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Abstract. Accurate determination of the location, height and loading of SO2 plumes emitted by volcanic eruptions is essential

for aviation safety. The SO2 layer height is furthermore one of the most critical parameters that determine the impact on

the climate. Retrievals of SO2 plume height have been carried out using satellite UV backscatter measurements, but until

now, such algorithms are very time-consuming. We have developed an extremely fast yet accurate SO2 layer height retrieval

using the Full-Physics Inverse Learning Machine (FP_ILM) algorithm. This is the first time the algorithm has been applied to5

measurements from the TROPOMI instrument on board the Sentinel-5 Precursor platform. In this paper, we demonstrate the

ability of the FP_ILM algorithm to retrieve SO2 plume layer heights in near-real-time applications with an accuracy of better

than 2 km for SO2 total columns larger than 20 DU. We present SO2 layer height results for a selection of recent volcanic

eruptions observed by TROPOMI.

10 Copyright statement. 

1 Introduction

Global satellite observations allow for the timely detection and monitoring of SO2 emitted from volcanic eruptions, even in

remote regions, where no ground-based instruments are installed (see e.g. Fioletov et al. 2013). Satellite measurements of

UV earthshine spectra in the wavelength range between 305 and 335 nm provide the highest sensitivity to SO2 in the Earth’s

atmosphere. Volcanic eruptions can inject large amounts of sulphur dioxide (SO2) into the atmosphere, where it is either subject15

to dry and wet deposition within a few days in the troposphere (see e.g. Lee et al. 2011 or Myles et al. 2011), or oxidization over

a period of several weeks to sulfate aerosols in the stratosphere (see e.g. Robock, 2000; Forster et al., 2007 and von Glasow

et al. 2009). Sulfate aerosols can affect the Earth’s radiative forcing and have an impact on clouds (see e.g. McCormick et al.,

1995; Robock, 2000 and Malavelle et al. 2017).

Based on UV earthshine measurements, SO2 vertical column densities (VCDs) can be retrieved easily using for example20

the Differential Optical Absorption Spectroscopy (DOAS) algorithm, see e.g. Rix et al. (2012), or the Principal Component
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Analysis (PCA) algorithm, see e.g. Li et al. (2017). These methods are fast enough for near-real-time (NRT) retrievals. Nev-

ertheless, both DOAS and PCA algorithms retrieve only the slant column - in order to calculate the VCD, explicit or implicit

assumptions about the vertical distribution of SO2 have to be made in order to determine the effective light path - this VCD

conversion factor is called the airmass factor (AMF). In the UV range between 305 - 335 nm, AMFs are calculated by means

of multiple-scattering radiative transfer models assuming known vertical distributions of SO2 and O3.5

However, the SO2 VCD is strongly dependent on the vertical distribution (in terms of the plume layer height) of SO2, a

quantity which is usually unknown at the time of the measurement. Even if there are ground-based or aircraft measurements of

the SO2 layer-height (LH), the data are generally difficult to use for validation, since e.g. for strong eruptions, volcanic plumes

are typically transported over long distances and the number of collocations is small. Thus, for volcanic SO2 measurements,

the vertical distribution of SO2 is a key parameter limiting the product accuracy.10

The determination of the vertical distribution of SO2 based on satellite data is however challenging, since the information

about the vertical distribution is not easy to extract from the spectral signature (see Yang et al. 2009 and Nowlan et al. 2011).

The SO2 loading (VCD) has a direct effect on the optical depth, whereas the layer height (LH) has an indirect effect on the

optical depth since it influences both the number of photons passing through the SO2 layer as well as the layer optical depth

due to the temperature dependency of the SO2 absorption crosssections (Yang et al., 2009).15

In the operational Sentinel-5 Precursor/TROPOMI product (see Theys et al. 2017), the SO2 VCDs are hence provided for

a set of apriori SO2 distributions, along with an averaging kernel (AK), in order that the user can calculate the VCD for an

arbitrary SO2 vertical distribution.

