Response to Reviewer #1 Comments for “Towards Objective Identification and Tracking of
Convective Outflow Boundaries in Next-Generation Geostationary Satellite Imagery”

Authors: Jason Apke, Kyle Hilburn, Steven Miller, and David Peterson
Key:

Reviewer’s comments are in Red

Authors’ responses are in black italics.

Comments: It was particularly hard to find reviewers for this paper, and in my capacity of
associate editor for this paper, I therefore decided to provide this review as a substitute for a
review, given the timeline of the process.

Thank you for stepping in to review this paper, we appreciate the time and effort you have put in
for us to get this manuscript published.

| do not have any major comments except:

1) The description of the optical flow methods could be a bit more detailed and possibly be
supported with graphs. Improving the manuscript in this regard is not a requirement, but in my
opinion the somewhat dense text does prevent some readers from fully appreciating the
manuscript, and why in the end one method "won out" over the other.

Since so much progress has been made on the optical flow front without updates to satellite
image motion tracking (e.g. AMVSs), it is notably challenging to write a short and concise paper
on the subject and connect it with the knowledge base of the typical meteorology and remote
sensing researcher. In response to this comment, we have added a couple paragraphs to the
background section 2.2 linking the current AMV optical flow approach (patch matching), which
is a method most should understand, to the optical flow approach used here:

“Readers can contrast the HS method with the optical flow algorithm used in GOES AMVs,
referred to as “patch matching” (PM; Fortun et al., 2015). In PM, a target (e.g. a 5x5 pixel box)
identified as suitable for tracking is iteratively searched for in a sequential image within a
reasonable search area (Fig. 1a). The motion is identified by which candidate target (e.g. another
5x5 pixel box displaced by the optical flow motion) in the sequential image best matches the initial
target, typically by minimizing the sum-of-square error between the target and the candidate
brightness values (Daniels et al., 2010; Nieman et al., 1997). The reader can draw similarities to
the HS method by formulating the PM approach as an energy equation to be minimized,
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where the minimum in E is found by computing Eq. (4) at every candidate target in the search

region. As E is only minimized within the target area T, PM represents a local method.
Research and extensive validation has shown that, with quality control, PM provides a

valuable resource to derive and identify winds in satellite imagery (Velden and Bedka, 2009).

However, there are several types of motions where PM would fail (Fig. 1b), many of which occur



frequently in satellite OFB observations. AMVs found with Eq. (4) make two key assumptions, 1)
that the brightness remains constant between sequential images at time ¢t and t + At, and 2) that
the motion U is constant within the target. The first assumption, brightness constancy, fails when
there are excessive illumination changes in a sector that are not due to motion. These illumination
changes may be due to evaporation or condensation, or simply due to changes in solar zenith angle
throughout the day in visible imagery. The HS method also uses assumption 1), though it is relaxed
when combined with the smoothness constraint. Assumption 2), which is not made in the HS
method or other global methods, implies the PM method has no way to handle rotation,
divergence, or deformation in an efficient manner, unless it is known apriori. Assumption 2) also
fails to account for motion discontinuities, such as those near cloud-edges or within transparent
motions. Furthermore, as there is no other constraint aside from constant brightness, PM methods
struggle when there is little to no texture in the target and candidates. Quality control schemes
are thus necessary to remove sectors that are poorly tracked with Eq. (4) in most AMV approaches.

PM was a popular method for AMVs over other optical flow approaches prior to the GOES-
R era due to its simplicity, computational efficiency, and capability to handle displacements
common in low-temporal resolution satellite imagery (Bresky and Daniels, 2006). ... (LINE
165-193)

We have also added a figure describing the patch matching approach, and a schematic of where
it fails (see now Fig 1, at the end of this document for reference). This should clarify some of the
nomenclature used on types of image motion.

We selected the Brox et al. (2004) optical flow approach due to it’s simplicity, capability to
handle regions patch matching could not (e.g. Fig. 1b), available open-source information (e.g.
from opencv.org), and effective documentation (from the cited Brox et al., 2004 and Brox 2005
documents). We do not want to convey that it is the best optical flow method for the task at hand,
as those techniques are evolving each year, so we have now clarified the methodology text with
citations to the current validation datasets (a.k.a. benchmarks) used by the computer vision
community:

“As recently overviewed in Fortun et al., (2015), there are several optical flow approaches
that provide dense motion estimates which account for the weaknesses highlighted in Fig. 1b.
Many have their own advantages and drawbacks in terms of computational efficiency, flexibility,
and capability to handle large displacements, motion discontinuities, texture-less regions, and
turbulent scenes. We selected an approach here by Brox et al. (2004) (Hereafter B04), given its
simplicity, current availability of open-source information, and excellent documentation. The
reader is cautioned, however, that dense optical flow is a rapidly evolving field, and research is
currently underway to improve present techniques. While dense optical flow validation for
satellite meteorological applications research like OFB identification is taking place, the reader
is referred to the Middlebury (Baker et al., 2011), the MPI Sintel (Butler et al., 2012), and the
KITTI (Geiger et al.,, 2012) benchmarks for extensive validation statistics of the most recent
techniques using image sequences for more general applications.” (LINE 229-240)



We feel a full validation of optical flow techniques for satellite motion tracking is beyond the
scope of this research, though is almost certainly a topic of future work with the new capabilities
of current generation geostationary satellite imagers. With this manuscript, we simply want to
show that accounting for local optical flow method deficiencies can help improve our
capabilities to track and identify operationally relevant meteorological features.

2) L247-250: These sentences are unclear. What is "calibrated to reflectance factor to isolate line
features? First, "reflectance factor” should be clarified - is this simply reflectance in the native
imagery? Second, what is calibrated to/by what, and how are line features actually isolated?

This section has been revised for clarity. To answer your first question, the term “Reflectance
Factor” was borrowed from the ABI Product Users Guide (Schmit et al., 2010), which is the
radiance times the Kappa factor. While they are not the same thing, reflectance factor can be
converted to reflectance by dividing by the cosine of the solar zenith angle. Calibrated was not
the correct word to use here, so the statement has been revised. Line features are then isolated
by convolving the provided filters with the reflectance factor and isolating where the resulting
field is >0.02. To clarify this, we have added an additional equation step in the section. It now
reads as follows:

“To handle the first step of line feature identification, a simple image line detection scheme was
performed by convolving the original brightness field with a set of line detection kernels, so

L=Zai*G(R) )
i=1

where * is the convolution operator, G is a gaussian smoothing function (using a 21x21 kernel and
standard deviation of 5 pixels), R is the reflectance factor (radiance times the incident Lambertian-
equivalent radiance, or the “kappa factor”; Schmit et al., 2010), L is the resulting line detection
field, and a; represents the two-dimensional line detection kernels, defined as
-1 -1 -1 -1 2 -1 2 -1 -1 -1 -1 2
a1=[2 2 2]a2=—1 2 —1]a3=[—1 2 —1]a4=[—1 2 —1]

-1 -1 -1 -1 2 -1 -1 -1 2 2 -1 -1

The resulting L field exhibits higher intensities where line features exist (Gonzalez and Woods,
2007). A threshold of L > 0.02 was used here to indicate a pixel contained a line feature. This
method was compared to a subjective interpretation of boundary location for validation.” (LINE
284-294)

3) L299: Use of "low correlation coefficient"” in the reflectivity to identify dust — can you briefly
explain and/or provide a reference? This does not appear to be common knowledge.

