

1
2
3
4
5
6
7 An Automated Method for Preparing and Calibrating
8
9 Electrochemical Concentration Cell (ECC) Ozonesondes

10
11
12
13
14
15
16
17
18
19
20 Francis. J. Schmidlin¹ and Bruno A. Hoegger²
21
22
23
24
25
26
27
28
29 1) NASA/GSFC/Wallops Flight Facility; Wallops Island, Va. 23337 (Emeritus). E-mail: francis.j.schmidlin@nasa.gov
30 2) Bruno Hoegger Scientific Consulting; Marly, Switzerland CH1723. E-mail: hoegger.consulting@bluewin.ch
31

32 Abstract

33

34 In contrast to the legacy manual method used to prepare, condition, and calibrate the
35 Electrochemical Concentration Cell (ECC) ozonesonde an automated digital calibration
36 bench similar to one developed by MeteoSwiss at Payerne, Switzerland was established
37 at NASA's Wallops Flight Facility and provides reference measurements of the same
38 ozone partial pressure as measured by the ECC. The purpose of an automated system is to
39 condition and calibrate ECC cells before launching on a balloon. Operation of the digital
40 calibration bench is simple and real-time graphs and summaries are available to the
41 operator; all information is archived. The parameters of interest include ozone partial
42 pressure, airflow, temperature, background current, response, and time (real and elapsed).
43 ECC cells, prepared with 1.0 percent solution of potassium iodide (KI) and full buffer,
44 show increasing partial pressure values when compared to the reference as partial
45 pressures increase. Differences of approximately 5-6 percent are noted at 20.0 mPa.
46 Additional tests with different concentrations revealed the Science Pump Corp (SPC) 6A
47 ECC with 0.5 percent KI solution and one-half buffer agreed closer to the reference than
48 the 1.0 percent cells. The information gained from the automated system allows a
49 compilation of ECC cell characteristics, as well as calibrations. The digital calibration
50 bench is recommended for ECC studies as it conserves resources.

51

52

53 1. Introduction

54

55 Measurement disagreement between similar or identical instruments seems to be an
56 historical problem. Intercomparisons are generally conducted when new instruments are
57 introduced and when operational changes or improved procedures become available.
58 Such comparisons should be made under the same environmental conditions and include
59 a reference instrument as an aid for checking the accuracy and reliability of the
60 instruments. This would be ideal as a standard procedure. Unfortunately, balloon-borne
61 ozone reference instruments are not usually available, mostly because they are too
62 expensive for other than occasional use or to expend on non-recoverable balloon
63 packages. Ozonesonde pre-flight calibrations are conducted, however these are basically
64 single point calibrations made prior to its release. An automated system designed to
65 condition and calibrate the Electrochemical Concentration Cell (ECC) ozonesonde was
66 fabricated at Wallops Flight Facility. The automated system can condition the ECC prior
67 to flight and, if desired, provide calibration over a wide range of ozone partial pressures.
68 This system, designated the digital calibration bench, enables consistent conditioning and
69 calibration of the ECC along with measurements of a reference value. In this paper the
70 term ECC refers only to the Science Pump Corp. (SPC) 6A ECC ozonesonde, although
71 the automated system can accommodate the Environmental Science (EnSci) ozonesonde
72 as well.

73

74 There are a variety of ground-, aircraft-, satellite-, rocket-, and balloon-borne instruments
75 available to measure the vertical structure of atmospheric ozone and its total content.
76 These instruments operate on different principles of measurement (Fishman et al, 2003;
77 Kohmyr, 1969; Krueger, 1973; Holland et al, 1985; Hilsenrath et al, 1986; Sen et al,
78 1996). Although their spatial distribution is limited, balloon-borne Electrochemical
79 Concentration Cell (ECC) ozonesondes have had a key role as a source of truth for the
80 other instruments and for establishing algorithms necessary for the retrieval of satellite
81 observations. Manual preparation of the ECC requires hands-on contact by an operator.

82

83 Reducing subjectivity is important and was considered serious enough to engage in the
84 fabrication of the automated system. The user is prompted throughout the calibration
85 process while utilizing real-time graphs and summaries. The digital calibration bench
86 provides consistent preparation procedures. ECC measured ozone partial pressures vs.
87 reference partial pressures are discussed and the results corroborated with dual ECC
88 comparisons at Wallops Island. During implementation of the digital calibration bench,
89 beta testing provided the dual ECC measurements used in this paper for demonstration
90 purposes. Operational use at Wallops Island was intermittent and only provided a limited
91 number of ECC preparation records between 2009 and 2017, when bench components
92 began to fail.

93

94 Notwithstanding efforts to enhance ECC performance (Smit et al, 2004, 2007, 2014; Kerr
95 et al, 1994; Johnson et al, 2002; Torres, 1981) there remain uncertainties. The accuracy
96 of the ECC is estimated at 5-10 percent and also varies with altitude (Deshler et al, 2017;
97 Smit and ASOPOS Panel, 2014). However, standardization of ozonesonde preparation
98 methods has improved and better data quality control (Smit et al, 2014) and the
99 homogenization of the ozone data (Deshler et al, 2017; Smit et al, 2013) have raised the
100 level of ozonesonde usefulness. Uncertainties also arise from poor compensation for the
101 loss of pump efficiency; erroneous background current; variable motor speed; solution
102 loss from turbulent cathode cell bubbling; air flow temperature error and whether
103 measured at the proper location; and, the use of the appropriate potassium iodide (KI)
104 concentration. Understanding the influence these parameters have on the ozonesonde
105 measurement capability is particularly important. The digital calibration bench is able to
106 measure these parameters in a consistent way over a range of partial pressures.

107

108 2 Digital Calibration Bench Description and Operational Procedure

109

110 2.1 Description

111

112 The computer-controlled preparation and calibration bench fabricated at NASA Wallops
113 Flight Facility borrows from the design of a bench developed by MeteoSwiss scientists B.

114 A. Hoegger and G. Levrat at Payerne, Switzerland. The MeteoSwiss digital calibration
115 bench was first available in 1995 and continues to be used and is updated periodically.
116 The MeteoSwiss and Wallops digital calibration benches are functionally similar but are
117 not identical in design. A comparable bench furnished by MeteoSwiss to the
118 meteorological station at Nairobi, Kenya has been in use since 2018. The Wallops Island
119 ozone site was interested in the digital bench because of its capability to provide precise
120 and repeatable preparation of ECC's, and its automated feature requires less interaction
121 with the ECC than the manual preparation method. The Wallops Island digital bench was
122 undergoing development between 2005-2008 and used operationally only to prepare
123 ECC's between 2009-2017.

