Associate Editor Decision: Publish subject to technical corrections (27 Jan 2020) by <u>Roeland</u> <u>Van Malderen</u>

Comments to the Author:

* I 139: analyzer instead of analyzeer

Corrected.

* | 141: illustrateS

Corrected.

* I 253-254: you mentioned in your response to me why the downward calibrations are always higher than the upward calibrations. Please include this argument also in the text.

Argument as requested has been included.

* I 381: Dobson measurements at Wallops, I assume? Please specify and you might also give a reference to a paper where the Dobson dataset at Wallops is presented.

Dobson data have been available since 1963. One references added.

* | 384: 20.9 DU instead of 20./9 DU

Corrected.

* Caption Fig. 5: 0.3% 0.3B instead of 0.3% 0.5B

Corrected.

* Fig 5: change the labels "1.0% mPa" and "0.3% mPa" for the blue and red curves (use % instead of mPa)!

Correction made to Figure.

1	
2	
3	
4	
5	
6	
7	An Automated Method for Preparing and Calibrating
8	
9	Electrochemical Concentration Cell (ECC) Ozonesondes
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	Francis. J. Schmidlin ¹ and Bruno A. Hoegger ²
21	
22	
23	
24	
25	
20 27	
28	
29 30	 NASA/GSFC/Wallops Flight Facility; Wallops Island, Va. 23337 (Emeritus). E-mail: francis.j.schmidlin@nasa.gov Bruno Hoegger Scientific Consulting; Marly, Switzerland CH1723. E-mail: hoegger.consulting@bluewin.ch
31	

32	Abstract
33	
34	In contrast to the legacy manual method used to prepare, condition, and calibrate the
35	Electrochemical Concentration Cell (ECC) ozonesonde an automated digital calibration
36	bench similar to one developed by MeteoSwiss at Payerne, Switzerland was established
37	at NASA's Wallops Flight Facility and provides reference measurements of the same
38	ozone partial pressure as measured by the ECC. The purpose of an automated system is to
39	condition and calibrate ECC cells before launching on a balloon. Operation of the digital
40	calibration bench is simple and real-time graphs and summaries are available to the
41	operator; all information is archived. The parameters of interest include ozone partial
42	pressure, airflow, temperature, background current, response, and time (real and elapsed).
43	ECC cells, prepared with 1.0 percent solution of potassium iodide (KI) and full buffer,
44	show increasing partial pressure values when compared to the reference as partial
45	pressures increase. Differences of approximately 5-6 percent are noted at 20.0 mPa.
46	Additional tests with different concentrations revealed the Science Pump Corp (SPC) 6A
47	ECC with 0.5 percent KI solution and one-half buffer agreed closer to the reference than
48	the 1.0 percent cells. The information gained from the automated system allows a
49	compilation of ECC cell characteristics, as well as calibrations. The digital calibration
50	bench is recommended for ECC studies as it conserves resources.

Deleted: --

-Page Break-

55 1. Introduction

- Measurement disagreement between similar or identical instruments seems to be an 57 58 historical problem. Intercomparisons are generally conducted when new instruments are 59 introduced and when operational changes or improved procedures become available. 60 Such comparisons should be made under the same environmental conditions and include a reference instrument as an aid for checking the accuracy and reliability of the 61 62 instruments. This would be ideal as a standard procedure. Unfortunately, balloon-borne ozone reference instruments are not usually available, mostly because they are too 63 64 expensive for other than occasional use or to expend on non-recoverable balloon 65 packages. Ozonesonde pre-flight calibrations are conducted, however these are basically single point calibrations made prior to its release. An automated system designed to 66 condition and calibrate the Electrochemical Concentration Cell (ECC) ozonesonde was 67 68 fabricated at Wallops Flight Facility. The automated system can condition the ECC prior to flight and, if desired, provide calibration over a wide range of ozone partial pressures. 69 This system, designated the digital calibration bench, enables consistent conditioning and 70 71 calibration of the ECC along with measurements of a reference value. In this paper the term ECC refers only to the Science Pump Corp. (SPC) 6A ECC ozonesonde, although 72 73 the automated system can accommodate the Environmental Science (EnSci) ozonesonde 74 as well. 75 76 There are a variety of ground-, aircraft-, satellite-, rocket-, and balloon-borne instruments available to measure the vertical structure of atmospheric ozone and its total content. 77 These instruments operate on different principles of measurement (Fishman et al, 2003; 78 79 Kohmyr, 1969; Krueger, 1973; Holland et al, 1985; Hilsenrath et al, 1986; Sen et al, 80 1996). Although their spatial distribution is limited, balloon-borne Electrochemical 81 Concentration Cell (ECC) ozonesondes have had a key role as a source of truth for the 82 other instruments and for establishing algorithms necessary for the retrieval of satellite
- observations. Manual preparation of the ECC requires hands-on contact by an operator.