To date, SO2 layer-height retrievals have used computationally demanding direct fitting inversion methods, which are not

suitable for NRT applications. For the retrievals based on satellite UV measurements, Yang et al. (2009) and Yang et al. (2010)20

developed an Extensive Iterative Spectral Fitting (EISF) algorithm for OMI, and Nowlan et al. (2011) introduced an optimal

estimation (OE) scheme for GOME-2. For strong volcanic eruptions, the accuracy of the retrieved SO2 LH using this approach

is in the range 0.5–1 km, whereas for small SO2 absorption it is around 2 km (see Nowlan et al. 2011).

Satellite infrared sounders also offer the opportunity to measure both SO2 VCDs and LH (see Clarisse et al., 2008; Carboni

et al., 2012; Clarisse et al., 2014 and Carboni et al. 2016) using optimal estimation algorithms for IASI. While infrared sounders25

have a weaker sensitivity to the lower tropospheric SO2 than UV instruments, the layer height retrievals tend to have a better

accuracy, and perform well even for low column amounts (up to the DU-level), however at a low horizontal resolution of about

12 km.

In contrast, the TROPOMI instrument, on board the Sentinel-5 Precursor satellite (S5P) launched on 13 October 2017, has a

much higher spatial resolution of 7 × 3.5 km2, with the possibility of operation at an even smaller resolution of 5.5 x 3.5 km2.30

This allows us to observe and study SO2 plumes at an unprecendented level of detail. Data turnover from TROPOMI is very

large, and this consideration will require the development of new retrieval schemes for the fast and accurate retrieval of SO2

layer heights in an operational environment.

To this end, we have developed an algorithm called ’Full-Physics Inverse Learning Machine’ (hereafter referred to as

FP_ILM) for the retrieval of the SO2 LH based on satellite UV earthshine spectra. The FP_ILM algorithm has been used35
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for the retrieval of ozone profile shapes (Xu et al., 2017), the retrieval of surface properties accounting for the BRDF effects

(Loyola et al., 2019), and the retrieval of SO2 LH from GOME-2 (Efremenko et al., 2017). The algorithm creates a mapping be-

tween the spectral radiance and SO2 LH using machine learning methods. The time-consuming training phase of the algorithm

using radiative transfer model calculations is performed off-line, and only the inversion operator has to be applied to satellite

measurements - this makes the algorithm extremely fast and it can thus be used in near-real time processing environments. In5

this second paper on the FP_ILM SO2 LH, we describe some improvements to the algorithm, and we apply it to a number

of volcanic eruptions observed by TROPOMI during the commisioning phase (started 7 November 2017) as well as the first

operational phase (started April 2018).

The paper is organized as follows: In Section 2 we describe the improved FP_ILM SO2 LH algorithm. The sensitivity of

retrieved SO2 LHs to a number of different parameters is discussed in Section 3. In Section 4, the FP_ILM is applied to S5P10

data to retrieve SO2 LHs for selected volcanic eruptions. We summarize the paper in Section 5.

2 FP_ILM algorithm

Conceptually, the FP_ILM consists of a training phase, in which the inversion operator is obtained using synthetic data gen-

erated with an appropriate radiative transfer (RT) model, and an operational phase, in which the inversion operator is ap-

plied to real satellite measurements. The main advantage of the FP_ILM over classical direct fitting approaches is that the15

time-consuming training phase involving complex RT modeling is performed offline; the inverse operator itself is robust and

computationally simple and therefore extremely fast.

During the training phase, the LInearized Discrete Ordinate Radiative Transfer model (LIDORT) with inelastic rotational

Raman scattering (RRS) implementation (Spurr et al., 2008) is deployed to compute simulated reflectance spectra in the

wavelength range 310− 335 nm. These spectra depend upon the following n = 8 input parameters: the SO2 VCD and LH, the20

surface albedo, the surface height, the O3 VCD, the solar zenith angle (SZA), the viewing zenith angle (VZA) and the relative

azimuth angle (RAA). Table 1 gives a summary of the parameter space. O3 profiles are classified according to the total column

amount of ozone, and the month and latitude zones as specified in the TOMS Version 8 O3 profile climatology (Bhartia, 2003).

The SO2 profile plume is taken to have a Gaussian shape, characterized by the total SO2 VCD loading and centered at a peak-

concentration layer height zp, along with a half-width fixed to 2.5 km. In the following, the retrieval of SO2 layer height refers25

to the retrieval of the peak-concentration height zp.