124

125 Throughout the history of ECC ozonesonde performance, the concentration of the KI
126 solution has been questioned (Thornton and Niazy, 1982; Barnes et al, 1985; Johnson et
127 al, 2002; Sterling et al, 2018). In the late 1960's and early 1970's the recommendation to
128 use 2.0 percent solution was unchallenged. In the mid-1970's the concentration was
129 changed to 1.5 percent, and in 1995 the KI solution was changed once more to 1.0
130 percent. Employing the Wallops digital calibration bench enables adjustment of the
131 datasets obtained with the different concentrations to be homogenized to improve the
132 consistency of the measurements of the long-term database. The digital calibration bench
133 allows consistent, computer-controlled preparation of ECC instruments. The calibration
134 bench accurately measures the ozone reaching the ECC cells while a Thermo
135 Environmental, Inc. (TEI) ozone generator provides the source of ozone at partial
136 pressures between 0.0 and 30.0 mPa. A second TEI instrument accurately measures the
137 ozone sent to the ECC, providing a reference value. Thus, performance comparisons are
138 possible without expending costly instruments.

139

140 The Wallops digital calibration bench, shown in Fig. 1, consists of three major
141 components: 1) mass flow meter to control air flow, 2) an ozone generator and analyzer
142 (UV photometer), and 3) computer necessary to automate the timing of the programmed
143 functions and process the data. Another important component, the glass manifold, enables
144 the simultaneous distribution of the air flow to the ECC's and the UV photometer. The

145 manifold also is a buffer maintaining constant air flow and inhibiting flow fluctuation. A
146 graphical user interface controls the various input and output functions using an interface
147 board and communications portal enabling synchronous communication protocols. A
148 signal conditioning box allows connections to the ECC's analog signals that are
149 conditioned with custom electronic components. Minor but necessary components
150 include pressure and temperature sensors, and valves and solenoids to direct the flow of
151 laboratory grade air. Calibration validity is accomplished by comparing the measured
152 ECC ozone partial pressure against a reference partial pressure obtained with the UV
153 photometer (TEI Analyzer).

154

155 Fig. 2, from an unpublished technical note (Baldwin, private communication), illustrates
156 the steps necessary to achieve a consistent calibration. By following the sequential flow
157 diagram shown in Fig. 2, upper panel, the operator can better understand the sequence of
158 tests. Each shape in the diagram is associated with a graphical window displayed on the
159 monitor, as are notices that pop-up to instruct or direct the operator. The computer
160 controlled digital bench follows the ECC preparation procedure in place at NASA
161 Wallops Island at the time of the system's fabrication. Each ECC is recognized by its
162 manufacturing date and serial number and includes the manufacturers test data. Changes
163 to the steps are possible anytime through software reprogramming. The preparation
164 sequence begins by verifying whether ECC cells are new or were previously conditioned.
165 A different path is followed for either condition. New cells are flushed with high ozone
166 prior to manually adding KI solution. Cells previously having had solution added skip
167 over the high ozone step to determine the first background current. Following the first
168 background check the remaining steps are completed. Other measurements accumulated
169 with the digital bench include motor voltage, motor current, pump temperature, and linear
170 calibration at seven levels (0.0-30.0 mPa). Program steps are displayed on the computer
171 monitor with real-time information. All data are archived and backup files maintained.

172

173 Fig. 2, lower panel, illustrates the functional diagram detailing the essential operation of
174 the digital calibration bench. Software control is shown in blue and air flow in green.
175 Laboratory zero-grade dry air or desiccated compressed air is introduced into the TEI

176 ozone generator where a controlled amount of ozone is produced. The ozone flows
177 simultaneously to the ECC cells and to the TEI Model 49C ozone analyzer. The analyzer
178 contains the UV photometer that provides the reference partial pressure.

179

180 The digital bench reads the air flow from a Hasting mass-flow meter permitting a precise
181 flow rate to be determined. The mass-flow is then converted to volume-flow by the
182 conventional conversion formula. The volume flow rate measurement was found to be
183 comparable to the flow rate determined with the volumetric bubble flow meter. The
184 digital calibration bench uses the Hasting Mass-Flow Meter model ENALU with a
185 HS500m transducer with a maximum mass-flow-range of 500 [scc/min]. In contrast, the
186 manual method uses a stop watch to estimate when 100 mL of air has flowed into a
187 chamber. An experienced operator, using a volumetric bubble flow meter is able to
188 measure the time to less than 1 second. Tarasick et al (2016) points out that the operator
189 uncertainty when reading the bubble flow meter is about 0.1-0.3 percent. Further, the
190 manual method requires that the effect of moisture from the bubble flow meter's soap
191 solution be accounted for; flow rates determined with the digital calibration bench do not
192 require a correction for moisture. Unfortunately, the calibration bench cannot determine
193 the pump efficiency correction (PEC); this is taken into account differently. For a number
194 of years, the ECC's PEC was physically measured at Wallops Island using a specially
195 adapted pressure chamber (Torres, 1981). This system is no longer available. However,
196 from its many years of use an extensive number of measurements are available. A sample
197 of 200 pressure chamber measurements were averaged to obtain a unique PEC that was
198 adopted for use at Wallops Island.

199

200 After eliminating deficiencies and improving functionality the automated system was
201 tested while obtaining research data, primarily comparisons between different KI solution
202 concentrations. Calibration from 0.0 mPa to 30.0 mPa generally exceeds the nominal
203 range of atmospheric ozone partial pressure. Calibration steps are made in 5.0 mPa
204 increments but larger or smaller increments are possible with minimal software
205 reprogramming. Differences between ECC and reference measurements, if seriously
206 large, provide an alarm to possibly reject the ECC, or after further study the differences

207 between the ECC and reference calibration might be considered as a possible adjustment
208 factor that would be applied to observational data.

209

210 2.2 Operational Procedure

211

212 ECC preparation procedures at Wallops Island are carried out five to seven days prior to
213 preparing the ECC for flight. The pump, anode and cathode cells, and Teflon tubing are
214 flushed with high amounts of ozone to passivate their surfaces and is followed by
215 flushing with zero-grade dry air followed by filling of the cells. The cells are stored until
216 ready to be used.

217

218 Operation of the automated system is simple, requiring only a few actions by the operator
219 that include obtaining the first background current, air flow, 5 μ A or high ozone (170 nb)
220 test, response test, second background current, linear calibration between 0.0 mPa and
221 30.0 mPa, and the final background current. As indicated in Fig. 2, upper panel, two cells
222 can be conditioned nearly simultaneously. i.e., the program alternates measurements
223 between ECC's.

224

225 The operator must first determine whether the cell being conditioned had already been
226 filled with KI or never was filled. Whatever the status of the cell (wet or dry) the operator
227 enters the identification information before proceeding. When a new, or a dry cell is to be
228 processed the digital calibration bench initiates high ozone flushing. The program alerts the
229 operator to turn on the high ozone lamp after which V3 of Fig. 2, lower panel, is switched to high
230 ozone. The unit checks that ozone is flowing and after 30 minutes the program switches to zero
231 air for 10 minutes and V3 switches back to the ozone generator. When completed, the operator is
232 prompted by an instructional message on the monitor screen to fill the anode and cathode cells
233 with the proper concentrations of potassium iodide (KI) solution, i.e., the cathode cell is filled
234 first with 3 mL of 1.0 percent KI solution followed, after a 10 minute delay, by filling the anode
235 cell with a saturated KI solution. The cells are stored until ready for further conditioning and
236 calibration before being used to make an observation. Considering that the ECC cell had been
237 filled earlier with solution the digital bench instruction by-passes the high ozone flushing.
238 Ozonesonde identification is entered, as above. The operator, after fresh KI has been

239 added to the cell, is prompted on the monitor screen to begin the first background current
240 measurement. In either case, whether a dry cell for which flushing is complete, or a wet
241 cell ready for calibration, the procedure starts with clicking the OK button displayed on
242 the monitor screen. After 10 minutes of dry air the background current is recorded. The
243 background current record contains the following information: date, time in 1-2 second
244 intervals, motor current, supplied voltage, pump temperature, and cell current. As the
245 measurement is being made identical information is displayed graphically on the monitor.
246 Following the background test all further steps are automatic.