85 Reducing subjectivity is important and was considered serious enough to engage in the 86 fabrication of the automated system. The user is prompted throughout the calibration process while utilizing real-time graphs and summaries. The digital calibration bench 87 provides consistent preparation procedures. ECC measured ozone partial pressures vs. 88 reference partial pressures are discussed and the results corroborated with dual ECC 89 90 comparisons at Wallops Island. During implementation of the digital calibration bench, 91 beta testing provided the dual ECC measurements used in this paper for demonstration 92 purposes. Operational use at Wallops Island was intermittent and only provided a limited 93 number of ECC preparation records between 2009 and 2017, when bench components 94 began to fail. 95 96 Notwithstanding efforts to enhance ECC performance (Smit et al, 2004, 2007, 2014; Kerr et al, 1994; Johnson et al, 2002; Torres, 1981) there remain uncertainties. The accuracy 97 98 of the ECC is estimated at 5-10 percent and also varies with altitude (Deshler et al, 2017; Smit and ASOPOS Panel, 2014). However, standardization of ozonesonde preparation 99 methods has improved and better data quality control (Smit et al, 2014) and the 100 101 homogenization of the ozone data (Deshler et al, 2017; Smit et al, 2013) have raised the 102 level of ozonesonde usefulness. Uncertainties also arise from poor compensation for the 103 loss of pump efficiency; erroneous background current; variable motor speed; solution 104 loss from turbulent cathode cell bubbling; air flow temperature error and whether 105 measured at the proper location; and, the use of the appropriate potassium iodide (KI) 106 concentration. Understanding the influence these parameters have on the ozonesonde measurement capability is particularly important. The digital calibration bench is able to 107 measure these parameters in a consistent way over a range of partial pressures. 108 109 110 2 Digital Calibration Bench Description and Operational Procedure 111 112 2.1 Description 113 The computer-controlled preparation and calibration bench fabricated at NASA Wallops 114 115 Flight Facility borrows from the design of a bench developed by MeteoSwiss scientists B.

Deleted: r

117	A. Hoegger and G. Levrat at Payerne, Switzerland. The MeteoSwiss digital calibration	
118	bench was first available in 1995 and continues to be used and is updated periodically.	
119	The MeteoSwiss and Wallops digital calibration benches are functionally similar but are	
120	not identical in design. A comparable bench furnished by MeteoSwiss to the	
121	meteorological station at Nairobi, Kenya has been in use since 2018. The Wallops Island	
122	ozone site was interested in the digital bench because of its capability to provide precise	
123	and repeatable preparation of ECC's, and its automated feature requires less interaction	
124	with the ECC then the manual preparation method. The Wallops Island digital bench was	
125	undergoing development between 2005-2008 and used operationally only to prepare	
126	ECC's between 2009-2017.	
127		
128	Throughout the history of ECC ozonesonde performance, the concentration of the KI	
129	solution has been questioned (Thornton and Niazy, 1982; Barnes et al, 1985; Johnson et	
130	al, 2002; Sterling et al, 2018). In the late 1960's and early 1970's the recommendation to	
131	use 2.0 percent solution was unchallenged. In the mid-1970's the concentration was	
132	changed to 1.5 percent, and in 1995 the KI solution was changed once more to 1.0	
133	percent. Employing the Wallops digital calibration bench enables adjustment of the	
134	datasets obtained with the different concentrations to be homogenized to improve the	
135	consistency of the measurements of the long-term database. The digital calibration bench	
136	allows consistent, computer-controlled preparation of ECC instruments. The calibration	
137	bench accurately measures the ozone reaching the ECC cells while a Thermo	
138	Environmental, Inc. (TEI) ozone generator provides the source of ozone at partial	Deleted: Environmenmtal
139	pressures between 0.0 and 30.0 mPa. A second TEI instrument accurately measures the	
140	ozone sent to the ECC, providing a reference value. Thus, performance comparisons are	
141	possible without expending costly instruments.	
142		
143	The Wallops digital calibration bench, shown in Fig. 1, consists of three major	
144	components: 1) mass flow meter to control air flow, 2) an ozone generator and analyzer	
145	(UV photometer), and 3) computer necessary to automate the timing of the programmed	
146	functions and process the data. Another important component, the glass manifold, enables	

147 the simultaneous distribution of the air flow to the ECC's and the UV photometer. The

149	manifold also is a buffer maintaining constant air flow and inhibiting flow fluctuation. A	
150	graphical user interface controls the various input and output functions using an interface	
151	board and communications portal enabling synchronous communication protocols. A	
152	signal conditioning box allows connections to the ECC's analog signals that are	
153	conditioned with custom electronic components. Minor but necessary components	
154	include pressure and temperature sensors, and valves and solenoids to direct the flow of	
155	laboratory grade air. Calibration validity is accomplished by comparing the measured	
156	ECC ozone partial pressure against a reference partial pressure obtained with the UV	
157	photometer (TEI Analyzer).	Deleted: e
158		
159	Fig. 2, from an unpublished technical note (Baldwin, private communication), illustrates	
160	the steps necessary to achieve a consistent calibration. By following the sequential flow	
161	diagram shown in Fig. 2, upper panel, the operator can better understand the sequence of	
162	tests. Each shape in the diagram is associated with a graphical window displayed on the	
163	monitor, as are notices that pop-up to instruct or direct the operator. The computer	
164	controlled digital bench follows the ECC preparation procedure in place at NASA	
165	Wallops Island at the time of the system's fabrication. Each ECC is recognized by its	
166	manufacturing date and serial number and includes the manufacturers test data. Changes	
167	to the steps are possible anytime through software reprogramming. The preparation	
168	sequence begins by verifying whether ECC cells are new or were previously conditioned.	
169	A different path is followed for either condition. New cells are flushed with high ozone	
170	prior to manually adding KI solution. Cells previously having had solution added skip	
171	over the high ozone step to determine the first background current. Following the first	
172	background check the remaining steps are completed. Other measurements accumulated	
173	with the digital bench include motor voltage, motor current, pump temperature, and linear	
174	calibration at seven levels (0.0-30.0 mPa). Program steps are displayed on the computer	
175	monitor with real-time information. All data are archived and backup files maintained.	
176		
177	Fig. 2, lower panel, illustrates the functional diagram detailing the essential operation of	
178	the digital calibration bench. Software control is shown in blue and air flow in green.	
179	Laboratory zero-grade dry air or desiccated compressed air is introduced into the TEI	

