
Author’s response to Associate editor’s comments for the manuscript “A neural network radiative transfer model

approach applied to TROPOMI’s aerosol height algorithm” (amt-2019-143).

Reviewer comment (general): This paper presents the application of the neural network to on-line radiative

transfer calculation for accelerating the operational aerosol height retrievals from TROPOMI measurements. I agree

with other two reviewers; the results are very significant and interesting about the speed up of three orders of

magnitude without insignificant change of the retrieval accuracy. However, I think that several parts of this paper

should be revised before publication.

Author’s response: Thank you for taking the time to review this manuscript.

Reviewer comment (specific 1): Page 2, line 12-15: With TROPOMI 50,000 pixels per orbit in many cases.

• I am not clear for this sentence, does it mean that 6% of TROPOMI pixels are typically identified as aerosol

contaminated pixels based on UV aerosol index (> 0) for retrieving aerosol heights ?

• I would like to suggest “operational retrievals are time restricted for retrieving aerosol layer height” to be

revised like “The operational computation capability is much restricted for TROPOMI recording approximately

1.4 million pixels within a single orbit where 50,000 pixels are typically identify as aerosol contaminated pixels

for retrieving aerosol layer height.”

Page 2 Line 17: while → whereas

Author’s response:

• Yes, it does mean that approximately 6% of all TROPOMI pixels over an area as large as Europe will contain

UVAI values above 0.0.

• We accept the suggestion.

Finally the comment Page 2 Line 17: while → whereas is rejected as that is incorrect grammar and changes

the sentence structure.

The manuscript will clarify the sentence and include suggestions made by the Associate Editor.

Changes to the manuscript:

The paragraph now reads (with bold characters representing the change):

As near-real time processors need to consistently go through large volumes of data recorded by the satellite for the

mission lifetime, the operational computation capability is much restricted for TROPOMI recording

approximately 1.4 million pixels within a single orbit where, on average, 50,000 pixels are typically

identified as aerosol contaminated pixels (with a UVAI value greater than 0.0) for retrieving aerosol

layer height. This places a steep requirement on the computational infrastructure to process all possible

pixels from a single orbit. The online radiative transfer model severely limits the ALH data product, processing

only a small fraction of the total possible pixels within a single orbit while compromising the timeliness of the data

delivery.

Reviewer comment (technical comments) and response:

Page 3 Line 23: scaled by → constrained with

Response: Accepted.

Page 3 Line 26-28: This cost function is also constrained with a priori knowledge of the state vector x. The final

retrieval product of zaer and τ

Response: Accepted. The paragraph is amended as follows:
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Minimising this cost function for a particular zaer and τ (the elements of the state vector x to be retrieved and

fitted) gives us the final retrieval product. This definition of the cost function is unique to OE, as it is

constrained with a priori knowledge of the state vector x (represented by xa) and the a priori error

covariance matrix Sa.

Page 4 line 1: “The forward model is employed to simulate the measured reflectance spectrum with model parameter

x as following” or delete “modeled”

Response: Accepted.

Page 4 line 4: delete “)” from wavelength λ)

Response: Accepted.

Where I and Eo represent the Earth radiance and solar irradiance, respectively, with the cosine of the solar zenith

angle (θ0) µ0

Response: Accepted.

Page 4 line 5: employed to update the state vector as following

Response: Accepted.

Page 4 line 7: where i is the current iteration and Ki is the matrix of derivatives (Jacobian) of the reflectance with

respect to state vector parameters at the current iteration i.

Response: Accepted.

Page 4 line 9: An iterative estimate is convergent to a solution if the relative changes in the state vector is less than

.

Response: Accepted.

Page 4 Line 10-11: The retrieval is decided to be failed if /their respective boundary conditions by OE → the

respective boundary conditions

Response: Accepted.

Page 4 Line 15: The forward model iteratively simulates TOA radiance spectra until the convergence of χ2 (Equation

1).

Response: Accepted with minor changes: Optimal estimation iteratively simulates TOA radiance

spectra until the convergence of χ2 (Equation 1).

Page 4 Line 16: To define TOA reflectance, convolved high resolution reference solar spectrum onto the instrument’s

slit function is used instead of measured solar irradiance?

Response: The paragraph is not clear on how the forward model calculations are done. The following

is the amendment to the manuscript:

For this, disamar computes reflectances at a high resolution wavelength grid. The computed high

resolution reflectances are combined with a reference solar spectrum derived from Chance and Kurucz

(2010) to obtain a high resolution Earth radiance. The high resolution Earth radiance and the solar

spectrum are convolved with the instrument spectral response function to obtain Earth radiance

and solar irradiance spectrum in the instrument’s wavelength grid, before finally computing the

reflectance spectrum in the instrument grid using Equation 2.

Page 5 Line 4 : While → In spite that

Response: not accepted. ‘In spite that’ is incorrect grammar. The sentence is unamended.

Page 5 Line 5: (Sanders and de Haan, 2016) → Sanders and de Haan, 2016 or preliminary experiments have

(Sanders and de Haan, 2016).

Response: accepted.

Page 5 Line 5-6: the impact of ignoring RRS on the retrieval of aerosol layer height using the oxygen A-band are
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much smaller than that of other retrieval errors such as ??.

Response: accepted. Amended as follows:

ignoring RRS of the oxygen A-band in the forward model are significantly smaller than the effect of other model

errors such as errors due to incorrect surface albedo.

Page 5 Line 6-7: Due to this cross sections → Therefore, RRS has been historically not simulated in the forward

model of the KNMI aerosol layer height retrieval algorithm.

Response: accepted.

Page 5 Line 8-9: The retrieval of Zaer in the presence of clouds is still challenging (reference) and thereby is

performed only for cloud-free cases masked when cloud fraction is less than 0.2. Compared to totally cloud-free

scene, the retrieval errors of Zaer are considerably problematic when the measured scene is masked as clear-sky in

the presence of optically thin cirrus (reference).

Response: accepted with minor changes to suggestion:

The atmosphere is assumed cloud-free, which is a required simplification as the retrieval of zaer in the presence

of clouds is still challenging (Sanders et al., 2015) and thereby is performed only for pixels which are

unlikely to contain clouds. Compared to totally cloud-free scenes, errors in retrieved zaer are large

for cloud-free scenes containing undetected optically thin cirrus clouds (Sanders et al., 2015).

Reviewer comment (specific comments):

Page 5 Line 10 : “Instead, TROPOMI incorporates information from the VIIRS instrument to detect the Presence

of clouds in the measured scene, which are further on mentioned in the output product flags”

• This author did not describe how to identify cloudy scenes up to here in previous algorithm or instrument

instead current TROPOMI algorithm.

• “TROPOMI” → TROPOMI Zaer algorithm or TROPOMI cloud algorithm?

• “which are further on mentioned in the output product flags” → What is output product here?

• Aerosol height or cloud product? Anyway output product flag contains information on how to identify a pixel

as cloud using cloud product between TROPOMI or VIIRS? Please specify more.

Author’s response: Cloud detection is not a topic of this paper and hence is not convered in this paper. However,

in order to reduce confusion, cloud flagging is further clarified.

Changes to the manuscript: The paragraph has been removed from section 2.2 and added to 2.3. It now reads:

TROPOMI incorporates information from the VIIRS instrument to detect the presence of cirrus

clouds in the measured scene (using a cirrus reflectance threshold of 0.01). This information is

further combined with cloud fraction retrievals by the TROPOMI FRESCO algorithm (maximum

cloud fraction of 0.6), and the difference between the scene albedo in the database in the UV band and

the apparent scene albedo at the same wavelength calculated using a lookup table (if the difference

is larger than 0.2, it suggests cloud contamination). A combination of these different cloud detection

strategies results in the cloud warning flag in the level-2 TROPOMI ALH product.

Reviewer comment (specific comments):

Page 5 Line 11: Please provide details on how to decide the fraction of the pixel containing aerosols.

Author’s response: Aerosol fraction is not a retrieval parameter, and so there are no details available to decide

the fraction of the pixel containing aerosols. The pixel is simply assumed to entirely contain aerosols.

Changes to the manuscript: There are no changes made to the manuscript for this comment.
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Reviewer comment (technical comment):

Page 5 Line 15-16 : The aerosol scattering phase function significantly more computations→ A Henyey-Greenstein

model (Henyey and Greenstein, 1941) is used to parameterize the aerosol scattering phase function, which is one of

the widely used approximations.

Author’s response: Accepted. The sentence has been amended as suggested by the reviewer:

A Henyey-Greenstein model (Henyey and Greenstein, 1941) with an asymmetry parameter value of

0.7 is used to parameterize the aerosol scattering phase function, which is one of the widely used

approximations.

Reviewer comment (specific comment):

Page 5 Line 17: what is the fixed aerosol optical properties taken from AERONET data?

I am not clear about “the consequences of fixing them” based on the following sentence “GOME-2 spectra to show

that the algorithm is robust against these model assumptions”

Author’s response: The fixed optical properties mentioned in this sentence are the single scattering albedo and

the Henyey Greenstein phase function asymmetry parameter.