247
248 Continuing to follow the steps outlined in Fig. 2, upper panel, the measurement of the air flow is
249 accomplished on one ECC pump at a time by switching V1, shown in Fig. 2, lower panel, to the
250 mass flow meter and at the same time V2 is switched to the glass manifold (ozone generator).
251 When completed, V1 is switched back to the glass manifold and V2 is switched to the flow meter
252 and the flow rate of the second cell is carried out. The air flow is output in sec/100 ml. The
253 information stored includes: date, time in seconds at intervals of 7-8 seconds, mass flow meter
254 temperature, atmospheric pressure, flow rate, and supply voltage.

255
256 Measuring the response of the ECC to ozone decay requires setting the ozone generator to
257 produce 17.0 mPa ozone partial pressure (approximately 5 uA). As ozone is produced the ozone
258 level increases until the set level is reached. The elapsed time to reach this level is noted. The
259 17.0 mPa of ozone is the reference level used to initiate the response test. After recording 17.0
260 mPa of ozone for 10 minutes the ECC response check begins. To measure the response, the cells
261 would have to be switched to zero air quicker than the cell responds. This is accomplished by
262 switching both cells (assuming two cells are being calibrated) to the mass flow meter, the source
263 of zero air. This is more efficient than setting the generator to zero and waiting for the manifold
264 and residual ozone in the system to reach the zero level. Thus, V1 and V2 of Fig. 2, lower panel,
265 are switched to the mass flow meter for immediate zero air and the program triggers a timer. The
266 decreasing ozone is measured and recorded at five points used to reflect the cell response. As the
267 ozone decays, measurements at 3-4 second intervals provide a detailed record of the response
268 while also being displayed real-time on the monitor. From the detailed record the program selects
269 five points (1, 2, 3, 5 and 10 minutes) successively that are used to calculate the response of
270 ozone change that should be 80-90 percent lower than the reference of 17.0 mPa. V1 and V2 are
271 switched back to the ozone generator and the next 10-min background current measurement

272 begins. The response record contains the following: date, time in seconds, motor current, supply
273 voltage, temperature, mass flow, cell current, and atmospheric pressure. Data are displayed on the
274 monitor in real-time.

275

276 The ECC cells have been conditioned and are ready for the linear calibration. The 0.0 mPa to 30.0
277 mPa calibration is performed. Step changes begin with 0.0 mPa, followed by measurements at
278 5.0, 10.0, 15.0, 20.0, 25.0, and 30.0 mPa. Each step requires approximately 2-3 minutes to
279 complete allowing time for the cell to respond to each ozone step change. The linear calibration
280 includes the reference measurement made simultaneously with the ECC measurement. After the
281 upward calibration reaches the 30.0-mPa level the calibration continues downward, to 0.0 mPa.
282 The measurements are displayed on the monitor for the operators use and also sent to an Excel
283 file. Generally, the downward calibration experiences small differences from the upward
284 calibration. The available test data reveals that the downward calibrations are always higher than
285 the upward calibrations. It is conjectured that this occurs because the ECC sensor retains the
286 memory of experiencing the high ozone concentration measured at the 30.0 mPa calibration
287 value. Between 5.0 mPa and 25.0 mPa the downward calibrations of the 1.0 percent KI solution
288 are 0.8 mPa to 1.0 mPa higher than the upward calibration. The 0.5 percent solution downward
289 calibration varies between 0.5 mPa and 0.9 mPa for the same partial pressures. Only the upward
290 calibrations are used. Following the linear calibration, the final background current is obtained.
291 This requires 10 minutes of zero grade dry air before making the measurement. The data are
292 recorded in a summary file that contains the supply voltage, motor current, flow rate, pump
293 temperature, response, and the background currents.

294

295 3 Digital Calibration Bench Practical Application

296

297 Repetitive comparison operations can be carried out with the digital calibration bench as
298 often as necessary. This could result in a potential cost saving as there would be no need
299 to expend radiosondes, ECC's, and balloons. The testing with the digital calibration
300 bench is limited to the ranges of pressures and temperatures at sea level and would be an
301 imprecise representation in the upper altitudes.

302

303 3.1 Digital Calibration Bench (General)

304

305 Quasi-simultaneous testing of two ECC's is possible, enabling comparisons of different
306 concentrations of KI solutions. Comparison of 2.0-, 1.5-, 1.0-, and 0.5- percent KI
307 concentrations were carried out on the digital bench demonstrating that agreement with
308 the ozone reference value improved with lower concentrations. In an earlier paper
309 Johnson et al (2002), using SPC and EnSci ECC's demonstrated similar changes occurred
310 when testing various solution concentrations that also included varying amounts of
311 buffer. Only the SPC 6A ECC's with 1.0 percent KI solution and full buffer (1.0%,1.0B)
312 and 0.5 percent KI solution and one-half buffer (0.5%,0.5B) concentrations are discussed
313 here.

314

315 During the checkout of the digital calibration bench ECCsondes were calibrated in pairs
316 and included different KI solutions. Tests indicated the pressure and vacuum
317 measurements were nominal, some insignificant variation occurred but was not a cause
318 for concern. Pump temperatures, controlled by the room air temperature, varied 0.1°C to
319 0.2°C. Motor currents showed some variation, some measured over 100 mA, suggesting a
320 tight fit between the piston and cylinder. For example, one ECC motor current initially
321 was 100 mA, a second measurement a week later the reading was 110 mA, a final reading
322 after running the motor for a short time was 96.5 mA. Flow rates fell within the range of
323 27 to 31 seconds per 100 ml, a range comparable to flow rates manually measured with a
324 bubble flow meter. Background currents were consistent. The lowest background current
325 allowed by the digital bench is 0.0044 μ A. The final background currents obtained with
326 the digital bench often were somewhat higher than background currents experienced with
327 manual preparation, generally about 0.04 μ A. Although 0.4 μ A is relatively small it is
328 possible the higher background current value results from the ECC's residual memory
329 following exposure to the high ozone concentration during the previous linear calibration
330 step. The final background currents, obtained manually immediately prior to an ECC
331 balloon release, were in the range between 0.01 and 0.02 μ A. Finally, the response of all
332 the cells was good, falling within the required 80 percent decrease within less than one
333 minute. Graphically checking a small sample of high-resolution responses found some
334 variation as the ozone decayed.

