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Abstract. Relative humidity (RH) measurements in ice clouds are essential for determining the ice crystals growth processes

and rates. A differential absorption radar (DAR) system with several frequency channels within the 183.3 GHz water vapor

absorption band is proposed for measuring RH within ice clouds. Here, the performance of a DAR system is evaluated by ap-

plying a DAR simulator to A-Train observations in combination with collocated European Centre for Medium-Range Weather

Forecasts (ECMWF) reanalysis. Observations from the CloudSat W-band radar and from the CALIPSO lidar are converted5

first into ice microphysical properties and then coupled with ECMWF temperature and relative humidity profiles in order to

compute scattering properties at any frequency within the 183.3 GHz band. Self-similar Rayleigh Gans approximation is used

to model the ice crystal scattering properties. The radar reflectivities are computed both for a space-borne and a ground-based

DAR system by using appropriate radar receiver characteristics. Sets of multi-frequency synthetic observation of attenuated

reflectivities are then exploited to retrieve profile of water vapour density by fitting the line shape at different levels. 10 days10

of A-Train observations are used to test the measurement technique performance for different combination of tones when

sampling ice clouds globally. Results show that that water vapour densities can be derived with accuracies that can enable

ice process studies (i.e. better than 3%) both from a ground-based system (at the minute temporal scale and with circa 100 m

vertical resolution) and from a space/airborne system (at 500 m vertical resolution and with circa 5 km integration lengths) with

four tones in the right wing of the absorption line. A ground-based DAR system to be deployed at high latitude/high altitudes15

is highly recommended to test the findings of this work in the field.

1 Introduction

Adequate understanding of the cloud and precipitation processes that contribute to Earth’s water and energy cycle is required

before significant progress occur in our ability to predict future climate scenarios. This calls for a paradigm shift away from

the current observing system that mainly capture snapshots of “states” to the next-generation of observing systems that can20

observe both states and “processes” (Stephens et al., 2018).
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Future space-borne cloud and precipitation radars are expected to be at the center of such a revolution (The Decadal Survey,

2017), thus enhancing the view depicted in the past 20 years by the TRMM Ku-band Precipitation radar (Kummerow et al.,

1998), the GPM Dual-frequency (Ku-Ka) Precipitation Radar (Skofronick-Jackson et al., 2016) and the CloudSat W-band

Cloud Profiling Radar (Tanelli et al., 2007). While the first Doppler radar is expected to be launched on board the EarthCARE

satellite in 2021 (Illingworth et al., 2015) innovative radar concepts have been studied in the past decade ranging from multi-5

wavelength radars proposed e.g. as payloads of the Aerosol/Cloud/Ecosystems (ACE) mission and the Polar Precipitation

Measurement (PPM) mission for microphysical studies (Leinonen et al., 2015; Joe et al., 2010; Durden et al., 2016; Tanelli

et al., 2018) to Doppler radars for understanding cloud dynamics (Battaglia and Kollias, 2014; Illingworth et al., 2018; Battaglia

et al., 2018; Kollias et al., 2018) to constellations of radars in a CubeSat for advancing convective parameterizations (Peral et al.,

2015; Haddad et al., 2017; Sy et al., 2017).10

In parallel, radar systems operating at much higher frequencies such as the G-band (110-300 GHz) have been proposed to

study ice/snow microphysical properties (Hogan and Illingworth, 1999; Battaglia et al., 2014). Furthermore, there is interest in

exploring the possibility of profiling the water vapor in cloudy areas (Lebsock et al., 2015; Millán et al., 2016; Roy et al., 2018)

by using differential absorption radar (DAR) measurements near the 183.3 GHz water vapor absorption line. Water vapor is

one of the most critical atmospheric variables for numerical weather prediction models (Millán et al. (2016)) and profiles of15

humidity in cloudy areas are not adequately measured by current or planned systems as stated by WMO (Anderson, 2014;

Nehrir et al., 2017). While Lebsock et al. (2015) theoretically investigated the possibility of profiling water vapor within the

cloudy boundary layer in presence of cumulus and stratocumulus clouds and of quantifying integrated column water vapor

over ocean surfaces with a DAR system with channels on the left wing of the 183.3 GHz absorption line, Millán et al. (2016)

examined how the DAR technique can be applied to water vapor sounding in clouds at all levels by adopting multiple tones20

within the whole absorption band (140 to 200 GHz). Recently the DAR technique within the G-band has been demonstrated

by Cooper et al. (2018): not only ground-based measurements of planetary-boundary-layer clouds have been performed but an

error model and an inversion algorithm have been developed for retrieving the water vapor profile as well (Roy et al., 2018).