Changes to the manuscript: The sentence now reads:

These fixed aerosol optical properties have been derived from AERONET data and tested by Sanders

et al. (2015), who retrieved zaer from GOME-2 spectra to show that the retrieval algorithm is robust

to fixing aerosol model parameters such as the single scattering albedo and the Henyey-Greenstein

phase function asymmetry parameter.

Reviewer comment (specific comment):

Page 5 Line 26: Actually, does NN-based algorithm include any complexity of the model thanks to the speed up? If

not, please revise “In constrat endeavor” to “The speed up of forward model simulation encourages increasing the

complexity of simulation assumption ” and move to section 5.

Author’s response: Accepted.

Changes to the manuscript: The following sentences were REMOVED:

In contrast, a neural network model is significantly faster. While the speed of the neural network model encourages

increasing the complexity of the model, for a comparative study the neural network models are trained to replicate, as

best as possible, the line-by-line version. Once this is achieved, the improvement of the algorithm will be an iterative

endeavour.

The paragraph now reads:

These simplifications in the Disamar forward model are a necessity for the line-by-line aerosol layer

height algorithm, owing to its slow computational speed. The speed up of forward model simulation

encourages increasing the complexity of simulation assumption.

Reviewer comment (technical comments):

Page 6 Line 6: modeled measured reflectance → modeled reflectance

Response: accepted.

Page 6 Line 8: are derived from → are taken from, which provide →, including.

What is about meteorological input at surface level?

Response: accepted. The meteorological input at surface level is also derived from ECMWF. The
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sentence is amended as follows:

Meteorological parameters are taken from ECMWF (European Centre for Medium-range Weather

Forecast), including the temperature-pressure profile at 91 atmospheric levels (of which the surface

is a part).

Page 6 Line 9: The various parameters → The various geophysical parameters

Response: accepted.

Page 6 Line 11: requires → takes?

Response: accepted.

Page 7 Line 4: Kingma and Ba (2014)) → Kingma and Ba (2014)

Response: accepted.

Page 9 Line 34: Because of this → Therefore

Response: accepted.

Reviewer comment (specific comment):

Page 12 :

(a) I am not clear why “augmented” is used as an adjective for the neural network. It looks better just to indicate

it as “the neural network”.

(b) in this section, most of Figures are not directly introduced such as (Figure 9a), (Table 4). Please try to

introduce a Figure directly and then give relative analysis.

Author’s response:

(a) Accepted. The word “augmented” is removed.

(b) Accepted. The following changes have been made to the manuscript:

Section 3.2: Figure 1 plots the distribution of the input parameters necessary for training the

neural network. The neural network model accepts solar azimuth and viewing azimuth angles

separately, however they are plotted together as relative azimuth angle in Figure 1 to save space.

Section 3.2: Figure 2 plots the summed losses as a function of training iteration for different

configurations.

Section 3.2: Figure 4 plots the performance of each of the neural networks trained on the testing

data set

Section 4.1: Figure 5 compares the retrieved zaer from line-by-line and neural network approaches

for each of the synthetic experiments. A histogram of these differences in plotted in Figure 6.

Section 4.1: Out of the 8000 scenes within the synthetic experiment, NN retrieved aerosol layer

heights for 546 scenes where Disamar did not. Contrariwise, 586 scenes converged for Disamar

and not for NN. A comparison of the biases from these odd retrieval results is plotted in Figure

7, which indicates that retrievals from NN in cases where Disamar fails are realistic as the

distribution of the biases is very similar to those cases when Disamar succeeds and NN does not

(Figure 7)

Section 4.2: A MODIS Terra image of the plume and the retrieved absorbing aerosol index from

TROPOMI is plotted in Figure 8.

Section 4.2: Figure 9 compares the retrieved zaer over the plume using the line-by-line and neural

network based forward models, respectively.
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Section 4.2: Figure 10 provides plots for further comparison between the two retrieval tech-

niques.

Reviewer comment (technical comments):

Page 12 Line 2: Figure 8a → Figure 8b — insert Figure a before “, which” at line 1. Please use Figure 8b more in

this analysis.

Response: accepted.

Page 12 line 2-3: absorbing aerosol index (AAI)

Response: accepted.

Page 12 line 4: Pixels that were cloud contaminated → cloud-contaminated pixels

Response: accepted.

Page 12 line 4: What is the processing chain?

Author’s response: processing chain here refers to the pool of pixels to be processed. To make it

more clear, the sentence has been amended in the following manner:

Cloud-contaminated pixels were removed from the data selected for processing using the FRESCO cloud mask

product from TROPOMI (maximum cloud fraction of 0.2)

Reviewer comment (specific comments):

Page 12 line 5-6:

• Scientific comment: the FRESCO-based cloud fraction is positively biased for all typed aerosols or just for

biomass burning aerosols. Please clarify.

• Editing comment: “However, the cloud-free biomass burning aerosol pixels could be screened out as the high

cloud fraction of greater than the threshold is likely to be retrieved.”

Author’s response:

• In general, FRESCO-based cloud fraction retrievals will be positively biased over a cloud-free scene containing

aerosols. The manuscript was amended as:

... removed as the cloud fraction values for these pixels were higher than the threshold. This is

because FRESCO-based cloud fraction values over cloud-free scenes containing aerosols (biomass

burning aerosols in this case) are generally expected to be positively biased. The retrieval

algorithms did ...

• This is not correct as we have observed accurate aerosol layer height retrievals (when compared to co-located

lidar profiles) for pixels with FRESCO cloud fraction threshold values greater than 0.6 as well. This editing

comment is not implemented into the manuscript.

Reviewer comment (technical comments):

Page 12 line 7: “, as the surface in these regions” → where the surface albedo retrieval is likely to be wrong.

Response: accepted.

Page 12, line 3-7: This part should be described in detail in section 2: the TROPOMI aerosol layer height retrieval

algorithm.
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Response: accepted. The following paragraph has been added to Section 2.3:

TROPOMI incorporates information from the VIIRS instrument to detect the presence of cirrus

clouds in the measured scene (using a cirrus reflectance threshold of 0.01). This information is

further combined with cloud fraction retrievals by the TROPOMI FRESCO algorithm (maximum

cloud fraction of 0.6), and the difference between the scene albedo in the database in the UV band and

the apparent scene albedo at the same wavelength calculated using a lookup table (if the difference

is larger than 0.2, it suggests cloud contamination). A combination of these different cloud detection

strategies results in the cloud warning flag in the level-2 TROPOMI ALH product.

Page 12, line 8-10: Figure 9 compares the retrieved Zaer over the plume using the line-by-line and neural network

based forward models, respectively. The number of the converged retrievals is 7418 for the line-by-line algorithm,

but 7370 for the neural network algorithm.

Response: accepted.

Page 12, line 11: this analysis is contradictory, please revise and give more interprets on Fig 8.c; for example,

where/why the positive/negative biases are dominant.

Response: accepted. The paragraph now reads:

The differences between zaer (disamar) and zaer (NN) go up to as much as 0.5 km (Figure 9c). A

majority of the negative differences are for the part of the plume extending from the coast between

47◦N and 40◦N. Figure 10 provides plots for further comparison between the two retrieval techniques.

The paragraph goes on further to answer the conditions where the negative/positive biases are

dominant by discussing Figure 10. Figure 9c alone is insufficient to answer this question.

Page 12, line13-15: please revise this sentence, it is very hard to see what is the subject for “indicate” after

respectively.

Response: agreed. The paragraph now reads:

... retrieved aerosol layer heights which were (on average) less than 50.0 meters apart from the

same by the line-by-line counterpart (Figure 10b). The standard deviation of the differences are

approximately 160 meters, which indicates the presence of outliers. However, a majority of the

differences in the two retrievals are less than 100 meters; this is indicated by the 15th and the 85th

percentile of these differences of -115.0 meters and 40.0 meters respectively. Although ...

Page 12, line 18: due to over-estimation → caused by over-estimation of ?? by.

Response: accepted. The sentence now reads:

Most of these biases were caused by an over-estimation of the retrieved aerosol layer height using

the neural network algorithm, in comparison to the same from disamar.

Page 12, line 19: a consistent bias of 60 meters with a standard deviation of 30 meters.

Response: accepted.

Page 13, line 2: the aerosol layer height algorithm among L2 algorithms is unique for implementing online RT?

Response: no. There are several other algorithms that use online radiative transfer calculations. The

statement does not say that aerosol layer height is unique in its use of online RT calculations among

every other level 2 algorithm, however it is clarified as follows:

Of the algorithms that currently retrieve TROPOMI’s suite of level-2 products, the aerosol layer

height processor is an example of one that requires online radiative transfer calculations.

Page 13, line 4: Disamar just calculate radiance?

Response: no. Disamar calculates several outputs, however the sun-normalised radiances are the

important one for aerosol layer height (as well as the derivatives). The line is clarified as follows:

These online calculations have traditionally been tackled with KNMI’s radiative transfer code disamar,
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which calculates (among other parameters) sun-normalised radiances in the oxygen A-band.

Page 13, line 22: We evaluate the Zaer retrieved from TROPOMI measurements over Southern California on 12

December 2017 when the fire plume extensively floats from land to ocean over a dry and almost cloudless scene.