335

336 3.2 Calibration and Potassium Iodide (KI) Solution Comparisons

337

338 As a practical example of the usefulness of the digital calibration bench is its capability to
339 nearly simultaneously obtain measurements from two ECC's, one prepared with
340 (1.0%,1.0B) and the second with (0.5%,0.5B). The recommended KI solution strength to
341 be used with the SPC 6A ECC's is 1.0 percent the with full buffer (Smit and ASOPOS
342 PANEL, 2014). Conditioning of the ECC's followed the steps given in Fig. 2, upper and
343 lower panels. In the free stratosphere ozone partial pressures usually range from 15.0
344 mPa to 20.0 mPa. Linear calibrations to 30.0 mPa are obtained, although a lower range
345 may be reprogramed.

346

347 Figure 3 is a graphical example of differences between the reference ozone measurement
348 and the measurements of (1.0%,1.0B) and (0.5%,0.5B) KI concentrations. A sample of
349 18 digital bench measurements were averaged to provide a representative set of
350 differences. The close proximity between the curves shown in the figure render the
351 standard deviation lines too small, also they overlay each other to some extent. The
352 standard deviations have been added to the figure for greater clarity. The variations,
353 although small, indicate greater variability with the (1.0%,1.0B) KI solution. Fig. 3
354 suggests that the two concentrations measured nearly identical amounts of ozone between
355 0.0 mPa and 8.0 mPa. Both curves begin to separate and diverge above 8.0 mPa. The
356 averaged data at 10.0 mPa indicate that (1.0%,1.0B) is 0.36 mPa, or 3.6 percent higher
357 than the reference and (0.5%,0.5B) is 0.04 mPa, or 0.4 percent higher; at 15.0 mPa the
358 difference is 0.67 mPa, or 4.3 percent and 0.17 mPa or 1.1 percent higher, respectively; at
359 20.0 mPa the difference for (1.0%,1.0B) is 1.11 mPa, or 5.5 percent and (0.5%,0.5B) is
360 0.48 nb or 2.4 percent higher. A check at the 30.0 mPa level indicated (1.0%,1.0B) was
361 6.8 percent above the reference and (0.5%,0.5B) was 3.2 percent above. The ECC with
362 (0.5%,0.5B) KI concentration is closer to the reference than (1.0%,1.0B) KI . Both ECCs'
363 partial pressure curves have a slope greater than 1 trending toward higher amounts of
364 ozone when compared to the reference value as ozone partial pressure increases. It is
365 clear that the (1.0%,1.0B) KI solution increases at a faster rate than the (0.5%.0.5B)
366 solution. Johnson et al (2002) have explained the effect of different KI solution

367 concentrations as well as the side effects from the buffers used. Their study of the
368 standard (1.0%,1.0B) solution indicated the ECC can report higher ozone amounts, up to
369 5-7 percent under constant ozone conditions and can also increase the ozone amount to
370 higher values from the buffer reactions. Fig. 3 indicates that the 1.0 percent KI
371 measurement is further from the reference than the 0.5 percent KI. The percentage
372 difference between the two KI concentrations is virtually constant at 3.2 percent, or in
373 terms of a ratio between the two solutions, 0.968. Referring to the SPC ozonesondes
374 compared during BESOS, Deshler et al (2017, Fig.5 and Table 2) indicate non-linearity
375 between the (0.5%,0.5B) and (1.0%,1.0B) KI solutions and similar ratio values,
376 0.970/0.960 .

377

378 The digital calibration bench turned out to be an ideal tool to obtain repeated ECC
379 calibrations. The digital bench can calibrate two ECC's nearly simultaneously reducing
380 the need to expend costly dual-ECC balloons. A negative aspect, possibly, is that
381 calibration at sea level cannot provide knowledge of ECC behavior under upper altitude
382 conditions. Eleven ECC pairs were calibrated over a period of three weeks. Two ECC's
383 were prepared with (1.0%,1.0B) and (0.5%,0.5B) KI solutions. A number of time-
384 separated calibrations were conducted with the expectation the resulting calibrations
385 would be repeatable week-to-week. The cells were flushed and fresh KI solutions were
386 used with each weekly test. Calibration over the full range, 0.0-30.0 mPa was carried out,
387 Changes that might be due to improper preparation and conditioning procedures were not
388 considered since, by definition, the digital bench is consistent in how ECC's are prepared.
389 Consideration also must be given to the fact that the ECC sensor has a memory that may
390 have an effect of inhibiting repeatability. The individual weekly calibrations showed
391 varying results. Some calibrations showed an increase each week while other calibrations
392 did not. An average of the data showed small increases week-to-week but these were too
393 small to be significant. In essence no particular pattern was evident suggesting that
394 calibrations on a week-to-week schedule would not be repeatable

395

396 To bring the ECC measurements into correspondence with the reference suggests that
397 downward adjustment should be applied to each curve. When a large sample of similar

398 digital bench measurements are obtained it should be possible to design a table of
399 adjustments relative to ozone partial pressure that could be used to adjust ozonesonde
400 measurements. However, since the calibrations are made at sea level such an adjustment
401 table would not be able to account for the influence of upper atmospheric pressure and
402 temperature. Nevertheless, any adjustment, seemingly, would be in the right direction and
403 would aid in obtaining more representative ozone values.

404

405 Although digital bench calibration comparisons are instructive, important comparisons
406 have been made between ECC's and reference instruments using other methods. ECC
407 measurement comparability have been quantified through in situ dual instrument
408 comparisons (Kerr et al, 1995; Stubi et al, 2008; Witte et al, 2019), laboratory tests at the
409 World Ozone Calibration facility at Jülich, Germany (Smit et al, 2004, 2007, 2014) and
410 by occasional large balloon tests such as BOIC (Hilsenrath et al, 1986), STOIC (Kohmyr
411 et al, 1995) and BESOS (Deshler et al, 2008). BESOS provided important performance
412 information about the SPC 6A ECC and the EnSci ozonesondes. However, these
413 complicated large balloon experiments that seem to occur every 10 years are expensive.
414 The environmental chamber used in the Jülich tests (Smit et al, 2007) covers a full
415 pressure range but is also expensive to use. The purpose here is to show a calibration
416 method that is simple to use and provides calibrations that include useful reference
417 values, and is complementary to other methods, such as employed in the Jülich Ozone
418 Sonde Intercomparison Experiment (Smit et al, 2004; Smit et al, 2007).

