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Comments by Anonymous Reviewer #1

1 - As it is presented the method is rather complex and computationally
expensive. The authors should provide an estimation of the computational
cost and discuss its implications on its operational implementation.

The focus of this paper is to demonstrate the relevance of combining radar
volume scans and NWP simulations of reflectivity to derive rain accumulations
at the ground level. Our initial goal was to verify the feasibility of the study.
We agree that the operational implementation aspect is very important but we
did not deal with it explicitly in this paper. This work is fully prospective and
the requirements for a potential operational implementation will be discussed in
an upcoming paper.
Nevertheless we can already give some indications about this aspect (costs, the
different improvements needed...):
The first step of the algorithm, which consists in producing simulated polari-
metric variables from AROME-NWC outputs, runs in about 30 min for a 1h
time step over a domain extending up to 355 km around the radar and at the
full horizontal resolution (1.3 × 1.3 km2). Operationally, the AROME-NWC
outputs are available about 30 min after analysis time. As we use +2h forecasts
every hour, the computing time of the forward operator is still compatible with
operational constraints. However, the performances could be further improved
by parallelizing the code, segmenting the domain, down-sampling the raw model
data.
The optimization of the algorithm searching for the most probable simulated
profile and computing the corresponding rain rate accumulations is much more
challenging. Indeed, each pixel of the radar field needs to be treated separately
and faced with up to 1 200 simulated profiles. For now, it takes about 12h to
compute a 1h accumulation over the entire radar domain (255 km range). This
computation time is obviously not suitable with an operational implementation.
Again, parallelizing the code could improved the performances. A more complex
analysis of the simulated dataset could also be performed previously to select
the most appropriate profiles and avoid redundancies. This could be done for
instance by clustering the similar profiles. Finally, the use of 3-dimensional
reflectivity field projected on a regular grid could facilitate the comparison with
simulated data.

The following text has been added at the end of the Section 3.1:

“Reducing the number of candidates helped to run the algorithm in a reasonable
time for research (about 12h for a 1h accumulation over the entire radar domain).
The performances of our algorithm could be highly improved by parallelizing
the processing (for the moment each radar pixel is processed separatly) to meet
operational requirements. The use of clustering technics (to select the most
suitable profiles) as well as the use of 3-dimensional reflectivity field projected
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on a regular grid could also considerably improve the algorithm performances.”

2 - The method is highly dependent on the performance of the NWP.
However I can imagine situations where the forecast of quantitative precip-
itation by the model performs poorly, particularly in convective situations
where the model may have difficulties in forecasting the right air tem-
perature and generating convective cells. I understand that this paper
is basically a proof of concept and that more analysis has to be carried
out but I would appreciate a discussion of the possible limitations of the
presented methodology and some suggestions on how to tackle them. For
example, what to do when no VPR from the model is similar enough to the
radar estimated VPR? What are the consequences of having a very poorly
sampled observed VPR? That is a situation that may happen regularly in
areas where the radar has poor visibility such as in the mountains.

Indeed, this is a pertinent remark. But, the large extension of the domain
(100 km) for the search of the most resembling simulated VPRs on one side, and
the use of forecasts pretty close to the analysis time (+ 2h) in which radar data
have been assimilated, largely mitigates the risk of using unrealistic simulation
data. However, a situation where the model performs poorly can still happen. To
tackle this issue, we would suggest to use the current operational QPE (Panthere)
as a fallback solution.

Here is a complement introduced at the end of the Section 3.3:

“To deal with the possible poor performances of the NWP model, we could
use the current operational algorithm as a fallback solution. For each observed
radar apparent VPR, the simulated profiles are linearly combined according to
the cost function described in eq. (3) and (4). In a situation with a low level of
similarity between observed and simulated profiles, the P weights used for the
linear combination are rather low. As a solution, we could introduce an additional
term depending on the rain rate produced by the current operational algorithm
(Panthere) in the linear combination of the simulated rain rates (eq. 10). The
features of this new term would be negligible when many resembling simulated
profiles have been found and become predominant when the P weights fall down.
More simply, we could use the Panthere QPE when the sum of P weights falls
below of a threshold to be defined. With such a fallback procedure, in case of a
poor simulation, the retrieved accumulation would be at least relatively close to
the current operational one.”

3 - Page 2 Line 3 - I would change backscattered power by backscattered
signal since the phase also plays and important role in modern radars.

The reviewer is right. The sentence has been modified:
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“... which is the backscattered signal power of hydrometeors in the atmosphere.”

4 - Page 2 Line 24 - ... NWP models ...

Corrected: “NWP models”

5 - Page 3 Line 16 - ... between 0 and 3◦) ...

Corrected: “between 0 15 and 3◦)”

6 - Page 3 Line 17 - ... raw elevation scans ...

Corrected: “raw elevations scans”

7 - Page 3 Line 19 - ... (Figueras i Ventura and Tabary, 2013) ...

Corrected. ¿¿¿ “(Figueras i Ventura and Tabary, 2013)”

8 - Page 3 Line 20 - ... on a regular Cartesian grid ...

Corrected: “on a regular Cartesian 20 grid”

9 - Page 6 Line 20 - Assuming that the iso-0◦C isotherm of the model at
the radar range gate location is essentially correct is a strong constraint
of the method since the position of the air mass can be shifted by several
kilometers or the temperature may not be forecasted correctly. This should
be highlighted and discussed in more detail.

This is absolutely true. However, the mis-representation of 0◦C isotherm is
already a significant problem in the operational method since it only uses a
unique VPR, conditioned by a unique 0◦C isotherm estimated from NWP global
model (ARPEGE) outputs in the vicinity of the radar and refined with the
cross-correlation coefficient ρhv (Tabary et al., 2006). In the new method we use
the AROME analysis which is performed every hour and that is therefore more
likely to represent the true spatial and temporal variability of the 0◦C isotherm.

The following sentence (in blue) has been added:

“The 0◦C isotherm at pi location is estimated by the one of the co-located
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point of the AROME analysis. Model displacement errors could introduce errors
in the determination of the correct 0◦C isotherm, but, the AROME analysis is
performed every hour and can represent the freezing with a smaller error than
the one induced by the use of a unique value for the entire domain in the current
operational method.”

10 - Page 7 Line 28 - ... For the purpose of this study, ...

Corrected: “For the purpose of this study,”

11 - Page 13 Line 36 - The name of the first author is repeated twice
(Georgiou S.)

Corrected: “Georgiou, S., Gaussiat, N., and Lewis, H., and Georgiou, S.:”

12 - Fig. 12 and Fig. 13 - The references to those two figures in the text
have been swapped.

