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Abstract 29 

Sudden wind direction and speed shifts from outflow boundaries (OFBs) associated with deep 30 

convection significantly affect weather in the lower troposphere.  Specific OFB impacts include 31 

rapid variation in wildfire spread rate and direction, the formation of convection, aviation hazards, 32 

and degradation of visibility and air quality due to mineral dust aerosol lofting. Despite their 33 

recognized importance to operational weather forecasters, OFB characterization (location, timing, 34 

intensity, etc.) in numerical models remains challenging.  Thus, there remains a need for objective 35 

OFB identification algorithms to assist decision support services.  With two operational next-36 

generation geostationary satellites now providing coverage over North America, high-temporal 37 

and spatial resolution satellite imagery provides a unique resource for OFB identification.  A 38 

system is conceptualized here designed around the new capabilities to objectively derive dense 39 

mesoscale motion flow fields in the Geostationary Operational Environmental Satellite (GOES)-40 

16 imagery via optical flow.  OFBs are identified here by isolating linear features in satellite 41 

imagery, and back-tracking them using optical flow to determine if they originated from a deep 42 

convection source.  This “objective OFB identification” is tested with a case study of an OFB 43 

triggered dust storm over southern Arizona.  The results highlight the importance of motion 44 

discontinuity preservation, revealing that standard optical flow algorithms used with previous 45 

studies underestimate wind speeds when background pixels are included in the computation with 46 

cloud targets.  The primary source of false alarms is incorrect identification of line-like features in 47 

the initial satellite imagery.  Future improvements to this process are described to ultimately 48 

provide a fully automated OFB identification algorithm.  49 
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1. Introduction 50 

Downburst outflows from associated deep convection (Byers and Braham Jr., 1949; Mitchell 51 

and Hovermale, 1977) play a significant, dynamic role in modulation of the lower troposphere.  52 

Their direct impacts to society are readily apparent—capsizing boats on lakes and rivers with 53 

winds that seem to “come out of nowhere” (e.g. The Branson, MO duck boat accident; Associated 54 

Press 2018), causing shifts in wildfire motion and fire intensity that put firefighters in harm’s way 55 

(e.g. the Waldo Canyon and Yarnell Hill Fires; Hardy and Comfort, 2015; Johnson et al., 2014), 56 

and threatening aviation safety at regional airports with sudden shifts from head to tail-winds and 57 

turbulent wakes (Klingle et al., 1987; Uyeda and Zrnić, 1986).  In the desert southwest, convective 58 

outflows can loft immense amounts of dust, significantly reducing surface visibility and air quality 59 

for those within the impacted area (e.g. Idso et al. 1972; Raman et al. 2014). These outflows are 60 

commonly associated with rapid temperature, pressure, and moisture changes at the surface 61 

(Mahoney III, 1988).  Furthermore, the collision of outflows from adjacent storms can serve as the 62 

focal point of incipient convection or the intensification of nascent storms (Mueller et al., 2003; 63 

Rotunno et al., 1988). 64 

Despite the understood importance of deep convection and convectively driven outflows, high 65 

resolution models struggle to characterize and identify them (e.g. Yin et al. 2005).   At present, 66 

outflow boundaries (OFBs) are instead most effectively monitored in real-time at operational 67 

centers around the world with surface, radar, and satellite data. Satellites often offer the only form 68 

of observation in remote locations. The most common method for detecting outflows via satellite 69 

data involves the identification of clouds formed by strong convergence at the OFB leading edge.  70 

When the lower troposphere is dry, OFBs may be demarcated by an airborne “dust front”, after 71 

passing over certain surfaces prone to deflation by frictional winds (Miller et al., 2008).  The task 72 
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of identifying OFBs can prove quite challenging and would benefit greatly from an objective 73 

means of feature identification and tracking for better decision support services. 74 

The Advanced Baseline Imager (ABI), an imaging radiometer carried on board the 75 

Geostationary Operational Environmental Satellite (GOES)-R era systems, offers a leap forward 76 

in capabilities for the real-time monitoring and characterization of OFBs. Its markedly improved 77 

spatial (0.5 vs. 1.0 km visible, 2 km vs. 4 km infrared), spectral (16 vs. 5 spectral bands), and 78 

temporal (5 min vs. 30 min continental U.S., and 10 min vs. 3 hr full disk) resolution provides new 79 

opportunities for passive sampling of the atmosphere over the previous generation (Schmit et al., 80 

2016).  The vast improvement of temporal resolution alone (which includes mesoscale sectors that 81 

refresh as high as 30 s) allows for dramatically improved tracking of convection (Cintineo et al., 82 

2014; Mecikalski et al., 2016; Sieglaff et al., 2013), fires and pyroconvection (Peterson et al., 2015, 83 

2017, 2018), ice flows, and synoptic scale patterns (Line et al., 2016).  This higher temporal 84 

resolution makes identification of features like OFBs easier as well because of greater frame-to-85 

frame consistency.   86 

The goal of this work is to use ABI information towards objective identification of OFBs. One 87 

of the notable challenges in satellite identification of OFBs over radar or models is the lack of 88 

auxiliary information.  When working with a radar or a numerical model framework, for example, 89 

additional information is available on the flow, temperature, and pressure tendency of the 90 

boundary.  Without that information, however, forecasters must rely on their knowledge of gust 91 

front dynamics to identify OFBs in satellite imagery.  Here, we introduce the concept of objectively 92 

derived motion using GOES-16 ABI imagery for feature identification via an advanced optical 93 

flow method, customized to the problem at hand.  A case study of a convectively triggered OFB 94 

and accompanying haboob dust front is presented in 5-min GOES-16 contiguous United States 95 
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(CONUS) sector information, as a way of evaluating and illustrating the potential of the 96 

framework. 97 

This paper is outlined as follows.  The background for objective motion extraction and OFB 98 

identification is presented in Section 2.  The optical flow methods developed for this purpose are 99 

discussed in Section 3.  Section 4 presents the case study test of the current algorithm, and Section 100 