We have revised this sentence for clarity, and added citations to the relevant papers:

“The OFB was also captured in radar scans from KIWA at 2200 UTC (Fig. 4). The coincidence
of low correlation coefficient (< ~0.5) and moderate to high reflectivity (near 20 dBZ) imply that
the OFB contained non-meteorological scatterers (e.g. Zrnic and Ryzhkov, 1999). The radar



measurements are consistent with previous reported values of lofted dust (Van Den Broeke and
Alsarraf, 2016). ” (LINE 343-347)

4) L327: "Alternatively, storm-relative motion from optical flow..." What is the motion relative
to - the convective core?

We used the motion relative to the 0-6 km storm motion vector (which is a density weighted
average of the layer flow) produced by the Global Forecast System numerical model here. The
sentence has been reworded for clarity:

“Alternatively, the storm-relative motion (here > 15 m s1), or the motion relative to the 6 hr
forecast field 0-6 km storm motion from the Global Forecast System (GFS) numerical weather
prediction model run was used here to filter the false alarms (the red shading in Fig. 7b). The
GFsS forecast field was used over analysis to simulate what would be available globally in real-
time.” (LINE 373-376)

5) L382-386: This statement is a bit hard to follow. What is "background", for example? (I think
| know, but it would be good stating this explicitly.)

We changed the ambiguous term “background” to “surface,” and revised wording in this
statement which should add clarity for readers. We were trying to state that convergence in the
optical flow field only exists because there are stationary pixels ahead of the OFB. If this is the
case, a faster OFB motion would then equal stronger convergence (so slower OFBs are less
likely to be identified), which is undesirable for some types of products. We have revised this
statement to:

“For this case study, it may have been possible to use convergence thresholding methods,
analogous to radar-based objective OFB identification, to isolate the boundary. However,
convergence as derived from the optical flow information here would only work because of local,
stationary surface pixels ahead of the OFB. Thus, convergence would be stronger with faster
OFB velocity, which is undesirable for an objective identification product as slow moving OFBs
would be missed. The convergence would also be sensitive to nearby cloud structures ahead of
the OFB which would exhibit different (non-stationary) motion from the surface.” (LINE 427-
434)

6) Check that the grammar is correct - there are a few missing "the"s in a few places.

We have checked the grammar and cleaned up the manuscript where necessary.



---------- sl (b) Example Scenes where PM Fails
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Figure 1. Schematic of a) the PM optical flow scheme used by AMVs (e.g. Bresky et al., 2012),
which finds a suitable target to track (e.g. the cloud at time 1), forecasts the displacement with
numerical models (yellow arrow/dash box), and iteratively searches for the target at time 2
minimizing the sum-of-square error to get the AMV (red arrow), and b) example cloud evolution
types mentioned in-text where the approach shown in (a) fails.



Response to Reviewer #2 Comments for “Towards Objective Identification and Tracking of
Convective Outflow Boundaries in Next-Generation Geostationary Satellite Imagery”

Authors: Jason Apke, Kyle Hilburn, Steven Miller, and David Peterson

“This work represents a unique application of an optical flow technique to high spatiotemporal
geostationary imagery for the problem of identifying and tracking outflow boundaries. This
paper is very well written and the work is well executed for the single case study described.
Clearly, there is much more to be done and the author highlights these things, but I think this
work is a great start and worthy of publication. Recommend publication with only minor updates
needed.”

We would like to thank the reviewer for the kind words and feedback provided on this article.
Below is a detailed list of comments made and the authors’ replies with details on modifications
made to the first submission of the papers.

“Line 10: change 15 min full disk to 10 min full disk (ABI Mode 6 is now used operationally)”
This has been fixed. (see Line 79)

“Line 255: It is not clear to this reviewer how you define a “convective area”. The word, “area”,
is used which would imply a group of pixels (presumably convective in this context). When
working backwards toward this convection “area”, is the convective area found when coming to
the first pixel meeting the brightness temperature threshold?”

In this paper, we define a convective area as any region within 50 km of a brightness
temperature pixel < -50 °C. This is not represented as a group of pixels here, rather a two-
dimensional Haversine distance from all pixels below the brightness temperature threshold in
the 10.3-um image. This way, we can determine whether or not backward trajectories of targets
we think are OFBs which are not forced to step along the pixel grid occur near deep convection.

To alleviate reader confusion, we have reworded the sentence at Line 298 to:

“If a back-traced pixel of the linear feature arrived within 50 km great-circle distance of a 10.35
um brightness temperature (BT10.35) pixel lower than 223 K (-50 °C; using previous satellite
imagery matched to the back-trajectory time), the original point was considered an OFB. The
area subtended by the 50 km great circles derived from BT1o.35 is hereafter referred to as the
“deep convection area.”

“- Technical Corrections The following references cited in the text were not found in the
References section: Rotunno et al, 1988 Smalley et al 2007 Baker and Matthews, 2004 VVan Den
Broeke and Alsarraf, 2006”

Good catch. A problem with the citation management software used has since been fixed and
these references have been added to the reference section. To ensure this is not repeated on the
next draft, all other in-text citations have been double checked for accompanying references.



“Line 165: Remove “spatially” from this sentence: “Thus,most optical flow computations
initially spatially subsample images to where all displacements 166 are initially less than 1-pixel
(Anandan, 1989; discussed more in Section 3.1), which can cause fast moving small features to
be lost.” ”

Removed spatially from the sentence.
“Line 285: replace “,etc.” with “,for example”.”

For clarity, we decided to just remove “etc.” all together, the sentence now reads:

“The combination of these model and observation datasets is employed to confirm the presence
of a distinct convective OFB, rather than some other quasi-linear feature, such as a bore or
elevated cloud layer.” (Line 328)
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Abstract
Sudden wind direction and speed shifts from outflow boundaries (OFBs) associated with deep
convection significantly affect weather in the lower troposphere. Specific OFB impacts include
rapid variation in wildfire spread rate and direction, the formation of convection, aviation hazards,
and degradation of visibility and air quality due to mineral dust aerosol lofting. Despite their
recognized importance to operational weather forecasters, OFB characterization (location, timing,
intensity, etc.) in numerical models remains challenging. Thus, there remains a need for objective
OFB identification algorithms to assist decision support services. With two operational next-
generation geostationary satellites now providing coverage over North America, high-temporal
and spatial resolution satellite imagery provides a unique resource for OFB identification. A
system is conceptualized here designed around the new capabilities to objectively derive dense
mesoscale motion flow fields in the Geostationary Operational Environmental Satellite (GOES)-
16 imagery via optical flow. OFBs are identified here by isolating linear features in satellite
imagery, and back-tracking them using optical flow to determine if they originated from a deep
convection source. This “objective OFB identification” is tested with a case study of an OFB
triggered dust storm over southern Arizona. The results highlight the importance of motion
discontinuity preservation, revealing that standard optical flow algorithms used with previous
studies underestimate wind speeds when background pixels are included in the computation with
cloud targets. The primary source of false alarms is incorrect identification of line-like features in
the initial satellite imagery. Future improvements to this process are described to ultimately

provide a fully automated OFB identification algorithm.
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1. Introduction