- 181 ozone generator where a controlled amount of ozone is produced. The ozone flows
- 182 simultaneously to the ECC cells and to the TEI Model 49C ozone analyzer. The analyzer
- 183 contains the UV photometer that provides the reference partial pressure.
- 184
- 185 The digital bench reads the air flow from a Hasting mass-flow meter permitting a precise
- 186 flow rate to be determined. The mass-flow is then converted to volume-flow by the
- 187 conventional conversion formula. The volume flow rate measurement was found to be
- 188 comparable to the flow rate determined with the volumetric bubble flow meter. The
- 189 digital calibration bench uses the Hasting Mass-Flow Meter model ENALU with a
- 190 HS500m transducer with a maximum mass-flow-range of 500 [scc/min]. In contrast, the
- 191 manual method uses a stop watch to estimate when 100 mL of air has flowed into a
- 192 chamber. An experienced operator, using a volumetric bubble flow meter is able to
- 193 measure the time to less than 1 second. Tarasick et al (2016) points out that the operator
- uncertainty when reading the bubble flow meter is about 0.1-0.3 percent. Further, the
- 195 manual method requires that the effect of moisture from the bubble flow meter's soap
- 196 solution be accounted for; flow rates determined with the digital calibration bench do not
- 197 require a correction for moisture. Unfortunately, the calibration bench cannot determine
- 198 the pump efficiency correction (PEC); this is taken into account differently. For a number
- 199 of years, the ECC's PEC was physically measured at Wallops Island using a specially
- 200 adapted pressure chamber (Torres, 1981). This system is no longer available. However,
- 201 from its many years of use an extensive number of measurements are available. A sample
- 202 of 200 pressure chamber measurements were averaged to obtain a unique PEC that was
- adopted for use at Wallops Island.

- 205 After eliminating deficiencies and improving functionality the automated system was
- 206 tested while obtaining research data, primarily comparisons between different KI solution
- 207 concentrations. Calibration from 0.0 mPa to 30.0 mPa generally exceeds the nominal
- 208 range of atmospheric ozone partial pressure. Calibration steps are made in 5.0 mPa
- 209 increments but larger or smaller increments are possible with minimal software
- 210 reprogramming. Differences between ECC and reference measurements, if seriously
- 211 large, provide an alarm to possibly reject the ECC, or after further study the differences

Deleted:]..

213	between the ECC and reference calibration might be considered as a possible adjustment
214	factor that would be applied to observational data.
215	
216	2.2 Operational Procedure
217	
218	ECC preparation procedures at Wallops Island are carried out five to seven days prior to
219	preparing the ECC for flight. The pump, anode and cathode cells, and Teflon tubing are
220	flushed with high amounts of ozone to passivate their surfaces and is followed by
221	flushing with zero-grade dry air followed by filling of the cells. The cells are stored until
222	ready to be used.
223	
224	Operation of the automated system is simple, requiring only a few actions by the operator
225	that include obtaining the first background current, air flow, 5 µA or high ozone (170 nb)
226	test, response test, second background current, linear calibration between 0.0 mPa and
227	30.0 mPa, and the final background current. As <u>indicated</u> in Fig. 2, upper panel, two cells
228	can be conditioned nearly simultaneously. i.e., the program alternates measurements
229	between ECC's.
230	
231	The operator must first determine whether the cell being conditioned had already been
232	filled with KI or never was filled. Whatever the status of the cell (wet or dry) the operator
233	enters the identification information before proceeding. When a new, or a dry cell is to be
234	processed the digital calibration bench initiates high ozone flushing. The program alerts the
235	operator to turn on the high ozone lamp after which V3 of Fig. 2, lower panel, is switched to high
236	ozone. The unit checks that ozone is flowing and after 30 minutes the program switches to zero
237	air for 10 minutes and V3 switches back to the ozone generator. When completed, the operator is
238	prompted by an instructional message on the monitor screen to fill the anode and cathode cells
239	with the proper concentrations of potassium iodide (KI) solution, i.e., the cathode cell is filled
240	first with 3 mL of 1.0 percent KI solution followed, after a 10 minute delay, by filling the anode
241	cell with a saturated KI solution. The cells are stored until ready for further conditioning and
242	calibration before being used to make an observation. Considering that the ECC cell had been
242 243	calibration before being used to make an observation. Considering that the ECC cell had been filled earlier with solution the digital bench instruction by-passes the high ozone flushing.
242 243 244	calibration before being used to make an observation. Considering that the ECC cell had been filled earlier with solution the digital bench instruction by-passes the high ozone flushing. Ozonesonde identification is entered, as above. The operator, after fresh KI has been

Deleted: indicdated

246	added to the cell, is prompted on the monitor screen to begin the first background current
247	measurement. In either case, whether a dry cell for which flushing is complete, or a wet
248	cell ready for calibration, the procedure starts with clicking the OK button displayed on
249	the monitor screen. After 10 minutes of dry air the background current is recorded. The
250	background current record contains the following information: date, time in 1-2 second
251	intervals, motor current, supplied voltage, pump temperature, and cell current. As the
252	measurement is being made identical information is displayed graphically on the monitor.
253	Following the background test all further steps are automatic.
254	
255	Continuing to follow the steps outlined in Fig. 2, upper panel, the measurement of the air flow is

accomplished on one ECC pump at a time by switching V1, shown in Fig. 2, lower panel, to the
mass flow meter and at the same time V2 is switched to the glass manifold (ozone generator).
When completed, V1 is switched back to the glass manifold and V2 is switched to the flow meter
and the flow rate of the second cell is carried out. The air flow is output in sec/100 ml. The
information stored includes: date, time in seconds at intervals of 7-8 seconds, mass flow meter