Response: accepted with minor changes to the reviewer’s suggestion. The paragraph now reads:

We evaluate aerosol layer heights retrieved from TROPOMI measurements over Southern California

on 12 December, 2017, when the fire plume extensively floats from land to ocean over a dry and

almost cloudless scene.

Table 4 caption: Statistics of difference in retrieved zaer between Disamar and NN from figure 9c.

Response: accepted.

Figure 2, Figure 3, Figure 4: characters looks vague.

Response: accepted. The font sizes in the plots have now been increased.
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Abstract. To retrieve aerosol properties from satellite measurements of the oxygen A-band in the near infrared, a line-by-

line radiative transfer model implementation requires a large number of calculations. These calculations severely restrict a

retrieval algorithm’s operational capability as it can take several minutes to retrieve aerosol layer height for a single ground

pixel. This paper proposes a forward modeling approach using artificial neural networks to speed up the retrieval algorithm.

The forward model outputs are trained into a set of neural network models to completely replace line-by-line calculations in5

the operational processor. Results of comparing the forward model to the neural network alternative show encouraging results

with good agreements between the two when applied to retrieval scenarios using both synthetic and real measured spectra from

TROPOMI (TROPOspheric Monitoring Instrument) on board the ESA Sentinel-5 Precursor mission. With an enhancement of

the computational speed by three orders of magnitude, TROPOMI’s operational aerosol layer height processor is now able to

retrieve aerosol layer heights well within operational capacity.10

1 Introduction

Launched in October 13, 2017, The TROPOsperic Monitoring Instrument (Veefkind et al., 2012) on board the Sentinel-5

Precursor mission is the first of the satellite-based atmospheric composition monitoring instruments in the Sentinel mission of

the European Space Agency. The aerosol layer height (ALH) retrieval algorithm (Sanders and de Haan, 2013; Sanders et al.,

2015; Nanda et al., 2018a, b) is a part of TROPOMI’s operational product suite, expected to be delivered near real time. The15

ALH (symbolised as zaer) retrieval algorithm, operating within the near infrared region in the oxygen A-band between 758 nm

- 770 nm, exploits information about heights of scattering layers derived from absorption of photons by molecular oxygen —

the amount of absorption indicates whether the scattering layer is closer or farther from the surface; if the number of photons

absorbed by oxygen is higher, it suggests a longer photon path length due to an aerosol layer present closer to the surface. This

principle has been applied to cloud height algorithms such as FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen20

A-band) by Wang et al. (2008), which use look up tables for generating top of atmosphere (TOA) reflectances to compute cloud

parameters. Since clouds are such efficient scatterers of light, FRESCO can approximate scattering by cloud using a Lambertian

model — this simplification works for optically thick cloud layers quite well. For aerosol layers, however, such calculations
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need to be done in much greater detail due to their weaker scattering properties. TROPOMI’s ALH algorithm employs the

science code Disamar (Determining Instrument Specifications and Methods for Atmospheric Retrievals) that uses the Layer-

Based Orders of Scattering (LABOS) radiative transfer model based on the doubling-adding method (de Haan et al., 1987)

that calculates reflectances at the TOA and its derivatives with respect to aerosol layer height and aerosol optical thickness (τ ).

These calculations are done line-by-line, requiring calculations at 3980 wavelengths to generate these TOA reflectances within5

the oxygen A-band. Having computed the TOA reflectance spectra, aerosol layer heights are retrieved with Optimal Estimation

(OE), an iterative retrieval scheme developed by Rodgers (2000) that incorporates a priori knowledge of retrieval parameters

into their estimation. Such a retrieval scheme also provides a posteriori error estimations, which are important for assimilation

models and diagnosing the retrieval results.

The ALH retrieval algorithm is computationally expensive, requiring several minutes to compute zaer for a single ground10

pixel (Sanders et al., 2015). As near-real time processors need to consistently go through large volumes of data recorded by

the satellite for the mission lifetime, operational retrievals are time restricted . With
::
the

::::::::::
operational

::::::::::
computation

:::::::::
capability

::
is

::::
much

::::::::
restricted

:::
for

:
TROPOMI recording approximately 1.4 million pixels within a single orbit

:::::
where,

::
on

::::::::
average,

::
50,a rough

estimate based on a minimum UV Aerosol Index of 0 indicates that at least six percent of all pixels over an area as large as

Europe will be eligible
:::
000

:::::
pixels

:::
are

::::::::
typically

::::::::
identified

::
as

::::::
aerosol

::::::::::::
contaminated

:::::
pixels

:::::
(with

:
a
:::::
UVAI

:::::
value

::::::
greater

::::
than

::::
0.0)15

for retrieving aerosol layer height. This number can go beyond 50,000 pixels per orbit in many cases, placing
:::::
places a steep

requirement on the computational infrastructure to process all possible pixels from a single orbit. The online radiative transfer

model severely limits the ALH data product, processing only a small fraction of the total possible pixels within a single orbit

while compromising the timeliness of the data delivery.

The bottleneck identified here is the large number of calculations that the forward model has to compute to retrieve in-20

formation on weak scatterers such as aerosols. Several steps to circumvent this bottleneck exist, such as using correlated

k-distribution method to reduce the number of calculations (Hasekamp and Butz, 2008), using a look up table for calculating

forward model outputs, or entirely foregoing the forward model and directly retrieving zaer from observed spectra using neural

networks (Chimot et al., 2017, 2018). Studies by Sanders and de Haan (2016) have shown that the look up table for reflectance

alone measure up to 46 GB in size, and perhaps similar or larger sizes for the derivatives. Chimot et al. (2017) describe an25

approach using a radiative transfer model to generate OMI slant column densities of the O2-O2 band at 477 nm for different

aerosol optical depths (among other input parameters) to train several artificial neural network models that directly retrieve

aerosol layer height. Operationally, their neural network models use the MODIS aerosol optical depth at 550 nm product and

retrieved OMI slant column densities, thereby entirely foregoing line-by-line calculations and significantly speeding up the

retrieval algorithm. They demonstrated their algorithm by retrieving aerosol layer heights from spectra measured by the Ozone30

Monitoring Instrument (OMI) on board the NASA Aura mission, without using line-by-line calculations or an iterative esti-

mation step such as OE (Chimot et al., 2018). A similar example of retrievals is the ROCINN (Retrieval of Cloud Information

using Neural Networks) cloud algorithm developed by Loyola (2004) which uses neural networks to compute convolved re-

flectance spectra to retrieve cloud properties. These retrievals show the exploitable capabilities of artificial neural networks in

the context of retrieving atmospheric properties from oxygen absorption bands.35
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The work of Chimot et al. (2018) and Loyola et al. (2018) bring to light the efficacy of artificial neural networks in satel-

lite remote sensing of oxygen absorption bands for retrieving properties of scattering species in the atmosphere. This paper

discusses a method inspired by Chimot et al. and Loyola et al. to retrieve aerosol layer height from oxygen A-band mea-

surements by TROPOMI. While Chimot et al. directly retrieve aerosol layer heights from their neural network models, the

operational algorithm in this paper utilises neural networks to calculate top-of-atmosphere radiances in the forward model.5

This is subsequently used by an optimal estimation scheme to retrieve aerosol layer heights. Similarly while Loyola et al.

derive top-of-atmosphere sun-normalised radiances only for their cloud property retrieval algorithm, the method in this paper

has dedicated neural network models that calculate the Jacobian as well as the top-of-atmosphere sun-normalised radiances.

By reducing the time consumed for calculating forward model outputs, computational efficiency of TROPOMI’s aerosol layer

height retrieval algorithm can be significantly improved.10

Section 2 introduces the operational aerosol layer height algorithm and discusses the line-by-line forward model. The neural

network forward model approach is detailed in section 3, and its verification on a test data set is discussed in same section.

This approach is then applied to various test cases using synthetic and real TROPOMI spectra (section 4) before concluding in

section 5.

2 The TROPOMI aerosol layer height retrieval algorithm15

The TROPOMI aerosol layer height is one of the many algorithms that exploit vertical information of scattering aerosol

species in the oxygen A-band (Timofeyev et al., 1995; Gabella et al., 1999; Corradini and Cervino, 2006; Pelletier et al., 2008;

Dubuisson et al., 2009; Frankenberg et al., 2012; Sanghavi et al., 2012; Wang et al., 2012; Sanders and de Haan, 2013; Hollstein

and Fischer, 2014; Sanders et al., 2015; Geddes and Bösch, 2015; Sanders and de Haan, 2016; Colosimo et al., 2016; Davis

et al., 2017; Xu et al., 2017; Nanda et al., 2018b; Zeng et al., 2018). These methods invert a forward model that describes the20

atmosphere, to compute the height of the scattering layer. This section discusses the setup of the TROPOMI ALH retrieval

algorithm, which consists of the inversion of a forward model representing the atmosphere using optimal estimation as the

retrieval method, and a description of the forward model.