Downburst outflows from associated deep convection (Byers and Braham Jr., 1949; Mitchell
and Hovermale, 1977) play a significant, dynamic role in modulation of the lower troposphere.
Their direct impacts to society are readily apparent—capsizing boats on lakes and rivers with
winds that seem to “come out of nowhere” (e.g. The Branson, MO duck boat accident; Associated
Press 2018), causing shifts in wildfire motion and fire intensity that put firefighters in harm’s way
(e.g. the Waldo Canyon and Yarnell Hill Fires; Hardy and Comfort, 2015; Johnson et al., 2014),
and threatening aviation safety at regional airports with sudden shifts from head to tail-winds and
turbulent wakes (Klingle et al., 1987; Uyeda and Zrni¢, 1986). In the desert southwest, convective
outflows can loft immense amounts of dust, significantly reducing surface visibility and air quality
for those within the impacted area (e.g. ldso et al. 1972; Raman et al. 2014). These outflows are
commonly associated with rapid temperature, pressure, and moisture changes at the surface
(Mahoney 111, 1988). Furthermore, the collision of outflows from adjacent storms can serve as the
focal point of incipient convection or the intensification of nascent storms (Mueller et al., 2003;
Rotunno et al., 1988).

Despite the understood importance of deep convection and convectively driven outflows, high
resolution models struggle to characterize and identify them (e.g. Yin et al. 2005). At present,
outflow boundaries (OFBs) are instead most effectively monitored in real-time at operational
centers around the world with surface, radar, and satellite data. Satellites often offer the only form
of observation in remote locations. The most common method for detecting outflows via satellite
data involves the identification of clouds formed by strong convergence at the OFB leading edge.
When the lower troposphere is dry, OFBs may be demarcated by an airborne “dust front”, after

passing over certain surfaces prone to deflation by frictional winds (Miller et al., 2008). The task
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of identifying OFBs can prove quite challenging and would benefit greatly from an objective
means of feature identification and tracking for better decision support services.

The Advanced Baseline Imager (ABI), an imaging radiometer carried on board the
Geostationary Operational Environmental Satellite (GOES)-R era systems, offers a leap forward
in capabilities for the real-time monitoring and characterization of OFBs. Its markedly improved
spatial (0.5 vs. 1.0 km visible, 2 km vs. 4 km infrared), spectral (16 vs. 5 spectral bands), and
temporal (5 min vs. 30 min continental U.S., and 10 min vs. 3 hr full disk) resolution provides new
opportunities for passive sampling of the atmosphere over the previous generation (Schmit et al.,
2016). The vast improvement of temporal resolution alone (which includes mesoscale sectors that
refresh as high as 30 s) allows for dramatically improved tracking of convection (Cintineo et al.,
2014; Mecikalski et al., 2016; Sieglaff et al., 2013), fires and pyroconvection (Peterson et al., 2015,
2017, 2018), ice flows, and synoptic scale patterns (Line et al., 2016). This higher temporal
resolution makes identification of features like OFBs easier as well because of greater frame-to-
frame consistency.

The goal of this work is to use ABI information towards objective identification of OFBs. One
of the notable challenges in satellite identification of OFBs over radar or models is the lack of
auxiliary information. When working with a radar or a numerical model framework, for example,
additional information is available on the flow, temperature, and pressure tendency of the
boundary. Without that information, however, forecasters must rely on their knowledge of gust
front dynamics to identify OFBs in satellite imagery. Here, we introduce the concept of objectively
derived motion using GOES-16 ABI imagery for feature identification via an advanced optical
flow method, customized to the problem at hand. A case study of a convectively triggered OFB

and accompanying haboob dust front is presented in 5-min GOES-16 contiguous United States
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(CONUS) sector information, as a way of evaluating and illustrating the potential of the
framework.

This paper is outlined as follows. The background for objective motion extraction and OFB
identification is presented in Section 2. The optical flow methods developed for this purpose are
discussed in Section 3. Section 4 presents the case study test of the current algorithm, and Section
5 concludes the paper with a discussion on plans for future work in objective feature identification
from next-generation geostationary imagers of similar fidelity to the GOES-R ABI, which are

presently coming online around the globe.

2. Background
2.1 Previous Work in OFB Detection

Obijective identification of OFBs in meteorological data has been a topic of scientific inquiry
for more than 30 years. Uyeda and Zrni¢ (1986) and Hermes et al. (1993) use detections of wind
shifts in terminal Doppler radar velocity measurements to isolate regions of strong radial shear
associated with OFBs. Smalley et al. (2007) include the “fine line” reflectivity structure of
biological- and precipitation-sized particles to identify OFBs via image template matching.
Chipilski et al. (2018) considered the OFB objective identification in numerical models using
similar image processing techniques, but with additional dynamical constraints on vertical velocity
magnitudes and mean-sea level pressure tendency. Objective OFB identification has not been
demonstrated to date with the new ABI observations of the GOES-R satellite series. Identification
via satellite imagery would be valuable for local deep convection nowcasting algorithms which

use boundary presence as a predictor field (Mueller et al., 2003; Roberts et al., 2012), and for
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operational centers around the world which may not have access to ground-based Doppler radar
data.

Traditionally, forecasters have identified OFBs in satellite imagery by visually identifying the
quasi-linear low-level cloud features and back-tracking them to an associated deep convection
source. Previous objective motion derivation algorithms are not designed to yield dense wind
fields, where motion is estimated at every image pixel, necessary for identifying and tracking
features such as OFBs (Bedka et al., 2009; Velden et al., 2005). In fact, the original image window-
matching atmospheric motion vector (AMV) algorithms produce winds only over targets deemed
acceptable for tracking by pre-processing checks on the number of cloud layers in a scene,
brightness gradient strength, and patch coherency. The targets are further filtered with post-
processing checks on acceleration and curvature through three-frame motion and deviation from
numerical model flow (Bresky et al., 2012; Nieman et al., 1997; Velden et al., 1997; More in
Section 2.2). These practices were followed for a very practical reason—AMYV algorithms were
tailored for model data assimilation. In the formation of the model analysis, observational data
must be heavily quality-controlled, with outliers removed, to minimize data rejection. Here,
information such as OFBs would be rejected due to the detailed space/time structure of actual
convection which is typically poorly represented by the numerical model.