419

420 In the 1998-2004 period the Wallops ozone station released a number of dual-ECC
421 balloons, twelve pair successfully provided measurements to 30 km, and higher. The
422 ECC's were attached about 35 meters below the balloon and each ECC separated a
423 distance of 2 meters. Each pair was composed of an ECC with (1.0%,1.0B) and
424 (0.5%,0.5B) KI solutions. The profiles were averaged, and are displayed in Fig. 4. It can
425 be noted in the figure that the mean (0.5%,0.5B) solution reveals less ozone being
426 measured than that of the (1.0%,1.0B) solution. Near the 65-70 hPa level the
427 (0.5%,0.5B) ECC begins to report increasingly less ozone than the (1.0%,1.0B) ECC as
428 the partial pressure increases. A similar feature was noted in Fig. 3 where the separation

429 of the ECC's with different concentrations occur with increasing partial pressure. Fig. 4
430 shows the maximum ozone partial pressure level was about 14.0 mPa, near 22 hPa, where
431 the (0.5%,0.5B) KI solution measured approximately 1.0 mPa, or 7 percent less ozone
432 than the ECC with the (1.0%,1.0B) KI concentration. This difference is approximately 4
433 percent higher than the result given by the digital calibration bench results of Fig.3,
434 where, at 15.0 mPa, the difference between the (1.0%,1.0B) KI and (0.5%,0.5B) KI is 3.2
435 percent. Observations obtained with the Wallops Island Dobson spectrophotometer are
436 available since 1963 and have provided meaningful research data (Harris et al, 2003).
437 Dobson observations also permit comparisons of total ozone with each of the ECC
438 profiles. The average profiles shown in Fig. 4 were in excellent agreement with
439 (0.5%,0.5B), e.g., the total ozone difference between the Dobson (309.5 DU) and
440 (1.0%,1.0B) (330.4 DU) is 20.9 DU; between the Dobson and (0.5%,0.5B) (308.3 DU)
441 the difference is 1.2 DU.

442
443 Given that the digital bench tests revealed the (0.5%,0.5B) KI solution is in closer
444 agreement with the reference measurement than the (1.0%,1.0B) solution suggested that a
445 KI solution with a weaker concentration may, possibly, give even better agreement. A
446 small number of dual ECC tests were carried out with a solution of 0.3 percent with one-
447 third buffer (03%,0.3B). Six sets of ECC's were prepared for calibration. Each dual ECC
448 test consisted of one ECC prepared with (1.0%,1.0B) KI solution and one with
449 (0.3%,0.3B) KI solution. The digital bench comparison result disclosed the (1.0%,1.0B)
450 result replicated the earlier results discussed above. As assumed, the lower concentration
451 was nearly equal to, or slightly less than the reference. Average values and standard
452 deviations derived from the six tests are shown in Fig. 5. Although the 0.3 percent
453 solution might appear to be a better choice additional tests are necessary.

454

455 4 Summary

456

457 The concept of an automated method with which to pre-flight condition and calibrate
458 ECC ozonesondes was originally considered by MeteoSwiss scientists over 20 years ago.
459 Drawing on their expertise, a facility designated as the digital calibration bench was

460 fabricated at NASA Wallops Flight Facility between 2005-2008. The digital bench was
461 put to use immediately to study ECC performance, conduct comparisons of different KI
462 concentrations, enabled ECC repeatability evaluation, as well as calibrating the ECC over
463 a range of partial pressures, including associated reference values. Tests conducted with
464 the digital bench were performed under identical environmental conditions. The digital
465 bench eliminates the expense and time associated with making similar tests in the
466 atmosphere.

467

468 Early use of the digital bench was to calibrate ECC's, prepared with (1.0%,1.0B) KI
469 solution, over a range of partial pressures from 0.0 mPa to 30.0 mPa. Comparison
470 between ECC's with (0.5%,0.5B) and (1.0%,1.0B) KI solution and simultaneously
471 obtained reference values revealed the two KI solution strengths were measuring more
472 ozone than the reference. There was an increasing difference between the ECC's and the
473 reference as the partial pressure increased. For example, the ECC measurements slope
474 upward to increasingly larger differences from the reference ozone measurements, i.e.,
475 increasing from 4.3 percent higher partial pressure at 15.0 mPa (Fig. 3) to about 7 percent
476 higher at 30.0 mPa.

477

478 Results from the digital bench also corroborate differences found between SPC 6A
479 ECC's flown on dual-instrument flights at Wallops Island. The difference between
480 ozonesondes at a pressure of 22 hPa showed the (0.5%,0.5B) ECC to be about 1.0 mPa
481 lower than the (1.0%,1.0B) ECC. Comparison between ECC profiles of both (1.0%,1.0B)
482 and (0.5%,0.5B) KI solutions reveals very good agreement between Wallops Island
483 Dobson observations and the (0.5%,0.5B) mean ECC profile.

484

485 The digital calibration bench provides a capability to apply a variety of test functions
486 whereby the valuable information gathered helps to better understand the ECC
487 instrument. Evaluating SPC ECC performance using an automated method diminishes the
488 requirement for expensive comparison flights. The tests performed, i.e., KI solution
489 differences, calibrations over a time period, and dual-instrumented balloon flights, were
490 consistent, giving similar results. The tests described in this paper are simply examples of

491 the utility of the digital bench. Furthermore, the digital calibration bench preparation
492 facility potentially could contribute to an understanding of separating ECC measurement
493 variability from atmospheric variability. Thus, the automated conditioning and calibration
494 system provides valuable information, and as a useful tool should continue to be a
495 valuable aid.

496

497 5 Data Availability

498 Data are available from the authors.

499

500 6 Author Contribution

501 The first author acquired and prepared the data for processing and the second author was
502 instrumental in certifying the digital calibration bench was working properly. Both
503 contributed equally to manuscript preparation.

504

505 7 Competing Interests

506

507 The authors declare they have no conflict of interest.

508

509 8 Disclaimer

510

511 None

512

513 9 Acknowledgments

514 We acknowledge the successful use of the digital calibration bench to the skillful efforts
515 of Gilbert Levrat (retired) of the MeteoSwiss site Payerne, Switzerland for his foresight
516 in designing the original bench and its simplicity. We are indebted to Tony Baldwin
517 (retired) of NASA Wallops Flight Facility for his electronic skill and programming
518 expertise and to E. T. Northam for assistance preparing the figures. We also appreciate
519 the insightful suggestions given by the referees who were instrumental in helping us
520 make the paper better.

521

522 10 References

523

524 Barnes, R. A., Bandy, A. R., and Torres, A. L.: Electrochemical Concentration Cell
525 ozonesonde accuracy and precision, *J. Geophys. Res.*, Vol. 90, No. D5, 7881-7887, 1985.

526

527 Deshler, T., Mercer, J. L., Smit, H. G. J., Stubi, R., Levrat, G., Johnson, B. J., Oltmans, S.
528 J., Kivi, R., Thompson, A. M., Witte, J., Davies, J., Schmidlin, F. J., Brothers, G., and
529 Sasaki, T.: Atmospheric comparison of electrochemical cell ozonesondes from different
530 manufacturers, and with different cathode solution strengths: The Balloon Experiment on
531 Standards for Ozonesondes, *J. Geophys. Res.*, 113, D04307,
532 <https://doi.org/10.1029/2007JD008975>, 2008.

533

534 Deshler, T., Stubi, Rene, Schmidlin, Francis J., Mercer, Jennifer L., Smit, Herman G. J.,
535 Johnson, Bryan J., Kivi, Rigel, and Nardi, Bruno,: Methods to homogenize
536 electrochemical concentration cell (ECC) ozonesonde measurements across changes in
537 sensing solution concentration or ozonesonde manufacturer, *Atmos. Meas. Tech.*, 10,
538 2021-2043, <https://doi.org/10.5194/amt-10-2021-2017>, 2017.