Simulations were done on a pressure/temperature/height grid from the US standard atmosphere, with a finer-grid vertical

height resolution of 0.25 km below 15 km in order to resolve properly the Gaussian SO2 plume shape. In total, some 131,072

simulated reflectance spectra have been calculated on a selective parameter grid established by means of a smart sampling

technique developed by Loyola et al. (2016).30

The use of the LIDORT-RRS RT model is necessary, as it enables us to account for the effect of Raman scattering in

the atmosphere. Solar irradiances exhibit strong Fraunhofer structures in this part of the UV spectral range, and earthshine

spectra are characterized by the "filling-in" of Fraunhofer-solar and telluric-absorber features due to "inelastic" (wavelength-
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redistributed) rotational-Raman scattering by air molecules. For further details, see Efremenko et al. (2017) and Spurr et al.

(2008).

The simulated high-resolution reflectance spectra are then convolved with the TROPOMI Instrument Spectral Response

Functions (ISRF) v3.0.0 (released 2018-04-01)1. Note that the TROPOMI instrument comprises 450 rows, which are in prin-

ciple single detectors with their own ISRFs. The signal-to-noise ratio (SNR) is about 1000 in our UV wavelength range. Thus,5

to account for instrumental noise in the training phase, uncorrelated Gaussian noise with a fixed SNR of 1000 is added to the

simulated spectral data.

To extract the information about the layer height and to reduce the dimensionality of the spectral dataset, a principal compo-

nents analysis (PCA) is applied to the simulated spectra. By thus characterizing the set of simulated measurements with fewer

parameters, a simpler, more stable and computationally efficient inversion scheme can be realized. It was found that using 1010

principal components (PCs) is sufficient to retrieve information about the layer-height. The inclusion of additional PCs beyond

10 did not result in any improvements to LH retrievals, since higher-order PCs are increasingly affected by noise. Figure 6

shows the ratio between the variance of the PCA-derived data set and the total variance of the complete spectra data set (the

"explained" variance ratio) as a function of number of PCs included in the PCA. Already with 10 PCs, the error is less than

1x10−4.15

The dimensionality-reduced training spectra, together with the information about the O3 VCD, the SZA/VZA/RAA angles,

and the surface pressure and albedo, are then used as input to train a feed-forward artificial neural network (MultiLayer Per-

ceptron Regression - MLPR), with the SO2 LH as the output layer. Note here that the SO2 VCD is not part of the training,

since it depends directly on the SO2 layer height. The training of the MLPR is an iterative process; at each time step, the

partial derivatives of the loss function with respect to the model parameters are computed in order to update the parameters. A20

regularization term is added to the loss function that shrinks model parameters to prevent over-fitting: By building a complex

neural network, it is quite easy to perfectly fit the training dataset. When this model is however evaluated on new data (here

satellite measurements), it performs very poorly. The regularization modifies the loss function by adding additional terms that

penalize large weight vectors and preferring diffuse weight vectors.

After carrying out a PCA and MLPR parameter optimization using closed-loop retrievals to minimize differences between25

the retrieved and simulated layer heights, the final configuration for the neural network settled on the use of two hidden layers,

with 32 nodes in the first layer and 10 nodes in the second.

In the operational phase, the first step is to use the principal component scores acquired during the training phase to transform

a given TROPOMI spectral measurement data set to one with a lower dimension. Once this is done, the neural network inverse

function is then applied to retrieve the SO2 LH.30

1Available here:

http://www.tropomi.eu/data-products/isrf-dataset/
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3 Dependencies

In this section, we study the dependency of the layer height retrieval on different parameters. We discriminate between direct

(i.e. those parameters affecting the reflectance spectra) and indirect (i.e. affecting the training data and inversion algorithm)

dependencies of the retrieved layer height.