This work aims at assessing the potential of both space-borne and ground-based DAR systems for ice cloud studies. When

coupled with that of temperature the knowledge of the water vapor density in ice clouds has two benefits.25

1. It allows to derive the relative humidity with respect to ice (RHi) and then to identify regions where depositional

growth/sublimation processes are dominant (i.e. when the supersaturation is positive/negative in Fig. 1). Particle growth

by deposition is an important growth process in cold environments particularly when supercooled liquid water layers

provide sufficient water vapor for rapid growth (i.e. in regions above the dashed blue line in Fig. 1). DAR observations

could complement polarimetric radar observations like differential reflectivity that are particularly sensitive to deposi-30

tional growth in temperature regions which favor growth of asymmetric particle shapes (e.g. Verlinde et al. (2013); Oue

et al. (2016)).
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Figure 1. Dominant ice crystal habits (small photographs) as suggested by Magono and Lee (1966) for different environmental conditions

as classified in terms of temperature (x-axis) and supersaturation (y-axis). The color maps the relative humidity with respect to ice, RHi.

The dashed blue line indicates the supersaturation of supercooled water relative to ice. Black lines correspond to different level of RHi as

indicated by the labels. The dashed lines surrounding each continuous line correspond to a ±3% change in RHi.

2. The detection and the description of supersaturation areas in high level ice clouds could help us understand how the ice

crystal grow significantly enhance water mass fluxes due to sedimentation. This could have an impact on the dehydration

of the air entering the lower stratosphere (Kärcher et al., 2014).

3. It allows to identify dominant ice crystal habit growth in the different portions of the clouds as suggested by Magono

and Lee (1966) and schematically depicted in Fig. 1. Since the shape and internal mass distribution of the ice particles is5

affecting their scattering properties this has an immediate impact onto improving remote sensing retrievals.

The water vapor density for a given relative humidity is a strong function ot temperature: for instance for RHi = 100% the

water vapor density is changing by more than one order of magnitude (from 4.85 to 0.34 g/m3, see x-axis in Fig. 1) when
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moving from 0 to −30◦C. A knowledge of RHi within 3% seems appropriate for identifying the relevant regimes in Fig. 1.

This highlights that, in order to retrieve useful information for ice cloud studies, water vapor densities must be retrieved with

good accuracy (∼ 3% or better) for a range of values between 0.5 and 5 g/m3.

The paper is structured as following: first the theory of water vapor retrieval with DAR is shortly revisited (Sect. 2). In Sect. 3

CloudSat observations are used to reconstruct realistic ice microphysics profiles that can be used as input in a forward model5

for simulating reflectivities profiles at any frequency in the G-band.

Conclusions and future work are presented in Sect. 5.

2 Theory of water vapor retrievals

Here the theory underpinning DAR, thoroughly covered in Lebsock et al. (2015); Millán et al. (2016); Roy et al. (2018), is

briefly revised. The measured reflectivity from target with effective reflectivity Ze(r,f) at a given range r is given by:10

Zmeas(r,f) = Ze(r,f) e−2τ(0→r,f) (1)

where τ(0→ r,f) is the one way optical depth from the radar to the range r. The exponential term accounts for the radar

attenuation due to the gases and the hydrometeors with the factor two accounting for the two way path of the radar wave. Note

that multiple scattering effects (Battaglia et al., 2010) will be neglected hereafter since they are minimized by the small radar

footprints and by the low single scattering albedo of the medium at frequency in the vicinity of the absorption line. Following15

Roy et al. (2018) we consider the ratio of measured reflectivities at two ranges r1 and r2 = r1 + ∆r:

Zmeas(r1,f)
Zmeas(r2,f)

=
Ze(r1,f)
Ze(r2,f)

e−2[τ(0→r1,f)−τ(0→r2,f)] =
Ze(r1,f)
Ze(r2,f)

e2〈ke(f)〉∆r∆r (2)

where the 〈〉∆r symbol corresponds to taking the mean value for ranges between r1 and r2 so that

〈ke(f)〉∆r ≡
τ(0→ r2,f)− τ(0→ r1,f)