539

540 Fishman, J., Wozniak, A. E., and Creilson J. K.: Global distribution of tropospheric
541 ozone from satellite measurements using the empirically corrected tropospheric ozone
542 residual technique: Identification of the regional aspects of air pollution, *Atmos. Chem.*
543 And Phys. Discussions, 3, pp 1453-1476, 2003.

544

545 Harris, J. M., Oltmans, S. J., Bodeker, G. E., Stolarski, R., Evans, R. D., Quincy, D. M.:
546 Long-term variations in total ozone derived from Dobson and satellite data. *Atmos.*
547 *Environ.* Vol. 37, No. 23, 3167-3175, [https://DOI: 10.1016/S1352-2310\(03\)00347-9](https://DOI: 10.1016/S1352-2310(03)00347-9),
548 2003.

549

550 Hilsenrath, E. W., Attmannspacher, W., Bass, A., Evens, W., Hagemeyer, R., Barnes, R.
551 A., Komhyr, W., Maursberger, K., Mentall, J., Proffitt, M., Robbins, D., Taylor, S.,

552 Torres, A., and Weinstock, E.: Results from the Balloon Ozone Intercomparison
553 Campaign (BOIC), J. Geophys. Res., Vol 91, 13,137-13,152, 1986.

554

555 Holland, A. C., Barnes, R. A., and Lee, H. S.: Improved rocket ozonesonde (ROCOZ-A)
556 1: Demonstration of Precision, Applied Optics, Vol. 24, Issue 19, 3286-3295, 1985.

557

558 Johnson, B. J., Oltmans, S. J., and Vömel, H.: Electrochemical Concentration Cell
559 (ECC) ozonesonde pump efficiency measurements and tests on the sensitivity to ozone of
560 buffered and unbuffered ECC sensor cathode solution. J. Geophys. Res., Vol 107, No
561 D19, 4393, doi: 10.1029/2001JD000557, 2002.

562

563 Kerr, J. B. et al: The 1991 WMO international ozonesonde intercomparisons at Vanscoy,
564 Canada. Atmospheres and Oceans, 1994.

565

566 Komhyr, W. D.: Electrochemical concentration cells for gas analysis, Ann. Geophys.,
567 Vol 25, No 1, 203-210, 1969.

568

569 Komhyr, W. D., Barnes, R. A., Brothers, G. B., Lathrop, L. A., and Opperman, D. P.:
570 Electrochemical Concentration Cell ozonesonde performance evaluation during
571 STOIC, 1989, J. Geophys. Res., 100, D5, 9231-9244, 1995.

572

573 Krueger, A. J.: The mean ozone distribution from several series of rocket soundings to 52
574 km at latitudes 58°S to 64°N., PAGEOPH 106, 1, 1272-1280, 1973.

575

576 Proffitt, M. H., and McLaughlin, R. J.: Fast-response dual-beam UV absorption ozone
577 photometer suitable for use on stratospheric balloons, Rev. Sci. Instru., 54, 1719-1728,
578 1983.

579

580 Sen, B., Sheldon, W. R., and Benbrook, J. R.: Ultraviolet-absorption photometer for
581 measurement of ozone on a rocket-boosted payload, Applied Optics, Vol 35, No. 30,
582 6010-6014, 1996.

583
584 Smit, H. G. J., and Sträter, W., JOSIE2000, Jülich Ozone Sonde Intercomparison
585 Experiment: The 2000 WMO international intercomparison of operating procedures for
586 ECC ozone sondes at the environmental simulator facility at Jülich, WMO Global
587 Atmospheric Watch, Report No. 158 (WMO TD No. 1225). 2004.
588
589 Smit, H. G. J., Straeter, W., Johnson, B., Oltmans, S., Davies, J., Tarasick, D. W.,
590 Hoegger, B., Stubi, R., Schmidlin, F. J., Northam, E. T., Thompson, A., Witte, J., Boyd,
591 I., Posny, F.: Assessment of the performance of ECC-ozonesondes under quasi-flight
592 conditions in the environmental simulation chamber: Insights from the Juelich Ozone
593 Sonde Intercomparison Experiment (JOSIE), *J. Geophys Res.*, 112, D19306,
594 doi:10.1029/2006JD007308, 2007.
595
596 Smit, H.G.J., and ASOPOS panel (2014), Quality assurance and quality control for
597 ozonesonde measurements in GAW, WMO Global Atmosphere Watch report series,
598 No. 121, 100 pp., World Meteorological Organization, GAW Report No. 201 (2014),
599 100 pp., Geneva. [Available online at https://library.wmo.int/pmb_ged/gaw_201_en.pdf]
600
601 Sterling, C. W., B. J. Johnson, S. J. Oltmans, H. G. J. Smit, A. F. Jordan, P. D. Cullis,
602 E. G. Hall, A. M. Thompson, and J. C. Witte (2018), Homogenizing and estimating
603 the uncertainty in NOAA's long -term vertical ozone profile records measured with the
604 electrochemical concentration cell ozonesonde, *Atmos. Meas. Tech.*, 11, 3661-3687,
605 <https://doi.org/10.5194/amt-11-3661-2018>.
606
607 Tarasick, D.W., J. Davies, H.G.J. Smit and S.J. Oltmans (2016), A re-evaluated Canadian
608 ozonesonde record: measurements of the vertical distribution of ozone over Canada from
609 1966 to 2013, *Atmos. Meas. Tech.* 9, 195-214, doi:10.5194/amt-9- 195-2016.
610
611 Torres, A. L., ECC ozonesonde performance at high altitudes: pump efficiency, NASA
612 Technical Memorandum 73290, 10 pp, 1981.
613

614 Witte, Jacquelyn C., Thompson, Anne M., Schmidlin, F. J., Northam, E. Thomas, Wolff,
615 Katherine R., and Brothers, George B., The NASA Wallops Flight Facility digital
616 ozonesonde record: reprocessing, uncertainties, and dual launches.
617 Doi.org/10.1029/2018JD0030098, 2018.

618

619 11 Figures

620

621 Fig01. Digital calibration bench showing operational configuration and mounting
622 position of two ECC ozonesondes. Major components include ozone generator and
623 analyzer, computer, flow meter, and glass manifold.

624

625 Fig02. Digital calibration bench diagrams: a) sequential steps, and b) functional steps.

626

627 Fig03. Comparison of ECC ozonesondes prepared with (1.0%,1.0B) [blue] and
628 (0.5%,0.5B) [red] KI solution concentrations. The reference curve is shown in black.
629 Calibrations are made in 5.0 mPa steps from 0.0 mPa to 30.0 mPa.

630

631 Fig04. Average ozone profiles from 12 pairs of SPC 6A ECC ozonesondes indicating at
632 the 22 hPa pressure level that the (0.5%,0.5B) ECCs' measured 0.7-0.8 mPa less ozone,
633 approximately 5 percent less, than the (1.0%,1.0B) ECCs'.

634

635 Fig05. Digital calibration bench results between (1.0%,1.0B) solution, blue curve, and
636 (0.3%,0.3B) solution, red curve; the reference curve is shown in black.