5 concludes the paper with a discussion on plans for future work in objective feature identification 101 

from next-generation geostationary imagers of similar fidelity to the GOES-R ABI, which are 102 

presently coming online around the globe.   103 

 104 

2. Background 105 

2.1 Previous Work in OFB Detection 106 

Objective identification of OFBs in meteorological data has been a topic of scientific inquiry 107 

for more than 30 years.  Uyeda and Zrnić (1986) and Hermes et al. (1993) use detections of wind 108 

shifts in terminal Doppler radar velocity measurements to isolate regions of strong radial shear 109 

associated with OFBs. Smalley et al. (2007) include the “fine line” reflectivity structure of 110 

biological- and precipitation-sized particles to identify OFBs via image template matching.  111 

Chipilski et al. (2018) considered the OFB objective identification in numerical models using 112 

similar image processing techniques, but with additional dynamical constraints on vertical velocity 113 

magnitudes and mean-sea level pressure tendency. Objective OFB identification has not been 114 

demonstrated to date with the new ABI observations of the GOES-R satellite series.  Identification 115 

via satellite imagery would be valuable for local deep convection nowcasting algorithms which 116 

use boundary presence as a predictor field (Mueller et al., 2003; Roberts et al., 2012), and for 117 
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operational centers around the world which may not have access to ground-based Doppler radar 118 

data. 119 

Traditionally, forecasters have identified OFBs in satellite imagery by visually identifying the 120 

quasi-linear low-level cloud features and back-tracking them to an associated deep convection 121 

source.  Previous objective motion derivation algorithms are not designed to yield dense wind 122 

fields, where motion is estimated at every image pixel, necessary for identifying and tracking 123 

features such as OFBs (Bedka et al., 2009; Velden et al., 2005).  In fact, the original image window-124 

matching atmospheric motion vector (AMV) algorithms produce winds only over targets deemed 125 

acceptable for tracking by pre-processing checks on the number of cloud layers in a scene, 126 

brightness gradient strength, and patch coherency.  The targets are further filtered with post-127 

processing checks on acceleration and curvature through three-frame motion and deviation from 128 

numerical model flow (Bresky et al., 2012; Nieman et al., 1997; Velden et al., 1997; More in 129 

Section 2.2). These practices were followed for a very practical reason—AMV algorithms were 130 

tailored for model data assimilation. In the formation of the model analysis, observational data 131 

must be heavily quality-controlled, with outliers removed, to minimize data rejection. Here, 132 

information such as OFBs would be rejected due to the detailed space/time structure of actual 133 

convection which is typically poorly represented by the numerical model. 134 

Deriving two-dimensional flow information at every point in the imagery would require either 135 

modification of previous AMV schemes or post-processing of the AMV data via objective analysis 136 

(e.g. Apke et al. 2018).  The latter typically will not capture motion field discontinuities, resulting 137 

in incorrect flows near feature edges (Apke et al., 2016).  To capture such discontinuities in a dense 138 

flow algorithm, new computer vision techniques, such as the gradient-based methods of optical 139 

flow, must be adopted. 140 
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2.2 Optical Flow Techniques 141 

Optical flow gradient-based techniques derive motion within fixed windows, thus eliminating 142 

the reliance on models for defining a search region. A core assumption of many optical flow 143 

techniques is brightness constancy (Horn and Schunck, 1981).  Considering two image frames, 144 

brightness constancy states that the image intensity 𝐼 at some point 𝒙 = [𝑥, 𝑦]𝑇 is equal to the 145 

image intensity in the subsequent frame at a new point, 𝒙 + 𝑼, where, with a translation model,  146 

𝑼 = [𝑢, 𝑣]𝑇 represents the flow components of the image over the time interval (∆𝑡) between the 147 

two images:  148 

 𝐼(𝒙, 𝑡) = 𝐼(𝒙 + 𝑼, 𝑡 + ∆𝑡) (1) 

Eq. (1) can be linearized to solve for the individual flow components, 𝑢 and 𝑣: 149 

 ∇𝐼 ⋅ 𝑼 + 𝐼𝑡 = 0 (2) 

Where ∇𝐼 = [𝐼𝑥, 𝐼𝑦] represents the intensity gradients in the x and y direction, and 𝐼𝑡 represents 150 

the temporal gradient of intensity.  For one image pixel, Eq. (2) contains two unknowns with a 151 

simple translation model for 𝑼; therefore, it cannot be solved pointwise.  One well-known 152 

approach to solving this so-called “aperture problem” is the Lucas-Kanade method, hereafter the 153 

LK method, which considers a measurement neighborhood of the intensity space and time 154 

gradients (e.g., Baker and Matthews, 2004; Bresky and Daniels, 2006).  Use of neighborhoods, or 155 

image windows, to derive optical flow are called local approaches.  Another seminal approach was 156 

introduced by Horn and Schunck (1981; HS Method) which solves the aperture problem by adding 157 

an additional smoothness constraint to the brightness constancy assumption, and minimizing an 158 

energy magnitude between two images: 159 

 
𝐸(𝑼) = ∬(∇𝐼 ⋅ 𝑼 + 𝐼𝑡)2 + 𝛼(|∇2𝑢|2 + |∇2𝑣|2)

Ω

 𝑑𝐱 (3) 
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Where 𝐸(𝑼) represents an energy functional to be minimized over all image pixels Ω, 𝛼 is a 160 

constant weight used to control the smoothness of the flow components 𝑢(𝐱) and 𝑣(𝐱), and ∇2=161 

[∂/ ∂x , ∂/ ∂y]𝑇 .  This derivation is called a global approach, where the optical flow 𝑢(𝐱) and 162 

𝑣(𝐱) at each pixel is found which minimizes the quantity of Eq. (3) by deriving the Euler-Lagrange 163 

equations, and numerically solving the linear system of equations with Gauss-Seidel iterations. 164 

Readers can contrast the HS method with the optical flow algorithm used in GOES AMVs, 165 

referred to as “patch matching” (PM; Fortun et al., 2015).  In PM, a target (e.g. a 5x5 pixel box) 166 

identified as suitable for tracking is iteratively searched for in a sequential image within a 167 

reasonable search area (Fig. 1a).  The motion is identified by which candidate target (e.g. another 168 

5x5 pixel box displaced by the optical flow motion) in the sequential image best matches the initial 169 

target, typically by minimizing the sum-of-square error between the target and the candidate 170 

brightness values (Daniels et al., 2010; Nieman et al., 1997).  The reader can draw similarities to 171 

the HS method by formulating the PM approach as an energy equation to be minimized,  172 