– Direct dependencies: Viewing geometry, surface properties, ISRF, Noise level (SNR)5

– Indirect dependencies: Number of layers in the neural network, number of PCs, parameter ranges for training

To proceed, we first divide the training dataset, using 90% of the data for training of the inversion operator and the remaining

10% for testing. Furthermore, we have generated an independent verification dataset modeled with LIDORT_RRS for selected

input parameters on a prescribed parameter grid with fixed layer heights of 2.5, 6.5, 13 and 20 km. This verification dataset

thus differs from the training dataset, where a "smart" parameter grid was used in place of fixed parameter values.10

First, we train the FP_ILM operator using 90% of the training dataset (see Table 1), and then apply the trained operator to

the remaining 10% training spectra, for which we know the exact SO2 LH. Figure 1 shows the SO2 LH difference as a function

of solar/viewing geometry, SO2 VCD, O3 VCD, albedo and surface pressure. The figure shows clearly a number of marked

dependencies in the retrieved layer height, with notably high differences with respect to the real SO2 LH for low and high layer

heights, for low SO2 VCD well as for high SZA.15

Regarding the SZA dependency, a cutoff limit of 75◦is set in operational SO2 retrievals, because at high SZA the light

path becomes very long and the noise level increases. Accordingly, we limit the SZA of the spectra used in the training to

SZA<70◦in the following.

Clearly, for small SO2 VCDs, the information content on LH in the spectral signature is very low. It follows that the inclusion

of spectra with low SO2 content in the training will have have a negative effect on the entire neural network. In principle for20

lower SO2 VCD loadings, more PCs could be included, but at some point also the noise level signature will exceed that of the

actual SO2 absorption.

We have performed several tests in which we limit the training dataset by varying the allowed input parameter ranges. We

have finally found an optimal parameter range that allows the retrieval of a broad range of SO2 LHs even for low SO2 VCDs. In

the training phase, we use only spectra with SO2 VCD > 20 DU, surface albedo < 0.5 and SZA<70◦to train the final inversion25

operator for TROPOMI. Figure 2 shows that the error on the retrieved SO2 LH is less than 2 km and the dependency on SO2

VCD is reduced.

In addition, we have applied the optimized FP_ILM operator to the independent verification dataset with its prescribed SO2

LHs. Figure 3 shows the retrieved layer height as a function of SO2 VCD. As mentioned above, for low SO2 VCDs, high-

altitude layer heights cannot be retrieved - there is always a bias towards low layer heights. Only for SO2 loadings in excess of30

20 DU, do we retrieve layer heights with an uncertainty of less than 2 km.
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To investigate the dependency of the retrieved SO2 LH as a function of SNR, we have added noise (SNR of 800, 1000 and

1200) to the independent verification spectra. Figure 4 clearly shows that the accuracy of the retrieved layer height improves

with increasing SNR.

In the operational retrieval of SO2 LHs from TROPOMI data, each detector row is effectively a single instrument with its

own ISRF. The accuracy of the retrieved SO2 LH can vary across detector rows. Figure 5 shows the SO2 LH results when5

applied to the Sinabung eruption (see Section 4.2). Black dots show the LH for each 50th row, whereas the red cross shows the

interpolated LH for the measurement row. Clearly, the retrieved LH is slightly different in each row (within 1 km) due to the

different ISRF used for training the NN. Note that in the final operational retrieval, we determine the layer height for a set of

fixed detector rows (for which we have trained the FP_ILM separately), and then interpolate the layer height to the actual row.

In this way we avoid jumps in the retrieved layer height between adjacent detector rows.10

4 Application to TROPOMI data

Reflectance spectra from TROPOMI are determined from the L1 solar irradiance and earthshine radiance data (solar irradiance

is measured on a daily basis). To correct for Doppler shifts between earthshine and irradiance spectra, we apply the wavelength

calibration information from the operational L2 SO2 product to first calibrate the solar spectrum and then we use the fitted

shift and squeeze parameters from the DOAS retrieval to calibrate the earthshine spectra. From this calibrated L1 data, we then15

calculate reflectances in the wavelength range 310− 335 nm.