2.1 The retrieval method

The cost function χ2 represents the departure of the modeled reflectance F (x) from the observed reflectance y scaled25

:::::::::
constrained

::::
with

:
by the measurement error covariance matrix Sε, and is defined as

χ2 = [y−F (x)]TSε
−1[y−F (x)] + (x−xa)TSa

−1(x−xa). (1)

Minimising this cost function for a particular zaer and τ (the elements of the state vector x to be retrieved and fitted) gives us

the final retrieval product.
:::::::::
Minimising

::::
this

:::
cost

::::::::
function

:::
for

:
a
::::::::
particular

::::
zaer::::

and
:
τ
::::

(the
::::::::
elements

::
of

:::
the

:::::
state

:::::
vector

::
x

::
to

:::
be

:::::::
retrieved

:::
and

::::::
fitted)

::::
gives

:::
us

:::
the

::::
final

:::::::
retrieval

:::::::
product. This definition of the cost function is unique to OE, as it constrains its30
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minimisation
:
is
::::::::::

constrained
:
with a priori knowledge of the state vector x , contained in

:::::::::
(represented

:::
by

:
xa:

) and the a priori

error covariance matrix Sa. In the TROPOMI ALH processor’s OE framework, the a priori state vector is fixed at specific

values, usually 200 hPa above the surface for zaer and 1.0 for τ at 760 nm. The a priori error of the zaer is fixed at 500 hPa,

and the same for τ is 1.0, to allow freedom for the variables in the estimation (this also reduces the impact of the a priori on

the retrieval). The modeled
:::::::
forward

:::::
model

::
is

:::::::::
employed

::
to

:::::::
simulate

:::
the

:
measured reflectance spectrum is calculated using the5

forward model (denoted as F ) for model parameters
::::
with

:::::
model

:::::::::
parameter x following,

:::
with

:

F (x)(λ) =
πI(λ)

µ0E0(λ)
, (2)

where µ0 is the
:
I
::::

and
:::
E0::::::::

represent
:::
the

:::::
Earth

:::::::
radiance

::::
and

::::
solar

::::::::::
irradiance,

::::::::::
respectively,

::::
with

:::
the

:
cosine of the solar zenith

angle
:
(θ0, I(λ) for wavelength λ) is the Earth radiance and E0(λ) is the solar irradiance

:
)
:::::::
denoted

::
by

:::
µ0. Since the forward

model is non-linear, a Gauss-Newton iteration is employed and
::
to the updated state vector is calculated as

::
as

::::::::
following,10

xi+1 = xa + [Ki
TSε

−1Ki +Sa
−1]−1Ki

−1Sε
−1[y−F (x)+Ki(xi−xa)], (3)

where i is the current iteration and Ki is the matrix of derivatives (Jacobian) of the reflectance with respect to state vector

parameters at the current iteration
:
i. The derivatives are calculated semi-analytically similar to the method described by Land-

graf et al. (2001). The retrieval is said to converge to
:
n

:::::::
iterative

:::::::
estimate

::
is

:::::::::
convergent

::
to a solution if the state vector’s update

::::::
relative

:::::::
changes

::
in

:::
the

::::
state

::::::
vector

:
is less than the expected precision (usually fixed at a certain value). The retrieval fails to15

converge
:
is

:::::::
decided

::
to

::
be

::::::
failed if the number of iterations exceeds the maximum number of iterations (usually set at 12), or

if the state vector parameters are projected outside their
::
the

:
respective boundary conditionsby OE. Retrieval errors are derived

from the a posteriori error covariance matrix Ŝ, computed as

Ŝ = [KTSε
−1K+Sa

−1]−1. (4)

2.2 The Disamar forward model and its many simplifications of atmospheric properties20

The forward model generates synthetic observed
::::::
Optimal

:::::::::
estimation

::::::::
iteratively

::::::::
simulates

:
TOA radiance spectra by an instrument

for a specific solar-satellite geometry, which is required for minimising
::::
until

:::
the

:::::::::::
convergence

::
of

:
χ2 (Equation 1). For this,

::::::
disamar

:::::::::
computes

::::::::::
reflectances

::
at a high resolution

:::::::::
wavelength

:::::
grid.

:::
The

:::::::::
computed

::::
high

::::::::
resolution

::::::::::
reflectances

:::
are

:::::::::
combined

::::
with

:
a
:
reference solar spectrum adopted from Chance and Kurucz (2010) is used to obtain the TOA Earth radiancespectrum,

which is further
::::::
derived

::::
from

:::::::::::::::::::::::
Chance and Kurucz (2010)

::
to

:::::
obtain

::
a

::::
high

::::::::
resolution

:::::
Earth

::::::::
radiance.

:::
The

::::
high

:::::::::
resolution

:::::
Earth25

:::::::
radiance

:::
and

::::
the

::::
solar

::::::::
spectrum

:::
are

:
convolved with the instrument ’s slit function and combined with the solar irradiance

to compute reflectances following
:::::::
spectral

:::::::
response

::::::::
function

::
to

::::::
obtain

:::::
Earth

:::::::
radiance

::::
and

:::::
solar

::::::::
irradiance

::::::::
spectrum

:::
in

:::
the

::::::::::
instrument’s

::::::::::
wavelength

::::
grid,

:::::
before

::::::
finally

:::::::::
computing

:::
the

:::::::::
reflectance

::::::::
spectrum

::
in

:::
the

:::::::::
instrument

::::
grid

:::::
using Equation 2.
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Radiances
::::::::::
Reflectances

:
are calculated by accounting for scattering and absorption of photons from their interactions with

aerosols, the surface and molecular species. Molecular scattering of photons in the oxygen A-band is described by Rayleigh

scattering, and absorption is described by photon-induced magnetic dipole transition between b1Σ+
g ←X3Σ−g (0,0) electric

potential levels of molecular oxygen, and collision-induced absorption between O2-O2 and O2-N2. The total influence of the

O2 A-band on the TOA reflectance is described by its extinction cross-section, which is a sum of the three aforementioned5

contributions. As the vertical distribution of oxygen is exactly known, the extinction cross-section can be exploited to retrieve

zaer from satellite measurements of the oxygen A-band. For this, Disamar calculates absorption (or extinction) cross sections

at 3980 wavelengths within the range 758 nm - 770 nm.

To reduce the number of calculations, various atmospheric properties are simplified. As the Rayleigh optical thickness is

low at 760 nm, Disamar only computes the monochromatic component of light by calculating the first element of the Stoke’s10

vector. The exclusion of higher order Stoke’s vector elements of the radiation fields has not shown to be a significant source of

error (Sanders and de Haan, 2016).

Calculating the influence of Rotational Raman Scattering (RRS) is also ignored, as it is a computationally expensive step.

While this exclusion of RRS is not advised by literature (Vasilkov et al., 2013; Sioris and Evans, 2000), preliminary exper-

iments by (Sanders and de Haan, 2016)
::::::::::::::::::::::::
Sanders and de Haan (2016) have ascertained that the errors in the retrieved aerosol15

layer height resulting from ignoring RRS of the oxygen A-band in the forward model are significantly smaller than the effect

of other model errors . Due to this, the
::::
such

::
as

:::::
errors

:::
due

::
to
::::::::
incorrect

::::::
surface

:::::::
albedo.

::::::::
Therefore,

:::::
RRS

:::
has

::::
been

::::::::::
historically

:::
not

::::::::
simulated

::
in

:::
the

:::::::
forward

:::::
model

::
of
:::

the
:

KNMI aerosol layer height retrieval algorithmhas historically ignored calculating RRS

cross sections. The atmosphere is assumed cloud-free, which is a required simplification as the retrieval of zaer in the presence

of clouds becomes challenging . While optically thin cirrus layers are a known source of error in the retrieved aerosol layer20

height, currently there are no implementations to tackle this problem. Instead, TROPOMI incorporates information from the

VIIRS instrument to detect the presence of clouds in the measured scene, which are further on mentioned in the ouput product

flags
:
is

::::
still

::::::::::
challenging

::::::::::::::::::
(Sanders et al., 2015)

:::
and

::::::
thereby

::
is
:::::::::

performed
:::::
only

:::
for

:::::
pixels

:::::
which

:::
are

::::::::
unlikely

::
to

::::::
contain

:::::::
clouds.

::::::::
Compared

::
to
::::::

totally
:::::::::
cloud-free

::::::
scenes,

:::::
errors

:::
in

:::::::
retrieved

::::
zaer:::

are
::::
large

:::
for

:::::::::
cloud-free

::::::
scenes

:::::::::
containing

:::::::::
undetected

::::::::
optically

:::
thin

:::::
cirrus

::::::
clouds

::::::::::::::::::
(Sanders et al., 2015). The fraction of the pixel containing aerosols is assumed to be 100%, which further25

simplifies the representation of aerosols within the atmosphere.