 𝐸(𝑼) = ∑|𝐼(𝒙𝑛, 𝑡) − 𝐼(𝒙𝑛 + 𝑼, 𝑡 + ∆𝑡)|2

𝑛∈𝑇

 (4) 

where the minimum in 𝐸 is found by computing Eq. (4) at every candidate target in the search 173 

region.  As 𝐸 is only minimized within the target area 𝑇, PM represents a local method.   174 

Research and extensive validation has shown that, with quality control, PM provides a valuable 175 

resource to derive and identify winds in satellite imagery (Velden and Bedka, 2009).  However, 176 

there are several types of motions where PM would fail (Fig. 1b), many of which occur frequently 177 

in satellite OFB observations.  AMVs found with Eq. (4) make two key assumptions, 1) that the 178 

brightness remains constant between sequential images at time 𝑡 and 𝑡 + ∆𝑡, and 2) that the motion 179 

𝑼 is constant within the target.  The first assumption, brightness constancy, fails when there are 180 

excessive illumination changes in a sector that are not due to motion.  These illumination changes 181 
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may be due to evaporation or condensation, or simply due to changes in solar zenith angle 182 

throughout the day in visible imagery.  The HS method also uses assumption 1), though it is relaxed 183 

when combined with the smoothness constraint.  Assumption 2), which is not made in the HS 184 

method or other global methods, implies the PM method has no way to handle rotation, divergence, 185 

or deformation in an efficient manner, unless it is known apriori.  Assumption 2) also fails to 186 

account for motion discontinuities, such as those near cloud-edges or within transparent motions.  187 

Furthermore, as there is no other constraint aside from constant brightness, PM methods struggle 188 

when there is little to no texture in the target and candidates.  Quality control schemes are thus 189 

necessary to remove sectors that are poorly tracked with Eq. (4) in most AMV approaches. 190 

PM was a popular method for AMVs over other optical flow approaches prior to the GOES-R 191 

era due to its simplicity, computational efficiency, and capability to handle displacements common 192 

in low-temporal resolution satellite imagery (Bresky and Daniels, 2006).  Linearizing the 193 

brightness constancy assumption in Eq. (2) means that large and non-linear displacements 194 

(typically > 1 pixel between images) will not be captured (Brox et al., 2004).  Thus, most optical 195 

flow computations initially subsample images to where all the displacements are initially less than 196 

1-pixel (Anandan, 1989; discussed more in Section 3.1), which can cause fast moving small 197 

features to be lost.  Note that reducing the temporal resolution of GOES imagery (e.g. 10-min vs. 198 

5-min scans) increases the displacement of typical meteorological features between frames.  199 

Furthermore, constancy assumptions are more likely violated with reduced temporal resolution 200 

since image intensity changes more through evaporation and condensation of cloud matter over 201 

time.  Thus, for the spatial resolution of ABI, it is impractical to consider optical flow gradient-202 

based methods at temporal resolutions coarser than 5-min for several mesoscale meteorological 203 

phenomena, including OFBs.  Very spatially coarse images do not need to be initially used with 204 
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faster scanning rates, such as super rapid scan 1-min information (Schmit et al., 2013), or the 30-205 

s temporal resolution mesoscale mode of ABI (Schmit et al., 2016). 206 

While the HS method is designed for deriving dense flow in imagery sequences, it also does 207 

not account for motion discontinuities in the flow fields. Hence, it suffers from incorrect flow 208 

derivations near cloud edges, and would perform poorly for OFB detection and tracking.  Black 209 

and Anandan (1996) offer an intuitive solution to this problem, whereby the energy functional is 210 

designed to minimize robust functions that are not sensitive to outliers: 211 

 
𝐸(𝑼) = ∬ 𝜌𝑑(∇𝐼 ⋅ 𝑼 + 𝐼𝑡) + 𝜌𝑠(|∇2𝑢|2 + |∇2𝑣|2)𝑑𝐱

Ω

 (5) 

The robust function data term for the HS method is simply 𝜌𝑑(𝑟) = 𝑟2, and smoothness 𝜌𝑠(𝑟) =212 

𝑟 which implies that energy functionals increase quadratically for 𝑟 outliers.  Other robust 213 

functions can also be minimized with similar gradient descent algorithms to Gauss-Seidel 214 

iterations, while being less sensitive to outliers (Press et al., 1992; Black and Anandan, 1996).  215 

Robust functions are popular in recent optical flow literature (Brox et al., 2004; Sun et al., 2010), 216 

and a similar approach adopted here is discussed further in the methodology section.  The reader 217 

is referred to works by Barron et al. (1994), Fleet and Weiss (2005), Sun et al. (2010), and Fortun 218 

et al. (2015) for more comprehensive reviews on optical flow background and techniques. 219 

The relevance of optical flow in satellite meteorological research continues to increase now 220 

that scanning rates of sensors such as the ABI are routinely at sub 5-min time scales, making 221 

motion easier to derive objectively (Bresky and Daniels, 2006; Héas et al., 2007; Wu et al., 2016).  222 

The dense motion estimation within fine-temporal resolution data has yet to be used for feature 223 

identification. Optimizing optical flow for this purpose, and its specific application to OFBs, is the 224 

aim of this study.  The next section outlines our approach to this end. 225 

 226 
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3. Methodology 227 

3.1 Optical Flow Approach 228 

As recently overviewed in Fortun et al., (2015), there are several optical flow approaches that 229 

provide dense motion estimates which account for the weaknesses highlighted in Fig. 1b.  Many 230 

have their own advantages and drawbacks in terms of computational efficiency, flexibility, and 231 

capability to handle large displacements, motion discontinuities, texture-less regions, and turbulent 232 

scenes.  We selected an approach here by Brox et al. (2004) (Hereafter B04), given its simplicity, 233 

current availability of open-source information, and excellent documentation.  The reader is 234 

cautioned, however, that dense optical flow is a rapidly evolving field, and research is currently 235 

underway to improve present techniques.  While dense optical flow validation for satellite 236 

meteorological applications research like OFB identification is taking place, the reader is referred 237 

to the Middlebury (Baker et al., 2011), the MPI Sintel (Butler et al., 2012), and the KITTI (Geiger 238 

et al., 2012) benchmarks for extensive validation statistics of the most recent techniques using 239 

image sequences for more general applications.   240 

The B04 approach handles the drawbacks described in Fig. 1b and more, where the brightness 241 

constancy assumption is no longer linearized, i.e. 242 

 
𝐸(𝑼) = ∬ 𝜌𝑑(|𝐼(𝒙 + 𝑼, 𝑡 + ∆𝑡) − 𝐼(𝒙, 𝑡)|2

Ω

+ 𝛾|∇2𝐼(𝒙 + 𝑼, 𝑡 + ∆𝑡) − ∇2𝐼(𝒙, 𝑡)|2)