∆r
=

∫ r2
r1
ke(r,f)dr

∆r
=

∫ r2
r1

[ke gas(r,f) + ke hydro(r,f)]dr

∆r
(3)

is the mean extinction coefficient for such ranges. This equation can be further simplified by separating the water vapour20

components from the other gases and introducing the water vapour absorption coefficient per unit mass, κv as:

〈ke(f)〉∆r = 〈ρvκv(f,p,T )〉∆r + 〈ke dry air+hydro(f)〉∆r ≈ 〈ρv〉∆rκv(f,〈p〉∆r,〈T 〉∆r) + 〈ke dry air+hydro(f)〉∆r (4)

where in the last step we have assumed that the line shape κv(f) within the ∆r-layer can be approximated by its value at the

mean temperature and pressure of the layer and we have conjoined the dry air and hydrometeor extinction.

If we invert Eq. (3) we can then write:25

〈ke(f)〉∆r =
1

2∆r
log
(
Zmeas(r1,f)
Zmeas(r2,f)

Ze(r2,f)
Ze(r1,f)

)
(5)

and recombining Eq. (5) and Eq. (4) we finally get:

γ(f,r1, r2)≡ 1
2∆r

log
(
Zmeas(r1,f)
Zmeas(r2,f)

)
= 〈ρv〉∆rκv(f,〈p〉∆r,〈T 〉∆r) + 〈ke dry air+hydro(f)〉∆r −

1
2∆r

log
(
Ze(r2,f)
Ze(r1,f)

)

︸ ︷︷ ︸
A+Bf
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(6)

The DAR rationale is based on the idea that by performing measurements of the left hand side of Eq. (6) at different frequencies

it will be possible to fit the terms on the right hand side. The first term is directly proportional to the water vapor density via the

line shape κv(f); the last two terms are related to the dry air plus hydrometeor attenuation and the effective reflectivity ratio

at the two ranges (thus affected by the vertical variability). They can be assumed to vary weakly with frequency. Extinction5

of supercooled droplet is indeed proportional to frequency (e.g. see Lhermitte (1990)) and ice crystals behaves similarly with

a slight linear increase with frequency, as demonstrated in Fig. 2. Therefore the last two terms are modelled in this study via

a dependence which is linear with frequency. Since the the line shape κv(f) is known at a given T and p then 〈ρv〉∆r can

be derived by a mean square fitting procedure which fits all three terms on the right in Eq. (6) to the measured γ terms. The

procedure also allows the computation of errors for the retrieved fitted parameters and of a quality index for the fitting via the10

normalised χ2. If only three tones are available (or the full range of tones is less than 10 GHz) then B is assumed to be equal

0 (as done in Roy et al. (2018)). Therefore when only two tones are available ρv and its error can be directly computed from

formula (12) and (13) in Roy et al. (2018). Note that the quantities γ(f,r1, r2) are not affected by absolute calibration, which

makes the whole procedure immune to calibration errors.

3 Simulation of DAR profiles from CloudSat data15

At present, no radar reflectivity measurements at multiple G-band tones are available that can be used to evaluate the perfor-

mance of the technique. Our approach relies on using retrieved ice microphysical properties from spaceborne sensors and use

them as input to a forward radar model (DAR model) to generate reflectivities around the 183.3 GHz absorption band.

The CloudSat 94 GHz (3.2 mm) Cloud Profiling Radar (CPR) provides global observations of ice cloud profiles at a vertical

resolution of 480 m and a cross-track/along-track horizontal footprint of 1.5 km×2.5 km (Tanelli et al., 2008). When integrated20

with the observations from the CALIPSO Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) (Winker et al., 2007)

such observations can be used to retrieve ice microphysics. Here retrievals adopting the DARDAR algorithm (Delanoë and

Hogan (2010), http://www.icare.univ-lille1.fr/projects/dardar/) are used as input for the the DAR modelling. ECMWF auxiliary

data are used as input for temperature, pressure and relative humidity.

The DAR forward model uses the millimeter-wave propagation model from Rosenkranz (1999) for gas attenuation whereas25

the self-similar Rayleigh-Gans scattering model (Hogan and Westbrook, 2014) is adopted for computing the scattering prop-

erties of ice particles. The ice crystals model proposed by Leinonen and Szyrmer (2015) and labelled as model “A; LWP =

0.1kg/m2” is used. Tridon et al. (2019) have shown that this scattering model generally well fits triple frequency radar mea-

surements and in situ measurements.