637 Fig 01.

638

639

DIGITAL CALIBRATION BENCH

640

641

642

643

644

645

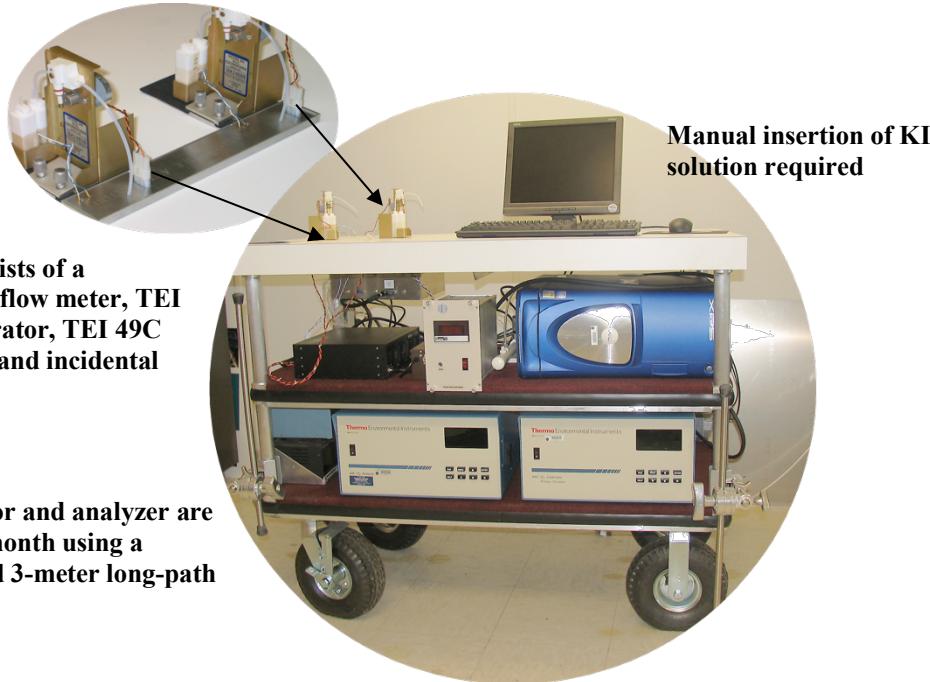
The system consists of a computer, mass flow meter, TEI 49C ozone generator, TEI 49C ozone analyzer, and incidental equipment.

646

647

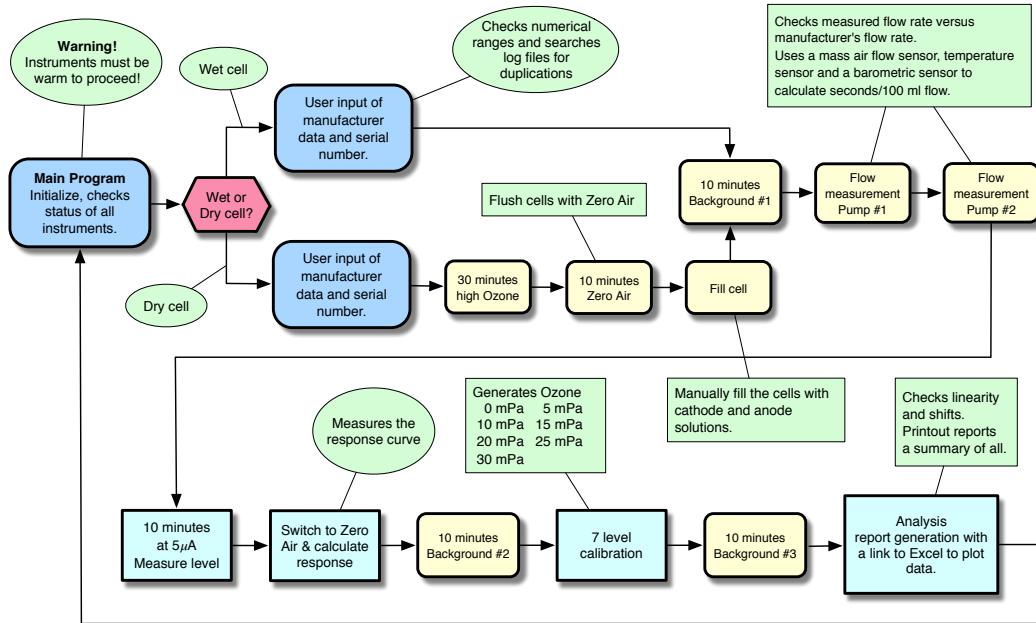
The TEI generator and analyzer are calibrated each month using a primary standard 3-meter long-path photometer.