Perhaps the largest simplification of the atmosphere lies in model’s description of aerosols, assumed to be distributed in

a homogeneous layer at a height zaer with a 50 hPa thickness, a fixed aerosol optical thickness (τ ) and a single scattering

albedo of 0.95 (so, scattering aerosols). The
:
A
:::::::::::::::::

Henyey-Greenstein
:::::
model

::::::::::::::::::::::::::
(Henyey and Greenstein, 1941)

::::
with

::
an

::::::::::
asymmetry

::::::::
parameter

:::::
value

::
of

:::
0.7

::
is
:::::

used
::
to

:::::::::::
parameterize

:::
the

:
aerosol scattering phase functionassumed is a Henyey-Greenstein model30

(Henyey and Greenstein, 1941), instead of alternatives such as Mie-scattering models which require significantly more computations,

:::::
which

::
is

:::
one

::
of

:::
the

::::::
widely

::::
used

:::::::::::::
approximations. These fixed aerosol optical properties have been derived from AERONET data

and the consequences of fixing them are discussed
:::::
tested by Sanders et al. (2015), who used

:::::::
retrieved

::::
zaer ::::

from
:
GOME-2 spec-

tra to show that the algorithm is robust against these model assumptions
::
to

:::::
fixing

::::::
aerosol

::::::
model

:::::::::
parameters

::::
such

::
as

:::
the

::::::
single

::::::::
scattering

::::::
albedo

:::
and

:::
the

::::::::::::::::
Henyey-Greenstein

:::::
phase

:::::::
function

::::::::::
asymmetry

::::::::
parameter. The surface is assumed to be an isotropic35
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reflector with a brightness described by its Lambertian Equivalent Reflectivity (LER). This is also an important simplifica-

tion, requiring less computations over other surface models such as a Bi-directional Reflectance Model. Although the forward

model is capable of including sun-induced chlorophyll fluorescence into the retrieval, it is currently being considered for a

future implementation of TROPOMI’s operational ALH retrieval algorithm. Lastly, the atmosphere is spherically corrected for

incoming solar radiation and remains plane-parallel for outgoing Earth radiance.5

These simplifications in the Disamar forward model are a necessity for the line-by-line aerosol layer height algorithm,

owing to its slow computational speed. In contrast, a neural network model is significantly faster. While the speed of the

neural network model
::::
The

:::::
speed

::
up

:::
of

:::::::
forward

:::::
model

:::::::::
simulation

:
encourages increasing the complexity of the model, for a

comparative study the neural network models are trained to replicate, as best as possible, the line-by-line version. Once this is

achieved, the improvement of the algorithm will be an iterative endeavour.
::::::::
simulation

:::::::::::
assumption.10

2.3 Application to TROPOMI

TROPOMI’s near infrared (NIR) spectrometer records data between 675 nm - 775 nm, spread across two bands — band 5

contains the oxygen B-band and band 6 the oxygen A-band. The spectral resolution, which is described by the full width at half

maximum (FWHM) of the instrument spectral response function (ISRF), is 0.38 nm with a spectral sampling interval of 0.12

nm. The spatial resolution is around 7 km× 3.5 km for band 5 and 6. Initial observations from the TROPOMI NIR spectrometer15

show a signal to noise ratio (SNR) of 3000 in the continuum before the oxygen A-band. The instrument polarization sensitivity

is reduced to below 0.5% by adopting the technology of the polarization scrambler of the ozone monitoring instrument (OMI)

(Veefkind et al., 2012; Levelt et al., 2006). Disamar utilizes TROPOMI’s swath-dependent ISRFs to convolve I(λ) and E0(λ)

into I(λi) and E0(λi) in the instrument’s spectral wavelength grid, after which the modeled measured reflectance is calculated

using Equation 2.20

Input parameters required by the TROPOMI ALH retrieval algorithm encompass satellite observations of the radiance and

the irradiance, solar-satellite geometry, and a host of atmospheric and surface parameters required for modeling the interactions

of photons within the Earth’s atmosphere (see Table 1). Meteorological parameters are derived
:::::
taken from ECMWF (European

Centre for Medium-range Weather Forecast), which provide
:::::::
including

:
the temperature-pressure profile at 91 atmospheric

levels
::
(of

::::::
which

:::
the

::::::
surface

::
is

:
a
::::
part). The various databases supplying meteorological and surface

::::::::::
geophysical parameters are25

interpolated to TROPOMI’s ground pixels using nearest neighbour interpolation.

:::::::::
TROPOMI

:::::::::::
incorporates

::::::::::
information

::::
from

:::
the

::::::
VIIRS

::::::::::
instrument

::
to

:::::
detect

::::
the

:::::::
presence

:::
of

:::::
cirrus

::::::
clouds

::
in

:::
the

:::::::::
measured

::::
scene

::::::
(using

:
a
::::::
cirrus

:::::::::
reflectance

::::::::
threshold

::
of

:::::
0.01).

::::
This

::::::::::
information

::
is

::::::
further

::::::::
combined

:::::
with

:::::
cloud

::::::
fraction

::::::::
retrievals

:::
by

:::
the

:::::::::
TROPOMI

::::::::
FRESCO

::::::::
algorithm

::::::::::
(maximum

::::
cloud

:::::::
fraction

::
of

:::::
0.6),

:::
and

:::
the

::::::::
difference

::::::::
between

:::
the

::::
scene

::::::
albedo

::
in
:::
the

::::::::
database

::
in

:::
the

:::
UV

:::::
band

:::
and

::::
the

:::::::
apparent

:::::
scene

::::::
albedo

::
at
:::

the
:::::

same
::::::::::
wavelength

:::::::::
calculated

:::::
using

:
a
:::::::

lookup
::::
table

:::
(if

:::
the

:::::::::
difference

::
is30

:::::
larger

::::
than

:::
0.2,

::
it
::::::::

suggests
:::::
cloud

:::::::::::::
contamination).

::
A
:::::::::::

combination
:::
of

::::
these

::::::::
different

:::::
cloud

::::::::
detection

::::::::
strategies

::::::
results

:::
in

:::
the

::::::::::::
cloud_warning

::::
flag

::
in

:::
the

::::::
level-2

::::::::::
TROPOMI

::::
ALH

::::::::
product.

::
In

::::
this

:::::
paper,

::::::::
however,

:::
we

:::
use

::
a
:::::
strict

::::::::
FRESCO

:::::
cloud

:::::::
fraction

::::
filter

::
of

:::
0.2

:::::
alone

::
to

::::::
remove

::::::
cloudy

::::::
pixels.
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Table 1. Input parameters required for retrieving aerosol layer height using TROPOMI measured spectra.

Parameter Source Remarks

Radiance and irradiance TROPOMI Level-1b product

SNR measured spectrum TROPOMI Level-1b product

Geolocation parameters TROPOMI Level-1b product

Surface albedo GOME-2 LER database Tilstra et al. (2017)

Meteorological parameters ECMWF 17km horizontal resolution

Cloud fraction TROPOMI Level-2 FRESCO product

Absorbing aerosol index TROPOMI Level-2 AAI product

Land-sea mask NASA Toolkit

Surface altitude GMTED 2010 pre-averaged

Calculation of TOA reflectance and its derivatives with respect to zaer, and τ in a line-by-line fashion requires
::::
takes

:
approx-

imately 40-60 seconds to complete on a computer equipped with Intel(R) Xeon(R) CPU E3-1275 v5 at a clock speed of 3.60

GHz. In an iterative framework such as the Gauss-Newton method, the retrieval of zaer can take between 3-6 iterations de-

pending on the amount of aerosol information available in the observed spectra, requiring several minutes to compute retrieval

outputs for a specific scene. If these retrievals fail by not converging within the maximum number of iterations, the processor5

can waste up to 10 minutes on a pixel without retrieving a product. In order to compute Disamar’s outputs quicker, a neural

network implementation is discussed in the next section.

3 The neural network (NN) forward model

Artificial neural networks consist of connected processing units, each individually producing an output value given a certain

input value. The interaction of these individual processing units, also known as nodes (or neurons), enable the connecting10

network to map a set of inputs (also known as the input layer) to a set of outputs (or, the output layer). The connections are

known as weights whose value symbolises the strength of a connection between two nodes. Since the nodes connect inputs to

the outputs, higher values in a set of connecting weights represent a stronger influence of a particular parameter in the input

layer over a particular parameter in the output layer. These weights are determined after training the neural network.

The training (or optimisation) of a neural network begins with a training data set containing many instances of input and15

output layer elements. As true values of the output layer for a given set of inputs are exactly known in the training data set, the

biased output of the neural network calculated after using randomised, non-optimised weights can be easily calculated. These

biases are called prediction errors, an essential element in the optimization of the neural network weights. The mean squared
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error (MSE) between the true output and the calculated output is also called the loss function (henceforth annotated as ∆),

which is synonymous to a cost function (Equation 5),

∆ =
1

nλ

∑
∀λ

(nnλ− oλ)
2 (5)

where λ is the wavelength, nλ represents the number of elements in the output layer, nnλ represents the calculated output for

wavelength via forward propagation, and oλ are the outputs in the training data set. The weights are updated using optimisers5

such as the ADAM optimiser (Adaptive Moment Estimation, Kingma and Ba (2014)) )
:::
by

:::::::::::::::::::
Kingma and Ba (2014) to minimise

∆, within set number of iterations.