In the following subsections, we have applied the FP_ILM operator to a set of eight major volcanic eruptions measured by

TROPOMI. We note that the SO2 LH retrieval only takes about 2 ms per TROPOMI spectrum, hence even for an extended

volcanic plume, the entire LH retrieval can be performed in a matter of seconds, which is important for operational retrieval

environments with strong time constraints. To attempt validation of our results, we have performed comparisons with indepen-20

dent MetOp/IASI SO2 LH data (see Clarisse et al. 2014 for details). The MetOp platforms are on completely different orbits

from that of S5P, with widely different overpass times, so that direct satellite comparisons will give only a qualitative validation

on the accuracy of retrieved SO2 LHs from TROPOMI measurements. At the time of writing, IASI data is unfortunately the

only source for independent satellite results.

4.1 Ambae25

A few weeks after the start of the TROPOMI commissioning phase, strong volcanic activity was observed from the Ambae

shield volcano (Vanuatu islands). Figure 7 (left) shows the SO2 VCD retrieved by the standard operational SO2 algorithm

(Theys et al., 2017). We have applied the FP_ILM algorithm to TROPOMI measurements on two occasions (23 November

2017 as well as on 27 July 2018) for overpass times around 02:00h UTC.

On 23 November 2017, two plumes are clearly visible. The first is an aged plume traveling in a south-westerly direction,30

having a maximum SO2 VCD of up to 77 DU and a LH of about 10–12 km, while the second plume is moving in a south-

easterly direction with SO2 LH of about 15 km (see Fig. 7). Figure 8 shows the SO2 LH retrieved for IASI/MetOp-A and -B
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measurements at overpass times around 11:00h and 21:00h, both events occuring well after the TROPOMI measurements in

Fig. 7. Although this timing mis-match makes verification of the SO2 LH difficult (the plume has already dispersed at the times

of the IASI measurements), the maximum SO2 LH is still about 12-14 km (with a maximum of 20 km), which is in agreement

with the FP_ILM results for TROPOMI. The IASI SO2 LH for the aged plume travelling in the south-west direction is however

well below the 10 km LH retrieved by the FP_ILM.5

On 27 July 2018 a thick SO2 plume of up to 120 DU was observed, traveling eastwards, see Fig. 9. The retrieved SO2 LH

reached up to 20 km, into the stratosphere, where SO2 lifetimes are very much longer - here it can form sulfate aerosols and

acid rain within weeks. Figure 10 shows the respective IASI SO2 LH results for overpass times around 13:00h and 23:00h

UTC, respectively. The IASI SO2 LH also peaks at around 20 km, hence showing a very good agreement with the FP_ILM LH

results, although the plume has already dispersed.10

4.2 Sinabung

On 19 February 2018, the Sinabung stratovolcano on the island of Sumatra erupted violently, with a volcanic plume containing

ash and up to 50 DU of SO2. The FP_ILM algorithm was applied to TROPOMI measurements with an overpass time of about

06:30h UTC. The retrieved SO2 LH extends up to 17 km, see Fig. 11. For this eruption, there was also a NASA A-train

overpass (at about 07:15h UTC) of the CALIOP/CALIPSO LIDAR instrument, with associated measurements clearly showing15

an attenuation by ash or aerosols at an altitude around 15-18 km (see Fig. 12); this is in excellent agreement with our FP_ILM

results (see black diamonds in the figure). Figure 13 shows the corresponding SO2 LH retrieved for IASI/MetOp-A and -B

measurements with LH values at about 13 km for the 03:30h UTC overpass and LH up to 18 km around the overpass time

of 15:00h UTC; these agree well with the TROPOMI results. Also the Pusat Vulkanologi dan Mitigasi Bencana Geologi2

(PVMBG, also known as CVGHM) reported at 08:53h UTC a dark gray plume with a high volume of ash that rose at least20

to 16.8 km. Furthermore the Darwin Volcanic Ash Advisory Center3 (VAAC) reported that LH values for these Sinabung ash

plumes were identified in satellite images, recorded by webcams, and reported by PVMBG continued to rise throughout the

day to 13.7 km.

4.3 Sierra Negra

On 26 June 2018 a strong eruption at the Sierra Negra shield volcano located on Isabela Island (Galapagos) occurred. This25

eruption occured in two phases, with an initial very energetic eruption characterized by the opening of five fissures and lava

flows, followed by a second event which lasted until 23 August 2018 with decreased gas emissions. TROPOMI was able to

measure a very strong SO2 plume (with loading in excess of 500 DU) only a few minutes after the start of the first eruption.