Corrected. Indeed, the references to Figure 12 and 13 had been swapped.
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Comments by Anonymous Reviewer #2

1 - Page 31 Line 21 - Please clarify better what means “All the scans ....
advection field.” Are radar scans not synchronous?

The radar volume scans are produced successively during a cycle lasting 5
minutes. Once proceeded, all the scans are synchronized temporally to the end
time of the cycle by using an advection field.

2 - page 3 line 23 It is stated that 300 profiles are obtained varying 4
parameters. Could you explain how do you change the parameters .? ( ie
random choice within a predefined range for each parameter)

To improve clarity, the text has been completed as follows:

“By varying the four parameters within predefined ranges (± 200 m for FLH, 1
to 6 for BBP, 200 to 800 m for BBT and -1.5 to -6 dB km−1 for DR), 288 ratio
profiles of rain rate (deduced from the Marshall-Palmer relationship Z = 200R1.6)
are built and compared to the observed radar rain rate accumulation ratios.”

3 - Page 3 Line 24 - “compared with observed rain rate accumulation
ratio”. Do you compare with radar rain rate or with others data? Please
specify.

See response to item 2.

4 - Page 4 Lines 6-7 - The sentence “Thus, to compensate ....QPE
product.” is a speculation could be not true the the difference comes only
from the VPR limitation. Please reformulate the sentence.

The following reformulation has been introduced to the revised manuscript:

“These limitations are partially overcome in the operational processing of the
final 5-min QPE product by an adjustment using hourly rain gauge and radar
data from the past hours (up to 40 h).”

5 - Page 5 Line 3 - Please provide a range of variability for “delta”
(threshold to reject noisy pixel).

The following sentence has been added:

“δ typically ranges between 1 and 2 dB.”
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6 - Page 5 lines 8-10 - The last sentence of the paragraph seems to be a
personal guess, not support by any data,. please reformulate.

This proposition is a reformulation of some conclusions from Augros et al.
(2016). As they mentioned, the different resolution of radar (1 × 1 km2) and
model data (2.5 × 2.5 km2) could explain the differences found in the lower
levels. However, as far as we know, no further investigations on this particular
fact have been done yet.

7 - Page 6 - Line 11 - Sect 1.1.1 ????? Could be a wrong reference to the
text.

Corrected: “(see eq. 1 Sect 1.1.1)”

8 - Page 7 Line 2 - Drad - You aggregate all 5-min radar reflectivity
during the hour centered around the model time. This seems to be a limit
in a quite fast changing freezing level height event. Could you comment
please.

Since the data aggregated in Drad come from all radar volume scans at different
range, altitude and time, the influence of a time- and space-varying freezing
level height is mitigated. However, it could be non-negligible in a case where, for
example, Drad is made of pure snowy reflectivities whereas Dmod also contains
data from the liquid phase. Then, the Dmod distribution would probably extend
to higher values than the Drad one and it would impact the bias correction.
Ideally, the quantile mapping correction should be made, not only according to
the reflectivity, but also according to the temperature thus taking into account
different phases of hydrometeors, as well as the distance for considering the beam
broadening. The use of multiple runs for Dmod could also help to mitigate the
potential bad estimation of the freezing level height.

The following sentence has been added to the revised version:

“Ideally, the quantile mapping correction should be made, not only according to
the reflectivity, but also according to the temperature for taking into account
the different phases of hydrometeors and their different response in terms of
reflectivity, as well as the distance for considering the beam broadening.”

9 - Page 8 figure 3 - This figure is very helpful to understand the method.
I strongly suggest to move this figure to the begin of section 3.

You are totally right. A reference has been added at the beginning of Section 3:
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For an easy following of the different steps of the method described in this
section, the reader can refer to the Figure 3.

10 - Page 8 Line 17 - As comment 7. Sect 1.1.3 ?????

Corrected: “(see Sect 2.1 1.1.3)”

11 - Page 9 -Line 9 - Add “observed” before “reflectivity”. From this
sentence I understand that in fig. 5 i will see “simulated Z” from AROME-
NWC. From figure caption I read “observed Z”. This is misleading.

Corrected: “Figure 5 displays the observed reflectivity”

12 - Page 9 Line 19 - I’m not sure that Sect 2.2 is correct or is as comment
7.)

Corrected: “(see Sect 3.1 2.2)”

13 - Page 9 Line 34 - As comment 7 Sect 1.1 ????

Corrected: “(see Sect 3.1 1.1)”

14 - Page 10 Line 33 - Page 11 Line 4 - I strongly suggest to reformulate
this text. It is much more close to a newspaper article than a scientific
one. There is nothing dramatic (refer line 33) in the altitude reached
by the radar beam. This is a propagation effect well known. Further
overshooting as well as evaporation below the sampling height are clearly
highlighted in any radar school book.

You are right. In saying “dramatically”, we thought “significantly”. Obviously
this phenomenon and the consequences are pretty well known. To avoid confu-
sions, “dramatically” has been replaced by “significantly”:

“Once you move away from the radar, the altitude of the lower beam (0.4◦)
increases significantly dramatically and cannot consequently sample the lower
part of the atmosphere.”

15 - Page 10 Line 31 - Figure 12 and figure 13 In the text is referred
figure 12a, but it refer to fig 13a. Same for any time where figure 12 and
fig 13 are used. Please correct.

Corrected. Indeed, the references to Figure 12 and 13 had been swapped.
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Abstract. The extrapolation of the precipitation to the ground from radar reflectivities measured at the beam altitude is one

of the most delicate phases of radar data processing for producing Quantitative Precipitation Estimations (QPEs) and remains

a major scientific issue. In many operational meteorological services such as Météo-France, a Vertical Profile of Reflectivity

(VPR) correction is uniformly applied over a large part or the entire radar domain. This method is computationally efficient and

the overall bias induced by the bright band is most of the time well corrected. However, this way of proceeding is questionable5

in situations with high spatial and vertical variability of precipitation (during the passage of a cold front or in a complex terrain,

for example).

This study initiates from two statements: first, radars provide information on precipitation with a high spatio-temporal resolu-

tion but still require VPR corrections to extrapolate rain rates at the ground level. Second, the horizontal resolution of some

Numerical Weather Prediction (NWP) models is now comparable with the radar one and their dynamical core and microphysics10

schemes allow to produce realistic simulations of VPRs.

The present paper proposes a new approach to assess surface rainfall from radar reflectivity aloft by exploiting simulated VPRs

and rainfall forecasts from the high resolution NWP model AROME-NWC. To our knowledge, this is the first time that simu-

lated precipitation profiles from a NWP model are used to derive radar QPEs.