648


649

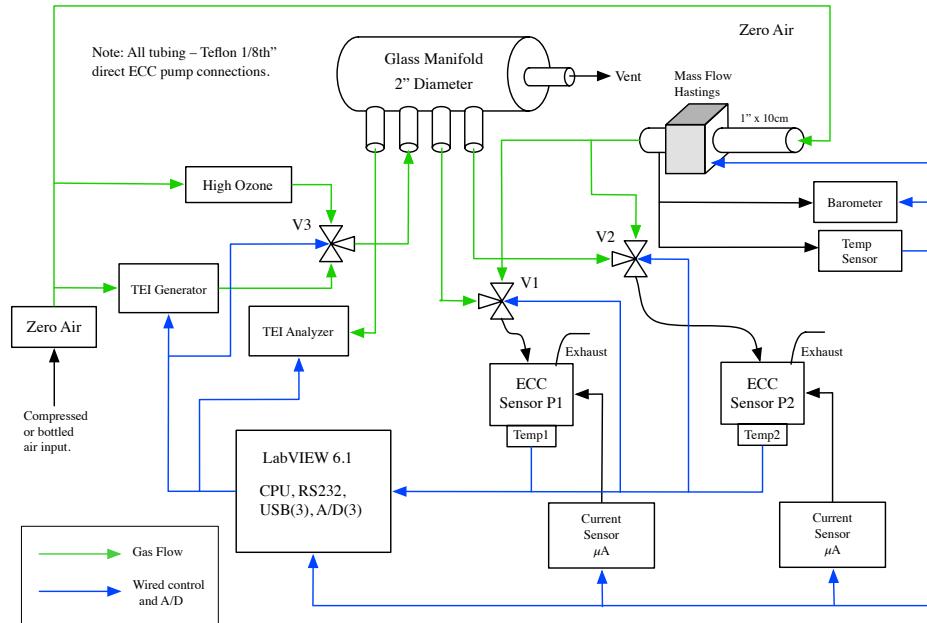
650

651


652

653

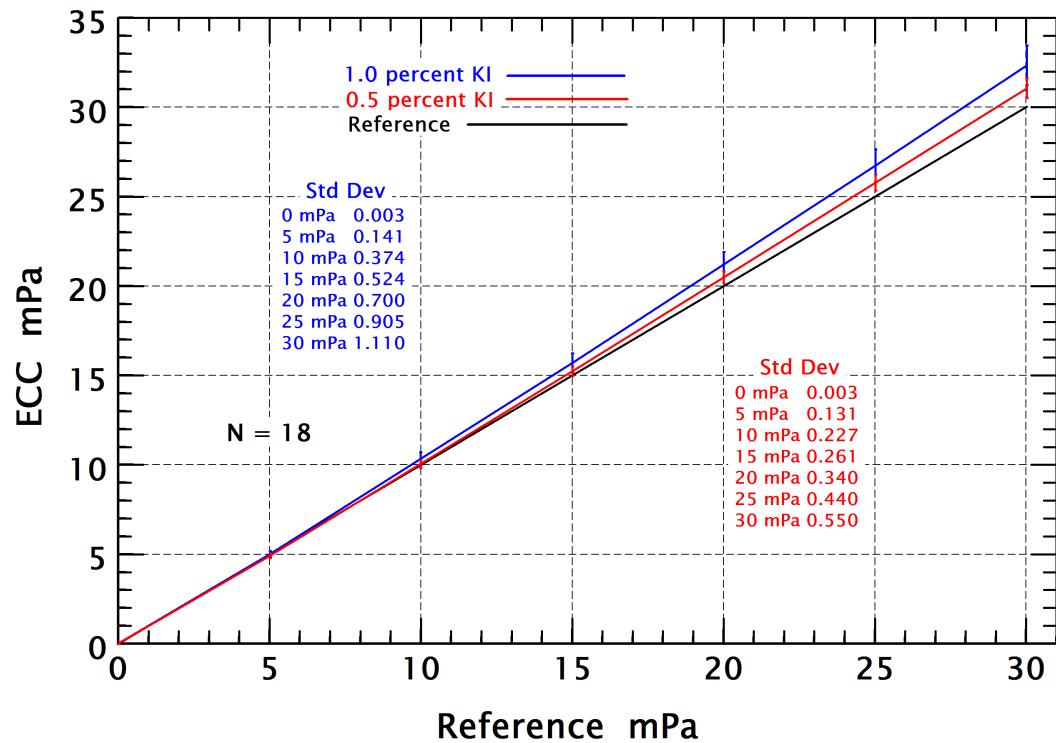
654 Fig 02.


ECC Calibration System Sequential Flow Diagram

655

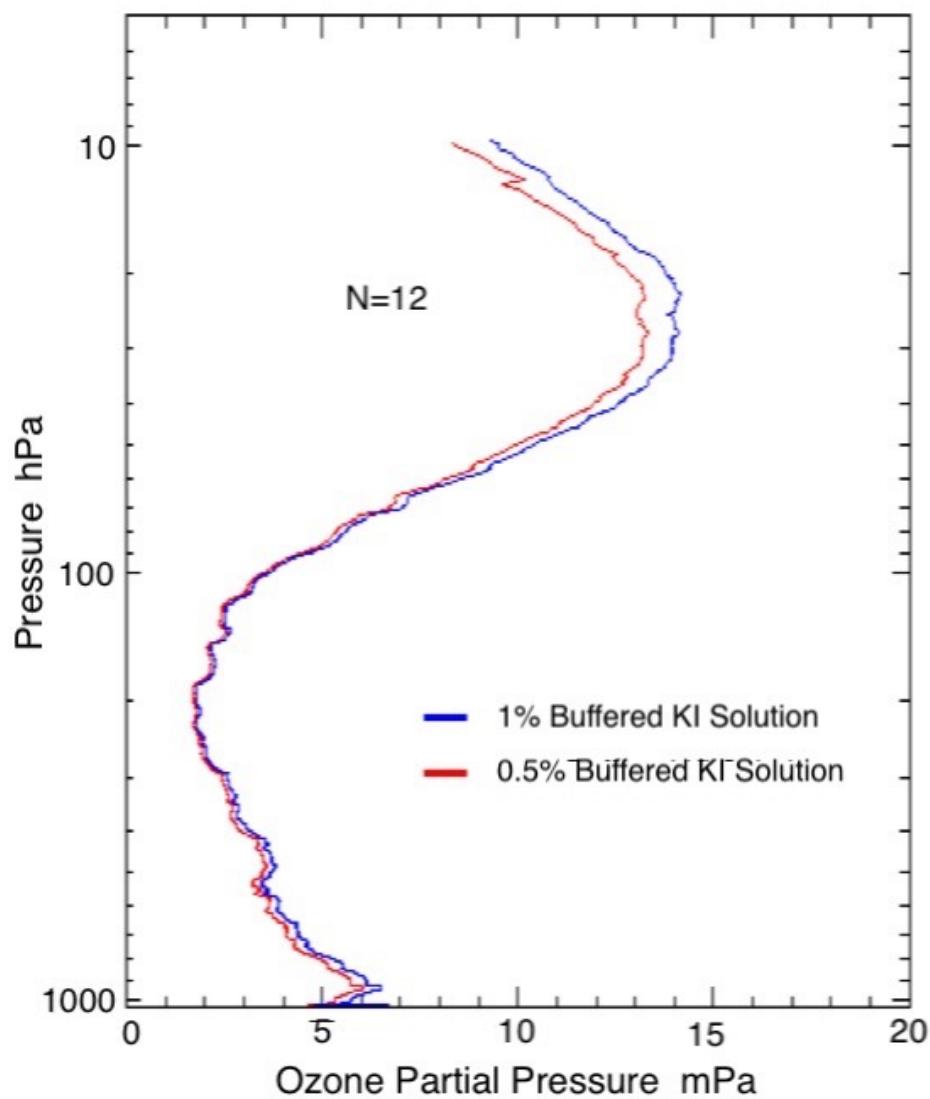
10/29/19 etn

Functional Diagram Ozonesonde Calibration Test Bench



10/28/19 etn (from 6/7/05 TB)

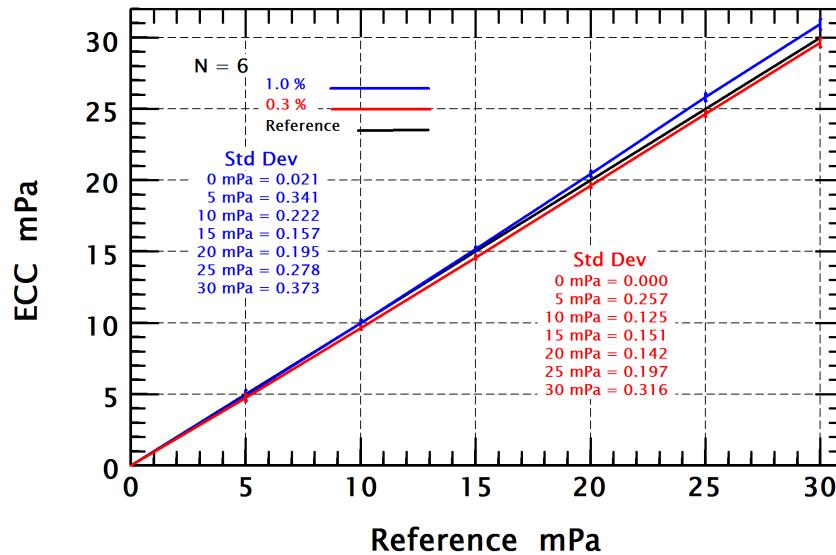
656


657 Fig 03.

658

659

660 Fig 04.



661

662

663 Fig 05.

664

665