Noise is injected into the reflectivity measurements according to the formula (see Appendix in Hogan et al. (2005)):30

∆Z[dB] =
4.343√
Np

[
max

(
1,

λ

4
√
πσvτs

)
+

2
SNR

+
1

SNR2

]1/2

(7)
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Figure 2. Attenuation coefficient for ice crystals with different mass-weighted maximum particle diameters as indicated in the legend for the

frequency range of interest for this study. The model “A; LWP = 0.1kg/m2” from Leinonen and Szyrmer (2015) is used. The shaded area

corresponds to the attenuation coefficient for supercooled liquid clouds for temperatures in the range between −30◦C and 0◦C.

where Np is the number of radar pulses transmitted (e.g. in the space-borne configuration 4200 for an integration length of

5 km), τs is the time between samples (i.e. the reciprocal of the pulse repetition frequency) and σv is the spectral width of

the Doppler spectrum. For space-borne systems the first term inside the bracket is practically always close to one because the

Doppler spectral width is expected to exceed 2 m/s due to the large satellite velocity (see Eq. 6 in Battaglia and Kollias (2014)).

The first term inside the square bracket needs to be at least one because the number of independent samples has to be smaller or5

equal to the number of samples. This implies that the so-called “time to independence” is of the order of 100 µs, thus smaller

than the time between pulses (equal to 166.7 µs for a PRF=6 kHz). The single pulse sensitivity is assumed to be −22 dBZ, a

realistic value with current technology (see Tab. 1). For ground-based system on the other hand we have assumed a spectral

width equal to 1 m/s and a single pulse sensitivity of -50 dBZ at 1 km range with 1 s integration (see Tab. 2). In all cases we

6
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Table 1. Technical specifications of the DAR space-borne system used in this study. The configuration here adopted is the one proposed in

an on-going UK-CEOI study (Dr Duncan Robertson, personal communications).

Satellite altitude, hsat 500 km

Satellite velocity, vsat 7600 ms−1

Frequency 170-200 GHz

Transmit power 100 W (EIK technology)

Antenna diameter ≥ 2 m

Antenna beam-width, θ3dB ≤ 0.05◦

Antenna gain 70 dBi

Receiver Noise Figure 6 dB

Pulse width 3.3 µs

Pulse Repetition Frequency (with frequency diversity) 6 kHz

Single pulse sensitivity -22 dBZ

Table 2. Specifics of the frequency-modulated-continuous wave radar based on W-band power amplifier and GaAs Schottky diode frequency

multiplication (Nils et al. (2017)) for the ground-based simulation (Dr Peter Huggard, personal communications).

Frequency 170-200 GHz

Transmit power 200 mW

Antenna diameter 0.4 m

Antenna beam-width, θ3dB ≤ 0.3◦

Antenna gain 55 dBi

Receiver Noise Figure 6.5 dB

Chirp Repetition Frequency 6 kHz

Bandwidth 2 MHz

Range resolution 75 m

Minimum detectable reflectivity @1km range and 1 s integration -50 dBZ

assume that the sensitivity remains the same when adding more tones. This could be realized by using frequency diversity and

increasing the duty cycle of the radar. A configuration where the duty cycle remains constant will also be discussed later in

Sect. 4.

3.1 Case study

The methodology is demonstrated for a precipitating system observed by CloudSat over the Southern Ocean between Antarctica5

and South America on the 2nd January 2007 at about 20:16 UTC. The system extends for roughly 1300 km with temperature

at the surface ranging from 281 K at the southern edge of the system to 274 K at the the northern edge of the system. The

7
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Figure 3. Top left: CloudSat measured reflectivity in the Southern Ocean south-west of Cape Horn. Dashed black lines corresponds to

different isotherms as labeled while the black arrow corresponds to the profile analysed in Fig. 5. Top right: water vapor density as derived

from ECMWF reanalysis with regions of constant relative humidity with respect to ice depicted as dashed lines. Bottom panels: mean

mass-weighted diameter of ice particle (left) and ice water content (right) as retrieved by the DARDAR product.