The implementation of the new method on two stratiform situations provided significant improvements on the hourly and 6-h15

accumulations compared to the operational QPEs, showing the relevance of this new approach.

1 Introduction

Precise quantitative precipitation estimates (QPEs) are critical for many applications including nowcasting, hydrology and

flood forecasts. For instance, high resolution QPEs are necessary to correctly predict the occurrence and intensity of heavy

rainfall events and flash floods. Operational rain gauges can provide accurate measurements of the rainfall, but the operational20

networks are generally too sparse to capture the high spatial and temporal variability of precipitation, especially over complex

terrain.
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Weather radars provide spatially continuous precipitation estimates at very high spatial and temporal resolutions, thus filling

the gaps in in-situ observation networks. However, the radar does not provide direct estimates of precipitation but rather an

indirect measure which is the backscattered signal of hydrometeors in the atmosphere. Hydrometeors may be liquid or solid

or a mixture of two states and can precipitate to the ground in the form of rain or snow depending on several factors. The

estimation of precipitation by radar is therefore subject to several sources of error that need to be understood and evaluated5

(Zawadzki, 1984; Joss and Lee, 1995; Dinku et al., 2002; Villarini and Krajewski, 2010).

These errors are of three kinds: (i) measurement errors of the radar moments (Z, Zdr, φdp), (ii) conversion errors in the quan-

titative precipitation estimation of the precipitation from the radar moments and (iii) extrapolation errors in the determination

of the precipitation falling at the ground from the estimations obtained at beam heights. In recent years, significant progresses

have been made to reduce the first two types of errors by better controlling the quality of the polarimetric parameters (cali-10

bration of Z and Zdr, adaptive smoothing of φdp, attenuation correction) (Bringi et al., 2001; Gourley et al., 2009; Yu et al.,

2018) and by combining the polarimetric moments to estimate the precipitation with minimal uncertainty (Ryzhkov et al.,

2005; Tabary et al., 2011; Figueras i Ventura et al., 2012). However, the final step of estimating the precipitation at the ground

remains a major challenge in particular in mountainous regions where lower beams can be partially or totally blocked (Creutin

et al., 1997; Smith, 1998).15

Many National Weather Services have implemented a Vertical Profile of Reflectivity (VPR) correction that either uses a clima-

tological profile obtained from a large number of radar observations over a period of time (Andrieu and Creutin, 1995; Vignal

et al., 1999; Borga et al., 2000; Seo et al., 2000; Germann and Joss, 2002; Kirstetter et al., 2010) or uses an idealized profile

adjusted in real time (Kitchen et al., 1994; Tabary, 2007) with a pixel-wise approach or not. In both correction methods, the

VPR can only be retrieved to represent the volume of atmosphere sampled by the radar and thus cannot inform on the vertical20

structure of the precipitation in shielded areas. As a consequence, any evaporation or enhancement of precipitation occurring

below the lowest usable beam is missed and can lead in turn to an over- or an under-estimation of the precipitation at the surface

(Gori and Joss, 1980; Hu and Srivastava, 1995; Li and Srivastava, 2001).

Bauer et al. (2015) suggested that high resolution NWP models could bring useful information about the vertical structure of

the precipitation which could help to address the shortcomings of radar measurements. Thus, they tried to directly retrieve25

QPEs from NWP model simulations (WRF) including radar data assimilation. But the developed method could not compete

with observation-based QPE methods in part because of the weaknesses of the assimilation system and the model spin-up. So

far the use of simulated data from NWP for producing radar-based QPE has generally been limited to the freezing level height

for determining the top of the melting layer (Kitchen et al., 1994; Tabary, 2007).

More recently, some attempts to closely exploit NWP outputs have been done to assess the VPR shape in the lower levels.30

For instance, Georgiou et al. (2010) have proposed a parametrized orographic enhancement term to represent the seeder-feeder

mechanism occurring over hills and small mountains (Purdy et al., 2005) that can be added to VPR correction. More recently,

Martinaitis et al. (2018) have proposed a real-time evaporation correction scheme using environmental temperature and humid-

ity from a NWP model.

Previous studies have shown that synthetic, yet realistic radar observations can be obtained by applying a radar simulator to35
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model outputs (Caumont et al., 2006; Jung et al., 2008; Pfeifer et al., 2008; Ryzhkov et al., 2011; Wolfensberger and Berne,

2018). The VPR estimation and correction is a major step in radar data processing that determines the quality of radar precip-

itation that would be observed at the ground. In this paper we propose a new method allowing the estimation of VPR profiles

in good coherence with meteorological and radar observation conditions. We rely on predicted profiles of precipitation of the

French high-resolution NWP model AROME-NWC (Auger et al., 2015) which are directly used together with the observed5

volume radar polarimetric parameters to determine the most realistic VPR over a particular location and produce a better

estimate of the precipitation at the ground. The operational radar data processing for producing radar QPEs and the radar sim-

ulations are presented in the first section. Section 2 is dedicated to the presentation of the new QPE method. In section 3, the

benefits of the new method are illustrated and quantified on two particular case studies.

2 Data and tools10

2.1 Operational radar QPE

The French metropolitan radar network has a total of 31 Doppler radars (5 S-band, 20 C-Band, and 6 X-band). All except 2

are polarimetric and configured to transmit 2-µs pulses in triple pulse repetition time mode (Tabary et al., 2006). The radar

acquisition software samples the reflectivity and polarimetric parameters at the resolution of 240 m × 0.5◦ (polar grid) up to a

maximum range of 255 km. Radar volumes are produced every 5 min and are made of 3 to 5 low elevation scans (between 015

and 3◦) repeated every 5 min and 2 to 3 high elevation scans (between 3 and 15◦) repeated every 15 min.

The centralised processing platform located in Toulouse ingests the raw elevation scans received from the radars and applies

corrections for partial beam blockages, gas attenuation and radome attenuation (at X band only) to the noise thresholded

reflectivity data. The processing chain uses polarimetric variables (Figueras i Ventura and Tabary, 2013) to identify non-

meteorological echoes and also corrects for the attenuation of the precipitation. Finally, the polar cells are projected on a20

regular Cartesian grid of 1 × 1 km2. All the scans are synchronised to the end of the volume scan time window using a 32 × 32

km2 advection field. This latter is deduced from the two latest composite reflectivity fields through the search of the advection

vectors that minimises the differences between the current composite and the advected previous one.

Once the scan processing is complete, a VPR correction is applied to each elevation scan to produce an estimate of the

reflectivity at the surface. The operational VPR correction (Tabary, 2007) uses an idealised VPR represented by four parameters25

(Fig. 1): the freezing level height (FLH), the decreasing rate (DR) of reflectivity above, the bright band thickness (BBT) and

its amplitude (BBP). A new idealised VPR profile is inferred every radar cycle (5 min) using the ratios of the hourly rain

rate accumulations gathered at different elevation angles and distances from the radar. By varying the four parameters within

predefined ranges (± 200 m for FLH, 1 to 6 for BBP, 200 to 800 m for BBT and -1.5 to -6 dB km−1 for DR), 288 ratio profiles of

rain rate (deduced from the Marshall-Palmer relationship Z = 200R1.6) are built and compared to the observed radar rain rate30

accumulation ratios. The set of parameters that bring the simulated ratios closest to those observed is used to define the VPR

over the whole domain. The first guess of FLH is from the operational NWP model ARPEGE. Both FLH and BBT estimates

can be further refined by using the cross-correlation coefficient ρhv (Tabary et al., 2006). This method is computationally
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efficient and the overall bias induced by the bright band is most of the time well corrected. However, by defining a unique

VPR, the spatial variability of the precipitation is ignored, leading to significant local biases. For instance, when a cold front

crosses the radar domain, differences in bright band heights exceeding 1,000 m can be observed between the front and the

rear of the precipitating area. A unique VPR, and consequently a unique freezing level height, will necessarily generate over-

and/or underestimations of the bright band altitude in some parts of the domain, leading to significant over- and/or under-5

correction of the reflectivity. Also, by hypothesising a constant rain rate between the bottom of the bright band and the surface,

ordinary processes such as evaporation or enhancement of the precipitation are not well captured. These limitations are partially

overcome in the operational processing of the final 5-min QPE product by an adjustment using hourly rain gauge and radar

data from the past hours (up to 40 h). The adjustment factor is defined as the ratio between the total rain gauge accumulation

and the corresponding radar accumulation (with greater weight given to the most recent hourly accumulation). Only rain gauge10

accumulation within 100 km from the radar and larger than 0.6 mm are used in the calculation. The QPE processing used

for comparison in this study (referred to as “Panthere QPE”) is identical to the operational QPE processing except for the

adjustment that for the sake of simplification is calculated using the accumulation ratios from the current hour only.

2.2 AROME-NWC and the radar forward operator

The novelty of the method presented in this paper is to take the simulated VPRs produced by the French operational model15

AROME-NWC (Auger et al., 2015) as input. This new high-resolution model, especially designed for nowcasting, is based on

the AROME mesoscale model (Seity et al., 2011; Brousseau et al., 2016) which provides the lateral boundary conditions and

the first-guess file. AROME-NWC is run every hour and produces short-range forecast outputs up to 6 h on a domain covering

France and adjacent areas. The vertical grid (90 levels) is stretched from 10 to around 30,000 m above the ground and the

horizontal resolution is 1.3 × 1.3 km2. AROME is a non-hydrostatic and convection-permitting model using a one-moment20

bulk microphysical scheme called ICE3 which predicts the contents of six water species: vapour, cloud water, rainwater,

graupel, snow aggregates and pristine ice. The temperature and hydrometeor contents from AROME-NWC are taken as input

for a polarimetric radar forward operator (Caumont et al., 2006; Augros et al., 2016) that simulates the horizontal reflectivity

Zhh (in dBZ unit) as well as the following polarimetric variables: the differential reflectivity (Zdr), the differential propagation

phase shift (φdp), the specific differential phase (Kdp), the copolar correlation coefficient (ρhv), the specific and differential25

attenuations (Ahh andAdp) and the back-scattering differential phase (δhv). The horizontal regular grid of the model (1.3 × 1.3

km2) is preserved, but within the vertical columns, those variables are projected onto the radar beam geometry by the forward

model that, for a given elevation, takes into account the bending and broadening of the beam. Rain, graupel and snow particles

are modeled as oblate spheroids, while pristine ice particles are modelled as spheres because of their random orientation. Their

back- and forward-scattering coefficients are computed following the transition matrix (T-matrix) method (Mishchenko et al.,30

1996). For better efficiency, the operator uses T-matrix lookup tables computed in advance for each hydrometeor type and radar

wavelength (X, S and C-band). In order to only retrieve observable values of reflectivity, all the reflectivities that fall below the

radar minimum detectable reflectivity (Zmin_detect) are set to "no detection". In the current radar processing chain, Zmin_detect
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is defined as:

Zmin_detect(r) = Znoise_100km +20. log(
r

100
)+ δ, (1)

where Znoise_100km is the noise equivalent reflectivity at 100 km range, r the distance from the radar in kilometres and δ

the threshold used to reject noisy pixels. Both Znoise_100km and δ are radar dependent. δ typically ranges between 1 and 2

dB. With the same forward model and a similar research model (Meso-NH) at a resolution of 2.5 × 2.5 km2 implemented5

with the one-moment bulk microphysical scheme ICE3 (identical to AROME), Augros et al. (2016) have made statistical

comparisons between the observed and the simulated radar variables on two Mediterranean convective events. They showed

that the polarimetric forward operator produces reflectivities in overall general good agreement with observed ones. However,

some discrepancies were found, especially in lower atmosphere where the simulated reflectivities tend to be underestimated

which may be due to the coarser horizontal resolution of the simulation compared to the radar observations.10

3 New radar and model combined QPE method

To address the limitation of the current VPR correction a new methodology is proposed. This method consists in finding the

simulated apparent VPR from the AROME-NWC forecast (hereafter called pseudo-observed VPR or POVPR) most resembling

to the observed apparent one for every radar pixel, and then to retrieve the corresponding QPE (hereafter called POVPR QPE).