- temperature, atmospheric pressure, flow rate, and supply voltage.
- 262

263 Measuring the response of the ECC to ozone decay requires setting the ozone generator to 264 produce 17.0 mPa ozone partial pressure (approximately 5 uA). As ozone is produced the ozone 265 level increases until the set level is reached. The elapsed time to reach this level is noted. The 266 17.0 mPa of ozone is the reference level used to initiate the response test. After recording 17.0 267 mPa of ozone for 10 minutes the ECC response check begins. To measure the response, the cells 268 would have to be switched to zero air quicker than the cell responds. This is accomplished by 269 switching both cells (assuming two cells are being calibrated) to the mass flow meter, the source 270 of zero air. This is more efficient than setting the generator to zero and waiting for the manifold 271 and residual ozone in the system to reach the zero level. Thus, V1 and V2 of Fig. 2, lower panel, 272 are switched to the mass flow meter for immediate zero air and the program triggers a timer. The 273 decreasing ozone is measured and recorded at five points used to reflect the cell response. As the 274 ozone decays, measurements at 3-4 second intervals provide a detailed record of the response 275 while also being displayed real-time on the monitor. From the detailed record the program selects 276 five points (1, 2, 3, 5 and 10 minutes) successively that are used to calculate the response of 277 ozone change that should be 80-90 percent lower than the reference of 17.0 mPa. V1 and V2 are 278 switched back to the ozone generator and the next 10-min background current measurement

279 begins. The response record contains the following: date, time in seconds, motor current, supply

280 voltage, temperature, mass flow, cell current, and atmospheric pressure. Data are displayed on the

- 281 monitor in real-time.
- 282
- The ECC cells have been conditioned and are ready for the linear calibration. The 0.0 mPa to 30.0mPa calibration is performed. Step changes begin with 0.0 mPa, followed by measurements at
- 285 5.0, 10.0, 15.0, 20.0, 25.0, and 30.0 mPa. Each step requires approximately 2-3 minutes to
- 286 complete allowing time for the cell to respond to each ozone step change. The linear calibration
- 287 includes the reference measurement made simultaneously with the ECC measurement. After the
- 288 upward calibration reaches the 30.0-mPa level the calibration continues downward, to 0.0 mPa.
- 289 The measurements are displayed on the monitor for the operators use and also sent to an Excel
- 290 file. Generally, the downward calibration experiences small differences from the upward
- 291 calibration. The available test data reveals that the downward calibrations are always higher than
- the upward calibrations. It is conjectured that this occurs because the ECC sensor retains the
- 293 <u>memory of experiencing the high ozone concentration measured at the 30.0 mPa calibration</u>
- 294 <u>value.</u> Between 5.0 mPa and 25.0 mPa the downward calibrations of the 1.0 percent KI solution
- are 0.8 mPa to 1.0 mPa higher than the upward calibration. The 0.5 percent solution downward
- $\label{eq:296} \mbox{calibration varies between 0.5 mPa and 0.9 mPa for the same partial pressures. Only the upward$
- 297 calibrations are used. Following the linear calibration, the final background current is obtained.
- 298 This requires 10 minutes of zero grade dry air before making the measurement. The data are
- 299 recorded in a summary file that contains the supply voltage, motor current, flow rate, pump
- 300 temperature, response, and the background currents.
- 301

302 3 Digital Calibration Bench Practical Application

303

Repetitive comparison operations can be carried out with the digital calibration bench as often as necessary. This could result in a potential cost saving as there would be no need to expend radiosondes, ECC's, and balloons. The testing with the digital calibration bench is limited to the ranges of pressures and temperatures at sea level and would be an imprecise representation in the upper altitudes.

310 3.1 Digital Calibration Bench (General)

312	Quasi-simultaneous testing of two ECC's is possible, enabling comparisons of different
313	concentrations of KI solutions. Comparison of 2.0-, 1.5-, 1.0-, and 0.5- percent KI
314	concentrations were carried out on the digital bench demonstrating that agreement with
315	the ozone reference value improved with lower concentrations. In an earlier paper
316	Johnson et al (2002), using SPC and EnSci ECC's demonstrated similar changes occurred
317	when testing various solution concentrations that also included varying amounts of
318	buffer. Only the SPC 6A ECC's with 1.0 percent KI solution and full buffer (1.0%,1.0B)
319	and 0.5 percent KI solution and one-half buffer (0.5% , $0.5B$) concentrations are discussed
320	here.
321	
322	During the checkout of the digital calibration bench ECCsondes were calibrated in pairs
323	and included different KI solutions. Tests indicated the pressure and vacuum
324	measurements were nominal, some insignificant variation occurred but was not a cause
325	for concern. Pump temperatures, controlled by the room air temperature, varied 0.1°C to
326	$0.2^{\circ}\mbox{C}.$ Motor currents showed some variation, some measured over 100 mA, suggesting a
327	tight fit between the piston and cylinder. For example, one ECC motor current initially
328	was 100 mA, a second measurement a week later the reading was 110 mA, a final reading
329	after running the motor for a short time was 96.5 mA. Flow rates fell within the range of
330	27 to 31 seconds per 100 ml, a range comparable to flow rates manually measured with a
331	bubble flow meter. Background currents were consistent. The lowest background current
332	allowed by the digital bench is 0.0044 μ A. The final background currents obtained with
333	the digital bench often were somewhat higher than background currents experienced with
334	manual preparation, generally about 0.04 μ A. Although 0.4 μ A is relatively small it is
335	possible the higher background current value results from the ECC's residual memory
336	following exposure to the high ozone concentration during the previous linear calibration

337 step. The final background currents, obtained manually immediately prior to an ECC

 $\,$ 338 $\,$ balloon release, were in the range between 0.01 and 0.02 $\mu A.$ Finally, the response of all

the cells was good, falling within the required 80 percent decrease within less than one

340 minute. Graphically checking a small sample of high-resolution responses found some

341 variation as the ozone decayed.