Figure 14 shows the strong and extended SO2 plume on the 27 and 28th of June at an overpass time around 19:50h UTC, along

with the SO2 LH retrieved by the FP_ILM algorithm. Retrieved SO2 LH values of about 14 km were observed, with some30

parts of the plume reaching about 18 km altitude. This is in good agreement with SO2 LH retrieved from IASI data (see Fig.

2see http://vsi.esdm.go.id/
3see http://www.bom.gov.au/aviation/volcanic-ash/
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15), even though the IASI measurements were taken at overpass times of 02:00h and 14:00h UTC (both well before the S5P

overpass).

5 Conclusions

We have developed a new algorithm for the fast and accurate retrieval of SO2 layer heights from UV earthshine observations

of volcanic SO2 eruptions by the TROPOMI sensor on board the Sentinel-5 Precursor platform. The SO2 LH retrieval has5

two phases - (1) a computationally expensive off-line training phase in which the retrieval inverse operator is obtained using

the FP_ILM (Full Physics Learning Machine) algorithm; and (2) a very fast operational phase, in which the FP_ILM inverse

operator is applied to measured UV reflectance spectra. The FP_ILM combines a Principal Component Analysis with a Neural

Network regression using the UV reflectance, O3 total column, viewing geometries and surface properties as input. Based on

an optimized training dataset created with smart sampling techniques, the principal component scores calculated for reflectance10

spectra in the wavelength range 310-335 nm are used along with the other parameters to train a feed-forward artificial neural

network. For S5P/TROPOMI measurement data, an initial dimensionality reduction of the reflectance spectra is performed by

applying the PCA-derived Principal Component scores before retrieving SO2 LH with the trained Neural Network .

The FP_ILM can be used for NRT applications with strict time constraints. S5P/TROPOMI, with its high spatial and spectral

resolution, provides a huge amount of data and the computationally intensive direct fitting approaches to SO2 LH retrieval de-15

veloped so far are not applicable. In contrast, the FP_ILM operator performs SO2 LH retrieval within about 2 ms per TROPOMI

spectrum. Hence even the retrieval on extended volcanic plumes can be performed in a matter of few seconds, allowing for the

determination of the SO2 layer height with an accuracy better than 2 km for SO2 total column densities larger than 20 DU.

In this paper, we deployed an independent simulated reflectance spectra dataset to investigate the accuracy of SO2 LH

retrievals and their dependencies on a number of different factors and parameters both direct and indirect. In particular, it was20

found that retrieved SO2 LH is strongly dependent on the SO2 VCD for low VCDs <20 DU as well as for high SZAs >75◦.

For high VCDs and low SZA, the SO2 LH can be retrieved with an accuracy of better than 2 km. We also investigated the

dependencies on ISRF and SNR, both of which turned out to be relatively slight effects.

Broad-band spectral scattering and absorption due to sulfate aerosols or volcanic ash plumes will certainly affect SO2 LH

retrievals. Although not considered in the present work, we will address this important issue in a forthcoming paper in this25

series; aerosols will be accounted for explicitly in the training of the FP_ILM. Nevertheless, we should note that SO2 and ash

are likely to be collocated only for fresh volcanic plumes. For mature plumes, mass differences will ensure that ash and SO2

plumes are not located at similar altitudes, and the corresponding plumes are thus subject to different wind-direction dispersal.

We have applied the FP_ILM to a number of strong volcanic eruptions observed recently by S5P/TROPOMI. Our SO2 LH

results have been compared to SO2 LHs retrieved from IR measurements from two MetOp/IASI satellites. Unfortunately the30

orbits of both MetOp satellites and S5P have widely different overpass times, allowing only for qualitative comparisons. Despite

this, there is in general a very good agreement between the IASI and TROPOMI results. In this regard, further verification work

is certainly needed. For the Sinabung eruption in February 2018, our results were compared directly to CALIOP/CALIPSO
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LIDAR data from an overpass right over the volcanic plume less than one hour after the S5P measurements. Our SO2 LH was

in excellent agreement with the 532 nm total attenuated LIDAR backscatter result, showing a volcanic plume peaking at around

18 km.
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Figure 1. Dependency of the retrieved SO2 layer height as a function of 8 parameters as indicated. Plotted are the layer height differences

(in [km]) between retrieved layer heights and those simulated using the independent verification dataset (i.e. a 10% subdivision of the entire

training dataset). For this plot we used the entire training data set, i.e. applied to optimization.
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Figure 2. Same as Fig. 1 but with an optimized training dataset restricted to SO2 VCD values >20 DU, SZAs<75◦and albedos <0.5.