3.1 The TROPOMI NN forward model for the ALH retrieval algorithm

The standard architecture of the NN-augmented operational aerosol layer height processor includes three neural network mod-

els for estimating top of atmosphere sun-normalised radiance, the derivative of the reflectance with respect to zaer, and the10

same for τ . It is also possible to assign the neural network to compute the reflectance instead of the sun-normalized radiance

— the results will not change. The definition of sun-normalised radiance used in this paper is the ratio of Earth radiance to

solar irradiance. Disamar calculates derivatives with respect to reflectance, which is the sun-normalised radiance multiplied by

the ratio of π and cosine of solar zenith angle. All three neural network models share the same input model parameters. Opti-

mising a single neural network model for all three forward model outputs is not necessary; the correlations between the input15

parameters and the different forward model outputs are different, which can complicate the optimisation of a general-purpose

neural network. This paper, however, acknowledges modern developments in neural network optimisation techniques that now

afford selectively optimising a neural network for different tasks (Kirkpatrick et al., 2016; Wen and Itti, 2018).

The models are trained using the python Tensorflow module (Abadi et al., 2015), and further implemented into an operational

processor using C++ interface to Tensorflow. These neural network models require training data containing Disamar input and20

output parameters and a connecting architecture that encompasses the input feature vector containing scene-varying model

parameters, the number of hidden layers, number of nodes in each hidden layer, and an activation function that maps the

input to the final output layer containing Disamar outputs. In Tensorflow, the derivative of ∆ with respect to the weights are

computed using reverse-mode automatic differentiation, which computes numerical values of derivatives without the use of

analytical expressions (Wengert, 1964).25

The inputs for NN are referred together as the feature vector. The choice of the parameters included into the feature vector

is a very important factor deciding the performance of the neural network. The primary classes of model parameters (relevant

to retrieving zaer) varying from scene to scene are solar-satellite geometry, aerosol parameters, meteorological parameters

and surface parameters (Table 2). The various aerosol parameters that are fixed from scene to scene are the aerosol single

scattering albedo (ω), the asymmetry factor of the phase function, and the angstrom exponent, as they are also fixed in the30

line-by-line operational aerosol layer height processor. The scattering phase function of aerosols is currently limited to a

Henyey-Greenstein model with a fixed g value of 0.7 to mimic Disamar. Surface pressure as well as the temperature-pressure
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profile are two important meteorological parameters relevant to retrieving zaer. A difference between Disamar and NN models

is the definition of this temperature information in the input. Disamar requires the entire temperature-pressure profile of the

atmosphere, whereas NN only uses the temperature at zaer. Surface albedo is specified at 758 nm as well as 772 nm in Disamar,

whereas it is only specified at 758 nm in the feature vector of NN. In general there is a greater scope to add detailed information

in Disamar. However, Disamar has historically incorporated many simplifications in order to reduce computational time. The5

current NN model is developed with the aim to mimic Disamar as much as possible, without including additional state vector

elements into the retrieval, such as chlorophyll fluorescence, aerosol optical properties, cloud properties, and so on.

Table 2. Scene-dependent input model parameters for the NN model. See also Figure 1 for a histogram of the input parameters. The solar-

satellite geometry parameters are generated in combinations conforming to the ones encountered by TROPOMI’s orbits.

Parameter class Model Parameters Remarks limits

Geometry

Solar zenith angle (θ0) in feature vector 8.20◦ - 80.0◦

Viewing zenith angle (θ) in feature vector 0.0◦ - 66.60◦

Solar azimuth angle (φ0) in feature vector -180.0◦ - 180.0◦

Viewing azimuth angle (φ) in feature vector -180.0◦ - 180.0◦

Aerosol parameters

Aerosol pixel fraction fixed 1.0

Single scattering albedo (ω) fixed 0.95

Aerosol optical thickness (τ ) in feature vector 0.05 - 5.0

Aerosol layer height (zaer) in feature vector 75 hPa - 1000.0 hPa

Aerosol layer thickness (pthick) varied but excluded from feature vector 50 hPa - 200 hPa

Scattering phase function fixed Henyey-Greenstein

asymmetry factor (g) fixed 0.7

Angstrom exponent (Å) fixed 0.0

Meteorological parameters Temperature in feature vector temperature at zaer

Surface parameters

Surface pressure (ps) in feature vector 520 hPa - 1048.50 hPa

Surface reflectance model LER

Surface albedo (As) in feature vector 2.08E-7 - 0.70

3.2 Training the neural networks

Since the NN forward model is specifically designed for TROPOMI, the solar-satellite geometry is selected to represent

TROPOMI orbits for the training data. Meteorological parameters for the locations associated with these solar-satellite geome-10

tries are derived from the 2017 60-layer ERA-Interim Reanalysis data (Dee et al., 2011), and aerosol and surface parameters are

randomly generated within their physical boundaries. This training data generation strategy spans the entire set of TROPOMI

solar and viewing angles as well as meteorological parameters.
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Generally, the required training data size increases with increasing non-linearity between input and output layers in a neural

network — there is no specific method to accurately determine the required sample size before training. The number of spectra

generated for the training set was determined by training different models with different number of spectra in the training set

ranging from 1,000 to 600,000. In general it was observed that incorporating more data resulted in a better neural network

model. In order to test the trained neural network model, a choice of 500,000 spectra were selected. Finding the most optimal5

neural network configuration requires testing the trained neural network model. To that extent, the training data set was split

into a training-testing split, where the model was trained on a majority of the training data set and tested on the remaining

minority. Once trained, the model was tested again on a test data set with 100,000 scenes outside of the training data set.

These spectra were generated using Disamar with model parameter ranges described in Table 2and Figure 1
:
.
::::::
Figure

:
1
:::::
plots

::
the

::::::::::
distribution

:::
of

:::
the

:::::
input

:::::::::
parameters

:::::::::
necessary

:::
for

:::::::
training

:::
the

:::::
neural

::::::::
network.

::::
The

::::::
neural

:::::::
network

::::::
model

::::::
accepts

:::::
solar10

::::::
azimuth

::::
and

:::::::
viewing

:::::::
azimuth

::::::
angles

:::::::::
separately,

::::::::
however

::::
they

:::
are

::::::
plotted

:::::::
together

:::
as

::::::
relative

::::::::
azimuth

:::::
angle

::
in

::::::
Figure

:
1
:::

to

:::
save

::::::
space. The generation of this training data set is by far the most time consuming step since each Disamar run requires

between 50-60 seconds to generate the synthetic spectra. Once the data has been generated, it is prepared for training the neural

network models in NN. This is done by data normalisation, achieved by subtracting the mean of each of the training input and

output parameters and dividing the difference by its standard deviation, which makes the learning process quicker by reducing15

the search space for the optimizer. The offset and scaling parameters are important, as the neural network computes outputs

within this scaled range, which needs to be re-scaled back to physical values. This training requires a few hours on an Intel(R)

Xeon(R) CPU E3-1275 v5 at a clock speed of 3.60 GHz.

The most optimal configurations for each of the three NN models are determined by the number of hidden layers, the number

of nodes on each layer and the chosen activation function for which the discrepancy between the modeled output for specific20

inputs and the truth (derived from Disamar) is minimal. The difference between the outputs calculated by Disamar and NN for

these three models provide insight on their performance.

In order to test the most optimal number of layers, the most optimal number of nodes per each layer and the activation

function, several neural network configurations were trained for 250,000 iterations and their summed losses (defined as ∆×nλ)

were compared to find out which was the best configuration.
:::::
Figure

::
2

::::
plots

:::
the

:::::::
summed

:::::
losses

::
as

::
a
:::::::
function

::
of

:::::::
training

:::::::
iteration25

::
for

::::::::
different

::::::::::::
configurations.

:

To begin, with 50 nodes per each hidden layer, three neural networks for each of the three models were trained — one-

layered, two-layered and three-layered. The neural network models performed best with at least two hidden layers (Figure 2a).

For all three models, their two-layered versions show a similar summed loss to their three-layered alternatives, with the summed

loss for the two-layered NNdisamar(Kτ ) showing more stability with training epoch. Because of this
::::::::
Therefore, a simpler two-30

layered architecture is chosen for all three models. Continuing on, three other architectures for each of the three models were

chosen with 50, 100, and 200 nodes for each of the two hidden layers. The results that with more training steps, the choice of

100 nodes for each of the two layers has a compromise between summed training loss and simplicity (Figure 2b), especially for

NNdisamar(Kτ ). Finally, going ahead with a two-layered and 100 nodes for each layer configuration, three activation functions

namely the sigmoid function, the hyperbolic tangent function (tanh) and the rectified linear unit (relu) function were tested for35
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each of the neural network models (Figure 2c). In this case, while all functions converge to similar summed loss values by

250,000 iterations, the sigmoid function has a good compromise between training loss and stability. Figure 3 gives a graphic

representation of the neural network model.

The finalised configurations were then trained for one million iterations after which they were applied to the test data set

to study prediction errors.
:::::
Figure

::
4

::::
plots

:::
the

:::::::::::
performance

::
of

::::
each

:::
of

:::
the

::::::
neural

:::::::
networks

:::::::
trained

::
on

:::
the

::::::
testing

::::
data

::::
set. An5

error analysis revealed that the trained neural networks were capable of calculating Disamar outputs with low errors, generally

within 1-3% of Disamar calculations. Averaged convolved errors of the neural network model for the sun normalised radiance

(NNI ) did not exceed 1%. The neural network model for the derivative of the reflectance with respect to τ and zaer perform

well in general for parts of the spectrum with large oxygen absorption cross sections, where the value of the derivatives are high

(indicating a higher amount of information content from those specific wavelength regions). Errors in the deepest part of the10

R-branch between 759 nm and 762 nm and the P-branch between 752.50 nm and 765 nm, do not exceed 3% for NNKzaer
. The

same can be said for NNKτ
, which displays errors in the range of 1% in the same wavelength region. For wavelengths outside

of the deepest parts of the R and P-branch, the relative errors are large, and exceed 10% easily. However, the relative errors

are calculated as the absolute value of the difference between the true spectrum and the neural network calculated spectrum,

divided by the true spectrum. These values can be very large when the value of the true spectrum is very small, which is the15

case for the derivatives outside the deepest part of the R and P branches. The consequence of these errors in a retrieval scenario

from synthetic and real spectra are discussed in the following section.

4 Comparison between Disamar and NN aerosol layer height retrieval algorithms

To test the NN augmented retrieval algorithm, we apply the generated NN models to synthetic test data and real data from

TROPOMI, and compare its retrieval capabilities to those of Disamar. The synthetic data were produced using the Disamar20

radiative transfer model because of which we expect the online radiative transfer retrievals to be generally better than the NN-

based retrievals. The aerosol model used in the retrieval is as in Section 2.2, using fixed parameters for aerosol single scattering

albedo, aerosol layer thickness and aerosol scattering phase function.

4.1 Performance of NN versus Disamar in retrieving aerosol layer height in the presence of model errors

A comparison of biases (in the presence of model errors) in the final retrieved solution is indicative of the efficacy of NN in25

replacing Disamar to retrieve ALH. To directly compare zaer retrieval capabilities of Disamar and NN, radiance and irradiance

spectra convolved with a TROPOMI slit function were generated to replicate TROPOMI-measured spectra. Bias is defined as

the difference between retrieved and true aerosol layer height (i.e., retrieved - true). A total of 2000 scenes for four synthetic

experiments were generated from the test data set containing TROPOMI geometries, with randomly varied model errors in

aerosol single scattering albedo, Henyey-Greenstein phase function asymmetery parameter, and surface albedo (described in30

Table 3).
:::::
Figure

::
5
::::::::
compares

::::
the

:::::::
retrieved

::::
zaer:::::

from
::::::::::
line-by-line

::::
and

::::::
neural

:::::::
network

::::::::::
approaches

:::
for

::::
each

:::
of

:::
the

::::::::
synthetic

::::::::::
experiments.

::
A

:::::::::
histogram

::
of

::::
these

::::::::::
differences

::
in

::::::
plotted

::
in

::::::
Figure

::
6.
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The retrieved aerosol layer heights from Disamar and NN in the presence of model errors in aerosol layer thickness were

found to be almost similar (Figure 5a), with a Pearson correlation coefficient close to 1.0. Introducing model errors in other

aerosol properties such as single scattering albedo (Figure 5b) and scattering phase function (Figure 5c) also resulted in a similar

agreement between Disamar and NN retrieved aerosol layer heights. Furthermore, both methods retrieved similar aerosol layer

heights in the presence of model errors in surface albedo as well (Figure 5d).5

A total of 5558 retrievals out of the 8000 difference cases converged to a final solution. On average, zaer retrieved using

NN differed by approximately 5.0 hPa from the same using Disamar (Figure 6), with a median of approximately 2.0 hPa. The

spread of the retrieval differences were minimal, with a majority of the retrievals differing by less than 13.0 hPa. Differences

close to and above 100.0 hPa did exist, but such retrievals were very uncommon.

Out of the 8000 scenes within the synthetic experiment, NN retrieved aerosol layer heights for 546 scenes where Disamar10

did not. Contrariwise, 586 scenes converged for Disamar and not for NN. A comparison of the biases from these odd retrieval

results indicate
:
is

::::::
plotted

::
in

::::::
Figure

::
7,

:::::
which

::::::::
indicates that retrievals from NN in cases where Disamar fails are realistic , as the

distribution of the biases is very similar to those cases when Disamar succeeds and NN does not (Figure 7). Retrievals using

the NN forward model on average required three more iterations to reach a solution when compared to the same by Disamar.

Similarly, retrievals from Disamar had a significantly lower minimised cost function (less by four orders of magnitude on15

average) at the end of the retrieval when compared to NN. This is within expectation as NN cannot truly replicate Disamar.

Having tested the NN augmented retrieval algorithm in a synthetic environment, the retrieval algorithm was installed into the

operational TROPOMI processor for testing with real data.

Table 3. A count of converged and non-converged results from synthetic experiments comparing retrieved aerosol layer heights between

Disamar and NN.

experiment Disamar NN

model parameter value in sim value in ret converged non converged converged non converged

pthick 200 hPa 50 ha 1641 359 1550 450

ω 0.93 - 0.96 0.95 1396 604 1412 588

g 0.67 - 0.73 0.7 1571 429 1567 433

As 0.95As - 1.05As As 1536 464 1575 425

4.2 Application to December 2017 Californian forest fires observed by TROPOMI

The December 2017 Southern California wildfires have been attributed to very low humidity levels, following delayed autumn20

precipitation and severe multi-annual drought (Nauslar et al., 2018). Particularly on December 12, the region of the fires was

cloud-free, owing to high-pressure conditions.
:
A

:::::::
MODIS

:::::
Terra

:::::
image

::
of
:::

the
::::::

plume
:::
and

:::
the

::::::::
retrieved

::::::::
absorbing

:::::::
aerosol

:::::
index

::::
from

:::::::::
TROPOMI

::
is
:::::::

plotted
::
in

::::::
Figure

::
8.

:
The biomass burning plume extended well beyond the coastline and over the ocean

::::::
(Figure

:::
8a), which provides a roughly cloud-free and low surface brightness test case for implementing the aerosol layer

12



height retrieval algorithm(Figure 8a). The absorbing aerosol index values were above 5.0 in the bulk of the plume
::::::
(Figure

:::
8b),

indicating a very high concentration of elevated absorbing aerosols. Pixels with an AAI
::::::::
absorbing

::::::
aerosol

:::::
index

::::::
(AAI) value

less than 1.0 were excluded from the retrieval experiment. Pixels that were cloud contaminated were
:::::::::::::::::
Cloud-contaminated

:::::
pixels

::::
were removed from the processing chain

:::
data

:::::::
selected

:::
for

:::::::::
processing using the FRESCO cloud mask product from TROPOMI

(maximum cloud fraction of 0.2), but parts of the biomass burning plume that did not contain any clouds (Figure 8b) were also5

removed , as the cloud fraction values for these pixels were higher than the threshold.
::::
This

:
is
:::::::

because
::::::::::::::
FRESCO-based

:::::
cloud

::::::
fraction

::::::
values

::::
over

:::::::::
cloud-free

:::::
scenes

:::::::::
containing

:::::::
aerosols

::::::::
(biomass

:::::::
burning

:::::::
aerosols

::
in

:::
this

:::::
case)

:::
are

::::::::
generally

:::::::
expected

::
to

:::
be

::::::::
positively

::::::
biased. The retrieval algorithms did not process pixels in the coastline, as

:::::
where the surface albedo values could be

incorrect in these regions
:::::::
retrieval

::
is

:::::
likely

::
to

::
be

::::::
wrong.

The operational line-by-line algorithm was applied to ground pixels within a bounding box around the plume. A total10

of 7418 pixels within this bounding box converged to a solution (Figure 9 a). The neural network augmented operational

processor retrieved 7370 pixels out of the 7418 pixels that had converged for the operational line-by-line processor (Figure 9

b). Although visually discernable in the difference map in Figure 9c, the retrieved zaer from both algorithms were quite similar

(Figure 10 a)
::::::::
compares

:::
the

:::::::
retrieved

::::
zaer:::::

over
:::
the

::::::
plume

:::::
using

:::
the

::::::::::
line-by-line

:::
and

::::::
neural

:::::::
network

::::::
based

:::::::
forward

:::::::
models,

::::::::::
respectively.

::::
The

::::::
number

:::
of

:::
the

:::::::::
converged

::::::::
retrievals

::
is

::::
7418

:::
for

:::
the

::::::::::
line-by-line

:::::::::
algorithm,

:::
but

:::::
7370

:::
for

:::
the

::::::
neural

:::::::
network15

::::::::
algorithm.

::::
The

:::::::::
differences

::::::::
between

:::
zaer:::::::::

(disamar)
:::
and

::::
zaer:::::

(NN)
::
go

:::
up

::
to

::
as

:::::
much

:::
as

:::
0.5

:::
km

::::::
(Figure

::::
9c).

::
A

:::::::
majority

:::
of

:::
the

:::::::
negative

:::::::::
differences

:::
are

:::
for

:::
the

::::
part

::
of

:::
the

:::::
plume

:::::::::
extending

::::
from

:::
the

:::::
coast

:::::::
between

:::::
47◦N

:::
and

::::::
40◦N.