CloudSat 94 GHz reflectivity as derived from the 2B-GEOPROF product (Mace et al., 2007) is shown on the top left panel

of Fig. 3. The zero isotherm clearly demarcates the ice vs the liquid transition. The co-located ECMWF reanalysis for the

relative humidity field with respect to ice is depicted in the top right panel. In the glaciated region of the precipitating system

the synergy between the CloudSat radar and the CALIPSO lidar (Sassen et al., 2008) offers a unique prospective on the ice

microphysics (Battaglia and Delanöe, 2013). The outputs of the DARDAR retrieval (Delanoë and Hogan, 2010) are shown in5

the bottom panels of Fig. 3.

These microphysical outputs are then used with look-up-tables generated from scattering models to compute reflectivities

at any frequency within the 183.3 GHz absorption line. An example of two frequencies (187 and 200 GHz) for the space-
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Figure 4. Simulated reflectivities at 187 and 200 GHz for a space-borne systems with specifics as in Tab. 1 for the scene shown in Fig. 3.

borne configuration is shown in Fig. 4. It is interesting to note how differently the two frequencies are penetrating into the

precipitating system, with the 187 GHz severely attenuated by water vapour below 4 km. On the other hand the 200 GHz is

severely attenuated in the region below 2 km at latitudes between -60◦ and −58◦, a combined result of large ice water and

water vapor contents.

The profile at latitude -58.07◦ (black arrow in the top left panel of Fig. 3) is used here to demonstrate how to derive a water5

vapor profile in a three-step procedure (see Fig. 5):

1. an interval ∆r is selected and the profiles of the quantity γ(fj , r) [see Eq. (6)] are computed with their corresponding

errors ]computed from the estimated errors on the measured reflectivities via Eq. (7)] at the different DAR frequencies

f1, f2, . . . (continuous blue lines with bars in the small insets of Fig. 5);

2. the spectral dependence of the line shape κv(f,〈p〉∆r,〈T 〉∆r) is derived at each level (dashed red lines in the small insets10

of Fig. 5) by using the average temperature and pressure of the layer and the gas absorption model;

3. a mean square fitting procedure of the form expressed in Eq. (6) which accounts for the errors in γ(fj , r) allows to

retrieve estimates of the three fitting parameters (Â,B̂ and 〈ρ̂v〉∆r). γ values that are too noisy are excluded from the

fitting (e.g. at 2.76 km only four tones are considered for the space-borne configuration).

For the space-borne configuration the retrieval shows that a set of 7-tone DAR with frequencies on the right wing of the15

183.3 GHz band as listed in the legend of the top panel of Fig. 5 can retrieve water vapor within the ice cloud with good

accuracy (i.e. within 15%) between 7.0 km (240 K) down to 2.5 km (268 K) with water vapour contents changing by more than

one order of magnitude.
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Figure 5. Top panel: simulated reflectivities for the profile at latitude -58.07◦ (black arrow in the top left panel of Fig. 3) for a 7-channel

space-borne DAR with frequencies on the right wing of the 183.3 GHz line. An integration length of 1.1 km is assumed (corresponding

to Np = 920). The CloudSat 94 GHz profiles is shown for reference as well (black crosses). Continuous (dashed) lines correspond to

reflectivities including (without) noise. Three panels: examples of the fitting procedure at three different altitudes to estimate 〈ρv〉∆r with

∆r = 500m. True and estimated values are inserted in the figure. Bottom panel: same as top panel side for a 5-tone ground-based DAR. An

integration time of 2 min (corresponding to Np = 720,000) and a vertical resolution of 120 m are assumed.
10
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Figure 6. Left panel: relative error in the retrieval of ρv for the case study shown in Fig. 3 for a 7-channel space-borne DAR with frequencies

as listed in the legend on the top side of Fig. 5. Here ∆r = 500 m and a 5 km along-track averaging has been performed. The dashed lines

correspond to the -30◦C and -10◦C isotherms and the black line corresponds to CloudSat reflectivities of -25 dBZ (roughly indicating the

cloud boundaries). Right panel: same as left panel for a 5-tone ground-based DAR with frequencies as listed in the legend on the bottom side

of Fig. 5. Here ∆r = 120 m and a 2-minute averaging has been performed.

The relative error in the retrieval of ρv for the whole case study shown in Fig. 3 is reproduced in the left panel of Fig. 6.