For an easy following of the different steps of the method described in this section, the reader can refer to the Figure 3.15

3.1 VPR estimation

The VPR estimation is applied separately for each 1 × 1 km2 pixel pi of the radar domain. The method developed in this

study to retrieve VPRs is based on the Bayesian approach used by Kummerow et al. (1996, 2001) in the Goddard profiling

algorithm (GPROF). The latter was also used by Caumont et al. (2010), Augros et al. (2018) and Borderies et al. (2018a, b)

for the validation and assimilation of radar reflectivity and dual-polarisation observations in the French high-resolution model20

AROME. In the same way, we use here a large database made of simulated profiles V PRmod in the vicinity of the considered

radar pixel pi to find the most probable VPR (POV PR(pi)) given the observed apparent V PRrad. Thus, POV PR(pi) is

defined as a linear combination of the V PRmod weighted by a factor P depending on the distance d in terms of reflectivity

between the apparent simulated VPRs (V PRmod,app), i.e. the projection of V PRmod on the available radar elevations, and

V PRrad:25

POV PR(pi) =
1∑

j P (j)

∑
j

P (j).V PRmod(j), (2)

where

P (j) = exp

(
− 1

2
d
[
V PRmod,app(j)

])
, (3)
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d
[
[V PRmod,app(j)

]
=

1

nelev

∑
nelev

[
Zhh_mod,elev(j)−Zhh_rad,elev

σ(helev)

]2
, and (4)

1

σ(helev)2
=

[
2

helev

Altmax
+1

− 1

]2
. (5)5

j is the index of the profiles V PRmod in the vicinity of the profile V PRrad, nelev is the number of elevations where the

reflectivity is valid, Zhh_mod,elev and Zhh_rad,elev are the simulated and observed reflectivities respectively, and σ(helev) is

a weighting function depending on the height of the elevation helev normalized by the maximum altitude of the radar data

Altmax (set to 12,000 m ASL in this study). This formulation of σ permits to give more weight to the lowest elevations. P

is equal to 1 for a perfect simulated apparent VPR (V PRmod,app = V PRrad) and tends towards 0 as the difference between10

VPRs increases.

This procedure is repeated for each pixel pi of the area covered by the radar. Some settings are imposed to, on one hand,

limit the time computing, and on the other hand, to help the algorithm find the most appropriate VPR. First and foremost,

simulated reflectivities below Zmin_detect(pi) (see eq. 1) are considered as non-precipitating. Then, the distance for exploring

the simulated VPRs around pi is set to a maximum of 100 km as proposed by Augros et al. (2018). At the full resolution of15

AROME-NWC (1.3 km), it represents more than 18,000 simulated VPRs to analyse. We chose to keep the spatial extent of

the data set to take into account space-shifting of the simulated precipitation with respect to the observations. Thus, to reduce

the data set and consequently the computing time, only one point out of four of the simulation in each horizontal direction

has been used, dropping the number of VPRs to analyse to about 1,200. Moreover, for every observed and simulated vertical

profile of reflectivity that contains a non-precipitating layer surrounded by precipitating layers, only the lower precipitating part20

is kept. By doing so, we make the hypothesis that the lower precipitating layer is unrelated to the upper one. We also forced the

selected VPRs to be in the same air mass as that in pi through a condition on the freezing level. The 0◦C isotherm at pi location

is estimated by the one of the co-located point of the AROME analysis. Model displacement errors could introduce errors in the

determination of the correct 0◦C isotherm, but, the AROME analysis is performed every hour and can represent the freezing

with a smaller error than the one induced by the use of a unique value for the entire domain in the current operational method.25

VPRs that have a freezing level height 300 m higher or lower than that in pi are excluded from the data set. Additionally,

simulated VPRs where the ground level is higher by more than 300 m above the ground level of pi are also eliminated from

the data set. Indeed, VPRs from higher terrain are, by nature, not defined at the ground altitude of pi and consequently cannot

provide relevant information about the vertical structure of the precipitation at this altitude. On the contrary, keeping VPRs

from lower terrain allows us to potentially extend the simulated VPR data set for mountainous pixels. Finally, in order to give30

more importance to the nearby VPRs, only the 100 closest remaining VPRs are kept. In the hypothesis in which no VPR would

be excluded from the initial data set (1,200 VPRs) during the previous filtering steps described above, this last one step would

keep VPRs distant of less than 30 km from pi.
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Reducing the number of candidates helped to run the algorithm in a reasonable time for research (about 12h for a 1h accumula-

tion over the entire radar domain). The performances of our algorithm could be highly improved by parallelizing the processing

(for the moment each radar pixel is processed separately) to meet operational requirements. The use of clustering technics (to

select the most suitable profiles) as well as the use of 3-dimensional reflectivity field projected on a regular grid could also

considerably improve the algorithm performances.

3.2 Model bias correction5

To maximise the chances of finding the simulated apparent VPRs that best fit the observations, a model bias correction is used

to bring a maximum number of simulated observations as close as possible to the observed ones. Simulated observations can

be biased either because the model itself is biased (approximation in the model physics, representativeness errors) or because

the radar forward operator is biased or both. For simplicity, all the model biases are corrected by applying a quantile mapping

correction (QM), a method commonly used in climatic simulations (Lafon et al., 2013). Thus, this correction is applied every10

hour and is used to match the distributions (Dmod) of the simulated reflectivities produced by the model (Zhh_mod) with the

observed distributions (Drad) computed by aggregating all 5-min radar reflectivity scans during the hour centred around the

model time. Ideally, the quantile mapping correction should be made, not only according to the reflectivity, but also according to

the temperature for taking into account the different phases of hydrometeors and their different response in terms of reflectivity,

as well as the distance for considering the beam broadening. The chosen 1h time window ensures that, the range of values of15

each 5-min observed reflectivity data set processed by the POVPR algorithm, is covered by the closest in time simulated

reflectivity data set used for the VPR estimation. Some tests (not presented here) have shown that a longer temporal window

gives poorer final QPE results.

To take into account the positioning errors of the simulated precipitating columns compared to the observations, a first step

consists in adjusting the distances of these columns from the radar also by quantile mapping before the projection on the20

radar beam geometry. Indeed, let us suppose the observation is made of a unique precipitating column Co which is perfectly

represented by the simulated column Cs (Co = Cs) but further from the radar. Due to the different beam altitudes and widths at

the column locations, the projection ofCs on the radar beam geometry will be most probably different from the projection ofCo

even though the unprojected columns are identical. This statement can be generalised to larger data sets. Thus, the preliminary

quantile mapping correction on distances ensures that the proportions of precipitating columns at a particular distance from25

the radar are the same in Drad and Dmod data set, which mitigates the effects of the model positioning errors. Furthermore, to

have comparable samples, simulated reflectivities below theoretical noise level are eliminated and each elevation of the model

data set is repeated as often as it is present in the radar data set. Finally, the transfer function TMod→Rad from Dmod to Drad

is evaluated and applied to simulated reflectivities to produce the corrected reflectivity (Zhh_mod_cor) data set:

Zhh_mod_cor = TMod→Rad(Zhh_mod). (6)30

In a different way, we can express Zhh_mod_cor as the sum of Zhh_mod and a corresponding reflectivity correction (Cz):

Zhh_mod_cor = Zhh_mod +Cz(Zhh_mod), (7)
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where

Cz(Zhh_mod) = TMod→Rad(Zhh_mod)−Zhh_mod. (8)

Note that the projection of simulated reflectivities is adapted to each radar pixel geometry during the VPR estimation (see

next part). As a consequence, simulated reflectivities used for the VPR search can outreach the ones used for the build of5

TMod→Rad. That is why, for reflectivities exceeding the maximum reflectivity of the simulation data set (Zhh_modmax), Cz is

set to the correction value of Zhh_modmax:

Cz(Zhh_mod > Zhh_modmax) = Cz(Zhh_modmax). (9)

An example of the application of the quantile mapping correction is provided in Figure 2.

