes correspond to redundant case (e.g., ωy = 1 was assumed for all path measurements in the full

model).

Group Full model Assuming τmi = τ Assuming {τmi} are only Assuming

for mi = 1, . . . ,M instrument-group dependent Û = 1

B1 (5.4733,6.5593) — (4.7238,5.6727) (2.6092,3.1975)

F1 (6.1985,7.2937) — (5.9526,7.1190) (3.6482,4.7116)

E1 (6.2942,6.9537) — (6.2062,7.0047) (5.4894,5.9759)

P1 (4.2710,5.6136) — (4.8748,6.1139) (2.9868,3.9053)

BFEP1 (5.7050,6.1038) (4.7252,5.2433) (5.8133,6.2731) (3.4032,3.6424)

B2 (4.2571,6.1820) — (4.0863,6.4436) (2.5337,3.5319)

F2 (3.2838,4.8497) — (2.7180,4.2555) (1.4055,2.1349)

E2 (3.6297,4.8923) — (3.2692,9.4560) (3.1329,4.1516)

P2 (2.1071,4.7236) — (1.6784,4.7147) (1.8451,3.0813)

BFEP2 (3.5054,4.4543) (2.5283,3.4837) (2.3224,3.2790) (1.9421,2.4779)

Group Assuming Assuming Assuming

ωy = 1 ωz = 1 ωy = ωz = 1

B1 — (4.0341,4.7974) —

F1 — (5.4152,6.3851) —

E1 (3.3635,3.7084) (6.8646,7.5289) (3.6129,3.8937)

P1 (2.0142,2.5424) (5.8880,7.5225) (2.6043,3.4691)

BFEP1 (3.6176,3.8644) (5.9888,6.3946) (3.8251,4.0726)

B2 — (4.3543,5.7021) —

F2 — (3.2608,4.7770) —

E2 (2.6442,3.5321) (3.6982,4.7588) (2.7116,3.3605)

P2 (0.93638,5.2326) (1.8757,4.2556) (0.91678,1.9052)

BFEP2 (2.4699,3.0227) (3.6202,4.5213) (2.5319,3.0744)
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