Clearly there are two critical regions: 1) at low temperatures (≈ T <−30◦C) low values of ρv limit the amplitude of the signal

(e.g. compare the red curves between the top three small insets in Fig. 5); 2) at warm temperatures (≈ T >−10◦C) and large

CloudSat reflectivities the cumulated attenuation tends to strongly reduce the SNR and therefore [see formula (7)] increase

the uncertainty of the reflectivity measurements and as a result of γ(fj , r). In both situations the retrieval becomes inaccurate5

but such deterioration can be clearly identified by looking at the SNR of the different DAR channels and at the associated

error induced in the estimated value of water vapor, 〈ρ̂v〉∆r.
The same profile has also been used to analyze the performance of a ground-based instrument by assuming that the instru-

ment is located at the −3◦C isothermal line and is looking upward. Again tones in the right wing of the absorption band are

selected. The simulated reflectivities, shown in the bottom side of Fig. 5, show strong attenuation in the lower troposphere with10

the tones close to the center of the line reaching the noise level already just above 2 km. The only tones that can penetrate deep

into the clouds are the ones that have not enough water vapor signal high up in the troposphere (e.g. the highest three tones at

2.68 km, see bottom small insets in Fig. 5). This demonstrates why, while the accuracy of the retrieval in the lower troposphere

is excellent, it deteriorates quickly above 2.5 km. The right panel of Fig. 6 demonstrates the same thing for the whole event:

the accuracy of the retrieval is quickly worsening 2/2.5 km above the ground where temperatures decrease to values lower than15

-15◦C. On the other hand, by integrating for periods of the order of 1-2 minutes, ground-based system can achieve extremely

accurate results for temperature between 0 and -15◦C.
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This case study highlights that sounding ice clouds by air-borne or space-borne DAR systems is clearly advantageous with

respect to ground systems because regions with low water vapor contents (thus low attenuation) are encountered first. This

implies that tones close to the line center can stay well above MDT in the areas where they provide useful information (i.e. at

low water vapor contents). The same is not true for ground-based geometry because, unless the temperature at the ground is

very cold, large levels of attenuation are experienced by the radar pulse in the lower troposphere.5

4 Statistical analysis from CloudSat climatology

The A-Train has provided the first global climatology of ice clouds with a detailed description of ice cloud occurrences, ice

microphysics and ice radiative effects (Hong and Liu, 2015). The A-Train ice cloud dataset represents therefore an ideal test-

bed to investigate the potential of a DAR system for measuring relative humidity inside ice clouds. The methodology described

in Sect. 3 has been applied to ten days of CloudSat data (from 1st to 10th January 2007) to study the performances both of10

a space-borne and a ground-based DAR system with several channels within the 183.3 GHz absorption band. The ground-

based system is assumed to look upward from the height corresponding to the 270 K isothermal level as identified by the

ECMWF reanalysis. For any profile with ice water path exceeding 20 g/m2 the profile of water vapour is retrieved via the

DAR technique and, by comparing such value with the assumed one (from ECMWF reanalysis), the relative error on ρv is

computed. Results are binned according to the CloudSat reflectivity values (above -10 dBZ and -25 dBZ for the space borne15

and ground-based system, respectively) and the ambient temperatures (above 240 K). Fig. 7 shows the fractional occurrence

when the DAR systems provide ρv with accuracy better than 3% (i.e. a very valuable information). For the space-borne system

there is an optimal region between -5 and 15 dBZ and for temperatures between 250 and 265 K. Results tends to worsen at

temperature close to 273 K and at very high reflectivities (a result of the reduced number of tones with signal significantly

above the SNR), but also at very cold temperature (a result of the reduced value of the tones further away from the band center)20

and low reflectivities (a result of the reduced SNR).

For the ground-based system (right panels in Fig. 7) ρv is optimally retrieved in the lower troposphere with the quality of the

retrieval typically worsening with decreasing temperatures and decreasing reflectivities (due to the reduced SNRs). The only

exception is at very large reflectivities, where non linearities of the right hand term in Eq. (6) introduced by Mie and attenuation

effects cause larger errors.25

We have selected different combinations with 2, 3, . . . 5 tones and we have analysed which combinations achieve the best

retrieval performances. Results are summarized in Fig. 8. Clearly increasing the number of tones (all with the same sensitivities)

is beneficial but the improvement when surpassing four tones is marginal (e.g. compare the 4 with the 5 and 6 tones). On the

other hand it is obvious that improving the SNR is generally producing better results via a reduction of the noise in the Z

measurements according to Eq.( 7). For instance for the 2- and 4-tone curves the impact of the improvement corresponding to30

a variation of a factor of two in sensitivity (±3 dB) is illustrated in Fig. 8 by the shading. Note that even when considering

