

1
2
3
4
5
6
7 An Automated Method for Preparing and Calibrating
8
9 Electrochemical Concentration Cell (ECC) Ozonesondes

10
11
12
13
14
15
16
17
18
19
20 Francis. J. Schmidlin¹ and Bruno A. Hoegger²
21
22
23
24
25
26
27
28
29 1) NASA/GSFC/Wallops Flight Facility; Wallops Island, Va. 23337 (Emeritus). E-mail: francis.j.schmidlin@nasa.gov
30 2) Bruno Hoegger Scientific Consulting; Marly, Switzerland CH1723. E-mail: hoegger.consulting@bluewin.ch
31
32

33 Abstract

34

35 In contrast to the legacy manual method used to prepare, condition, and calibrate the Electrochemical
36 Concentration Cell (ECC) ozonesonde an automated digital calibration bench similar to one developed
37 by MeteoSwiss at Payerne, Switzerland was established at NASA's Wallops Flight Facility and
38 provides reference measurements of the same ozone partial pressure as measured by the ECC. The
39 purpose of an automated system is to condition and calibrate ECC cells before launching on a balloon.
40 Operation of the digital calibration bench is simple and real-time graphs and summaries are available to
41 the operator; all information is archived. The parameters of interest include ozone partial pressure,
42 airflow, temperature, background current, response, and time (real and elapsed). ECC cells, prepared
43 with 1.0 percent solution of potassium iodide (KI) and full buffer, show increasing partial pressure
44 values when compared to the reference as partial pressures increase. Differences of approximately 5-6
45 percent are noted at 20.0 mPa. Additional tests with different concentrations revealed the Science Pump
46 Corp (SPC) 6A ECC with 0.5 percent KI solution and one-half buffer agreed closer to the reference
47 than the 1.0 percent cells. The information gained from the automated system allows a compilation of
48 ECC cell characteristics, as well as calibrations. The digital calibration bench is recommended for ECC
49 studies as it conserves resources.

50

51

52 1. Introduction
53
54 Measurement disagreement between similar or identical instruments seems to be an historical problem.
55 Intercomparisons are generally conducted when new instruments are introduced and when operational
56 changes or improved procedures become available. Such comparisons should be made under the same
57 environmental conditions and include a reference instrument as an aid for checking the accuracy and
58 reliability of the instruments. This would be ideal as a standard procedure. Unfortunately, balloon-borne
59 ozone reference instruments are not usually available, mostly because they are too expensive for other
60 than occasional use or to expend on non-recoverable balloon packages. Ozonesonde pre-flight
61 calibrations are conducted, however these are basically single point calibrations made prior to its
62 release. An automated system designed to condition and calibrate the Electrochemical Concentration
63 Cell (ECC) ozonesonde was fabricated at Wallops Flight Facility. The automated system can condition
64 the ECC prior to flight and, if desired, provide calibration over a wide range of ozone partial pressures.
65 This system, designated the digital calibration bench, enables consistent conditioning and calibration of
66 the ECC along with measurements of a reference value. In this paper the term ECC refers only to the
67 Science Pump Corp. (SPC) 6A ECC ozonesonde, although the automated system can accommodate the
68 Environmental Science (EnSci) ozonesonde as well.
69
70 There are a variety of ground-, aircraft-, satellite-, rocket-, and balloon-borne instruments available to
71 measure the vertical structure of atmospheric ozone and its total content. These instruments operate on
72 different principles of measurement (Fishman et al, 2003; Kohmyr, 1969; Krueger, 1973; Holland et al,
73 1985; Hilsenrath et al, 1986; Sen et al, 1996). Although their spatial distribution is limited, balloon-
74 borne Electrochemical Concentration Cell (ECC) ozonesondes have had a key role as a source of truth
75 for the other instruments and for establishing algorithms necessary for the retrieval of satellite
76 observations. Manual preparation of the ECC requires hands-on contact by an operator.
77
78 Reducing subjectivity is important and was considered serious enough to engage in the fabrication of
79 the automated system. The user is prompted throughout the calibration process while utilizing real-time
80 graphs and summaries. The digital calibration bench provides consistent preparation procedures. ECC
81 measured ozone partial pressures vs. reference partial pressures are discussed and the results
82 corroborated with dual ECC comparisons at Wallops Island. During implementation of the digital
83 calibration bench, beta testing provided the dual ECC measurements used in this paper for
84 demonstration purposes. Operational use at Wallops Island was intermittent and only provided a limited
85 number of ECC preparation records between 2009 and 2017, when bench components began to fail.
86

87 Notwithstanding efforts to enhance ECC performance (Smit et al, 2004, 2007, 2014; Kerr et al, 1994;
88 Johnson et al, 2002; Torres, 1981) there remain uncertainties. The accuracy of the ECC is estimated at
89 5-10 percent and also varies with altitude (Deshler et al, 2017; Smit and ASOPOS Panel, 2014).
90 However, standardization of ozonesonde preparation methods has improved and better data quality
91 control (Smit et al, 2014) and the homogenization of the ozone data (Deshler et al, 2017; Smit et al,
92 2013) have raised the level of ozonesonde usefulness. Uncertainties also arise from poor compensation
93 for the loss of pump efficiency; erroneous background current; variable motor speed; solution loss from
94 turbulent cathode cell bubbling; air flow temperature error and whether measured at the proper location;
95 and, the use of the appropriate potassium iodide (KI) concentration. Understanding the influence these
96 parameters have on the ozonesonde measurement capability is particularly important. The digital
97 calibration bench is able to measure these parameters in a consistent way over a range of partial
98 pressures.

99

100 2 Digital Calibration Bench Description and Operational Procedure

101

102 2.1 Description

103

104 The computer-controlled preparation and calibration bench fabricated at NASA Wallops Flight Facility
105 borrows from the design of a bench developed by MeteoSwiss scientists B. A. Hoegger and G. Levrat
106 at Payerne, Switzerland. The MeteoSwiss digital calibration bench was first available in 1995 and
107 continues to be used and is updated periodically. The MeteoSwiss and Wallops digital calibration
108 benches are functionally similar but are not identical in design. A comparable bench furnished by
109 MeteoSwiss to the meteorological station at Nairobi, Kenya has been in use since 2018. The Wallops
110 Island ozone site was interested in the digital bench because of its capability to provide precise and
111 repeatable preparation of ECC's, and its automated feature requires less interaction with the ECC than
112 the manual preparation method. The Wallops Island digital bench was undergoing development
113 between 2005-2008 and used operationally only to prepare ECC's between 2009-2017.