- 343 3.2 Calibration and Potassium Iodide (KI) Solution Comparisons
- 344
- As a practical example of the usefulness of the digital calibration bench is its capability to
 nearly simultaneously obtain measurements from two ECC's, one prepared with
 (1.0%,1.0B) and the second with (0.5%,0.5B). The recommended KI solution strength to
 be used with the SPC 6A ECC's is 1.0 percent the with full buffer (Smit and ASOPOS
 PANEL, 2014). Conditioning of the ECC's followed the steps given in Fig. 2, upper and
- 350 lower panels. In the free stratosphere ozone partial pressures usually range from 15.0
- 351 mPa to 20.0 mPa. Linear calibrations to 30.0 mPa are obtained, although a lower range
- 352 353

may be reprogramed.

- Figure 3 is a graphical example of differences between the reference ozone measurement
 and the measurements of (1.0%,1.0B) and (0.5%,0.5B) KI concentrations. A sample of
 18 digital bench measurements were averaged to provide a representative set of
- 357 differences. The close proximity between the curves shown in the figure render the
- 358 standard deviation lines too small, also they overlay each other to some extent. The
- 359 standard deviations have been added to the figure for greater clarity. The variations,
- although small, indicate greater variability with the (1.0%, 1.0B) KI solution. Fig. 3
- 361 suggests that the two concentrations measured nearly identical amounts of ozone between
- 362 0.0 mPa and 8.0 mPa. Both curves begin to separate and diverge above 8.0 mPa. The
- averaged data at 10.0 mPa indicate that (1.0%,1.0B) is 0.36 mPa, or 3.6 percent higher
- than the reference and (0.5%,0.5B) is 0.04 mPa, or 0.4 percent higher; at 15.0 mPa the
- difference is 0.67 mPa, or 4.3 percent and 0.17 mPa or 1.1 percent higher, respectively; at
- 366 20.0 mPa the difference for (1.0%, 1.0B) is 1.11 mPa, or 5.5 percent and (0.5%, 0.5B) is
- 367 0.48 nb or 2.4 percent higher. A check at the 30.0 mPa level indicated (1.0%,1.0B) was
- 368 6.8 percent above the reference and (0.5%,0.5B) was 3.2 percent above. The ECC with
- 369 (0.5%, 0.5B) KI concentration is closer to the reference than (1.0%, 1.0B) KI . Both ECCs'
- 370 partial pressure curves have a slope greater than 1 trending toward higher amounts of
- 371 ozone when compared to the reference value as ozone partial pressure increases. It is
- 372 clear that the (1.0%, 1.0B) KI solution increases at a faster rate than the (0.5%, 0.5B)
- 373 solution. Johnson et al (2002) have explained the effect of different KI solution

- 374 concentrations as well as the side effects from the buffers used. Their study of the 375 standard (1.0%,1.0B) solution indicated the ECC can report higher ozone amounts, up to 376 5-7 percent under constant ozone conditions and can also increase the ozone amount to 377 higher values from the buffer reactions. Fig. 3 indicates that the 1.0 percent KI 378 measurement is further from the reference than the 0.5 percent KI. The percentage 379 difference between the two KI concentrations is virtually constant at 3.2 percent, or in terms of a ratio between the two solutions, 0.968. Referring to the SPC ozonesondes 380 381 compared during BESOS, Deshler et al (2017, Fig.5 and Table 2) indicate non-linearity between the (0.5%,0.5B) and (1.0%,1.0B) KI solutions and similar ratio values, 382 0.970/0.960. 383 384 385 The digital calibration bench turned out to be an ideal tool to obtain repeated ECC 386 calibrations. The digital bench can calibrate two ECC's nearly simultaneously reducing 387 the need to expend costly dual-ECC balloons. A negative aspect, possibly, is that 388 calibration at sea level cannot provide knowledge of ECC behavior under upper altitude conditions. Eleven ECC pairs were calibrated over a period of three weeks. Two ECC's 389 390 were prepared with (1.0%,1.0B) and (0.5%,0.5B) KI solutions. A number of time-391 separated calibrations were conducted with the expectation the resulting calibrations 392 would be repeatable week-to-week. The cells were flushed and fresh KI solutions were
- used with each weekly test. Calibration over the full range, 0.0-30.0 mPa was carried out,
- 394 Changes that might be due to improper preparation and conditioning procedures were not
- 395 considered since, by definition, the digital bench is consistent in how ECC's are prepared.
- 396 Consideration also must be given to the fact that the ECC sensor has a memory that may
- 397 have an effect of inhibiting repeatability. The individual weekly calibrations showed
- 398 varying results. Some calibrations showed an increase each week while other calibrations
- did not. An average of the data showed small increases week-to-week but these were too
- 400 small to be significant. In essence no particular pattern was evident suggesting that
- 401 calibrations on a week-to-week schedule would not be repeatable
- 402
- 403 To bring the ECC measurements into correspondence with the reference suggests that
- 404 downward adjustment should be applied to each curve. When a large sample of similar