DAR configurations with the same duty cycle there is indeed an improvement in water vapor profiling when using four vs
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Figure 7. Statistical analysis based on 10 days of CloudSat showing the expected frequency occurrence of retrievals of ρv better than 3% for

a space-borne system (left) and a ground-based system (with ground temperature of 270 K). Top (bottom) panels: results are clustered using

reflectivities vs temperatures (water vapor contents). The specifications of the systems correspond to 4-tone DARs which are optimized for

ice cloud studies.

two channels. In fact, doubling the number of channel with the same duty cycle corresponds to averaging half the number of

samples, which equates to a reduction of 1.5 dB in sensitivity (so roughly half the range currently shown by the shaded area).

5 Discussion and conclusions

The potential of a multi-frequency differential absorption radar (DAR) system with several tones within the 183.3 GHz water

vapor absorption band for profiling water vapour within ice clouds is assessed both for a ground-based and a space-borne5
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Figure 8. Fraction of retrieval points (y-axis) having errors lower than a given threshold (x-axis) for the space-borne configuration (left) and

the ground-based configuration with 2-3-4 and 5 tones. Only the combinations that achieve the best accuracies (as indicated in the legend)

are reported. The dashed region indicate results when the sensitivity is increased/decreased by 3 dB. For the space-borne (ground-based)

configuration the retrieval is applied only to points corresponding to CloudSat reflectivities exceeding -15 dBZ (-25 dBZ) and temperature

exceeding 240 K.

configuration. Realistic ice profiles derived from A-Train observations are inputs of DAR simulations which are used to test

the performances of water vapor retrievals based on fitting the line shape via a minimum least square fitting procedure.

Our findings can be summarized as following.

1. With realistic minimum detection thresholds, DARs can provide useful information in thick ice/mixed-phase clouds

and they can complement other techniques (e.g. water vapor DIALs, Nehrir et al. (2017)). Four tone DARs seem to be5

the right balance between complexity (i.e. number of channels) and retrieval performances. In the domain of CloudSat

reflectivities above -15 dBZ and T > 240 some of the best 4-tone combination allow to retrieve ρv with accuracy better

than 3% in more than 25% of the cases when ice is present with the best results obtained for ice clouds with reflectivities

between -5 and 10 dBZ.

2. Ground-based DAR systems can provide excellent profiling of the warmer parts of ice clouds where ρv values exceed10

1 gm−3 but they become increasingly less accurate when looking at the cold regions with low moisture. In such areas

things are expected to improve when colder ground temperature are considered (here we have simulated a scenario with

ground temperature of 270 K). Also scanning options could be considered to increase the differential absorption signal

of channels far away from the center of the band by increasing the path length.

3. Air-borne or space-borne DAR systems are clearly advantageous with respect to ground systems when looking at regions15

with low water vapor contents because such regions are encountered first by the radar wave and therefore are affected
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by less attenuation. This implies that tones close to the band center can stay well above MDT in the areas where they

provide useful information (i.e. at low water vapor contents). The same is not true for ground-based geometry because,

unless the temperature at the ground is very cold, large levels of attenuation are experienced by the radar tones close to

the band center in the lower troposphere.

4. The selection of the tones is driven by a tradeoff between differential signal and signal. Ideally the attenuation signal5

should be maximised but if the attenuation is too strong the signal becomes increasingly noisy and ultimately goes below

the minimum sensitivity. For ground-based systems it would be ideal to have tones that can be adjusted depending on

the atmospheric conditions and latitude/altitude location since, with lower ground temperatures, channels closer to the

183.3 GHz center becomes increasingly useful.

5. The quality of the retrieval can be easily evaluated by considering retrieval errors and χ2 values that are computed as10

part of the minimum least square fitting procedure.

6. Transmitting licences are attainable for airborne and ground-based (e.g. in UK DAR tones within the following bands

may be allowed: 173.85 to 182 GHz, 185 to 190 GHz, 191.8 to 195.75 GHz, 196.15 to 199.99 GHz with other allowed

windows below 173.85) but currently much more unaccessible for space-borne systems since such bands are reserved

to passive microwave radiometers. As a first step to assess the potential of the DAR concept for ice cloud studies a15

ground-based DAR system to be deployed at high latitude/ high altitudes is highly recommended.
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