114

115 Throughout the history of ECC ozonesonde performance, the concentration of the KI solution has been
116 questioned (Thornton and Niazy, 1982; Barnes et al, 1985; Johnson et al, 2002; Sterling et al, 2018). In
117 the late 1960's and early 1970's the recommendation to use 2.0 percent solution was unchallenged. In
118 the mid-1970's the concentration was changed to 1.5 percent, and in 1995 the KI solution was changed
119 once more to 1.0 percent. Employing the Wallops digital calibration bench enables adjustment of the
120 datasets obtained with the different concentrations to be homogenized to improve the consistency of the
121 measurements of the long-term database. The digital calibration bench allows consistent, computer-

122 controlled preparation of ECC instruments. The calibration bench accurately measures the ozone
123 reaching the ECC cells while a Thermo Environmenmtal, Inc. (TEI) ozone generator provides the
124 source of ozone at partial pressures between 0.0 and 30.0 mPa. A second TEI instrument accurately
125 measures the ozone sent to the ECC, providing a reference value. Thus, performance comparisons are
126 possible without expending costly instruments.

127

128 The Wallops digital calibration bench, shown in Fig. 1, consists of three major components: 1) mass
129 flow meter to control air flow, 2) an ozone generator and analyzer (UV photometer), and 3) computer
130 necessary to automate the timing of the programmed functions and process the data. Another important
131 component, the glass manifold, enables the simultaneous distribution of the air flow to the ECC's and
132 the UV photometer. The manifold also is a buffer maintaining constant air flow and inhibiting flow
133 fluctuation. A graphical user interface controls the various input and output functions using an interface
134 board and communications portal enabling synchronous communication protocols. A signal
135 conditioning box allows connections to the ECC's analog signals that are conditioned with custom
136 electronic components. Minor but necessary components include pressure and temperature sensors, and
137 valves and solenoids to direct the flow of laboratory grade air. Calibration validity is accomplished by
138 comparing the measured ECC ozone partial pressure against a reference partial pressure obtained with
139 the UV photometer (TEI Analyzeer).

140

141 Fig. 2, from an unpublished technical note (Baldwin, private communication), illustrate the steps
142 necessary to achieve a consistent calibration. By following the sequential flow diagram shown in Fig. 2,
143 upper panel, the operator can better understand the sequence of tests. Each shape in the diagram is
144 associated with a graphical window displayed on the monitor, as are notices that pop-up to instruct or
145 direct the operator. The computer controlled digital bench follows the ECC preparation procedure in
146 place at NASA Wallops Island at the time of the system's fabrication. Each ECC is recognized by its
147 manufacturing date and serial number and includes the manufacturers test data. Changes to the steps are
148 possible anytime through software reprogramming. The preparation sequence begins by verifying
149 whether ECC cells are new or were previously conditioned. A different path is followed for either
150 condition. New cells are flushed with high ozone prior to manually adding KI solution. Cells previously
151 having had solution added skip over the high ozone step to determine the first background current.
152 Following the first background check the remaining steps are completed. Other measurements
153 accumulated with the digital bench include motor voltage, motor current, pump temperature, and linear
154 calibration at seven levels (0.0-30.0 mPa). Program steps are displayed on the computer monitor with
155 real-time information. All data are archived and backup files maintained.

156

157 Fig. 2, lower panel, illustrates the functional diagram detailing the essential operation of the digital
158 calibration bench. Software control is shown in blue and air flow in green. Laboratory zero-grade dry
159 air or desiccated compressed air is introduced into the TEI ozone generator where a controlled amount
160 of ozone is produced. The ozone flows simultaneously to the ECC cells and to the TEI Model 49C
161 ozone analyzer. The analyzer contains the UV photometer that provides the reference partial pressure.
162

163 The digital bench reads the air flow from a Hasting mass-flow meter permitting a precise flow rate to be
164 determined. The mass-flow is then converted to volume-flow by the conventional conversion formula.
165 The volume flow rate measurement was found to be comparable to the flow rate determined with the
166 volumetric bubble flow meter. The digital calibration bench uses the Hasting Mass-Flow Meter model
167 ENALU with a HS500m transducer with a maximum mass-flow-range of 500 [scc/min].. In contrast,
168 the manual method uses a stop watch to estimate when 100 mL of air has flowed into a chamber. An
169 experienced operator, using a volumetric bubble flow meter is able to measure the time to less than 1
170 second. Tarasick et al (2016) points out that the operator uncertainty when reading the bubble flow
171 meter is about 0.1-0.3 percent. Further, the manual method requires that the effect of moisture from the
172 bubble flow meter's soap solution be accounted for; flow rates determined with the digital calibration
173 bench do not require a correction for moisture. Unfortunately, the calibration bench cannot determine
174 the pump efficiency correction (PEC); this is taken into account differently. For a number of years, the
175 ECC's PEC was physically measured at Wallops Island using a specially adapted pressure chamber
176 (Torres, 1981). This system is no longer available. However, from its many years of use an extensive
177 number of measurements are available. A sample of 200 pressure chamber measurements were
178 averaged to obtain a unique PEC that was adopted for use at Wallops Island.
179

180 After eliminating deficiencies and improving functionality the automated system was tested while
181 obtaining research data, primarily comparisons between different KI solution concentrations.
182 Calibration from 0.0 mPa to 30.0 mPa generally exceeds the nominal range of atmospheric ozone
183 partial pressure. Calibration steps are made in 5.0 mPa increments but larger or smaller increments are
184 possible with minimal software reprogramming. Differences between ECC and reference
185 measurements, if seriously large, provide an alarm to possibly reject the ECC, or after further study the
186 differences between the ECC and reference calibration might be considered as a possible adjustment
187 factor that would be applied to observational data.
188

189 2.2 Operational Procedure

190

191 ECC preparation procedures at Wallops Island are carried out five to seven days prior to preparing the
192 ECC for flight. The pump, anode and cathode cells, and Teflon tubing are flushed with high amounts of
193 ozone to passivate their surfaces and is followed by flushing with zero-grade dry air followed by filling
194 of the cells. The cells are stored until ready to be used.

195

196 Operation of the automated system is simple, requiring only a few actions by the operator that include
197 obtaining the first background current, air flow, 5 μ A or high ozone (170 nb) test, response test, second
198 background current, linear calibration between 0.0 mPa and 30.0 mPa, and the final background
199 current. As indicated in Fig. 2, upper panel, two cells can be conditioned nearly simultaneously. i.e.,
200 the program alternates measurements between ECC's.

201

202 The operator must first determine whether the cell being conditioned had already been filled with KI or
203 never was filled. Whatever the status of the cell (wet or dry) the operator enters the identification
204 information before proceeding. When a new, or a dry cell is to be processed the digital calibration bench
205 initiates high ozone flushing. The program alerts the operator to turn on the high ozone lamp after which V3 of
206 Fig. 2, lower panel, is switched to high ozone. The unit checks that ozone is flowing and after 30 minutes the
207 program switches to zero air for 10 minutes and V3 switches back to the ozone generator. When completed, the
208 operator is prompted by an instructional message on the monitor screen to fill the anode and cathode cells with
209 the proper concentrations of potassium iodide (KI) solution, i.e., the cathode cell is filled first with 3 mL of 1.0
210 percent KI solution followed, after a 10 minute delay, by filling the anode cell with a saturated KI solution. The
211 cells are stored until ready for further conditioning and calibration before being used to make an observation.