+ 𝛼 𝜌𝑠(|∇2𝑢|2 + |∇2𝑣|2)𝑑𝒙 

(6) 

Following B04, within the data robust function, we now have also included a gradient constancy 243 

assumption, which is weighted by a constant 𝛾 to make the derived flow more resilient to changes 244 

in illumination.  Avoiding linearization of constancy assumptions improves the identification of 245 
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large displacements between images.  The Charbonnier penalty is used for the data and smoothness 246 

robust functions following Sun et al. (2010), 247 

 𝜌𝑑(𝑟2) = 𝜌𝑠(𝑟2) = √𝑟2 + 𝜖2 (7) 

with 𝜖 representing a small constant present to prevent division by zero in minimization, set to 248 

0.001.  The values for 𝑼 are found by solving the Euler-Lagrange equations of Eq. (6) with 249 

numerical methods 250 

 
𝐸𝑢 −

𝑑𝐸𝑢𝑥

𝑑𝑥
−

𝑑𝐸𝑢𝑦

𝑑𝑦
= 0 (8) 

 
𝐸𝑣 −

𝑑𝐸𝑣𝑥

𝑑𝑥
−

𝑑𝐸𝑣𝑦

𝑑𝑦
= 0 (9) 

with reflecting boundary conditions and subscripts that imply the derivatives.  Eqs. (8) and (9) are 251 

solved with a nested-fixed point successive over-relaxation iteration scheme described in B04 and 252 

summarized in Fig. 2.  The reader is referred to Chapter 4 of Brox (2005) for details on the full 253 

discretization of the derivatives in the successive over-relaxation scheme.  Here, only the spatial 254 

dimensions are used for the smoothing term, though it is possible to include the time dimension 255 

with this system as well.   256 

A difficulty in solving Eqs. (8) and (9) is that the successive over-relaxation scheme may 257 

converge on a local minimum of 𝐸(𝑼), rather than finding the global minimum.  The typical 258 

approach to find the global minimum is to compute optical flow with coarse- to fine-scale warping 259 

iterations (e.g. Anandan, 1989).  Coarse- to fine-scale warping iterations work by subsampling the 260 

initial image at the native resolution to a coarser spatial resolution and computing the flow initially 261 

at the coarsest resolution in the image pyramid.  The 𝑼 results from the coarse image flow are then 262 

used as the first guess field for the next finest scale on the image pyramid (Fig. 3), and the second 263 
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image is warped accordingly.  The warping step ensures that estimated displacements at every step 264 

in the image pyramid remain small. 265 

The B04 scheme includes coarse- to fine-scale warping iterations at every outer iteration 𝑘.  266 

This means that the first iteration is run on a subsampled image, and the subsampling is reduced 267 

by a scale factor at every 𝑘 until the image reaches the native resolution at the final 𝑘 = 𝑛𝐾.  268 

Images at every 𝑘 in this subsampling are found using a gaussian image pyramid technique with 269 

bicubic interpolation.  The flow values of the image at 𝑘 − 1 are upscaled accordingly at 𝑘 also 270 

with bicubic interpolation (the initial flow guess is 𝑢 = 𝑣 = 0 at 𝑘 = 0).  For improved 271 

computation of spatial derivatives, the initial image is also smoothed with a 9x9 pixel kernel 272 

gaussian filter with a standard deviation set to 1.5 pixels.  The specific settings used for the coarse- 273 

to fine- warped flow scheme here are shown in Table 1.   274 

3.2 Objective OFB identification 275 

There are two steps to the objective OFB identification process.  First, a linear feature or sharp 276 

boundary is identified in visible or infrared imagery.  In some cases, the first step alone is enough 277 

to identify OFBs subjectively.  The second step is tracking that feature back in time to see where 278 

it originated from (typically, near an area with deep convection).  In the case of near stationary 279 

convection and low-level flow, a forecaster might also use radial like propagation in this decision-280 

making process, however, since convection geometry and low-level flow varies from storm to 281 

storm, only the first two steps are considered here.  This approach aims to mirror the subjective 282 

process, leveraging the information content of optical flow to do so. 283 

 To handle the first step of line feature identification, a simple image line detection scheme was 284 

performed by convolving the original brightness field with a set of line detection kernels, so 285 
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𝐿 = ∑ 𝑎𝑖 ⋆ 𝐺(𝑅)

4

𝑖=1

 (10) 

where ⋆ is the convolution operator, 𝐺 is a gaussian smoothing function (using a 21x21 kernel and 286 

standard deviation of 5 pixels), 𝑅 is the reflectance factor (radiance times the incident Lambertian-287 

equivalent radiance, or the “kappa factor”; Schmit et al., 2010), 𝐿 is the resulting line detection 288 

field, and 𝑎𝑖 represents the two-dimensional line detection kernels, defined as 289 

𝑎1 = [
−1 −1 −1
2 2 2

−1 −1 −1
] 𝑎2 = [

−1 2 −1
−1 2 −1
−1 2 −1

] 𝑎3 = [
2 −1 −1

−1 2 −1
−1 −1 2

] 𝑎4 = [
−1 −1 2
−1 2 −1
2 −1 −1

] 290 

 291 

The resulting 𝐿 field exhibits higher intensities where line features exist (Gonzalez and Woods, 292 

2007).  A threshold of 𝐿 ≥ 0.02 was used here to indicate a pixel contained a line feature.  This 293 

method was compared to a subjective interpretation of boundary location for validation.   294 

To address the second step of the process, the constrained optical flow approach described in 295 