- 405 digital bench measurements are obtained it should be possible to design a table of 406 adjustments relative to ozone partial pressure that could be used to adjust ozonesonde measurements. However, since the calibrations are made at sea level such an adjustment 407 408 table would not be able to account for the influence of upper atmospheric pressure and temperature. Nevertheless, any adjustment, seemingly, would be in the right direction and 409 410 would aid in obtaining more representative ozone values. 411 412 Although digital bench calibration comparisons are instructive, important comparisons 413 have been made between ECC's and reference instruments using other methods. ECC 414 measurement comparability have been quantified through in situ dual instrument 415 comparisons (Kerr et al, 1995; Stubi et al, 2008; Witte et al, 2019), laboratory tests at the World Ozone Calibration facility at Jülich, Germany (Smit et al, 2004, 2007, 2014) and 416 by occasional large balloon tests such as BOIC (Hilsenrath et al, 1986), STOIC (Kohmyr 417 418 et al, 1995) and BESOS (Deshler et al, 2008). BESOS provided important performance 419 information about the SPC 6A ECC and the EnSci ozonesondes. However, these 420 complicated large balloon experiments that seem to occur every 10 years are expensive. 421 The environmental chamber used in the Jülich tests (Smit et al, 2007) covers a full 422 pressure range but is also expensive to use. The purpose here is to show a calibration 423 method that is simple to use and provides calibrations that include useful reference 424 values, and is complementary to other methods, such as employed in the Jülich Ozone Sonde Intercomparison Experiment (Smit et al, 2004; Smit et al, 2007). 425 426 In the 1998-2004 period the Wallops ozone station released a number of dual-ECC 427 balloons, twelve pair successfully provided measurements to 30 km, and higher. The 428 429 ECC's were attached about 35 meters below the balloon and each ECC separated a distance of 2 meters. Each pair was composed of an ECC with (1.0%,1.0B) and 430 431 (0.5%,0.5B) KI solutions. The profiles were averaged, and are displayed in Fig. 4. It can 432 be noted in the figure that the mean (0.5%, 0.5B) solution reveals less ozone being 433 measured than that of the (1.0%,1.0B) solution. Near the 65-70 hPa level the (0.5%,0.5B) ECC begins to report increasingly less ozone than the (1.0%,1.0B) ECC as 434
- the partial pressure increases. A similar feature was noted in Fig. 3 where the separation

Deleted: with increasing partial pressure

- 437 of the ECC's with different concentrations occur with increasing partial pressure. Fig. 4
- 438 shows the maximum ozone partial pressure level was about 14.0 mPa, near 22 hPa, where
- the (0.5%,0.5B) KI solution measured approximately 1.0 mPa, or 7 percent less ozone
- than the ECC with the (1.0%,1.0B) KI concentration. This difference is approximately 4
- 441 percent higher than the result given by the digital calibration bench results of Fig.3,
- 442 where, at 15.0 mPa, the difference between the (1.0%, 1.0B) KI and (0.5%, 0.5B) KI is 3.2
- 443 percent. Observations obtained with the Wallops Island Dobson spectrophotometer are
- 444 available since 1963 and have provided meaningful research data (Harris et al, 2003).
- 445 <u>Dobson observations also permit comparisons of total ozone with each of the ECC</u>
- 446 profiles. The average profiles shown in Fig. 4 were in excellent agreement with
- 447 (0.5%,0.5B), e.g., the total ozone difference between the Dobson (309.5 DU) and
- 448 (1.0%,1.0B) (330.4 DU) is 20.9 DU; between the Dobson and (0.5%,0.5B) (308.3 DU)
- 449 <u>the difference is 1.2 DU.</u>
- 450
- 451 Given that the digital bench tests revealed the (0.5%,0.5B) KI solution is in closer
- 452 agreement with the reference measurement than the (1.0%, 1.0B) solution suggested that a
- 453 KI solution with a weaker concentration may, possibly, give even better agreement. A
- 454 small number of dual ECC tests were carried out with a solution of 0.3 percent with one-
- 455 third buffer (03%,0.3B). Six sets of ECC's were prepared for calibration. Each dual ECC
- 456 test consisted of one ECC prepared with (1.0%,1.0B) KI solution and one with
- 457 (0.3%,0.3B) KI solution. The digital bench comparison result disclosed the (1.0%,1.0B)
- result replicated the earlier results discussed above. As assumed, the lower concentration
- 459 was nearly equal to, or slightly less than the reference. Average values and standard
- deviations derived from the six tests are shown in Fig. 5. Although the 0.3 percent
- solution might appear to be a better choice additional tests are necessary.
- 462
- 463 4 Summary
- 464
- 465 The concept of an automated method with which to pre-flight condition and calibrate
- 466 ECC ozonesondes was originally considered by MeteoSwiss scientists over 20 years ago.
- 467 Drawing on their expertise, a facility designated as the digital calibration bench was

 Deleted: Dobson measurements

 Deleted:

 Deleted: compared with total ozone derived from

 Deleted: used to the obtain

 Deleted: used to the obtain

 Deleted: t

 Deleted: , on average,

 Deleted: .

 Deleted: /

 Deleted: /

 Deleted: was

 Deleted: closer

- fabricated at NASA Wallops Flight Facility between 2005-2008. The digital bench was
 put to use immediately to study ECC performance, conduct comparisons of different KI
 concentrations, enabled ECC repeatability evaluation, as well as calibrating the ECC over
 a range of partial pressures, including associated reference values. Tests conducted with
 the digital bench were performed under identical environmental conditions. The digital
 bench eliminates the expense and time associated with making similar tests in the
 atmosphere.
- 480
- 487 Early use of the digital bench was to calibrate ECC's, prepared with (1.0%,1.0B) KI
- 488 solution, over a range of partial pressures from 0.0 mPa to 30.0 mPa. Comparison
- 489 between ECC's with (0.5%,0.5B) and (1.0%,1.0B) KI solution and simultaneously
- 490 obtained reference values revealed the two KI solution strengths were measuring more
- 491 ozone than the reference. There was an increasing difference between the ECC's and the
- 492 reference as the partial pressure increased. For example, the ECC measurements slope
- 493 upward to increasingly larger differences from the reference ozone measurements, i.e.,
- 494 increasing from 4.3 percent higher partial pressure at 15.0 mPa (Fig. 3) to about 7 percent
- higher at 30.0 mPa.
- 496
- 497 Results from the digital bench also corroborate differences found between SPC 6A
- 498 ECC'c flown on dual-instrument flights at Wallops Island. The difference between
- 499 ozonesondes at a pressure of 22 hPa showed the (0.5%,0.5B) ECC to be about 1.0 mPa
- lower than the (1.0%,1.0B) ECC. <u>Comparison between ECC profiles of both (1.0%,1.0B)</u>
- and (0.5%,0.5B) KI solutions reveals very good agreement between Wallops Island
- 502 <u>Dobson observations and the (0.5%,0.5B) mean ECC profile.</u>
- 503
- 504 The digital calibration bench provides a capability to apply a variety of test functions
- 505 whereby the valuable information gathered helps to better understand the ECC
- 506 instrument. Evaluating SPC ECC performance using an automated method diminishes the
- 507 requirement for expensive comparison flights. The tests performed, i.e., KI solution
- 508 differences, calibrations over a time period, and dual-instrumented balloon flights, were
- 509 consistent, giving similar results. The tests described in this paper are simply examples of