Deriving two-dimensional flow information at every point in the imagery would require either
modification of previous AMV schemes or post-processing of the AMV data via objective analysis
(e.g. Apke et al. 2018). The latter typically will not capture motion field discontinuities, resulting
in incorrect flows near feature edges (Apke et al., 2016). To capture such discontinuities in a dense
flow algorithm, new computer vision techniques, such as the gradient-based methods of optical

flow, must be adopted.
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2.2 Optical Flow Techniques

Optical flow gradient-based techniques derive motion within fixed windows, thus eliminating
the reliance on models for defining a search region. A core assumption of many optical flow
techniques is brightness constancy (Horn and Schunck, 1981). Considering two image frames,
brightness constancy states that the image intensity I at some point x = [x, y]” is equal to the
image intensity in the subsequent frame at a new point, x + U, where, with a translation model,
U = [u,v]7 represents the flow components of the image over the time interval (At) between the
two images:

I(x,t) =1(x+U,t+ At) 1)
Eqg. (1) can be linearized to solve for the individual flow components, u and v:
VI-U+1,=0 2)

Where VI = [I,, I,] represents the intensity gradients in the x and y direction, and I, represents
the temporal gradient of intensity. For one image pixel, Eq. (2) contains two unknowns with a
simple translation model for U; therefore, it cannot be solved pointwise. One well-known
approach to solving this so-called “aperture problem” is the Lucas-Kanade method, hereafter the
LK method, which considers a measurement neighborhood of the intensity space and time
gradients (e.g., Baker and Matthews, 2004; Bresky and Daniels, 2006). Use of neighborhoods, or
image windows, to derive optical flow are called local approaches. Another seminal approach was
introduced by Horn and Schunck (1981; HS Method) which solves the aperture problem by adding
an additional smoothness constraint to the brightness constancy assumption, and minimizing an

energy magnitude between two images:

EW) = ff(VI U+ 1)? + a(|Vou|? + |V,v|?) dx (3)
Q
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Where E(U) represents an energy functional to be minimized over all image pixels Q, « is a
constant weight used to control the smoothness of the flow components u(x) and v(x), and V,=
[0/ 0x,0/ dy]T . This derivation is called a global approach, where the optical flow u(x) and
v(x) at each pixel is found which minimizes the quantity of Eq. (3) by deriving the Euler-Lagrange
equations, and numerically solving the linear system of equations with Gauss-Seidel iterations.
Readers can contrast the HS method with the optical flow algorithm used in GOES AMVs,
referred to as “patch matching” (PM; Fortun et al., 2015). In PM, a target (e.g. a 5x5 pixel box)
identified as suitable for tracking is iteratively searched for in a sequential image within a
reasonable search area (Fig. 1a). The motion is identified by which candidate target (e.g. another
5x5 pixel box displaced by the optical flow motion) in the sequential image best matches the initial
target, typically by minimizing the sum-of-square error between the target and the candidate
brightness values (Daniels et al., 2010; Nieman et al., 1997). The reader can draw similarities to

the HS method by formulating the PM approach as an energy equation to be minimized,

E@W) = ) 0, 8) = 1ty + U, + 8D @

neT

where the minimum in E is found by computing Eq. (4) at every candidate target in the search
region. As E is only minimized within the target area T, PM represents a local method.

Research and extensive validation has shown that, with quality control, PM provides a valuable
resource to derive and identify winds in satellite imagery (Velden and Bedka, 2009). However,
there are several types of motions where PM would fail (Fig. 1b), many of which occur frequently
in satellite OFB observations. AMVs found with Eq. (4) make two key assumptions, 1) that the
brightness remains constant between sequential images at time t and t + At, and 2) that the motion
U is constant within the target. The first assumption, brightness constancy, fails when there are

excessive illumination changes in a sector that are not due to motion. These illumination changes
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may be due to evaporation or condensation, or simply due to changes in solar zenith angle
throughout the day in visible imagery. The HS method also uses assumption 1), though it is relaxed
when combined with the smoothness constraint. Assumption 2), which is not made in the HS
method or other global methods, implies the PM method has no way to handle rotation, divergence,
or deformation in an efficient manner, unless it is known apriori. Assumption 2) also fails to
account for motion discontinuities, such as those near cloud-edges or within transparent motions.
Furthermore, as there is no other constraint aside from constant brightness, PM methods struggle
when there is little to no texture in the target and candidates. Quality control schemes are thus
necessary to remove sectors that are poorly tracked with Eg. (4) in most AMV approaches.

PM was a popular method for AMVs over other optical flow approaches prior to the GOES-R
era due to its simplicity, computational efficiency, and capability to handle displacements common
in low-temporal resolution satellite imagery (Bresky and Daniels, 2006). Linearizing the
brightness constancy assumption in Eq. (2) means that large and non-linear displacements
(typically > 1 pixel between images) will not be captured (Brox et al., 2004). Thus, most optical
flow computations initially subsample images to where all the displacements are initially less than
1-pixel (Anandan, 1989; discussed more in Section 3.1), which can cause fast moving small
features to be lost. Note that reducing the temporal resolution of GOES imagery (e.g. 10-min vs.
5-min scans) increases the displacement of typical meteorological features between frames.
Furthermore, constancy assumptions are more likely violated with reduced temporal resolution
since image intensity changes more through evaporation and condensation of cloud matter over
time. Thus, for the spatial resolution of ABI, it is impractical to consider optical flow gradient-
based methods at temporal resolutions coarser than 5-min for several mesoscale meteorological

phenomena, including OFBs. Very spatially coarse images do not need to be initially used with
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faster scanning rates, such as super rapid scan 1-min information (Schmit et al., 2013), or the 30-
s temporal resolution mesoscale mode of ABI (Schmit et al., 2016).

While the HS method is designed for deriving dense flow in imagery sequences, it also does
not account for motion discontinuities in the flow fields. Hence, it suffers from incorrect flow
derivations near cloud edges, and would perform poorly for OFB detection and tracking. Black
and Anandan (1996) offer an intuitive solution to this problem, whereby the energy functional is

designed to minimize robust functions that are not sensitive to outliers:

E(U) = ﬂ pa(VI-U + 1) + ps(|Voul* + |V,v|*)dx 5)
Q

The robust function data term for the HS method is simply p; () = r2, and smoothness p,(r) =
r which implies that energy functionals increase quadratically for r outliers. Other robust
functions can also be minimized with similar gradient descent algorithms to Gauss-Seidel
iterations, while being less sensitive to outliers (Press et al., 1992; Black and Anandan, 1996).
Robust functions are popular in recent optical flow literature (Brox et al., 2004; Sun et al., 2010),
and a similar approach adopted here is discussed further in the methodology section. The reader
is referred to works by Barron et al. (1994), Fleet and Weiss (2005), Sun et al. (2010), and Fortun
et al. (2015) for more comprehensive reviews on optical flow background and techniques.