212 Considering that the ECC cell had been filled earlier with solution the digital bench instruction by-
213 passes the high ozone flushing. Ozonesonde identification is entered, as above. The operator, after fresh
214 KI has been added to the cell, is prompted on the monitor screen to begin the first background current
215 measurement. In either case, whether a dry cell for which flushing is complete, or a wet cell ready for
216 calibration, the procedure starts with clicking the OK button displayed on the monitor screen. After 10
217 minutes of dry air the background current is recorded. The background current record contains the
218 following information: date, time in 1-2 second intervals, motor current, supplied voltage, pump
219 temperature, and cell current. As the measurement is being made identical information is displayed
220 graphically on the monitor. Following the background test all further steps are automatic.

221

222 Continuing to follow the steps outlined in Fig. 2, upper panel, the measurement of the air flow is accomplished
223 on one ECC pump at a time by switching V1, shown in Fig. 2, lower panel, to the mass flow meter and at the
224 same time V2 is switched to the glass manifold (ozone generator). When completed, V1 is switched back to the
225 glass manifold and V2 is switched to the flow meter and the flow rate of the second cell is carried out. The air
226 flow is output in sec/100 ml. The information stored includes: date, time in seconds at intervals of 7-8 seconds,
227 mass flow meter temperature, atmospheric pressure, flow rate, and supply voltage.

228
229 Measuring the response of the ECC to ozone decay requires setting the ozone generator to produce 17.0 mPa
230 ozone partial pressure (approximately 5 uA). As ozone is produced the ozone level increases until the set level is
231 reached. The elapsed time to reach this level is noted. The 17.0 mPa of ozone is the reference level used to
232 initiate the response test. After recording 17.0 mPa of ozone for 10 minutes the ECC response check begins. To
233 measure the response, the cells would have to be switched to zero air quicker than the cell responds. This is
234 accomplished by switching both cells (assuming two cells are being calibrated) to the mass flow meter, the
235 source of zero air. This is more efficient than setting the generator to zero and waiting for the manifold and
236 residual ozone in the system to reach the zero level. Thus, V1 and V2 of Fig. 2, lower panel, are switched to the
237 mass flow meter for immediate zero air and the program triggers a timer. The decreasing ozone is measured and
238 recorded at five points used to reflect the cell response. As the ozone decays, measurements at 3-4 second
239 intervals provide a detailed record of the response while also being displayed real-time on the monitor. From the
240 detailed record the program selects five points (1, 2, 3, 5 and 10 minutes) successively that are used to calculate
241 the response of ozone change that should be 80-90 percent lower than the reference of 17.0 mPa. V1 and V2 are
242 switched back to the ozone generator and the next 10-min background current measurement begins. The response
243 record contains the following: date, time in seconds, motor current, supply voltage, temperature, mass flow, cell
244 current, and atmospheric pressure. Data are displayed on the monitor in real-time.

245
246 The ECC cells have been conditioned and are ready for the linear calibration. The 0.0 mPa to 30.0 mPa
247 calibration is performed. Step changes begin with 0.0 mPa, followed by measurements at 5.0, 10.0, 15.0, 20.0,
248 25.0, and 30.0 mPa. Each step requires approximately 2-3 minutes to complete allowing time for the cell to
249 respond to each ozone step change. The linear calibration includes the reference measurement made
250 simultaneously with the ECC measurement. After the upward calibration reaches the 30.0-mPa level the
251 calibration continues downward, to 0.0 mPa. The measurements are displayed on the monitor for the operators
252 use and also sent to an Excel file. Generally, the downward calibration experiences small differences from the
253 upward calibration. The available test data reveals that the downward calibrations are always higher than the
254 upward calibrations. Between 5.0 mPa and 25.0 mPa the downward calibrations of the 1.0 percent KI solution
255 are 0.8 mPa to 1.0 mPa higher than the upward calibration. The 0.5 percent solution downward calibration varies
256 between 0.5 mPa and 0.9 mPa for the same partial pressures. Only the upward calibrations are used. Following
257 the linear calibration, the final background current is obtained. This requires 10 minutes of zero grade dry air
258 before making the measurement. The data are recorded in a summary file that contains the supply voltage, motor
259 current, flow rate, pump temperature, response, and the background currents.

260
261 3 Digital Calibration Bench Practical Application

262
263 Repetitive comparison operations can be carried out with the digital calibration bench as often as
264 necessary. This could result in a potential cost saving as there would be no need to expend radiosondes,

265 ECC's, and balloons. The testing with the digital calibration bench is limited to the ranges of pressures
266 and temperatures at sea level and would be an imprecise representation in the upper altitudes.

267

268 3.1 Digital Calibration Bench (General)

269

270 Quasi-simultaneous testing of two ECC's is possible, enabling comparisons of different concentrations
271 of KI solutions. Comparison of 2.0-, 1.5-, 1.0-, and 0.5- percent KI concentrations were carried out on
272 the digital bench demonstrating that agreement with the ozone reference value improved with lower
273 concentrations. In an earlier paper Johnson et al (2002), using SPC and EnSci ECC's demonstrated
274 similar changes occurred when testing various solution concentrations that also included varying
275 amounts of buffer. Only the SPC 6A ECC's with 1.0 percent KI solution and full buffer (1.0%,1.0B)
276 and 0.5 percent KI solution and one-half buffer (0.5%,0.5B) concentrations are discussed here.

277

278 During the checkout of the digital calibration bench ECCsondes were calibrated in pairs and included
279 different KI solutions. Tests indicated the pressure and vacuum measurements were nominal, some
280 insignificant variation occurred but was not a cause for concern. Pump temperatures, controlled by the
281 room air temperature, varied 0.1°C to 0.2°C. Motor currents showed some variation, some measured
282 over 100 mA, suggesting a tight fit between the piston and cylinder. For example, one ECC motor
283 current initially was 100 mA, a second measurement a week later the reading was 110 mA, a final
284 reading after running the motor for a short time was 96.5 mA. Flow rates fell within the range of 27 to
285 31 seconds per 100 ml, a range comparable to flow rates manually measured with a bubble flow meter.
286 Background currents were consistent. The lowest background current allowed by the digital bench is
287 0.0044 μ A. The final background currents obtained with the digital bench often were somewhat higher
288 than background currents experienced with manual preparation, generally about 0.04 μ A. Although 0.4
289 μ A is relatively small it is possible the higher background current value results from the ECC's
290 residual memory following exposure to the high ozone concentration during the previous linear
291 calibration step. The final background currents, obtained manually immediately prior to an ECC
292 balloon release, were in the range between 0.01 and 0.02 μ A. Finally, the response of all the cells was
293 good, falling within the required 80 percent decrease within less than one minute. Graphically checking
294 a small sample of high-resolution responses found some variation as the ozone decayed.