510	the utility of the digital bench. Furthermore, the digital calibration bench preparation
511	facility potentially could contribute to an understanding of separating ECC measurement
512	variability from atmospheric variability. Thus, the automated conditioning and calibration
513	system provides valuable information, and as a useful tool should continue to be a
514	valuable aid.
515	
516	5 Data Availability
517	Data are available from the authors.
518	
519	6 Author Contribution
520	The first author acquired and prepared the data for processing and the second author was
521	instrumental in certifying the digital calibration bench was working properly. Both
522	contributed equally to manuscript preparation.
523	
524	7 Competing Interests
525	
526	The authors declare they have no conflict of interest.
527	
528	8 Disclaimer
529	
530	None
531	
532	9 Acknowledgments
533	We acknowledge the successful use of the digital calibration bench to the skillful efforts
534	of Gilbert Levrat (retired) of the MeteoSwiss site Payerne, Switzerland for his foresight
535	in designing the original bench and its simplicity. We are indebted to Tony Baldwin
536	(retired) of NASA Wallops Flight Facility for his electronic skill and programming
537	expertise and to .E. T. Northam for assistance preparing the figures. We also appreciate
538	the insightful suggestions given by the referees, who were instrumental in helping us
539	make the paper better.

Deleted: ; Deleted: they

543	10 References		
544			
545	Barnes, R. A., Bandy, A. R., and Torres, A. L.: Electrochemical Concentration Cell		
546	ozonesonde accuracy and precision, J. Geophys. Res., Vol. 90, No. D5, 7881-7887, 1985.		
547			
548	Deshler, T., Mercer, J. L., Smit, H. G. J., Stubi, R., Levrat, G., Johnson, B. J., Oltmans, S.		
549	J., Kivi, R., Thompson, A. M., Witte, J., Davies, J., Schmidlin, F. J., Brothers, G., and		
550	Sasaki, T.: Atmospheric comparison of electrochemical cell ozonesondes from different		
551	manufacturers, and with different cathode solution strengths: The Balloon Experiment on		
552	Standards for Ozonesondes, J. Geophys. Res., 113, D04307,		
553	https://doi.org/10.1029/2007JD008975, 2008.		
554			
555	Deshler, T., Stubi, Rene, Schmidlin, Francis J., Mercer, Jennifer L., Smit, Herman G. J.,		
556	Johnson, Bryan J., Kivi, Rigel, and Nardi, Bruno,: Methods to homogenize		
557	electrochemical concentration cell (ECC) ozonesonde measurements across changes in		
558	sensing solution concentration or ozonesonde manufacturer, Atmos. Meas. Tech., 10,		
559	2021-2043, https://doi.org/10.5194/amt-10-2021-2017, 2017.	Formatted: Font color: Text 1	
560		Formatted: Font color: Text 1	
561	Fishman, J., Wozniak, A. E., and Creilson J. K.: Global distribution of tropospheric		
562	ozone from satellite measurements using the empirically corrected tropospheric ozone		
563	residual technique: Identification of the regional aspects of air pollution, Atmos. Chem.		
564	And Phys. Discussions, 3, pp 1453-1476, 2003.		
565			
566	Harris, J. M., Oltmans, S. J., Bodeker, G. E., Stolarski, R., Evans, R. D., Quincy, D. M.:		
567	Long-term variations in total ozone derived from Dobson and satellite data. Atmos.		
568	Environ. Vol. 37, No. 23, 3167-3175, https://DOI: 10.1016/S1352-2310(03)00347-9,		
569	2003.	Formatted: Font color: Text 1	
570			
571	Hilsenrath, E. W., Attmannspacher, W., Bass, A., Evens, W., Hagemeyer, R., Barnes, R.	Deleted: ¶	
572	A., Komhyr, W., Maursberger, K., Mentall, J., Proffitt, M., Robbins, D., Taylor, S.,		