For the purpose of this study, the 2h lead time forecasts from AROME-NWC are used. On the one hand, this short forecast10

range offers the advantages to be beyond the spin-up period of the model. On the other hand, it is close enough to the analysis

time that the initial Dmod data set can be brought as close as possible to the Drad data set by quantile mapping, and most

representative VPR profiles can be found in the VPR estimation process. However, in situations where the simulations are

too different from the observations, in terms of timing (convection initiation time not well predicted for example) or intensity

(embedded convection within stratiform precipitation observed but not simulated by the NWP model for instance), the use of15

an adaptive time window and/or multiple model runs, could be considered.

3.3 QPE calculation

Once the closest simulated VPRs and their corresponding weights P are found for the pixel pi, the rain rate at the pixel pi

(RRrad(pi)) is estimated by the P -weighted linear combination of the rain rates associated to each simulated VPR (RRmod(j))

and estimated at the same altitude as the ground altitude of pi:20

RRrad(pi) =
1∑

j P (j)

∑
j

P (j).RRmod(j). (10)

The entire procedure for generatingRRrad(pi) from radar and NWP model reflectivities is summarised in Figure 3. The 5-min

precipitation accumulation ACC(pi) is simply deduced by integrating RRrad(pi) over time by assuming that the rain rate is

constant during this period:

ACC(pi) =RRrad(pi).5min. (11)25

Operationally, a spatiotemporal interpolation of the 5-min rain rates is made at a 1-min time step to take the displacement of

precipitation into account. For simplification, this has not be done here. But the stratiform nature of precipitation of the cases

studied further (see Sect. 4) ensures that the error made by doing so is negligible.

Finally, similarly to the Panthere QPE calculation, we apply a simplified adjustment factor on the final radar QPEs (see Sect.

2.1). In a timely manner, it simultaneously reduces the impact of biases from radar measurements and simulated rain rates.30
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To deal with the possible poor performances of the NWP model, we could use the current operational algorithm as a fallback

solution. For each observed radar apparent VPR, the simulated profiles are linearly combined according to the cost function

described in eq. (3) and (4). In a situation with a low level of similarity between observed and simulated profiles, the P weights

used for the linear combination are rather low. As a solution, we could introduce an additional term depending on the rain

rate produced by the current operational algorithm (Panthere) in the linear combination of the simulated rain rates (eq. 10).

The features of this new term would be negligible when many resembling simulated profiles have been found and become5

predominant when the P weights fall down. More simply, we could use the Panthere QPE when the sum of P weights falls

below of a threshold to be defined. With such a fallback procedure, in case of a poor simulation, the retrieved accumulation

would be at least relatively close to the current operational one.

4 Results

Two stratiform case studies (30th April 2018 and 3rd March 2017) affecting plains areas (see Fig. 4) were chosen to demonstrate10

the potential benefits of the method. In these particular situations, the variability of temperature and the precipitation fields was

large and the NWP model was able to produce simulations in relatively good agreement with the observations in terms of

timing, localisation and intensity. The evaluation of the new QPE method with respect to the older one is first described. Then,

the results are presented for both situations studied.

4.1 Evaluation process15

To evaluate the performances of the POVPR and the operational methods, hourly and 6-h rain gauge accumulations (resolution

of 0.2 mm) are compared with the co-located retrieved radar accumulations. For clarity, accumulations are removed from the

data set if (i) the rain gauge has a class equal to 5 according to the WMO classification, or (ii) the radar was not able to detect

any signal (signal weaker than noise level or radar beam above the precipitation), or (iii) the simulated freezing level height

above the ground level is lower than 300 m (enhanced risk of snow which cannot be correctly measured by the non-heated rain20

gauges from the operational network). Once the hourly and 6-h accumulations data set are built, the root mean square error

(RMSE), the mean bias and the Pearson correlation coefficient (r) are computed for both radar data sets (Panthere and POVPR)

by considering the rain-gauge data set as a reference. We also compute the differences between the mean hourly RMSEs from

the POVPR QPEs and the mean hourly RMSEs from the Panthere QPEs according to the distance from the radar.

4.2 Back-bent occlusion of the 30th April 201825

On April 30th a quasi-stationary low concerned northern France. Its warm and cold fronts affected most part of the country

and its warm sector occluded on the northernmost areas. The latter wrapped around the low, forming a so-called back-bent

occlusion, which brought cold temperatures and continuous precipitation, especially in Normandy where some snow was

locally witnessed. As an illustration of these features, Figure 5 displays the observed reflectivity and the freezing level field

predicted by AROME-NWC (4 UTC run) at 6 UTC. The heaviest rainfalls occurred between 3 and 9 UTC with accumulations30
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up to 25 mm measured by the rain gauges.

During this event, the correctness of the accumulations computed operationally (Panthere) compared to those measured by

the rain gauges was really poor (see Fig. 6a), with a strong overestimation in a corridor at a distance between roughly 45 and

85 km from the radar and a significant underestimation beyond. A deeper analysis of the lower radar scans (not shown here)

reveals all the typical features of a bright band in the area of overestimation: enhanced reflectivity, differential reflectivity (Zdr)

and specific differential phase (Kdp), as well as a low cross-correlation coefficient (ρhv). At 6 UTC, from the lower radar scan

(0.4◦ elevation), the bright band top can be estimated to be at an altitude of approximately 1,000 m ASL in that location. This5

is consistent with the freezing level altitude predicted by AROME-NWC (see Fig. 5). However, the operational evaluation

of the bright band top altitude made from the ρhv radar fields prior to the determination of the VPR (see Sect. 3.1) led to a

freezing level altitude of 2,000 m ASL. Further investigations show that this overestimation is in particular due to the high

spatial variability of the freezing level height combined with the radar beam geometry. The bright band in the western cold air

mass is too low to be sampled by most of the radar beams. Consequently, the bright band top altitude retrieved by the radar10

scans is more representative of the warm air mass close to the radar location than the cold air mass further west where the QPE

values are very biased.

The overestimation of the freezing level altitude has different impacts on the VPR correction (see Fig. 1) depending on the

distance from the radar. Close to the radar, where the beam intercepts the bright band, reflectivities are considered to be in the

rain and therefore are not corrected. It finally induces a strong overestimation of the ground rainfall accumulations. Further15

from the radar, where the beam is above the freezing level, three configurations lead to an underestimation of the precipitation

at the ground level: (i) reflectivities are still considered to be in the rain part and are not enhanced as they should be, or (ii)

reflectivities are incorrectly flagged as lying in the bright band and are consequently wrongly reduced by the VPR correction,

or (iii) reflectivities are rightly considered as snowy but are insufficiently corrected because of the underestimation of the

thickness between the radar beam and the freezing level altitudes.20

The POVPR method is much more reliable in this situation (see Fig. 6b-d) thanks in particular to the constraint imposed on

the freezing level altitude during the research of the most appropriate simulated VPR (see Sect. 3.1). The estimations, which

are biased due to the overestimation of the freezing level altitude described above, seem to be at least partially corrected as

illustrated by the difference between Panthere and POVPR accumulations (see Fig. 6c). The computed scores clearly show a

significant improvement compared to the Panthere QPE. The RMSEs of the hourly and 6-h accumulations are reduced by 4325

and 47% respectively, the mean biases are mitigated and approach zero, and the Pearson correlation coefficients grow from

0.60 and 0.67 respectively to 0.81 and 0.88. Those improvements are illustrated by the scatter plots of these accumulations

(see Fig. 7). We can also notice that these performances are observed all along the radar range (see Fig. 8a), and especially

at the ranges where the lower beam intercepts the bright band (45 to 85 km). More generally, 65% of mean hourly RMSEs

at rain-gauge locations are reduced compared to the Panthere QPE ones. But these different performances cannot be fully30

explained by the condition on the freezing level. Indeed, the comparison between the median simulated VPR on the radar

domain relatively to the freezing level and the operational one used for the reflectivity correction shows many differences (see

Fig. 9a): (i) a much more important variability of the simulated VPR underlined by the large interdecile range, (ii) a strong
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difference between the reflectivity at the freezing level and its value in the liquid phase which translates into the need to use a

different Z-R relationship for the conversion of snowy reflectivities into rain rates (Z-S relationship), and (iii) a non-constant

simulated reflectivity towards the ground below the bright band revealing the evaporation/enhancement processes of rainfall.

All these statements illustrate the potential benefits of the POVPR method compared to the operational VPR correction.

4.3 Cold front of the 3rd March 2017

The second case presented in this study focuses on the cold front that passed through southwestern France on March 3rd and5

4th 2017. The freezing level rapidly dropped from an altitude of about 2,800 m to roughly 1,200 m (and even lower on the

Pyrenees foothills).

The POVPR method was applied to the operational reflectivities from the C-band polarimetric radar located in Bordeaux. The

western side of the radar domain is offshore and the continental terrain is mainly flat, except in the extreme south and south-east

parts of the domain where the Pyrenees and the Black Mountain reach 3,400 and 1,200 m above sea level, respectively (Fig.10

4b). The radar coverage is almost perfect, with few beam blockages.

Figure 10 displays a snapshot of the situation through the radar reflectivity at the lowest elevation (0.4◦) and the simulated

freezing level altitude from AROME-NWC, both at 21 UTC. The extent of the precipitating area and the relatively slow mo-

tion of the front (35 to 40 km h-1) permitted significant accumulations (up to 40 mm) over the major part of the domain. The

first part of the episode (18 to 00 UTC) is of particular interest as the operational radar QPE Panthere produced notably biased15

estimations (see Fig. 11a) in two distinct areas: (i) over the Pyrenees foothills and the adjacent plains (extreme south of the

domain) where radar rainfall estimations are much lower than the rain-gauge accumulations, and (ii) over the western foothills

of the Massif Central range (far eastern part of the domain) where the radar largely overestimated the precipitation amounts.

A west-to-east vertical cross-section of the simulated reflectivity by AROME-NWC at 21 UTC (see Fig. 13a) shows that virga

(precipitation evaporating before reaching the ground) are present ahead of the main precipitation core associated with the20

cold front. Once you move away from the radar, the altitude of the lower beam (0.4◦) increases significantly and cannot con-

sequently sample the lower part of the atmosphere. In this case, virga are seen by the radar similarly as precipitation reaching

the ground level. Because the beam is above the freezing level at this range, the operational VPR correction reinforces the

overestimation. In the example displayed in Figure 13, the extrapolation of the simulated reflectivity of the lowest elevation

through the operational VPR correction would lead to a ground reflectivity of about 27 dBZ, that is to say a rain rate of 1.8 mm25

h-1 with the Marshall-Palmer relationship used in the operational system (Z=200R1.6). By using simulated VPRs in the vicinity

of each radar pixel, the POVPR method is able to take into account the evaporation of the precipitation during their falling in

this area. As a result, the radar QPEs computed over the western foothills of the Massif Central range front are in much better

agreement with the low accumulations measured by the rain gauges (see Fig. 11). Moreover, the new method is able to capture

the enhanced precipitations over the Pyrenees foothills and adjacent plains. Note that the method has not been evaluated over30

the Pyrenees themselves because of the low freezing level altitude responsible for snowy precipitation and consequently lead-

ing to difficulties to evaluate rainfall amounts with non-heated rain gauges.

The improved performances of the POVPR method are confirmed by the scatter plots comparing hourly and 6-h accumulations
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with those measured by the rain gauges (Fig. 12). The RMSEs are reduced by 14 and 24% while the mean biases are divided by

almost 2. The Pearson correlation coefficients jump from 0.63 for the hourly accumulations and 0.70 for the 6-h accumulations35

to 0.73 and 0.84, respectively. The Panthere QPE overestimations observed for low rain-gauge accumulations correspond to

the virga areas and are significantly mitigated with the POVPR method. The benefits of the method at greater range (beyond

100 km) are clearly illustrated by the Figure 8b. They are less evident at shorter distances. About 70% of mean hourly RMSEs

at rain gauge locations are reduced compared to the Panthere QPE ones.

Similarly to the previous case, the median simulated and operational VPRs for the POVPR QPE and the Panthere QPE respec-5

tively at 2300 UTC (see Fig. 9b) differ significantly, in terms of shape but also intensity. The variability of the simulated VPRs

emphasizes the diversity of precipitation profiles over the whole radar domain, ranging from profiles with strong evaporation

ahead of the cold front to very humid profiles in the main precipitating area.

5 Conclusions

Extrapolating rainfall at the surface from radar reflectivities measured at the beam altitude is very challenging. In operational10

weather services such as Météo-France, this is most commonly made thanks to a VPR correction uniformly applied over the

whole radar domain. The success of this method can be explained by the fact that it is almost fully observation-based (only the

simulated freezing level altitude is generally used) and it is computationally efficient, with on average good improvements in

the radar QPE. However, when the spatial and vertical variability of the precipitation are large, selecting a unique conceptual

VPR becomes very inefficient.15

The purpose of this study was to illustrate the potential benefits of a new approach that takes advantage of the simulated VPRs

from the NWP model AROME-NWC to perform a pixel-wise evaluation of the most probable rain rate at the ground from

the radar reflectivities aloft. To our knowledge, this is the first time that such a method that combines model outputs and radar

observations is used to derive QPEs. The implementation of this method on two stratiform situations (March 3rd 2017 and April

30th 2018 cases) yielded positive results compared to the current operational system.20

In both situations the dramatic biases induced in the operational VPR correction, by either the overestimation of the freezing

level altitude, or the lack of evaporation or precipitation enhancement below, or both, are largely mitigated in the new method. In

both cases, the gains are significant up to maximum range, despite the high altitude of the radar beam. This is very encouraging

for the application of the POVPR method in mountainous areas where the radars are most often installed far from the mountains

or at high altitude to limit the beam blockages. In addition to this, the use of high-resolution NWP models such as AROME-25

NWC promises to be very helpful for taking into account the high variability of the precipitation that is generally expected over

complex terrains. It is indeed reasonable to expect that a NWP model will produce VPR profiles that take into account (i) the

orientation of the slopes (windward or leeward) leading to an enhancement or a reduction of the precipitation at the ground,

(ii) the strong spatial variability of low level humidity driving the evaporation process, as well as (iii) the higher wind direction

and speed variability that causes horizontal displacement of the precipitation as it falls.
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This potential for improving QPE in mountainous regions will be evaluated in future work. The robustness of the method will5

also be tested over longer periods as well as the use of multiple model runs.
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Figure 1. Idealized VPR used for the operational correction of reflectivities (Tabary, 2007) expressed in terms of rain rate ratios. FLH:

freezing level height; BBP: bright band peak; BBT: bright band thickness; DR: decreasing rate above the freezing level.
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Figure 2. (a) Observed radar reflectivity from the radar of Bordeaux at the elevation 0,4◦ on March 3rd 2017 at 23 UTC. (b) Corresponding

raw simulated radar reflectivity from AROME-NWC (run of 21 UTC). (c) Same as (b) but corrected by quantile mapping. (d) Reflectivity

correction Cz resulting from the quantile mapping. The extension of the correction for higher reflectivities is represented in dashed lines.
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Figure 3. Process flow chart of the data pre-processing and the POVPR method for computing a pixel wise ground rain rate from observed

and simulated reflectivities.
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Figure 4. Topography in the Abbeville (a) and Bordeaux (b) radar areas. The radar positions are indicated by the black crosses and their 255

km ranges by the black circles. The domain displayed is extended by 100 km to represent the NWP model domain used for the computation

of the POVPR accumulations.
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Figure 5. Observed reflectivity from the radar of Abbeville at the elevation 0.4◦ (a) and simulated freezing level altitude from the model

AROME-NWC (+2 h lead time) (b) on April 30th 2018 at 06 UTC.
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Figure 6. 6-h accumulations for the April 30th 2018 event between 03 and 09 UTC on the Abbeville radar domain (255 km range) with

the operational method Panthere (a) and the POVPR method (b). Rain gauges accumulations where any precipitation has been detected by

the radar are represented by circles. (c) Difference between both spatial accumulations (POVPR – Panthere). (d) Absolute error evolution

between both methods at the rain gauge locations.
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Figure 7. Comparisons between rain-gauge and radar accumulations computed for the April 30th 2018 event between 03 and 09UTC on the

Abbeville radar domain. (a - b) hourly accumulations; (c - d) 6-h accumulations; (a - c) operational method Panthere; (b - d) POVPR method.

Are also displayed the number of observations (N obs), the root mean square error (RMSE), the mean bias (Bias) and the Pearson correlation

coefficient (r). Data where the lowest valid radar elevation did not detect any precipitation (no precipitation or beam too high) were removed

from the data set.
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Figure 8. Differences between mean hourly RMSEs at the rain gauges locations from the POVPR QPE and from the Panthere QPE according

to the distance from the radar, for the April 30th 2018 event between 03 and 09 UTC on the Abbeville radar domain (a) and for the March

3rd 2017 event between 18 and 00 UTC on the Bordeaux radar domain (b). Negative values indicate a better estimation of the POVPR QPE

(lower RMSE), positive values means the opposite. The percentages of positive and negative values of RMSE difference are also indicated.
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Figure 9. (a) Median VPR predicted by AROME-NWC for April 30th 2018 at 06 UTC on the Abbeville radar domain (blue) and median

VPR of the VPRs used operationally between 0530 and 0630 UTC for the correction of reflectivities (red). VPRs are expressed as rain rate

ratios, rain rate at the freezing level (R0◦C) being the reference. Only profiles with a rain rate greater than 0.1mm h-1 at the freezing level

have been kept. The first and last deciles are delimited by the shaded areas. (b) Same as (a) for March 3rd 2018 at 23 UTC on the Bordeaux

radar domain.

25



Figure 10. Same as Fig. 5 for March 3rd 2017 at 21 UTC on the radar of Bordeaux.
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Figure 11. Same as Fig. 6 for the March 3rd 2017 event between 18 and 00 UTC on the Bordeaux radar domain.
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Figure 12. Same as Fig. 7 for the March 3rd 2017 event between 18 and 00 UTC on the Bordeaux radar domain.
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Figure 13. (a) West-to-east cross-section of the simulated reflectivity from AROME-NWC (after quantile mapping) of the 3rd March 2017

at 21 UTC passing by the radar location (situated on the bottom left corner). The radar beam aperture (1.1◦) of the lowest elevation (0.4◦)

is represented by the black dashed lines. (b) Simulated VPR (blue) and extrapolated simulated VPR computed with the operational method

from the lowest radar elevation (0.4◦) (green) at the location indicated by the vertical black line on the cross-section (a). The radar beam

aperture (1.1◦) of the lowest elevation (0.4◦) is represented by the black segment.
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