Section 3.1 was used to track the boundary pixels (both objectively and subjectively identified) 296 

back in time for three hours.  The values of motion at each step in the backwards trajectory were 297 

determined with bilinear interpolation of the optical flow derived dense vector grid.  If a back-298 

traced pixel of the linear feature arrived within 50 km great-circle distance of a 10.35 μm brightness 299 

temperature (BT10.35) pixel lower than 223 K (-50 °C; using previous satellite imagery matched to 300 

the back-trajectory time), the original point was considered an OFB.  The area subtended by the 301 

50 km great circles derived from BT10.35 is hereafter referred to as the “deep convection area.”  302 

While this brightness temperature threshold is subjective and can vary from case to case, it was 303 

found to produce a reasonable approximation of deep convection areas when compared to ground-304 

based radar information for the case study described in the subsequent sections. 305 
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3.3 Data 306 

The objective OFB identification methodology is tested using a case study from 5 July 2018 307 

over the southwestern United States.  This event featured a distinct OFB and associated dust storm 308 

that was well-sampled by various ground- and space-based sensors.  GOES-16 was in Mode-3, 309 

generating one image over the study area every 5-min (continental U.S., or CONUS, ABI scan 310 

domain).  Optical flow computations employ the GOES-16 (GOES-East) ABI red band (0.64 m; 311 

ABI channel 2), provided at a nominal sub-satellite spatial resolution of 500 m, but closer to 1 km 312 

at the case study location.  This channel is used at native resolution, though it can be subsampled 313 

with a low-pass filter such that future versions can implement color information from the blue and 314 

near-infrared bands (e.g. Miller et al. 2012).  This means that the optical flow approach here is 315 

daytime only.  A similar B04 approach can be used on infrared data as well for day/night 316 

independent information, though for detecting OFBs in the low levels, proxy visible products 317 

would perform best.  As described above, the clean longwave infrared band (10.35 m; ABI 318 

channel 13) is used as first-order information on optically thick cloud-top heights and to assess the 319 

convective nature of the observed scene (BT10.35 < 223 K). 320 

 High frequency Automated Surface Observing Stations (ASOS; NOAA 1998), recording 321 

temperature, pressure, wind speed and direction once every minute, complement the satellite 322 

imagery.  The Weather Surveillance Radar-1988 Doppler (Crum and Alberty, 1993) dual-323 

polarimetric data also sampled the OFB event from the KIWA radar near Phoenix, AZ.  To 324 

highlight the OFBs and the presence of dust, horizontal reflectivity and correlation coefficient are 325 

used (Van Den Broeke and Alsarraf, 2016).  Finally, for information on the full 3D dynamics of 326 

the case study, a numerical model representation of the environment was collected from the High 327 

Resolution Rapid Refresh system (HRRR, Benjamin et al. 2016).  The combination of these model 328 
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and observation datasets is employed to confirm the presence of a distinct convective OFB, rather 329 

than some other quasi-linear feature, such as a bore or elevated cloud layer. 330 

 331 

4. Case Study Description 332 

Convection was observed in south central Arizona on 5 July 2018 after 1800 UTC.  A large 333 

and well-defined linear structure emerged from below the convective cloud cover at 2200 UTC to 334 

6 July 2018 0100 UTC propagating westward in GOES-16 imagery (Fig. 4).  This linear structure, 335 

demarcated by roll (arcus) clouds on the northern side and lofted dust on the southern side, was 336 

apparent with strong visible reflectance contrast against the relatively dark surface and BT10.35 ~ 337 

10 K cooler than the underlying surface.  The dust lofted by this outflow produced low visibility 338 

and hazardous driving conditions near Phoenix, AZ.  Dust storm warnings were issued by the local 339 

National Weather Service (NWS) forecast office by 2300 UTC.  The structure’s observed radial 340 

propagation away from nearby deep convection and associated cloud and dust features lends to its 341 

interpretation as a convective OFB.   342 

The OFB was also captured in radar scans from KIWA at 2200 UTC (Fig. 5).  The coincidence 343 

of low correlation coefficient (< ~0.5) and moderate to high reflectivity (near 20 dBZ) imply that 344 

the OFB contained non-meteorological scatterers (e.g. Zrnic and Ryzhkov, 1999).  The radar 345 

measurements are consistent with previous reported values of lofted dust (Van Den Broeke and 346 

Alsarraf, 2016).  Surface observations taken at the ASOS station reveal temperatures exceeding 347 

317 K (44 °C) ahead of the OFB, with calm winds (Fig. 6).  Temperatures dropped by 4 K, wind 348 

speeds changed direction and increased sharply, and dew points increased rapidly as the OFB 349 

crossed the station at ~2316 UTC.  The rapid change in low-level meteorology is consistent with 350 

convective OFBs sampled in previous studies (e.g. Mahoney III, 1988; Miller et al., 2008).   351 
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The HRRR model captured the broad characteristics of this event (Fig. 7), showing moderate 352 

low-level winds in excess of 10 m s-1 (Fig. 7a), cooler temperatures (Fig. 7b), and simulated 353 

cumulus clouds from forced ascent (Fig. 7c).  Model cross sections (Fig. 7d) indicated a moderate 354 

increase in vertical motion ahead of the numerically derived boundary, and a sharp decrease in 355 

virtual potential temperature behind the boundary.  The shape of the virtual potential temperature 356 

profile is consistent with other model observations of OFBs (e.g. Chipilski et al., 2018).  The 357 

observation and model data all show that the linear structure observed in Fig. 4 was modifying the 358 

dynamics of the surface in a manner consistent with OFBs, and not some other linear cloud feature 359 

type that is decoupled from the surface and may be misidentified by the satellite.  Since such low-360 

level linear features are often obscured by cloud layers at higher altitudes, this case study in some 361 

respects represents a best-case-scenario for evaluating optical flow capabilities towards identifying 362 

OFBs.   363 

 364 

5. Results 365 

The first step in OFB identification requires identification of a feature that appears linear in 366 

the imagery.  Compared to the subjective boundary identification (considered as truth here; Fig 8a, 367 

blue dots), the convolution method gives a reasonable approximation to where the OFB is located 368 

within the higher intensity points in 𝐿 (Fig. 8b).  Unfortunately, the simply-applied convolution is 369 

also sensitive to linear features associated with the deep convection itself (the blue shading in Fig. 370 

8b).  Hence, false alarms appear east of the boundary.  These issues can be filtered out using either 371 

cloud-top height or brightness temperature thresholding from separate infrared channels.  372 