The relevance of optical flow in satellite meteorological research continues to increase now
that scanning rates of sensors such as the ABI are routinely at sub 5-min time scales, making
motion easier to derive objectively (Bresky and Daniels, 2006; Héas et al., 2007; Wu et al., 2016).
The dense motion estimation within fine-temporal resolution data has yet to be used for feature
identification. Optimizing optical flow for this purpose, and its specific application to OFBs, is the

aim of this study. The next section outlines our approach to this end.
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3. Methodology

3.1 Optical Flow Approach

As recently overviewed in Fortun et al., (2015), there are several optical flow approaches that
provide dense motion estimates which account for the weaknesses highlighted in Fig. 1b. Many
have their own advantages and drawbacks in terms of computational efficiency, flexibility, and
capability to handle large displacements, motion discontinuities, texture-less regions, and turbulent
scenes. We selected an approach here by Brox et al. (2004) (Hereafter B04), given its simplicity,
current availability of open-source information, and excellent documentation. The reader is
cautioned, however, that dense optical flow is a rapidly evolving field, and research is currently
underway to improve present techniques. While dense optical flow validation for satellite
meteorological applications research like OFB identification is taking place, the reader is referred
to the Middlebury (Baker et al., 2011), the MPI Sintel (Butler et al., 2012), and the KITTI (Geiger
et al., 2012) benchmarks for extensive validation statistics of the most recent techniques using
image sequences for more general applications.

The B04 approach handles the drawbacks described in Fig. 1b and more, where the brightness

constancy assumption is no longer linearized, i.e.

EWU) = H pa([I(x+ U, t + At) — I(x,t)|?
Q

6
+y|VoI(x + U, t + At) — V,1(x, t)|?) (®)

+a pg(IVoul? + |Vov|?)dx
Following BO4, within the data robust function, we now have also included a gradient constancy
assumption, which is weighted by a constant y to make the derived flow more resilient to changes

in illumination. Avoiding linearization of constancy assumptions improves the identification of
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large displacements between images. The Charbonnier penalty is used for the data and smoothness
robust functions following Sun et al. (2010),

pa(r?) = ps(?) =/r? + ¢ (7)
with e representing a small constant present to prevent division by zero in minimization, set to
0.001. The values for U are found by solving the Euler-Lagrange equations of Eg. (6) with

numerical methods

dE dE
L ——x Y (8)
dx dy
i ©
Voodx  dy

with reflecting boundary conditions and subscripts that imply the derivatives. Egs. (8) and (9) are
solved with a nested-fixed point successive over-relaxation iteration scheme described in B04 and
summarized in Fig. 2. The reader is referred to Chapter 4 of Brox (2005) for details on the full
discretization of the derivatives in the successive over-relaxation scheme. Here, only the spatial
dimensions are used for the smoothing term, though it is possible to include the time dimension
with this system as well.

A difficulty in solving Egs. (8) and (9) is that the successive over-relaxation scheme may
converge on a local minimum of E(U), rather than finding the global minimum. The typical
approach to find the global minimum is to compute optical flow with coarse- to fine-scale warping
iterations (e.g. Anandan, 1989). Coarse- to fine-scale warping iterations work by subsampling the
initial image at the native resolution to a coarser spatial resolution and computing the flow initially
at the coarsest resolution in the image pyramid. The U results from the coarse image flow are then

used as the first guess field for the next finest scale on the image pyramid (Fig. 3), and the second
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image is warped accordingly. The warping step ensures that estimated displacements at every step
in the image pyramid remain small.

The B04 scheme includes coarse- to fine-scale warping iterations at every outer iteration k.
This means that the first iteration is run on a subsampled image, and the subsampling is reduced
by a scale factor at every k until the image reaches the native resolution at the final k = nK.
Images at every k in this subsampling are found using a gaussian image pyramid technique with
bicubic interpolation. The flow values of the image at k — 1 are upscaled accordingly at k also
with bicubic interpolation (the initial flow guess is u=v =0 at k =0). For improved
computation of spatial derivatives, the initial image is also smoothed with a 9x9 pixel kernel
gaussian filter with a standard deviation set to 1.5 pixels. The specific settings used for the coarse-
to fine- warped flow scheme here are shown in Table 1.

3.2 Objective OFB identification

There are two steps to the objective OFB identification process. First, a linear feature or sharp
boundary is identified in visible or infrared imagery. In some cases, the first step alone is enough
to identify OFBs subjectively. The second step is tracking that feature back in time to see where
it originated from (typically, near an area with deep convection). In the case of near stationary
convection and low-level flow, a forecaster might also use radial like propagation in this decision-
making process, however, since convection geometry and low-level flow varies from storm to
storm, only the first two steps are considered here. This approach aims to mirror the subjective
process, leveraging the information content of optical flow to do so.

To handle the first step of line feature identification, a simple image line detection scheme

was performed by convolving the original brightness field with a set of line detection kernels, so
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L= Z a; * G(R) (10)

i=1

where * is the convolution operator, G is a gaussian smoothing function (using a 21x21 kernel and
standard deviation of 5 pixels), R is the reflectance factor (radiance times the incident Lambertian-
equivalent radiance, or the “kappa factor”; Schmit et al., 2010), L is the resulting line detection
field, and a; represents the two-dimensional line detection kernels, defined as

-1 -1 -1 -1 2 -1 2 -1 -1 -1 -1 2

a1=[2 2 2]a2=[—1 2 —1]a3=[—1 2 —1]a4=[—1 2 —1]

-1 -1 -1 -1 2 -1 -1 -1 2 2 -1 -1
The resulting L field exhibits higher intensities where line features exist (Gonzalez and Woods,
2007). A threshold of L > 0.02 was used here to indicate a pixel contained a line feature. This
method was compared to a subjective interpretation of boundary location for validation.

To address the second step of the process, the constrained optical flow approach described in
Section 3.1 was used to track the boundary pixels (both objectively and subjectively identified)
back in time for three hours. The values of motion at each step in the backwards trajectory were
determined with bilinear interpolation of the optical flow derived dense vector grid. If a back-
traced pixel of the linear feature arrived within 50 km great-circle distance of a 10.35 pm brightness
temperature (BT10.35) pixel lower than 223 K (-50 °C; using previous satellite imagery matched to
the back-trajectory time), the original point was considered an OFB. The area subtended by the
50 km great circles derived from BTuio3s is hereafter referred to as the “deep convection area.”
While this brightness temperature threshold is subjective and can vary from case to case, it was
found to produce a reasonable approximation of deep convection areas when compared to ground-

based radar information for the case study described in the subsequent sections.



306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

3.3 Data

The objective OFB identification methodology is tested using a case study from 5 July 2018
over the southwestern United States. This event featured a distinct OFB and associated dust storm
that was well-sampled by various ground- and space-based sensors. GOES-16 was in Mode-3,
generating one image over the study area every 5-min (continental U.S., or CONUS, ABI scan
domain). Optical flow computations employ the GOES-16 (GOES-East) ABI red band (0.64 um;
ABI channel 2), provided at a nominal sub-satellite spatial resolution of 500 m, but closer to 1 km
at the case study location. This channel is used at native resolution, though it can be subsampled
with a low-pass filter such that future versions can implement color information from the blue and
near-infrared bands (e.g. Miller et al. 2012). This means that the optical flow approach here is
daytime only. A similar BO4 approach can be used on infrared data as well for day/night
independent information, though for detecting OFBs in the low levels, proxy visible products
would perform best. As described above, the clean longwave infrared band (10.35 um; ABI
channel 13) is used as first-order information on optically thick cloud-top heights and to assess the
convective nature of the observed scene (BT10.35 < 223 K).