Table 1. Physical parameters varied for the generation of reflectance spectra.

Parameter Range

SZA 0-90◦

VZA 0–60◦

RAA 0–180◦

Surface albedo 0–1

Surface height 0–8 km

O3 VCD 225–525 DU

SO2 VCD 0–1000 DU

SO2 LH 2.5–20 km
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Figure 3. Dependency of the retrieved SO2 LH as a function of SO2 total vertical column, using an independent test dataset with

O3 =385 DU, SZA=30◦, VZA=60◦, RAA=30◦, surface albedo 0.05, surface pressure 1013 mbar. Color coded are the different LHs for

which the test spectra have been generated.
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Figure 4. Dependency of the retrieved SO2 LH on the SNR. Same as Fig. 3 but with three different SNR values: +: SNR=800, •: SNR=1000,

x:1200.
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Figure 5. Dependency of the retrieved SO2 LH on the instrument row. The SO2 LH as a function of SO2 VCD is shown for the Sinabung

eruption. Blue dots show the SO2 LH result for every 50th detector row, whereas red crosses show the LH interpolated to the measurement

row.
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Figure 6. "Explained" variance ratio as a function of the number of principal components.
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Figure 7. SO2 VCD (left) and SO2 LH (right) for the TROPOMI measurements of the Ambae volcano on 23 November 2017, at overpass

time around 02:00h UTC.

Figure 8. Comparison of S5p/TROPOMI SO2 LH results with MetOp-A and -B/IASI SO2 LH results for the Ambae SO2 plume on 23

November 2017. The colored circles are the IASI results, with overpass times around 11:00h (left) and 21:15h UTC (right).
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Figure 9. SO2 VCD (left) and SO2 LH (right) for the TROPOMI measurements of the Ambae volcano on 27 July 2018, at overpass time of

around 02:00h UTC.

Figure 10. Comparison of S5p/TROPOMI SO2 LH results with MetOp-A and -B IASI SO2 LH results for the Ambae SO2 plume on 27 July

2018. The colored circles are the IASI results with overpass times around 13:00h (left) and 23:00h UTC (right).
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Figure 11. SO2 VCD (left) and SO2 LH (right) for the TROPOMI measurements of the Sinabung volcano on 19 February 2018, at overpass

time around 06:30h UTC.

Figure 12. CALIOP/CALIPSO 532 nm total attenuated backscatter measurements (around 07:15h UTC) of the Sinabung volcanic eruption on

19 February 2018. Black diamonds are the FP_ILM SO2 LH results. Red diamonds show the retrieved LH for pixels with SO2 VCD>20 DU,

for which the uncertainty is less than 2 km. The volcano is located at 3.17N, 98.39E. The plume is clearly visible in the left part of the image.

Image credit: NASA
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Figure 13. Comparison of S5p/TROPOMI SO2 LH results with MetOp-A and -B IASI SO2 LH results for the Sinabung SO2 plume on 19

Febuary 2018. The colored circles are the IASI results with overpass times at around 03:30 (left) and 15:00h UTC (right).
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Figure 14. SO2 VCD (left) and SO2 LH (right) for the TROPOMI measurements of the Sierra Negra volcano on 27 (top) and 28 June 2018

(bottom), with overpass times around 19:50h UTC.
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Figure 15. Comparison of S5p/TROPOMI SO2 LH results with MetOp-A and -B IASI SO2 LH results for the Sierra Negra SO2 plume on 27

(top) and 28 June 2018 (bottom). The colored circles are the IASI results with overpass times around 02:00h (left) and 14:00h UTC (right).
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