:::::
Figure

:::
10

:::::::
provides

:::::
plots

::
for

::::::
further

::::::::::
comparison

:::::::
between

:::
the

::::
two

:::::::
retrieval

:::::::::
techniques. The neural network augmented processor retrieved aerosol layer

heights which were (on average) less than 50.0 meters apart from the same by the line-by-line counterpart (Figure 10b). While

the
:::
The

:
standard deviation of

::
the

::::::::::
differences

:::
are

:
approximately 160 meters

:
,
:::::
which

:
indicates the presence of outliers, the

:
.20

::::::::
However,

:
a
:::::::
majority

::
of
:::

the
::::::::::
differences

::
in

:::
the

:::
two

::::::::
retrievals

:::
are

::::
less

::::
than

:::
100

:::::::
meters;

:::
this

::
is

::::::::
indicated

::
by

:::
the

:
15th and the 85th

percentile values of
::
of

::::
these

:::::::::
differences

:::
of -115.0 meters and 40.0 meters , respectively, indicate that the significant majority of

retrieved pixels were only off by less than 100.0 meters
::::::::::
respectively. Although the retrieval algorithms have good agreement,

they primarily differed for the lower aerosol loading scenes (Table 4). The majority of the pixels where the neural network

algorithm differed from the line-by-line counterpart by more than 200 meters were for absorbing aerosol index values less25

than 2.0 (Figure 10c). Most of these biases were due to over-estimation by the neural network retrieval algorithm
:::::
caused

:::
by

::
an

:::::::::::::
over-estimation

::
of

:::
the

::::::::
retrieved

::::::
aerosol

:::::
layer

::::::
height

::::
using

::::
the

:::::
neural

:::::::
network

:::::::::
algorithm,

::
in

::::::::::
comparison

::
to
::::

the
::::
same

:::::
from

::::::
disamar. Pixels with AAI values larger than 5.0 also showed a consistent bias , differing on average by

:
of

:
60 meters with a

standard deviation of 30 meters. This bias is not well understood.

The time required by the line-by-line operational processor was 184.01±0.50 seconds per pixel, whereas the same for the30

neural network processor was 0.167± 0.0003 seconds per pixel. The neural network algorithm shows an improvement in the

computational speed by three orders of magnitude over the line-by-line retrieval algorithm. The computational speed gained

from implementing NN enables retrieval of aerosol layer heights from all potential scenes in the entire orbit within the stipulated

operational processing time slot.
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Table 4. Statistics of difference between retrieved zaer from Disamar and NN , as defined in figure
::::
from

:::::
Figure 9c.

AAI [-] number of samples mean [m] median [m] standard deviation [m] 15th percentile [m] 85th percentile [m]

<2.0 3227 -50.74 -62.10 206.44 -228.65 108.31

2.0 - 3.0 2723 -54.96 -43.20 110.75 -184.85 67.10

3.0 - 5.0 1167 10.32 19.42 63.65 -61.63 65.26

>5.0 253 61.35 61.00 30.954 26.56 95.22

5 Conclusions

Of the algorithms that currently retrieve TROPOMI’s suite of level-2 products, the aerosol layer height processor
:
is
:::
an

:::::::
example

::
of

:::
one

::::
that

:
requires online radiative transfer calculations. These online calculations have traditionally been tackled with

KNMI’s radiative transfer code Disamar
:::::::
disamar, which calculates

::::::
(among

:::::
other

::::::::::
parameters) sun-normalised radiances in the

oxygen A-band. There are, in total, 3980 line-by-line calculations per iteration in the optimal estimation scheme, requiring5

several minutes to retrieve aerosol layer height estimates from a single scene. This limits the yield of the aerosol layer height

processor significantly.

The bottleneck is identified to be the number of calculations Disamar needs to do at every iteration of the Gauss-Newton

scheme of the estimation process. As a replacement, this paper proposes using artificial neural networks in the forward model

step. Three neural networks are trained, for the sun-normalised radiance and the derivative of the reflectance with respect to10

aerosol layer height and aerosol optical thickness, the two state vector elements. As the goal is to replicate and replace Disamar,

line-by-line forward model calculations from Disamar were used to train these neural networks. A total of 500,000 spectra were

generated using Disamar, and each of the neural network models were trained for a total of 1 million iterations with the mean

squared error between the training data output and the neural network output being the cost function to be minimised in the

optimisation process.15

Over a test data set with 100,000 different scenes unique from the training data set, the neural network models performed

well, with errors not exceeding 1-3% in general in the predicted spectra and derivatives. Having tested the neural network

models for prediction errors in the forward model output spectra, they were implemented into the aerosol layer height bread-

board algorithm and further tested for retrieval accuracy. In order to do so, experiments with synthetic as well as real data were

conducted. The synthetic scenes included 2000 spectra with different model errors in aerosol and surface properties. In these20

cases, the neural network algorithm showed very good compatibility with the aerosol layer height algorithm, since it was able

to replicate the biases satisfactorily.

For a real test case, TROPOMI spectra over the December
:::
We

:::::::
evaluate

:::::::
aerosol

::::
layer

:::::::
heights

:::::::
retrieved

:::::
from

::::::::::
TROPOMI

:::::::::::
measurements

:::::
over

:::::::
Southern

:::::::::
California

:::
on 12

::::::::
December, 2017forest fires in Southern California were chosen. On this day,

the biomass burning plume extended ,
:::::
when

:::
the

::::
fire

:::::
plume

::::::::::
extensively

:::::
floats

:
from land to the ocean over a dry and almost25

cloudless scene. Operational retrievals using both Disamar and the neural network forward models showed very similar results,

with a few outliers around 500 meters for pixels containing low aerosol loads. These biases were outweighed by the upgrade

14



in the computational speed of the retrieval algorithm, as the neural network augmented processor observed a speedup of three

orders of magnitude, making the aerosol layer height processor operationally feasible. Having achieved this improvement in its

computational performance, the aerosol layer height algorithm is planned to be operationally retrieving the product for the all

possible pixels in each orbit of TROPOMI. Such a boost in processor output allows for better analyses of retrievals and opens

the possibility to remove some of the forward model simplifications mentioned in Section 2.2, which paves the way for further5

developing the TROPOMI aerosol layer height algorithm.
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Figure 1. Histograms of the various input parameters for each of the neural network models in NN. Minimum and maximum values for each

of the parameters are shown in Table 2.

Figure 2. Summed loss as a function of training step for different neural network model configurations. (a) The neural network models have

50 nodes per each layer with a sigmoid activation function. (b) The neural network models have two hidden layers with each node activated

by the sigmoid function. (c) The neural network models have two hidden layers with a 100 nodes for each layer.
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Figure 3. Schematic of each of the three neural networks in NN. There are two hidden layers, each containing 100 nodes. z represents inputs

for each of the nodes, whereas nn represents the inputs and outputs of the neural network.
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Figure 4. Performance of the finalised neural network. The top row represents the averaged output of each of the neural networks for surface

albedo less than 0.4. The bottom row represents the convolved version of the top row (plotted as the red line with the left-handed y-axis)

and the convolved relative error (plotted in log scale) with the truth (plotted in blue with the right-handed y-axis). The relative errors are

computed as the absolute value of the difference (post-convolution) between the averaged true and averaged predicted spectra, divided by the

averaged true spectra. (a,b) represent the neural network computed sun-normalised radiances, (c,d) represent the same for the derivative of

reflectance with respect to aerosol layer height, and (e,f) the same with respect to aerosol optical thickness.
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Figure 5. Retrieved layer heights compared between Disamar and NN for 2000 synthetic spectra in the presence of model errors. The dots

represent converged scenes only, with the x axis representing retrievals from Disamar and the y-axis representing the same from NN. The

model errors represented in this figure are (a) aerosol layer pressure thickness, (b) aerosol single scattering albedo, (c) aerosol scattering

phase function asymmetry factor, and (d) surface albedo. These results as well as the introduced model errors are summarised in Table 3.

The Pearson correlation coefficient (R) between the retrieved zaer from different methods is mentioned in each of the plots.
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Figure 6. Histogram of differences between the retrieved zaer values using Disamar and NN retrieval methods for synthetic spectra generated

by Disamar. Total number of cases is 8000, whereas the plot contains 5558 retrieved samples for both Disamar and NN; non-converged cases

are not included. A map of these differences are plotted in Figure 9c.
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Figure 7. Histogram of biases (retrieved - true) for scenes in the synthetic experiment for which either NN converges to a solution (red bar

plot) and Disamar does not, or Disamar converges to a solution (blue bar plot) whereas NN does not.
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Figure 8. (a) MODIS Terra image of the December 12, 2017 Southern Californian wildfire plume, extending from land to ocean. (b)

Calculated aerosol absorbing index from the TROPOMI level-2 processor. Missing pixels are flagged by a cloud mask or land-sea mask, or

have an absorbing aerosol index less than 1.0.
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Figure 9. (a) Aerosol layer height retrieved using Disamar as the forward model. (b) The same, but with NN replacing Disamar in the

operational processor. (c) difference between Disamar and NN retrieved aerosol layer heights.

Figure 10. Comparison of retrieved aerosol layer heights from TROPOMI-measured spectra (orbit number 858) for the 12th December, 2017

Southern California fires using Disamar and NN. (a) Retrieved aerosol layer heights from the two methods; (b) Histogram of the difference

between retrieved heights from Disamar and NN. The difference is defined as zaer(Disamar) - zaer(NN). (c) Differences compared to

TROPOMI’s operational absorbing aerosol index product (x axis).
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