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S1 Abstract – description of the supporting material 

This Supporting Information material is intended to clarify and extend the analysis presented in the manuscript text 

and includes sections S1-S6: S1 Abstract – description of the supporting material, S2 Experimental setup and 

conditions, S3 Ion signal to concentration conversion, S4 Calibration measurement, S5 Product distributions – specific 

reaction products, S6 Organic ion peaks devoid of the reagent ion. In addition, this material includes Supporting 

Figures S1-S3 showing example spectra obtained with the MION.  
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S2 Experimental setup and conditions  

All experiments were performed in tubular flow reactors under ambient conditions, at about 293 K and 1 bar pressure 

of air. Two flow reactors were used to vary the reaction time with a constant 20 liters-per-minute (lpm) inlet flow rate 

to the MION. A 2.44 cm inner diameter (i.d.) and 80 cm length, and 7.7 cm i.d. and 120 cm length reactors were 

utilized, which allowed for reaction times of around 2 and 10 seconds. Cyclohexene (≥99% Sigma-Aldrich) and α-

pinene (98% Sigma-Aldrich) were obtained either by bubbling through a liquid reservoir or from self-made, premixed 

gas cylinders, embedded in N2. The hydrocarbon precursor was turbulently mixed with the bath gas and ozone few 

centimeters upstream of the flow reactor. In most of the experiments the hydrocarbon precursor concentrations utilized 

were close to 100 parts-per-billion (ppb) but were also varied to inspect the concentration dependence of the detection 

of the current inlet design (see for example manuscript Figure 5). The oxidant ozone (O3) flow was kept constant, 

resulting at about 50 ppb concentration in the reactor, and was produced by a commercial O3-generator (UVP, SOG-

2), and quantified by an ozone analyzer (Thermo Scientific model 49i). All the gas flow rates were regulated by 

calibrated mass flow controllers (Bürkert T8742 and MKS GM100A). The mass spectra were obtained with a chemical 

ionization atmospheric pressure interface time-of-flight mass spectrometer (CI-APi-ToF, Tofwerk). 

S3 Ion signal to concentration conversion  

The measured raw ion signals were converted into concentrations by normalizing them with the reagent ion current, 

i.e., dividing the measured ion signals by the amount of available charge carriers, and multiplying them by a calibration 

factor determined separately. For the NO3
- reagent ion mode the measured ion signals [S] are divided by 

Σ[(HNO3)xNO3
-], where x=0-3, to account for the most prominent reagent ion adducts (equation S1; see Figure S1 for 

reagent ion spectra). In the Br- case the charge carrier is solely Br- (or potentially Br- + Br*H2O-). These normalized 

signals are then further multiplied with a ion-specific calibration factor (CH2SO4/NO3-,Br-, see below). The conversion 

procedure can be depicted by equation (S1): 

 

[𝑃𝑟𝑜𝑑𝑢𝑐𝑡] = 𝐶𝐻2𝑆𝑂4/𝑁𝑂3−
[𝑆]

𝛴[(𝐻𝑁𝑂3)𝑛𝑥𝑁𝑂3
−]

,     x = 0-3    (S1) 

 

S4 Calibration measurement 

The ion modes of the MION were independently calibrated against photochemically produced sulfuric acid (SA) 

(Kürten et al., 2012), which has been the general method for calibrating NO3
- based CI-APi-ToF response to highly-

oxidized multifunctional product (=HOM) detection (e.g., Ehn et al., 2014; Rissanen et al., 2014; Jokinen et al., 2015) 

and bases on the assumption that SA and HOM are both charged with collision frequency in the NO3
- CIMS (Ehn et 

al., 2014). Manuscript Figure 2 showed the obtained calibration plots, in which the measured and normalized H2SO4 

signals were compared to values determined by a simulation of a set of reactions describing the OH initiated SO2 

photo-oxidation, and the relevant gas motion within the tubular CIMS inlet. The intensity of the light source was 

determined in separate actinometry measurements and the [OH] generated by H2O photolysis at 185 nm was corrected 

for reactive and diffusional loss, as was done also for other reactive species in the mechanism. The whole SA 

calibration procedure is described in detail in Kürten et al., 2012.  

 

S5 Product distributions – specific reaction products  

Figure S1 shows examples of NO3
- and Br- reagent ion distributions obtained with the MION setup. The top panel 

shows the full mass spectrum with reagent, monomer and dimer mass ranges indicated by dotted rectangles. The 

bottom panel shows a zoom into the reagent ion mass range and the inset in the bromide spectrum shows the detected 

HO2 and H2O2 adducts with Br-. The mass axis of the Br- spectrum has been displaced by 17 Th to position the same 

product compositions on top of each other.  
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Figure S1 a) NO3
- (nitrate) and b) Br- (bromide) spectra recorded during an α-pinene ozonolysis experiment. Specific 

regions of the spectra associated with denser populations of product peaks have been labelled, and correspond to 

reagent ions (red), monomers (green), and dimers (blue). c) Shows the nitrate, and d) the bromide reagent ion 

spectrum. Also shown in the inset of figure d) are a few product peaks measured with Br-: hydroperoxy radical 

(HO2*Br-), hydrogen peroxide (H2O2*Br-) and a water dimer adduct (H2O)2*Br-.  

 

In Figure S2 the cyclohexene HOM distribution obtained with both ion modes is presented analogously to the 

manuscript Figure 4 of α-pinene product distribution. The mass axis of the Br- has again been displaced by 17 Th to 

position the same product compositions on top of each other. 
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Figure S2 Example spectra obtained from cyclohexene ozonolysis experiments in both ion modes shown with a 

common product mass axis, i.e., the Br- spectrum is displaced by 17 Th (=difference between reagent ion Br- and 

NO3
- masses) to overlap the same composition products horizontally. Upper panels (red) show nitrate spectra and 

lower panels (blue) bromide spectra. a) Illustrates the reagent ion peaks, b) the monomer range (i.e., oxidation 

products which have the same number or less carbon atoms than cyclohexene), and c) the dimer range (i.e., 

oxidation products with about two times the carbon number of cyclohexene), respectively. 

 

S6 Organic ion peaks devoid of the reagent ion 

Several organic product ions (i.e., ionized products observed without the adduct forming reagent ion) were detected 

with both ionization modes. Whereas the NO3
- only deprotonates few of the strongest inorganic acids (e.g., H2SO4 and 

HIO3) and a collection of dicarboxylic acids (e.g., adipic acid, C6H10O4), bromide ionization results in significantly 

more organic ions as evident from Figure S3. The observed product ion compositions indicate deprotonation by Br- 

as the most likely source for these species. However, dehydroxylation of peroxy acids by Br*H2O- could be expected 

in analogy to I*H2O- (Mielke et al., 2012; Iyer et al., 2017). While the current purely experimental approach does not 

give insight into the mechanism of generation of these organic ions, it is obvious they are much more prevalent with 

Br- than with NO3
- ionization. 
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Figure S3 Examples of organic ion peaks detected during α-pinene ozonolysis experiment applying bromide 

ionization. Organic ion peaks were observed in both a) monomer and b) dimer mass ranges and were generally minor 

peaks in the spectra.  
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