295

296 3.2 Calibration and Potassium Iodide (KI) Solution Comparisons

297

298 As a practical example of the usefulness of the digital calibration bench is its capability to nearly
299 simultaneously obtain measurements from two ECC's, one prepared with (1.0%,1.0B) and the second

300 with (0.5%,0.5B). The recommended KI solution strength to be used with the SPC 6A ECC's is 1.0
301 percent the with full buffer (Smit and ASOPOS PANEL, 2014). Conditioning of the ECC's followed
302 the steps given in Fig. 2, upper and lower panels. In the free stratosphere ozone partial pressures usually
303 range from 15.0 mPa to 20.0 mPa. Linear calibrations to 30.0 mPa are obtained, although a lower range
304 may be reprogramed.

305

306 Figure 3 is a graphical example of differences between the reference ozone measurement and the
307 measurements of (1.0%,1.0B) and (0.5%,0.5B) KI concentrations. A sample of 18 digital bench
308 measurements were averaged to provide a representative set of differences. The close proximity
309 between the curves shown in the figure render the standard deviation lines too small, also they overlay
310 each other to some extent. The standard deviations have been added to the figure for greater clarity. The
311 variations, although small, indicate greater variability with the (1.0%,1.0B) KI solution. Fig. 3 suggests
312 that the two concentrations measured nearly identical amounts of ozone between 0.0 mPa and 8.0 mPa.
313 Both curves begin to separate and diverge above 8.0 mPa. The averaged data at 10.0 mPa indicate that
314 (1.0%,1.0B) is 0.36 mPa, or 3.6 percent higher than the reference and (0.5%,0.5B) is 0.04 mPa, or 0.4
315 percent higher; at 15.0 mPa the difference is 0.67 mPa, or 4.3 percent and 0.17 mPa or 1.1 percent
316 higher, respectively; at 20.0 mPa the difference for (1.0%,1.0B) is 1.11 mPa, or 5.5 percent and
317 (0.5%,0.5B) is 0.48 nb or 2.4 percent higher. A check at the 30.0 mPa level indicated (1.0%,1.0B) was
318 6.8 percent above the reference and (0.5%,0.5B) was 3.2 percent above. The ECC with (0.5%,0.5B) KI
319 concentration is closer to the reference than (1.0%,1.0B) KI . Both ECCs' partial pressure curves have a
320 slope greater than 1 trending toward higher amounts of ozone when compared to the reference value as
321 ozone partial pressure increases. It is clear that the (1.0%,1.0B) KI solution increases at a faster rate
322 than the (0.5%.0.5B) solution. Johnson et al (2002) have explained the effect of different KI solution
323 concentrations as well as the side effects from the buffers used. Their study of the standard (1.0%,1.0B)
324 solution indicated the ECC can report higher ozone amounts, up to 5-7 percent under constant ozone
325 conditions and can also increase the ozone amount to higher values from the buffer reactions. Fig. 3
326 indicates that the 1.0 percent KI measurement is further from the reference than the 0.5 percent KI. The
327 percentage difference between the two KI concentrations is virtually constant at 3.2 percent, or in terms
328 of a ratio between the two solutions, 0.968. Referring to the SPC ozonesondes compared during
329 BESOS, Deshler et al (2017, Fig.5 and Table 2) indicate non-linearity between the (0.5%,0.5B) and
330 (1.0%,1.0B) KI solutions and similar ratio values, 0.970/0.960 .

331

332 The digital calibration bench turned out to be an ideal tool to obtain repeated ECC calibrations. The
333 digital bench can calibrate two ECC's nearly simultaneously reducing the need to expend costly dual-
334 ECC balloons. A negative aspect, possibly, is that calibration at sea level cannot provide knowledge of

335 ECC behavior under upper altitude conditions. Eleven ECC pairs were calibrated over a period of three
336 weeks. Two ECC's were prepared with (1.0%,1.0B) and (0.5%,0.5B) KI solutions. A number of time-
337 separated calibrations were conducted with the expectation the resulting calibrations would be
338 repeatable week-to-week. The cells were flushed and fresh KI solutions were used with each weekly
339 test. Calibration over the full range, 0.0-30.0 mPa was carried out, Changes that might be due to
340 improper preparation and conditioning procedures were not considered since, by definition, the digital
341 bench is consistent in how ECC's are prepared. Consideration also must be given to the fact that the
342 ECC sensor has a memory that may have an effect of inhibiting repeatability. The individual weekly
343 calibrations showed varying results. Some calibrations showed an increase each week while other
344 calibrations did not. An average of the data showed small increases week-to-week but these were too
345 small to be significant. In essence no particular pattern was evident suggesting that calibrations on a
346 week-to-week schedule would not be repeatable

347

348 To bring the ECC measurements into correspondence with the reference suggests that downward
349 adjustment should be applied to each curve. When a large sample of similar digital bench
350 measurements are obtained it should be possible to design a table of adjustments relative to ozone
351 partial pressure that could be used to adjust ozonesonde measurements. However, since the calibrations
352 are made at sea level such an adjustment table would not be able to account for the influence of upper
353 atmospheric pressure and temperature. Nevertheless, any adjustment, seemingly, would be in the right
354 direction and would aid in obtaining more representative ozone values.

355

356 Although digital bench calibration comparisons are instructive, important comparisons have been made
357 between ECC's and reference instruments using other methods. ECC measurement comparability have
358 been quantified through in situ dual instrument comparisons (Kerr et al, 1995; Stubi et al, 2008; Witte
359 et al, 2019), laboratory tests at the World Ozone Calibration facility at Jülich, Germany (Smit et al,
360 2004, 2007, 2014) and by occasional large balloon tests such as BOIC (Hilsenrath et al, 1986), STOIC
361 (Kohmyr et al, 1995) and BESOS (Deshler et al, 2008). BESOS provided important performance
362 information about the SPC 6A ECC and the EnSci ozonesondes. However, these complicated large
363 balloon experiments that seem to occur every 10 years are expensive. The environmental chamber used
364 in the Jülich tests (Smit et al, 2007) covers a full pressure range but is also expensive to use. The
365 purpose here is to show a calibration method that is simple to use and provides calibrations that include
366 useful reference values, and is complementary to other methods, such as employed in the Jülich Ozone
367 Sonde Intercomparison Experiment (Smit et al, 2004; Smit et al, 2007).

368

369 In the 1998-2004 period the Wallops ozone station released a number of dual-ECC balloons, twelve
370 pair successfully provided measurements to 30 km, and higher. The ECC's were attached about 35
371 meters below the balloon and each ECC separated a distance of 2 meters. Each pair was composed of
372 an ECC with (1.0%,1.0B) and (0.5%,0.5B) KI solutions. The profiles were averaged, and are displayed
373 in Fig. 4. It can be noted in the figure that the mean (0.5%,0.5B) solution reveals less ozone being
374 measured than that of the (1.0%,1.0B) solution. Near the 65-70 hPa level the (0.5%,0.5B) ECC begins
375 to report increasingly less ozone with increasing partial pressure than the (1.0%,1.0B) ECC. A similar
376 feature was noted in Fig. 3 where the separation of the ECC's with different concentrations occur with
377 increasing partial pressure. Fig. 4 shows the maximum ozone partial pressure level was about 14.0 mPa,
378 near 22 hPa, where the (0.5%,0.5B) KI solution measured approximately 1.0 mPa, or 7 percent less
379 ozone than the ECC with the (1.0%,1.0B) KI concentration. This difference is approximately 4 percent
380 higher than the result given by the digital calibration bench results of Fig.3, where, at 15.0 mPa, the
381 difference between the (1.0%,1.0B) KI and (0.5%,0.5B) KI is 3.2 percent. Dobson measurements of
382 total ozone compared with total ozone derived from each of the ECC profiles used to the obtain the
383 average profiles shown in Fig. 4 were, on average, in excellent agreement with (0.5%,0.5B). The total
384 ozone difference between the Dobson (309.5 DU) and (1.0%,1.0B) (330.4 DU) is 20.9 DU; between
385 the Dobson and (0.5%,0.5B) (308.3 DU) was 1.2 DU.

386

387 Given that the digital bench tests revealed the (0.5%,0.5B) KI solution is in close agreement with the
388 reference measurement than the (1.0%,1.0B) solution suggested that a KI solution with a weaker
389 concentration may, possibly, give closer agreement. A small number of dual ECC tests were carried out
390 with a solution of 0.3 percent with one-third buffer (03%,0.3B). Six sets of ECC's were prepared for
391 calibration. Each dual ECC test consisted of one ECC prepared with (1.0%,1.0B) KI solution and one
392 with (0.3%,0.3B) KI solution. The digital bench comparison result disclosed the (1.0%,1.0B) result
393 replicated the earlier results discussed above. As assumed, the lower concentration was nearly equal to,
394 or slightly less than the reference. Average values and standard deviations derived from the six tests are
395 shown in Fig. 5. Although the 0.3 percent solution might appear to be a better choice additional tests
396 are necessary.

397

398 4 Summary

399

400 The concept of an automated method with which to pre-flight condition and calibrate ECC ozonesondes
401 was originally considered by MeteoSwiss scientists over 20 years ago. Drawing on their expertise, a
402 facility designated as the digital calibration bench was fabricated at NASA Wallops Flight Facility
403 between 2005-2008. The digital bench was put to use immediately to study ECC performance, conduct

404 comparisons of different KI concentrations, enabled ECC repeatability evaluation, as well as calibrating
405 the ECC over a range of partial pressures, including associated reference values. Tests conducted with
406 the digital bench were performed under identical environmental conditions. The digital bench
407 eliminates the expense and time associated with making similar tests in the atmosphere.

408

409 Early use of the digital bench was to calibrate ECC's, prepared with (1.0%,1.0B) KI solution, over a
410 range of partial pressures from 0.0 mPa to 30.0 mPa. Comparison between ECC's with (0.5%,0.5B) and
411 (1.0%,1.0B) KI solution and simultaneously obtained reference values revealed the two KI solution
412 strengths were measuring more ozone than the reference. There was an increasing difference between
413 the ECC's and the reference as the partial pressure increased. For example, the ECC measurements
414 slope upward to increasingly larger differences from the reference ozone measurements, i.e., increasing
415 from 4.3 percent higher partial pressure at 15.0 mPa (Fig. 3) to about 7 percent higher at 30.0 mPa.

416

417 Results from the digital bench also corroborate differences found between SPC 6A ECC's flown on
418 dual-instrument flights at Wallops Island. The difference between ozonesondes at a pressure of 22 hPa
419 showed the (0.5%,0.5B) ECC to be about 1.0 mPa lower than the (1.0%,1.0B) ECC.

420

421 The digital calibration bench provides a capability to apply a variety of test functions whereby the
422 valuable information gathered helps to better understand the ECC instrument. Evaluating SPC ECC
423 performance using an automated method diminishes the requirement for expensive comparison flights.
424 The tests performed, i.e., KI solution differences, calibrations over a time period, and dual-instrumented
425 balloon flights, were consistent, giving similar results. The tests described in this paper are simply
426 examples of the utility of the digital bench. Furthermore, the digital calibration bench preparation
427 facility potentially could contribute to an understanding of separating ECC measurement variability
428 from atmospheric variability. Thus, the automated conditioning and calibration system provides
429 valuable information, and as a useful tool should continue to be a valuable aid.

430

431 5 Data Availability

432 Data are available from the authors.

433

434 6 Author Contribution

435 The first author acquired and prepared the data for processing and the second author was instrumental
436 in certifying the digital calibration bench was working properly. Both contributed equally to manuscript
437 preparation.

438

439 7 Competing Interests

440

441 The authors declare they have no conflict of interest.

442

443 8 Disclaimer

444

445 None

446

447 9 Acknowledgments

448 We acknowledge the successful use of the digital calibration bench to the skillful efforts of Gilbert
449 Levrat (retired) of the MeteoSwiss site Payerne, Switzerland for his foresight in designing the original
450 bench and its simplicity. We are indebted to Tony Baldwin (retired) of NASA Wallops Flight Facility
451 for his electronic skill and programming expertise and to E. T. Northam for assistance preparing the
452 figures. We also appreciate the insightful suggestions given by the referees; they were instrumental in
453 helping us make the paper better.

454

455 10 References

456

457 Barnes, R. A., Bandy, A. R., and Torres, A. L.: Electrochemical Concentration Cell ozonesonde
458 accuracy and precision, *J. Geophys. Res.*, Vol. 90, No. D5, 7881-7887, 1985.

459

460 Deshler, T., Mercer, J. L., Smit, H. G. J., Stubi, R., Levrat, G., Johnson, B. J., Oltmans, S. J., Kivi, R.,
461 Thompson, A. M., Witte, J., Davies, J., Schmidlin, F. J., Brothers, G., and Sasaki, T.: Atmospheric
462 comparison of electrochemical cell ozonesondes from different manufacturers, and with different
463 cathode solution strengths: The Balloon Experiment on Standards for Ozonesondes, *J. Geophys. Res.*,
464 113, D04307, <https://doi.org/10.1029/2007JD008975>, 2008.

465

466 Deshler, T., Stubi, Rene, Schmidlin, Francis J., Mercer, Jennifer L., Smit, Herman G. J., Johnson,
467 Bryan J., Kivi, Rigel, and Nardi, Bruno,: Methods to homogenize electrochemical concentration cell
468 (ECC) ozonesonde measurements across changes in sensing solution concentration or ozonesonde
469 manufacturer, *Atmos. Meas. Tech.*, 10, 2021-2043, <https://doi.org/10.5194/amt-10-2021-2017>, 2017.

470

471 Fishman, J., Wozniak, A. E., and Creilson J. K.: Global distribution of tropospheric ozone from satellite
472 measurements using the empirically corrected tropospheric ozone residual technique: Identification of
473 the regional aspects of air pollution, *Atmos. Chem. And Phys. Discussions*, 3, pp 1453-1476, 2003.

474

475 Hilsenrath, E. W., Attmannspacher, W., Bass, A., Evens, W., Hagemeyer, R., Barnes, R. A., Komhyr,
476 W., Maursberger, K., Mentall, J., Proffitt, M., Robbins, D., Taylor, S., Torres, A., and Weinstock, E.:
477 Results from the Balloon Ozone Intercomparison Campaign (BOIC), *J. Geophys. Res.*, Vol 91, 13,137-
478 13,152, 1986.

479

480 Holland, A. C., Barnes, R. A., and Lee, H. S.: Improved rocket ozonesonde (ROCOZ-A) 1:
481 Demonstration of Precision, *Applied Optics*, Vol. 24, Issue 19, 3286-3295, 1985.

482

483 Johnson, B. J., Oltmans, S. J., and Vömel, H.: Electrochemical Concentration Cell (ECC) ozonesonde
484 pump efficiency measurements and tests on the sensitivity to ozone of buffered and unbuffered ECC
485 sensor cathode solution,. *J. Geophys. Res.*, Vol 107, No D19, 4393, doi: 10.1029/2001JD000557, 2002.

486

487 Kerr, J. B. et al: The 1991 WMO international ozonesonde intercomparisons at Vanscoy, Canada.
488 *Atmospheres and Oceans*, 1994.

489

490 Komhyr, W. D.: Electrochemical concentration cells for gas analysis, *Ann. Geophys.*, Vol 25, No 1,
491 203-210, 1969.

492

493 Komhyr, W. D., Barnes, R. A., Brothers, G. B., Lathrop, L. A., and Opperman, D. P.: Electrochemical
494 Concentration Cell ozonesonde performance evaluation during STOIC,1989, *J. Geophys. Res.*, 100,
495 D5, 9231-9244, 1995.

496

497 Krueger, A. J.: The mean ozone distribution from several series of rocket soundings to 52 km at
498 latitudes 58°S to 64°N., *PAGEOPH* 106,1, 1272-1280, 1973.

499

500 Proffitt, M. H., and McLaughlin, R. J.: Fast-response dual-beam UV absorption ozone photometer
501 suitable for use on stratospheric balloons, *Rev. Sci. Instru.*, 54, 1719-1728, 1983.

502

503 Sen, B., Sheldon, W. R., and Benbrook, J. R.: Ultraviolet-absorption photometer for measurement of
504 ozone on a rocket-boosted payload, *Applied Optics*, Vol 35, No. 30, 6010-6014, 1996.

505

506 Smit, H. G. J., and Sträter, W.,: JOSIE2000, Jülich Ozone Sonde Intercomparison Experiment: The
507 2000 WMO international intercomparison of operating procedures for ECC ozone sondes at the

508 environmental simulator facility at Jülich, WMO Global Atmospheric Watch, Report No. 158 (WMO
509 TD No. 1225). 2004.

510

511 Smit, H. G. J., Straeter, W., Johnson, B., Oltmans, S., Davies, J., Tarasick, D. W., Hoegger, B., Stubi,
512 R., Schmidlin, F. J., Northam, E. T., Thompson, A., Witte, J., Boyd, I., Posny, F.: Assessment of the
513 performance of ECC-ozonesondes under quasi-flight conditions in the environmental simulation
514 chamber: Insights from the Juelich Ozone Sonde Intercomparison Experiment (JOSIE), *J. Geophys*
515 *Res.*, 112, D19306, doi:10.1029/2006JD007308, 2007.

516

517 Smit, H.G.J., and ASOPOS panel (2014), Quality assurance and quality control for
518 ozonesonde measurements in GAW, WMO Global Atmosphere Watch report series,
519 No. 121, 100 pp., World Meteorological Organization, GAW Report No. 201 (2014),
520 100 pp., Geneva. [Available online at https://library.wmo.int/pmb_ged/gaw_201_en.pdf]

521

522 Sterling, C. W., B. J. Johnson, S. J. Oltmans, H. G. J. Smit, A. F. Jordan, P. D. Cullis,
523 E. G. Hall, A. M. Thompson, and J. C. Witte (2018), Homogenizing and estimating
524 the uncertainty in NOAA's long -term vertical ozone profile records measured with the
525 electrochemical concentration cell ozonesonde, *Atmos. Meas. Tech.*, 11, 3661-3687,
526 <https://doi.org/10.5194/amt-11-3661-2018>.

527

528 Tarasick, D.W., J. Davies, H.G.J. Smit and S.J. Oltmans (2016), A re-evaluated Canadian ozonesonde
529 record: measurements of the vertical distribution of ozone over Canada from 1966 to 2013, *Atmos.*
530 *Meas. Tech.* 9, 195-214, doi:10.5194/amt-9- 195-2016.

531

532 Torres, A. L., ECC ozonesonde performance at high altitudes: pump efficiency, NASA Technical
533 Memorandum 73290, 10 pp, 1981.

534

535 Witte, Jacquelyn C., Thompson, Anne M., Schmidlin, F. J., Northam, E. Thomas, Wolff,
536 Katherine R., and Brothers, George B., The NASA Wallops Flight Facility digital
537 ozonesonde record: reprocessing, uncertainties, and dual launches. Doi.org/10,1029/2018JD0030098,
538 2018.

539

540 11 Figures

541

542 Fig01. Illustration of the digital calibration bench showing operational configuration and mounting

543 position of two ECC ozonesondes. The major components include ozone generator and analyzer,
544 computer, flow meter, and glass manifold.

545

546 Fig02. Digital calibration bench diagrams: a) sequential steps, and b) functional steps.

547

548 Fig03. Simultaneous comparison of ECC ozonesondes prepared with (1.0%,1.0B) [blue] and
549 (0.5%,0.5B) [red] KI solution concentrations. The reference curve is shown in black. Calibrations are
550 made in 5.0 mPa steps from 0.0 mPa to 30.0 mPa.

551

552 Fig04. Average ozone profiles from 12 pairs of SPC 6A ECC ozonesondes indicating at the 22 hPa
553 pressure level that the (0.5%,0.5B) ECCs' measured 0.7-0.8 mPa less ozone, approximately 5 percent
554 less, than the (1.0%,1.0B) ECCs'.

555

556 Fig05. Digital calibration bench results between (1.0%,1.0B) solution, blue curve, and (0.3%,0.5B)
557 solution, red curve; the reference curve is shown in black.

558 Fig 01.

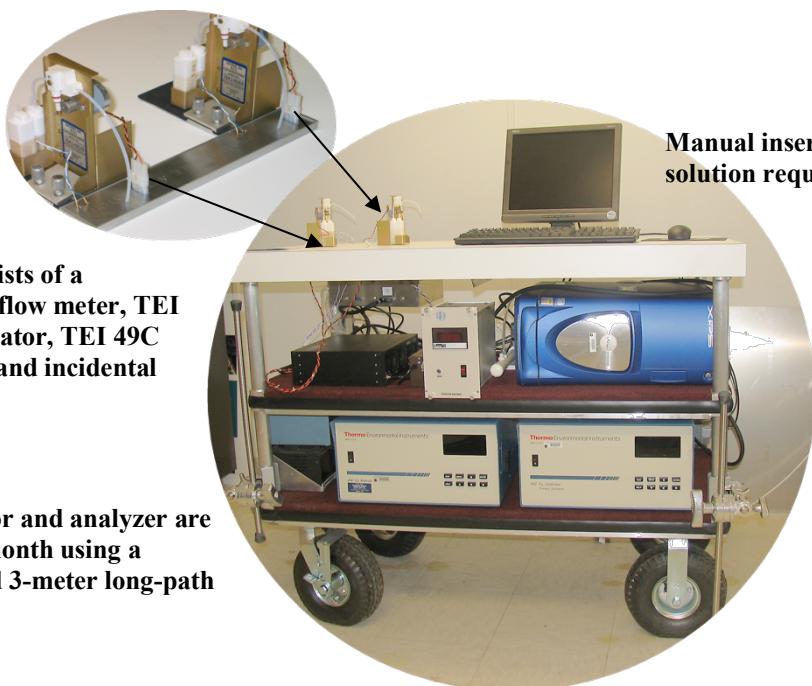
559

560 **DIGITAL CALIBRATION BENCH**

561

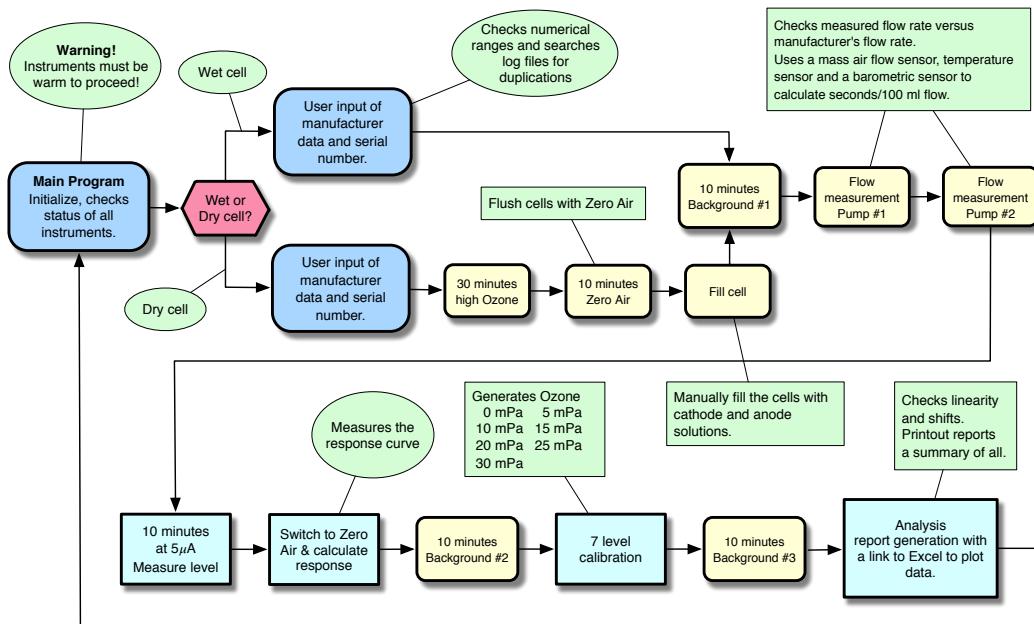
562

563


564

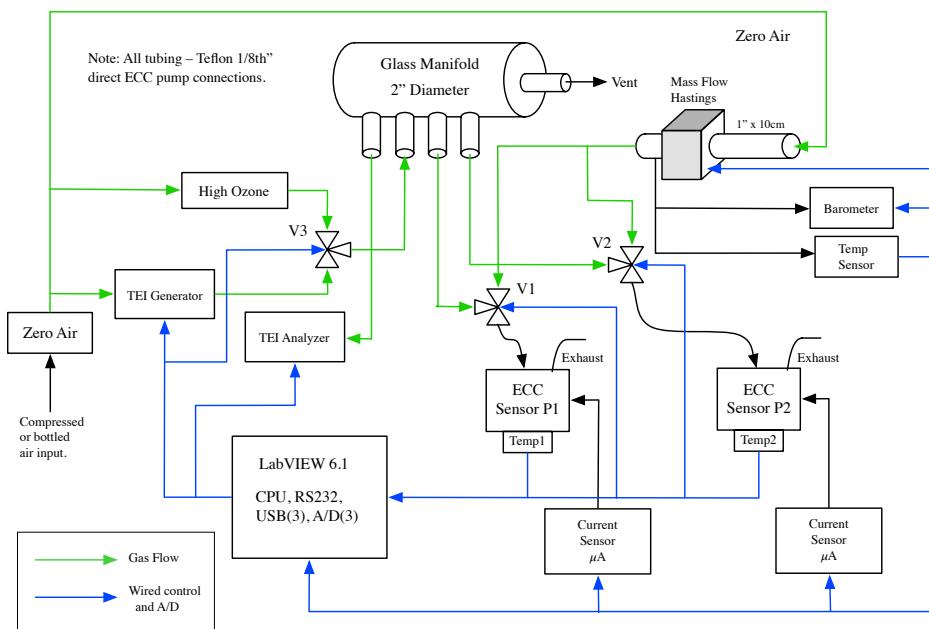
565

566 The system consists of a
567 computer, mass flow meter, TEI
568 49C ozone generator, TEI 49C
569 ozone analyzer, and incidental
570 equipment.


571 The TEI generator and analyzer are
572 calibrated each month using a
573 primary standard 3-meter long-path
574 photometer.

575 **Manual insertion of KI
solution required**

576 Fig 02.


ECC Calibration System Sequential Flow Diagram

577

10/29/19 etn

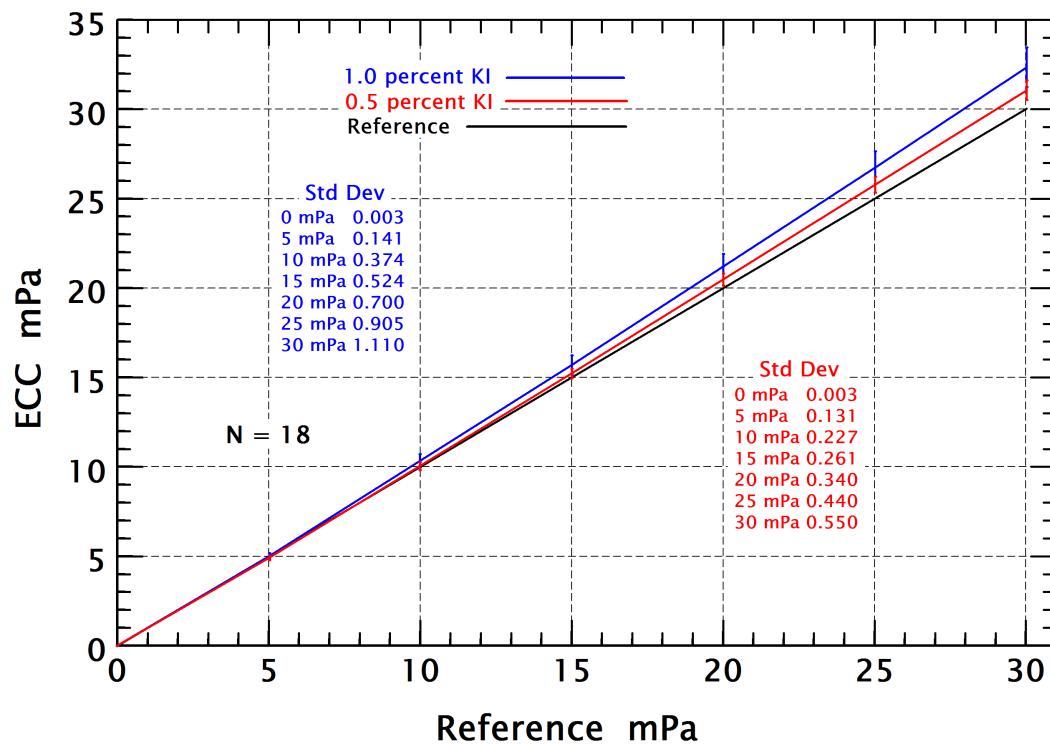
Functional Diagram Ozonesonde Calibration Test Bench