Alternatively, the storm-relative motion (here > 15 m s-1), or the motion relative to the 6 hr forecast 373 

field 0-6 km storm motion from the Global Forecast System (GFS) numerical weather prediction 374 
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model run, was used here to filter the false alarms (the red shading in Fig. 8b).  The GFS forecast 375 

field was used over analysis to simulate what would be available globally in real-time. 376 

The second step requires these linear fast-moving features to be traced backward to a deep 377 

convection source using the optical flow computation (Fig. 9).  To the west of the boundary, near 378 

stationary optical flow vectors highlight the background (or ground) pixels.  The boundary itself 379 

exhibits a westward movement near 15-20 m s-1 (~30-40 kts).  The feature also appears to bow 380 

outwards after faster motions are observed, near 33° N, -112° E during 2338-2358 UTC (Figs. 9b, 381 

c).  Similar westward motion is derived in the wake of the OFB, within the convective cold pool.  382 

This results from the presence of airborne dust particles, which facilitate the computation of optical 383 

flow vectors in this region.   384 

The backwards trajectories of the subjectively and objectively identified OFB pixels in Figs. 385 

8c and d (B04 method) show that many of the linear cloud features, particularly those associated 386 

with the central arcus cloud, indeed originated near deep convection.  However, when the 387 

backwards trajectories of the B04 method were compared to other optical flow methods, such as 388 

the approach by Wu et al. (2016), most were unsuccessful at obtaining coincidence between linear 389 

cloud features along the OFB and a deep convection source.  Wu et al. (2016) used an approach 390 

introduced to the community by Farnebäck (2001), which is a local window method for optical 391 

flow.   392 

Example points 1–7 examined within the subjectively identified OFB backward trajectories 393 

highlight an issue with local window approaches for this application (Fig. 10).  The B04 approach 394 

(Fig. 10, blue/yellow) produced motions that were relatively consistent with the true boundary 395 

motion.  Thus, many points that are lost in the local approaches are successfully backtracked to 396 

the initial deep convection (e.g.  points 3–5).  With the Wu et al. approach (Fig. 10, orange/red), 397 
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OFB targets move slower than the actual boundary, and, over a three-hour tracking period, 398 

eventually become stuck within the stationary background pixels.  This tracking issue stems from 399 

an assumption made in many local approaches that pixels within an image window all move in the 400 

same direction with the same speed.  When background pixels are included within an image 401 

window containing clouds or dust, the resulting optical flow speed would then be underestimated.  402 

The slow bias is observed in plots of optical flow speeds along the OFB (Fig. 11), where the Wu 403 

et al. approach was ~5-10 m s-1 slower than the B04 approach.  While not shown, we found similar 404 

backward trajectory issues using the LK approach.  Full loops of the optical flow in Fig. 9 and 405 

trajectories in Fig. 10 are included as supplementary material to this manuscript. 406 

For all approaches tested, however, the methods struggled to backtrack the newly formed 407 

cumulus to the north and the dust front to the south.  With the cumulus to the north, the issues with 408 

each algorithm appear to result from rapid cumulus development between frames (e.g. points 1 409 

and 2 in Figs. 10a, b).  Condensation like what is observed here is unfortunately not considered in 410 

the brightness constancy assumption.  Thus, condensing cloud features would only be tracked back 411 

to when they initially form (after Fig. 10b) without additional dynamic constraints to Eq. (6).  An 412 

example can be seen when points 1 and 2 become stuck in Fig. 10c.  This has important 413 

implications on the limitations of backtracking OFB features to deep convection with optical flow 414 

from imagery.  If no cloud or dust feature exists to visualize an OFB in satellite imagery, some of 415 

the feature propagation may be lost.   416 

The dust to the south appears in the satellite imagery as early as 2200 UTC, though it was quite 417 

transparent relative to the ground.  It is therefore possible the stationary background pixels may be 418 

dominant in the optical flow computation at points 6 and 7, resulting in slower wind speeds than 419 

the true OFB propagation.  Points 6 and 7 are also located near cumulus moving across the OFB 420 
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motion to the south.  This dust front tracking could be improved using multispectral techniques 421 

designed to highlight dust features over ground pixels, or by using additional color spectrum 422 

information to discourage flow smoothness in Eq. (6) across the dust front from the cumulus to 423 

the south (e.g. Sun et al., 2010).   424 

Many line-like targets east of the OFB in Fig. 8d also originated from the deep convection, 425 

which constitute false alarms.  These false alarms can be reduced by further improving the OFB 426 

targeting step in the objective process in future studies.  For this case study, it may have been 427 

possible to use convergence thresholding methods, analogous to radar-based objective OFB 428 

identification, to isolate the boundary.  However, convergence as derived from the optical flow 429 

information here would only work because of local, stationary surface pixels ahead of the OFB.  430 

Thus, convergence would be stronger with faster OFB velocity, which is undesirable for an 431 

objective identification product as slow moving OFBs would be missed.  The convergence would 432 

also be sensitive to nearby cloud structures ahead of the OFB which would exhibit different (non-433 

stationary) motion from the surface.  It is for this reason that a backwards trajectory approach was 434 

elected instead of basing the detection on local horizontal convergence.  The optical flow approach 435 

used here does help highlight the OFB when storm motion alone was considered in addition to 436 

convolution, showing how additional tools can be used in synergy to arrive at a more 437 

comprehensive objective feature identification approach in future studies.   438 

 439 

6. Conclusions and Future Outlook 440 

A new method for the objective identification of outflow boundaries (OFBs) in GOES-16 441 

Advanced Baseline Imager (ABI) data was developed using optical flow motion derivation 442 

algorithms and demonstrated with provisional success on a dust storm case study.  An optical flow 443 
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system constructed for this purpose shows promise in identifying and backtracking object events 444 

to their source over traditional flow derivation methods, which can potentially be used to isolate 445 

convective OFB features.  To the best of the authors’ knowledge, this study represents a first 446 

attempt to objectively identify OFBs in geostationary satellite imagery. 447 

The primary conclusions of this study are that optical flow approaches are now a viable option 448 

to acquire meso-scale flows relevant to OFB tracking and detection in 5-min geostationary satellite 449 

imagery, though the successful backtracking of OFB features requires use of flow algorithms that 450 

can handle the presence of motion discontinuities and stationary background flow.  The optical 451 

flow algorithm tested in this study produced a dense motion field that was closer than other 452 

methods to the true OFB motion and provided valuable information towards full objective OFB 453 

identification in new products. 454 

While several OFB related image pixels were successfully identified, the algorithm here is 455 

relatively immature and remains fraught with false alarms where linear features are incorrectly 456 

identified, and where correct features were not successfully backtracked to deep convection.  The 457 

algorithm is still limited by the assumptions made within optical flow, which only account for 458 

changes in image brightness intensity resulting from pure feature advection.  Therefore, if no 459 

features (e.g. clouds) exist to highlight an OFB boundary within the imagery, the method proposed 460 

here would not function properly.  The method also struggles to resolve true OFB motions with 461 

transparent dust movement, where a textured background beneath the dust may dominate the 462 

motion estimate within a scene.  Also, while infrared brightness temperature was enough to 463 

identify deep convection in this case study, convection may be missed by brightness temperature 464 

imagery if it is obscured by a higher cloud layer, or if the minimum cloud-top brightness 465 

temperature exceeds an arbitrarily set threshold.   466 
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Given these limitations, future studies will explore more advanced systems for linear structure 467 

identification to identify candidate features for tracking towards full objective OFB identification.  468 

A machine learning system will be used to determine which linear characteristics of the image 469 

should be backtracked instead of using two-dimensional convolution.  Optical flow can be used to 470 

precondition training information for a machine learning approach, if the motion or semi-471 

Lagrangian fields are needed.  Furthermore, it will be prudent to use deep convection 472 

correspondence through optical flow backtracking as one of many fields in future products, such 473 

as radial propagation away from storms and near surface meteorological properties, to 474 

probabilistically decide if an image pixel is associated with an OFB.  To better identify deep 475 

convection areas, the GOES Lightning Mapper (GLM) can be used, which provides information 476 

on lightning location and energy at 8 km resolution with a 2 ms frame rate.   477 

Feature identification with optical flow is not restricted to OFBs alone.  For example, the 478 

above-anvil cirrus plume (Bedka et al., 2018) over deep convection has been identified as an 479 

important indicator of severe weather at the ground, yet no objective means of identification exists 480 

today. The properties from optical flow could be used as an additional source of information in 481 

such algorithm designs, allowing researchers to backtrack features to their apparent source (the 482 

overshooting top in the case of the above-anvil cirrus plume) and monitor cloud temperature and 483 

visible texture trends, or to simply use the dense motion itself to achieve better results.  This 484 

method will also be applicable to other cold pool outflow phenomena, such as bores, for which 485 

new algorithms could utilize numerical model or surface observations for further clarification of 486 

linear feature type.   487 

Motion discontinuity preserving optical flow will also benefit several current algorithms for 488 

monitoring deep convection in satellite imagery.  Objective deep convection cloud-top flow field 489 
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algorithms  (Apke et al., 2016, 2018) will benefit particularly when sharp cloud-edges and ground 490 

pixels are present in an image scene.  Systems that use infrared cloud-top cooling or emissivity 491 

differences for deep convection nowcasting will also improve with better estimates of pre-492 

convective cumulus motion (Cintineo et al., 2014; Mecikalski and Bedka, 2006).   493 

While the utility of a backwards trajectory approach was considered here, many other possible 494 

methods exist for exploiting the semi-Lagrangian properties of time-resolved observations in 495 

satellite imagery (e.g. Nisi et al., 2014).  Use of fine-temporal resolution information will improve 496 

optical flow estimates, and in turn the estimates of brightness temperature, reflectance, or cloud-497 

property changes in a moving frame of reference.  We will explore these and other refinements in 498 

ongoing and future work on this exciting frontier of next-generation ABI-enabled science. 499 
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12. List of Tables 723 

Table 1. Settings used in the Brox et al. (2004) successive over-relaxation scheme. 724 
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13. List of Figures 726 

Figure 1. Schematic of a) the PM optical flow scheme used by AMVs (e.g. Bresky et al., 2012), 727 

which finds a suitable target to track (e.g. the cloud at time 1), forecasts the displacement with 728 

numerical models (yellow arrow/dash box), and iteratively searches for the target at time 2 729 

minimizing the sum-of-square error to get the AMV (red arrow), and b) example cloud evolution 730 

types mentioned in-text where the approach shown in (a) fails. 731 

Figure 2. Flow chart of the B04 optical flow approach used here.  Note that SF, nK, nL and nM 732 

are defined in Table 1. 733 

Figure 3. Schematic of coarse- to fine-scale warping optical flow in GOES-imagery.  The largest 734 

displacements are found in the initial coarse grid (yellow arrow at the top of the pyramid), which 735 

are used as initial displacements for the next levels (red and blue arrows).  The final 736 

displacement is the sum of each displacement estimate (white arrow).  In this schematic, an 737 

example scale factor of 0.5 was used over 3 pyramid levels, in this work, a scale factor of 0.95 738 

for 77 levels was used. 739 

Figure 4. The 6 July 2018 0023 UTC GOES-16 0.64-μm visible reflectance (top) and BT10.35 740 

(bottom) over south-central AZ, centered on an OFB of interest. 741 

Figure 5.  The KIWA Radar 2244 UTC 0.5° horizontal reflectivity (top) in dBZ and correlation 742 

coefficient (bottom).  Range rings in grey indicate every 30° azimuth and 50 km in range. 743 

Figure 6.  Surface High Frequency METAR observations of temperature (K; top left), dewpoint 744 

(K; top right), mean sea level pressure (middle left), wind direction (° from N; middle right), 745 

wind speed (m s-1; bottom left), and wind gusts (m s-1; bottom right).  The surface station was 746 

located at (32.95 °N -111.77 °E).  The red line indicates the approximate time of boundary 747 

passage over the station. 748 
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Figure 7. Four panel of HRRR output of OFB event, including a) wind speed, b) temperature, c) 749 

simulated infrared brightness temperature, and d) a cross section along the black line in c with 750 

virtual potential temperature θv in black contours (K), omega in color shaded pixels, and regions 751 

of relative humidity > 90% highlighted with dark shading (bottom right). 752 

Figure 8.  The 0023 UTC GOES-16 0.64-μm visible channel shown with a) subjectively 753 

identified OFB (blue dots) and b) linear feature L ≥ 0.02 field (blue shading).  Also shown are 754 

linear features that contained fast storm-relative motion (red shading).  The results of 755 

backtracking the c) subjectively and d) objectively identified OFB features are also shown, 756 

where blue dots represent targets tracked back within 50 km of a deep convection event, and 757 

orange dots are targets that were not. 758 

Figure 9.  GOES-16 0.64-μm visible channel imagery on 5 July 2018 at a) 2258 UTC, b) 2338 759 

UTC, c) 2358 UTC, and d) 0023 UTC over central Arizona shown with every 20th optical flow 760 

vector in the x and y directions (subsampled for image clarity) illustrated with yellow wind barbs 761 

(knots).  Circles represent motion < 5 kts, which commonly occur over ground pixels. 762 

Figure 10.  The GOES-16 0.64-μm visible imagery shown with image targets backtracked from 763 

subjective identification in Fig. 8a at 0023 UTC 6 July 2018 using the B04 method (blue/yellow) 764 

and the Wu et al. (2016) approach (orange/red) at a) 0023 UTC, b) 2358 UTC, c) 2338 UTC and 765 

d) 2213 UTC.  Individual points are highlighted from each approach (yellow and red dots; see 766 

text). 767 

Figure 11.  Color shaded wind speed for 0023 UTC 6 July 2018 over central Arizona shown 768 

from a) the B04 optical flow method and b) the Wu et al. (2016) flow, shown with respective 769 

flow vectors and the subjective position of the front edge of the OFB (blue line). 770 
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14. Tables 773 

Table 1. Settings used in the Brox et al. (2004) successive over-relaxation scheme. 774 

Parameter Value 

Outer Iterations (Pyramid Levels, nK) 77 

Inner Iterations (nL) 10 

Successive Over-Relaxation Iterations (nM) 5 

Successive Over-Relaxation Parameter 1.99 

Pyramid Scale Factor (SF) 0.95 

𝛾 10 

𝛼 50 
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15. Figures 776 

 777 

Figure 1. Schematic of a) the PM optical flow scheme used by AMVs (e.g. Bresky et al., 2012), 778 

which finds a suitable target to track (e.g. the cloud at time 1), forecasts the displacement with 779 

numerical models (yellow arrow/dash box), and iteratively searches for the target at time 2 780 

minimizing the sum-of-square error to get the AMV (red arrow), and b) example cloud evolution 781 

types mentioned in-text where the approach shown in (a) fails. 782 

  783 



35 
 

 784 

Figure 2. Flow chart of the B04 optical flow approach used here.  Note that SF, nK, nL and nM 785 

are defined in Table 1. 786 
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 788 

 789 

Figure 3. Schematic of coarse- to fine-scale warping optical flow in GOES-imagery.  The largest 790 

displacements are found in the initial coarse grid (yellow arrow at the top of the pyramid), which 791 

are used as initial displacements for the next levels (red and blue arrows).  The final 792 

displacement is the sum of each displacement estimate (white arrow).  In this schematic, an 793 

example scale factor of 0.5 was used over 3 pyramid levels, in this work, a scale factor of 0.95 794 

for 77 levels was used. 795 
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 797 

Figure 4. The 6 July 2018 0023 UTC GOES-16 0.64-μm visible reflectance (top) and BT10.35 798 

(bottom) over south-central AZ, centered on an OFB of interest. 799 
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 801 

Figure 5.  The KIWA Radar 2244 UTC 0.5° horizontal reflectivity (top) in dBZ and correlation 802 

coefficient (bottom).  Range rings in grey indicate every 30° azimuth and 50 km in range. 803 
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 805 

Figure 6.  Surface High Frequency METAR observations of temperature (K; top left), dewpoint 806 

(K; top right), mean sea level pressure (middle left), wind direction (° from N; middle right), 807 

wind speed (m s-1; bottom left), and wind gusts (m s-1; bottom right).  The surface station was 808 

located at (32.95 °N -111.77 °E).  The red line indicates the approximate time of boundary 809 

passage over the station. 810 
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 812 

Figure 7. Four panel of HRRR output of OFB event, including a) wind speed, b) temperature, c) 813 

simulated infrared brightness temperature, and d) a cross section along the black line in c with 814 

virtual potential temperature 𝜃𝑣 in black contours (K), omega in color shaded pixels, and regions 815 

of relative humidity > 90% highlighted with dark shading (bottom right). 816 
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 818 

Figure 8.  The 0023 UTC GOES-16 0.64-μm visible channel shown with a) subjectively 819 

identified OFB (blue dots) and b) linear feature 𝐿 ≥ 0.02 field (blue shading).  Also shown are 820 

linear features that contained fast storm-relative motion (red shading).  The results of 821 

backtracking the c) subjectively and d) objectively identified OFB features are also shown, 822 

where blue dots represent targets tracked back within 50 km of a deep convection event, and 823 

orange dots are targets that were not. 824 
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 826 

Figure 9.  GOES-16 0.64-μm visible channel imagery on 5 July 2018 at a) 2258 UTC, b) 2338 827 

UTC, c) 2358 UTC, and d) 0023 UTC over central Arizona shown with every 20th optical flow 828 

vector in the x and y directions (subsampled for image clarity) illustrated with yellow wind barbs 829 

(knots).  Circles represent motion < 5 kts, which commonly occur over ground pixels. 830 

 831 
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 833 

Figure 10.  The GOES-16 0.64-μm visible imagery shown with image targets backtracked from 834 

subjective identification in Fig. 8a at 0023 UTC 6 July 2018 using the B04 method (blue/yellow) 835 

and the Wu et al. (2016) approach (orange/red) at a) 0023 UTC, b) 2358 UTC, c) 2338 UTC and 836 

d) 2213 UTC.  Individual points are highlighted from each approach (yellow and red dots; see 837 

text). 838 
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 840 

Figure 11.  Color shaded wind speed for 0023 UTC 6 July 2018 over central Arizona shown 841 

from a) the B04 optical flow method and b) the Wu et al. (2016) flow, shown with respective 842 

flow vectors and the subjective position of the front edge of the OFB (blue line). 843 
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