High frequency Automated Surface Observing Stations (ASOS; NOAA 1998), recording
temperature, pressure, wind speed and direction once every minute, complement the satellite
imagery. The Weather Surveillance Radar-1988 Doppler (Crum and Alberty, 1993) dual-
polarimetric data also sampled the OFB event from the KIWA radar near Phoenix, AZ. To
highlight the OFBs and the presence of dust, horizontal reflectivity and correlation coefficient are
used (Van Den Broeke and Alsarraf, 2016). Finally, for information on the full 3D dynamics of
the case study, a numerical model representation of the environment was collected from the High

Resolution Rapid Refresh system (HRRR, Benjamin et al. 2016). The combination of these model
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and observation datasets is employed to confirm the presence of a distinct convective OFB, rather

than some other quasi-linear feature, such as a bore or elevated cloud layer.

4. Case Study Description

Convection was observed in south central Arizona on 5 July 2018 after 1800 UTC. A large
and well-defined linear structure emerged from below the convective cloud cover at 2200 UTC to
6 July 2018 0100 UTC propagating westward in GOES-16 imagery (Fig. 4). This linear structure,
demarcated by roll (arcus) clouds on the northern side and lofted dust on the southern side, was
apparent with strong visible reflectance contrast against the relatively dark surface and BT10.35 ~
10 K cooler than the underlying surface. The dust lofted by this outflow produced low visibility
and hazardous driving conditions near Phoenix, AZ. Dust storm warnings were issued by the local
National Weather Service (NWS) forecast office by 2300 UTC. The structure’s observed radial
propagation away from nearby deep convection and associated cloud and dust features lends to its
interpretation as a convective OFB.

The OFB was also captured in radar scans from KIWA at 2200 UTC (Fig. 5). The coincidence
of low correlation coefficient (< ~0.5) and moderate to high reflectivity (near 20 dBZ) imply that
the OFB contained non-meteorological scatterers (e.g. Zrnic and Ryzhkov, 1999). The radar
measurements are consistent with previous reported values of lofted dust (Van Den Broeke and
Alsarraf, 2016). Surface observations taken at the ASOS station reveal temperatures exceeding
317 K (44 °C) ahead of the OFB, with calm winds (Fig. 6). Temperatures dropped by 4 K, wind
speeds changed direction and increased sharply, and dew points increased rapidly as the OFB
crossed the station at ~2316 UTC. The rapid change in low-level meteorology is consistent with

convective OFBs sampled in previous studies (e.g. Mahoney 111, 1988; Miller et al., 2008).



352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

The HRRR model captured the broad characteristics of this event (Fig. 7), showing moderate
low-level winds in excess of 10 m s (Fig. 7a), cooler temperatures (Fig. 7b), and simulated
cumulus clouds from forced ascent (Fig. 7c). Model cross sections (Fig. 7d) indicated a moderate
increase in vertical motion ahead of the numerically derived boundary, and a sharp decrease in
virtual potential temperature behind the boundary. The shape of the virtual potential temperature
profile is consistent with other model observations of OFBs (e.g. Chipilski et al., 2018). The
observation and model data all show that the linear structure observed in Fig. 4 was modifying the
dynamics of the surface in a manner consistent with OFBs, and not some other linear cloud feature
type that is decoupled from the surface and may be misidentified by the satellite. Since such low-
level linear features are often obscured by cloud layers at higher altitudes, this case study in some
respects represents a best-case-scenario for evaluating optical flow capabilities towards identifying

OFBs.

5. Results

The first step in OFB identification requires identification of a feature that appears linear in
the imagery. Compared to the subjective boundary identification (considered as truth here; Fig 8a,
blue dots), the convolution method gives a reasonable approximation to where the OFB is located
within the higher intensity points in L (Fig. 8b). Unfortunately, the simply-applied convolution is
also sensitive to linear features associated with the deep convection itself (the blue shading in Fig.
8b). Hence, false alarms appear east of the boundary. These issues can be filtered out using either
cloud-top height or brightness temperature thresholding from separate infrared channels.
Alternatively, the storm-relative motion (here > 15 m s%), or the motion relative to the 6 hr forecast

field 0-6 km storm motion from the Global Forecast System (GFS) numerical weather prediction
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model run, was used here to filter the false alarms (the red shading in Fig. 8b). The GFS forecast
field was used over analysis to simulate what would be available globally in real-time.

The second step requires these linear fast-moving features to be traced backward to a deep
convection source using the optical flow computation (Fig. 9). To the west of the boundary, near
stationary optical flow vectors highlight the background (or ground) pixels. The boundary itself
exhibits a westward movement near 15-20 m s (~30-40 kts). The feature also appears to bow
outwards after faster motions are observed, near 33° N, -112° E during 2338-2358 UTC (Figs. 9b,
c). Similar westward motion is derived in the wake of the OFB, within the convective cold pool.
This results from the presence of airborne dust particles, which facilitate the computation of optical
flow vectors in this region.

The backwards trajectories of the subjectively and objectively identified OFB pixels in Figs.
8c and d (B04 method) show that many of the linear cloud features, particularly those associated
with the central arcus cloud, indeed originated near deep convection. However, when the
backwards trajectories of the BO4 method were compared to other optical flow methods, such as
the approach by Wu et al. (2016), most were unsuccessful at obtaining coincidence between linear
cloud features along the OFB and a deep convection source. Wu et al. (2016) used an approach
introduced to the community by Farnebéck (2001), which is a local window method for optical
flow.

Example points 1-7 examined within the subjectively identified OFB backward trajectories
highlight an issue with local window approaches for this application (Fig. 10). The B04 approach
(Fig. 10, blue/yellow) produced motions that were relatively consistent with the true boundary
motion. Thus, many points that are lost in the local approaches are successfully backtracked to

the initial deep convection (e.g. points 3-5). With the Wu et al. approach (Fig. 10, orange/red),
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OFB targets move slower than the actual boundary, and, over a three-hour tracking period,
eventually become stuck within the stationary background pixels. This tracking issue stems from
an assumption made in many local approaches that pixels within an image window all move in the
same direction with the same speed. When background pixels are included within an image
window containing clouds or dust, the resulting optical flow speed would then be underestimated.
The slow bias is observed in plots of optical flow speeds along the OFB (Fig. 11), where the Wu
et al. approach was ~5-10 m s slower than the B04 approach. While not shown, we found similar
backward trajectory issues using the LK approach. Full loops of the optical flow in Fig. 9 and
trajectories in Fig. 10 are included as supplementary material to this manuscript.

For all approaches tested, however, the methods struggled to backtrack the newly formed
cumulus to the north and the dust front to the south. With the cumulus to the north, the issues with
each algorithm appear to result from rapid cumulus development between frames (e.g. points 1
and 2 in Figs. 10a, b). Condensation like what is observed here is unfortunately not considered in
the brightness constancy assumption. Thus, condensing cloud features would only be tracked back
to when they initially form (after Fig. 10b) without additional dynamic constraints to Eq. (6). An
example can be seen when points 1 and 2 become stuck in Fig. 10c. This has important
implications on the limitations of backtracking OFB features to deep convection with optical flow
from imagery. If no cloud or dust feature exists to visualize an OFB in satellite imagery, some of
the feature propagation may be lost.

The dust to the south appears in the satellite imagery as early as 2200 UTC, though it was quite
transparent relative to the ground. It is therefore possible the stationary background pixels may be
dominant in the optical flow computation at points 6 and 7, resulting in slower wind speeds than

the true OFB propagation. Points 6 and 7 are also located near cumulus moving across the OFB
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motion to the south. This dust front tracking could be improved using multispectral techniques
designed to highlight dust features over ground pixels, or by using additional color spectrum
information to discourage flow smoothness in Eq. (6) across the dust front from the cumulus to
the south (e.g. Sun et al., 2010).

Many line-like targets east of the OFB in Fig. 8d also originated from the deep convection,
which constitute false alarms. These false alarms can be reduced by further improving the OFB
targeting step in the objective process in future studies. For this case study, it may have been
possible to use convergence thresholding methods, analogous to radar-based objective OFB
identification, to isolate the boundary. However, convergence as derived from the optical flow
information here would only work because of local, stationary surface pixels ahead of the OFB.
Thus, convergence would be stronger with faster OFB velocity, which is undesirable for an
objective identification product as slow moving OFBs would be missed. The convergence would
also be sensitive to nearby cloud structures ahead of the OFB which would exhibit different (non-
stationary) motion from the surface. It is for this reason that a backwards trajectory approach was
elected instead of basing the detection on local horizontal convergence. The optical flow approach
used here does help highlight the OFB when storm motion alone was considered in addition to
convolution, showing how additional tools can be used in synergy to arrive at a more

comprehensive objective feature identification approach in future studies.

6. Conclusions and Future Outlook
A new method for the objective identification of outflow boundaries (OFBs) in GOES-16
Advanced Baseline Imager (ABI) data was developed using optical flow motion derivation

algorithms and demonstrated with provisional success on a dust storm case study. An optical flow
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system constructed for this purpose shows promise in identifying and backtracking object events
to their source over traditional flow derivation methods, which can potentially be used to isolate
convective OFB features. To the best of the authors’ knowledge, this study represents a first
attempt to objectively identify OFBs in geostationary satellite imagery.

The primary conclusions of this study are that optical flow approaches are now a viable option
to acquire meso-scale flows relevant to OFB tracking and detection in 5-min geostationary satellite
imagery, though the successful backtracking of OFB features requires use of flow algorithms that
can handle the presence of motion discontinuities and stationary background flow. The optical
flow algorithm tested in this study produced a dense motion field that was closer than other
methods to the true OFB motion and provided valuable information towards full objective OFB
identification in new products.

While several OFB related image pixels were successfully identified, the algorithm here is
relatively immature and remains fraught with false alarms where linear features are incorrectly
identified, and where correct features were not successfully backtracked to deep convection. The
algorithm is still limited by the assumptions made within optical flow, which only account for
changes in image brightness intensity resulting from pure feature advection. Therefore, if no
features (e.g. clouds) exist to highlight an OFB boundary within the imagery, the method proposed
here would not function properly. The method also struggles to resolve true OFB motions with
transparent dust movement, where a textured background beneath the dust may dominate the
motion estimate within a scene. Also, while infrared brightness temperature was enough to
identify deep convection in this case study, convection may be missed by brightness temperature
imagery if it is obscured by a higher cloud layer, or if the minimum cloud-top brightness

temperature exceeds an arbitrarily set threshold.
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Given these limitations, future studies will explore more advanced systems for linear structure
identification to identify candidate features for tracking towards full objective OFB identification.
A machine learning system will be used to determine which linear characteristics of the image
should be backtracked instead of using two-dimensional convolution. Optical flow can be used to
precondition training information for a machine learning approach, if the motion or semi-
Lagrangian fields are needed. Furthermore, it will be prudent to use deep convection
correspondence through optical flow backtracking as one of many fields in future products, such
as radial propagation away from storms and near surface meteorological properties, to
probabilistically decide if an image pixel is associated with an OFB. To better identify deep
convection areas, the GOES Lightning Mapper (GLM) can be used, which provides information
on lightning location and energy at 8 km resolution with a 2 ms frame rate.

Feature identification with optical flow is not restricted to OFBs alone. For example, the
above-anvil cirrus plume (Bedka et al., 2018) over deep convection has been identified as an
important indicator of severe weather at the ground, yet no objective means of identification exists
today. The properties from optical flow could be used as an additional source of information in
such algorithm designs, allowing researchers to backtrack features to their apparent source (the
overshooting top in the case of the above-anvil cirrus plume) and monitor cloud temperature and
visible texture trends, or to simply use the dense motion itself to achieve better results. This
method will also be applicable to other cold pool outflow phenomena, such as bores, for which
new algorithms could utilize numerical model or surface observations for further clarification of
linear feature type.

Motion discontinuity preserving optical flow will also benefit several current algorithms for

monitoring deep convection in satellite imagery. Objective deep convection cloud-top flow field
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algorithms (Apke et al., 2016, 2018) will benefit particularly when sharp cloud-edges and ground
pixels are present in an image scene. Systems that use infrared cloud-top cooling or emissivity
differences for deep convection nowcasting will also improve with better estimates of pre-
convective cumulus motion (Cintineo et al., 2014; Mecikalski and Bedka, 2006).

While the utility of a backwards trajectory approach was considered here, many other possible
methods exist for exploiting the semi-Lagrangian properties of time-resolved observations in
satellite imagery (e.g. Nisi et al., 2014). Use of fine-temporal resolution information will improve
optical flow estimates, and in turn the estimates of brightness temperature, reflectance, or cloud-
property changes in a moving frame of reference. We will explore these and other refinements in

ongoing and future work on this exciting frontier of next-generation ABI-enabled science.
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13. List of Figures

Figure 1. Schematic of a) the PM optical flow scheme used by AMVs (e.g. Bresky et al., 2012),
which finds a suitable target to track (e.g. the cloud at time 1), forecasts the displacement with
numerical models (yellow arrow/dash box), and iteratively searches for the target at time 2
minimizing the sum-of-square error to get the AMV (red arrow), and b) example cloud evolution
types mentioned in-text where the approach shown in (a) fails.

Figure 2. Flow chart of the B04 optical flow approach used here. Note that SF, nK, nL and nM
are defined in Table 1.

Figure 3. Schematic of coarse- to fine-scale warping optical flow in GOES-imagery. The largest
displacements are found in the initial coarse grid (yellow arrow at the top of the pyramid), which
are used as initial displacements for the next levels (red and blue arrows). The final
displacement is the sum of each displacement estimate (white arrow). In this schematic, an
example scale factor of 0.5 was used over 3 pyramid levels, in this work, a scale factor of 0.95
for 77 levels was used.

Figure 4. The 6 July 2018 0023 UTC GOES-16 0.64-um visible reflectance (top) and BT10.35
(bottom) over south-central AZ, centered on an OFB of interest.

Figure 5. The KIWA Radar 2244 UTC 0.5° horizontal reflectivity (top) in dBZ and correlation
coefficient (bottom). Range rings in grey indicate every 30° azimuth and 50 km in range.
Figure 6. Surface High Frequency METAR observations of temperature (K; top left), dewpoint
(K; top right), mean sea level pressure (middle left), wind direction (° from N; middle right),
wind speed (m s; bottom left), and wind gusts (m s*; bottom right). The surface station was
located at (32.95 °N -111.77 °E). The red line indicates the approximate time of boundary

passage over the station.
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Figure 7. Four panel of HRRR output of OFB event, including a) wind speed, b) temperature, c)
simulated infrared brightness temperature, and d) a cross section along the black line in ¢ with
virtual potential temperature 6v in black contours (K), omega in color shaded pixels, and regions
of relative humidity > 90% highlighted with dark shading (bottom right).

Figure 8. The 0023 UTC GOES-16 0.64-um visible channel shown with a) subjectively
identified OFB (blue dots) and b) linear feature L > 0.02 field (blue shading). Also shown are
linear features that contained fast storm-relative motion (red shading). The results of
backtracking the c) subjectively and d) objectively identified OFB features are also shown,
where blue dots represent targets tracked back within 50 km of a deep convection event, and
orange dots are targets that were not.

Figure 9. GOES-16 0.64-um visible channel imagery on 5 July 2018 at a) 2258 UTC, b) 2338
UTC, ¢) 2358 UTC, and d) 0023 UTC over central Arizona shown with every 20" optical flow
vector in the x and y directions (subsampled for image clarity) illustrated with yellow wind barbs
(knots). Circles represent motion < 5 kts, which commonly occur over ground pixels.

Figure 10. The GOES-16 0.64-um visible imagery shown with image targets backtracked from
subjective identification in Fig. 8a at 0023 UTC 6 July 2018 using the B04 method (blue/yellow)
and the Wu et al. (2016) approach (orange/red) at a) 0023 UTC, b) 2358 UTC, c¢) 2338 UTC and
d) 2213 UTC. Individual points are highlighted from each approach (yellow and red dots; see
text).

Figure 11. Color shaded wind speed for 0023 UTC 6 July 2018 over central Arizona shown
from a) the B0O4 optical flow method and b) the Wu et al. (2016) flow, shown with respective

flow vectors and the subjective position of the front edge of the OFB (blue line).



773 14. Tables

774  Table 1. Settings used in the Brox et al. (2004) successive over-relaxation scheme.

Parameter Value
Outer Iterations (Pyramid Levels, nK) 77
Inner Iterations (nL) 10
Successive Over-Relaxation Iterations (nM) 5
Successive Over-Relaxation Parameter 1.99
Pyramid Scale Factor (SF) 0.95
y 10
a 50
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(b) Example Scenes where PM Fails
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Figure 1. Schematic of a) the PM optical flow scheme used by AMVs (e.g. Bresky et al., 2012),
which finds a suitable target to track (e.g. the cloud at time 1), forecasts the displacement with
numerical models (yellow arrow/dash box), and iteratively searches for the target at time 2
minimizing the sum-of-square error to get the AMV (red arrow), and b) example cloud evolution
types mentioned in-text where the approach shown in (a) fails.
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Figure 2. Flow chart of the B04 optical flow approach used here. Note that SF, nK, nL and nM
are defined in Table 1.
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790  Figure 3. Schematic of coarse- to fine-scale warping optical flow in GOES-imagery. The largest
791  displacements are found in the initial coarse grid (yellow arrow at the top of the pyramid), which
792  are used as initial displacements for the next levels (red and blue arrows). The final

793  displacement is the sum of each displacement estimate (white arrow). In this schematic, an

794  example scale factor of 0.5 was used over 3 pyramid levels, in this work, a scale factor of 0.95
795  for 77 levels was used.
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798  Figure 4. The 6 July 2018 0023 UTC GOES-16 0.64-um visible reflectance (top) and BT10.35
799  (bottom) over south-central AZ, centered on an OFB of interest.
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Figure 5. The KIWA Radar 2244 UTC 0.5° horizontal reflectivity (top) in dBZ and correlation
coefficient (bottom). Range rings in grey indicate every 30° azimuth and 50 km in range.
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Figure 6. Surface High Frequency METAR observations of temperature (K; top left), dewpoint
(K; top right), mean sea level pressure (middle left), wind direction (° from N; middle right),
wind speed (m st; bottom left), and wind gusts (m s*; bottom right). The surface station was
located at (32.95 °N -111.77 °E). The red line indicates the approximate time of boundary
passage over the station.
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813  Figure 7. Four panel of HRRR output of OFB event, including a) wind speed, b) temperature, c)
814  simulated infrared brightness temperature, and d) a cross section along the black line in ¢ with
815  virtual potential temperature 6,, in black contours (K), omega in color shaded pixels, and regions
816  of relative humidity > 90% highlighted with dark shading (bottom right).
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Figure 8. The 0023 UTC GOES-16 0.64-um visible channel shown with a) subjectively
identified OFB (blue dots) and b) linear feature L > 0.02 field (blue shading). Also shown are
linear features that contained fast storm-relative motion (red shading). The results of
backtracking the c) subjectively and d) objectively identified OFB features are also shown,
where blue dots represent targets tracked back within 50 km of a deep convection event, and
orange dots are targets that were not.
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Figure 9. GOES-16 0.64-um visible channel imagery on 5 July 2018 at a) 2258 UTC, b) 2338
UTC, ¢) 2358 UTC, and d) 0023 UTC over central Arizona shown with every 20" optical flow
vector in the x and y directions (subsampled for image clarity) illustrated with yellow wind barbs
(knots). Circles represent motion < 5 kts, which commonly occur over ground pixels.
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Figure 10. The GOES-16 0.64-um visible imagery shown with image targets backtracked from
subjective identification in Fig. 8a at 0023 UTC 6 July 2018 using the B04 method (blue/yellow)
and the Wu et al. (2016) approach (orange/red) at a) 0023 UTC, b) 2358 UTC, c) 2338 UTC and
d) 2213 UTC. Individual points are highlighted from each approach (yellow and red dots; see
text).
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841  Figure 11. Color shaded wind speed for 0023 UTC 6 July 2018 over central Arizona shown
842  from a) the BO4 optical flow method and b) the Wu et al. (2016) flow, shown with respective
843  flow vectors and the subjective position of the front edge of the OFB (blue line).
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