10/28/19 etn (from 6/7/05 TB)

578

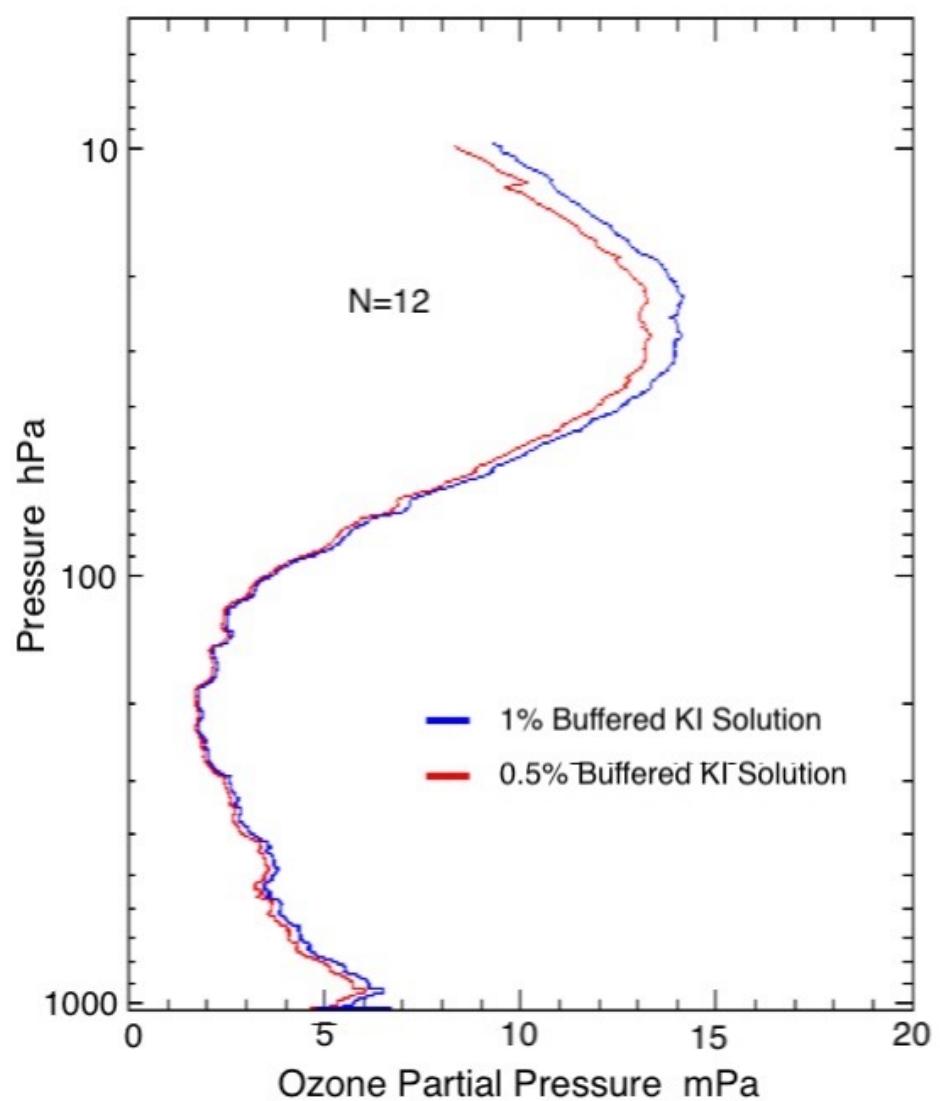
579

580


581

582

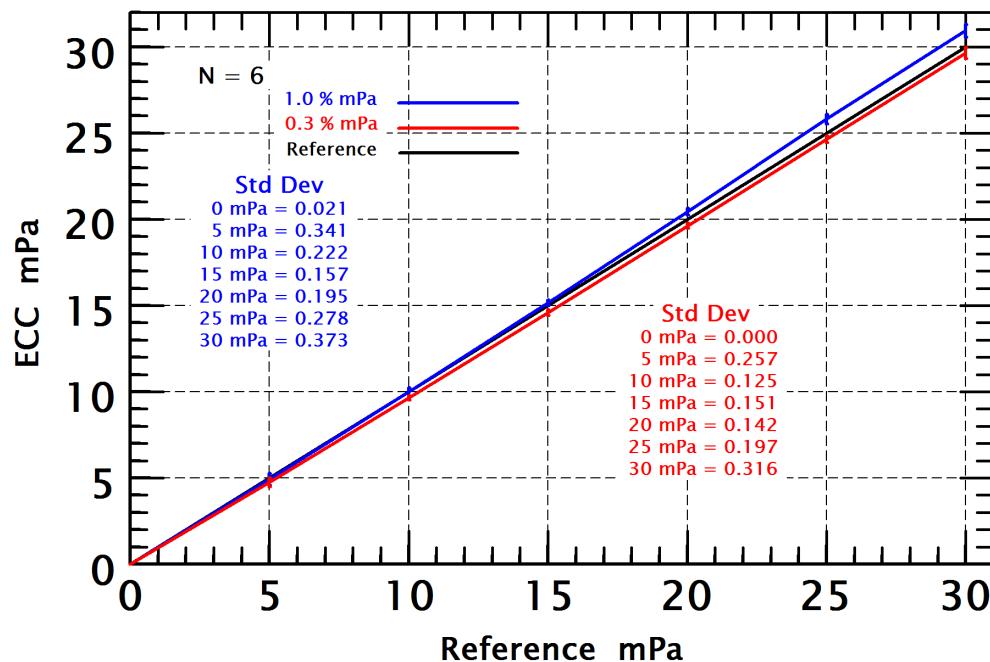
E92


584 Fig 03.

585

586

587 Fig 04.



588

589

590 Fig 05.

591

592

593