575	Torres, A., and Weinstock, E.: Results from the Balloon Ozone Intercomparison
576	Campaign (BOIC), J. Geophys. Res., Vol 91, 13,137-13,152, 1986.
577	
578	Holland, A. C., Barnes, R. A., and Lee, H. S.: Improved rocket ozonesonde (ROCOZ-A)
579	1: Demonstration of Precision, Applied Optics, Vol. 24, Issue 19, 3286-3295, 1985.
580	
581	Johnson, B. J., Oltmans, S. J., and Vömel, H.: Electrochemical Concentration Cell
582	(ECC) ozonesonde pump efficiency measurements and tests on the sensitivity to ozone of
583	buffered and unbuffered ECC sensor cathode <u>solution.</u> J. Geophys. Res., Vol 107, No
584	D19, 4393, doi: 10.1029/2001JD000557, 2002.
585	
586	Kerr, J. B. et al: The 1991 WMO international ozonesonde intercomparisons at Vanscoy,
587	Canada. Atmospheres and Oceans, 1994.
588	
589	Komhyr, W. D.: Electrochemical concentration cells for gas analysis, Ann. Geophys.,
590	Vol 25, No 1, 203-210, 1969.
591	
592	Komhyr, W. D., Barnes, R. A., Brothers, G. B., Lathrop, L. A., and Opperman, D. P.:
593	Electrochemical Concentration Cell ozonesonde performance evaluation during
594	STOIC,1989, J. Geophys. Res., 100, D5, 9231-9244, 1995.
595	
596	Krueger, A. J.: The mean ozone distribution from several series of rocket soundings to 52
597	km at latitudes 58°S to 64°N., PAGEOPH 106,1, 1272-1280, 1973.
598	
599	Proffitt, M. H., and McLaughlin, R. J.: Fast-response dual-beam UV absorption ozone
600	photometer suitable for use on stratospheric balloons, Rev. Sci. Instru., 54, 1719-1728,
601	1983.
602	
603	Sen, B., Sheldon, W. R., and Benbrook, J. R.: Ultraviolet-absorption photometer for
604	measurement of ozone on a rocket-boosted payload, Applied Optics, Vol 35, No. 30,
605	6010-6014, 1996.

6	n	7
0	υ	1

607	
608	Smit, H. G. J., and Sträter, W., JOSIE2000, Jülich Ozone Sonde Intercomparison
609	Experiment: The 2000 WMO international intercomparison of operating procedures for
610	ECC ozone sondes at the environmental simulator facility at Jülich, WMO Global
611	Atmospheric Watch, Report No. 158 (WMO TD No. 1225). 2004.
612	
613	Smit, H. G. J., Straeter, W., Johnson, B., Oltmans, S., Davies, J., Tarasick, D. W.,
614	Hoegger, B., Stubi, R., Schmidlin, F. J., Northam, E. T., Thompson, A., Witte, J., Boyd,
615	I., Posny, F.: Assessment of the performance of ECC-ozonesondes under quasi-flight
616	conditions in the environmental simulation chamber: Insights from the Juelich Ozone
617	Sonde Intercomparison Experiment (JOSIE), J. Geophys Res., 112, D19306,
618	doi:10.1029/2006JD007308, 2007.
619	
620	Smit, H.G.J., and ASOPOS panel (2014), Quality assurance and quality control for
621	ozonesonde measurements in GAW, WMO Global Atmosphere Watch report series,
622	No. 121, 100 pp., World Meteorological Organization, GAW Report No. 201 (2014),
623	100 pp., Geneva. [Available online at https://library.wmo.int/pmb_ged/gaw_201_en.pdf]
624	
625	Sterling, C. W., B. J. Johnson, S. J. Oltmans, H. G. J. Smit, A. F. Jordan, P. D. Cullis,
626	E. G. Hall, A. M. Thompson, and J. C. Witte (2018), Homogenizing and estimating
627	the uncertainty in NOAA's long -term vertical ozone profile records measured with the
628	electrochemical concentration cell ozonesonde, Atmos. Meas. Tech, 11, 3661-3687,
629	https://doi.org/10.5194/amt-11-3661-2018.
630	
631	Tarasick, D.W., J. Davies, H.G.J. Smit and S.J. Oltmans (2016), A re-evaluated Canadian
632	ozonesonde record: measurements of the vertical distribution of ozone over Canada from
633	1966 to 2013, Atmos. Meas. Tech. 9, 195-214, doi:10.5194/amt-9-195-2016.
634	
635	Torres, A. L., ECC ozonesonde performance at high altitudes: pump efficiency, NASA
636	Technical Memorandum 73290, 10 pp, 1981.
637	

Deleted: W.,:

639	Witte, Jacquelyn C., Thompson, Anne M., Schmidlin, F. J., Northam, E. Thomas, Wolff,	
640	Katherine R., and Brothers, George B., The NASA Wallops Flight Facility digital	
641	ozonesonde record: reprocessing, uncertainties, and dual launches.	
642	Doi.org/10,1029/2018JD0030098, 2018.	
643		
644	11 Figures	
645		
646	Fig01. Digital calibration bench showing operational configuration and mounting	Deleted: Illustration of the d
647	position of two ECC ozonesondes. Major components include ozone generator and	Deleted: The m
648	analyzer, computer, flow meter, and glass manifold.	
649		
650	Fig02. Digital calibration bench diagrams: a) sequential steps, and b) functional steps.	
651		
652	Fig03. Comparison of ECC ozonesondes prepared with (1.0%,1.0B) [blue] and	Deleted: Simultaneous c
653	(0.5%,0.5B) [red] KI solution concentrations. The reference curve is shown in black.	
654	Calibrations are made in 5.0 mPa steps from 0.0 mPa to 30.0 mPa.	
655		
656	Fig04. Average ozone profiles from 12 pairs of SPC 6A ECC ozonesondes indicating at	
657	the 22 hPa pressure level that the (0.5%,0.5B) ECCs' measured 0.7-0.8 mPa less ozone,	
658	approximately 5 percent less, than the (1.0%,1.0B) ECCs'.	
659		
660	Fig05. Digital calibration bench results between (1.0%,1.0B) solution, blue curve, and	
661	(0.3%,0.3B) solution, red curve; the reference curve is shown in black.	Deleted: 5

666 Fig 01.

684 Fig 02.

ECC Calibration System Sequential Flow Diagram

10/29/19 etn

Functional Diagram Ozonesonde Calibration Test Bench

686

695 Fig 04.

Deleted: