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Abstract

In contrast to the legacy manual method used to prepare, condition, and calibrate the
Electrochemical Concentration Cell (ECC) ozonesonde an automated digital calibration
bench similar to one developed by MeteoSwiss at Payerne, Switzerland was established
at NASA’s Wallops Flight Facility and provides reference measurements of the same
ozone partial pressure as measured by the ECC. The purpose of an automated system is to
condition and calibrate ECC cells before launching on a balloon. Operation of the digital
calibration bench is simple and real-time graphs and summaries are available to the
operator; all information is archived. The parameters of interest include ozone partial
pressure, airflow, temperature, background current, response, and time (real and elapsed).
ECC cells, prepared with 1.0 percent solution of potassium iodide (KI) and full buffer,
show increasing partial pressure values when compared to the reference as partial
pressures increase. Differences of approximately 5-6 percent are noted at 20.0 mPa.
Additional tests with different concentrations revealed the Science Pump Corp (SPC) 6A
ECC with 0.5 percent KI solution and one-half buffer agreed closer to the reference than
the 1.0 percent cells. The information gained from the automated system allows a
compilation of ECC cell characteristics, as well as calibrations. The digital calibration

bench is recommended for ECC studies as it conserves resources.
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1. Introduction

Measurement disagreement between similar or identical instruments seems to be an
historical problem. Intercomparisons are generally conducted when new instruments are
introduced and when operational changes or improved procedures become available.
Such comparisons should be made under the same environmental conditions and include
a reference instrument as an aid for checking the accuracy and reliability of the
instruments. This would be ideal as a standard procedure. Unfortunately, balloon-borne
ozone reference instruments are not usually available, mostly because they are too
expensive for other than occasional use or to expend on non-recoverable balloon
packages. Ozonesonde pre-flight calibrations are conducted, however these are basically
single point calibrations made prior to its release. An automated system designed to
condition and calibrate the Electrochemical Concentration Cell (ECC) ozonesonde was
fabricated at Wallops Flight Facility. The automated system can condition the ECC prior
to flight and, if desired, provide calibration over a wide range of ozone partial pressures.
This system, designated the digital calibration bench, enables consistent conditioning and
calibration of the ECC along with measurements of a reference value. In this paper the
term ECC refers only to the Science Pump Corp. (SPC) 6A ECC ozonesonde, although
the automated system can accommodate the Environmental Science (EnSci) ozonesonde

as well.

There are a variety of ground-, aircraft-, satellite-, rocket-, and balloon-borne instruments
available to measure the vertical structure of atmospheric ozone and its total content.
These instruments operate on different principles of measurement (Fishman et al, 2003;
Kohmyr, 1969; Krueger, 1973; Holland et al, 1985; Hilsenrath et al, 1986; Sen et al,
1996). Although their spatial distribution is limited, balloon-borne Electrochemical
Concentration Cell (ECC) ozonesondes have had a key role as a source of truth for the
other instruments and for establishing algorithms necessary for the retrieval of satellite

observations. Manual preparation of the ECC requires hands-on contact by an operator.
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Reducing subjectivity is important and was considered serious enough to engage in the
fabrication of the automated system. The user is prompted throughout the calibration
process while utilizing real-time graphs and summaries. The digital calibration bench
provides consistent preparation procedures. ECC measured ozone partial pressures vs.
reference partial pressures are discussed and the results corroborated with dual ECC
comparisons at Wallops Island. During implementation of the digital calibration bench,
beta testing provided the dual ECC measurements used in this paper for demonstration
purposes. Operational use at Wallops Island was intermittent and only provided a limited
number of ECC preparation records between 2009 and 2017, when bench components

began to fail.

Notwithstanding efforts to enhance ECC performance (Smit et al, 2004, 2007, 2014; Kerr
et al, 1994; Johnson et al, 2002; Torres, 1981) there remain uncertainties. The accuracy
of the ECC is estimated at 5-10 percent and also varies with altitude (Deshler et al, 2017,
Smit and ASOPOS Panel, 2014). However, standardization of ozonesonde preparation
methods has improved and better data quality control (Smit et al, 2014) and the
homogenization of the ozone data (Deshler et al, 2017; Smit et al, 2013) have raised the
level of ozonesonde usefulness. Uncertainties also arise from poor compensation for the
loss of pump efficiency; erroneous background current; variable motor speed; solution
loss from turbulent cathode cell bubbling; air flow temperature error and whether
measured at the proper location; and, the use of the appropriate potassium iodide (KI)
concentration. Understanding the influence these parameters have on the ozonesonde
measurement capability is particularly important. The digital calibration bench is able to

measure these parameters in a consistent way over a range of partial pressures.

2 Digital Calibration Bench Description and Operational Procedure

2.1 Description

The computer-controlled preparation and calibration bench fabricated at NASA Wallops
Flight Facility borrows from the design of a bench developed by MeteoSwiss scientists B.
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A. Hoegger and G. Levrat at Payerne, Switzerland. The MeteoSwiss digital calibration
bench was first available in 1995 and continues to be used and is updated periodically.
The MeteoSwiss and Wallops digital calibration benches are functionally similar but are
not identical in design. A comparable bench furnished by MeteoSwiss to the
meteorological station at Nairobi, Kenya has been in use since 2018. The Wallops Island
ozone site was interested in the digital bench because of its capability to provide precise
and repeatable preparation of ECC’s, and its automated feature requires less interaction
with the ECC then the manual preparation method. The Wallops Island digital bench was
undergoing development between 2005-2008 and used operationally only to prepare

ECC’s between 2009-2017.

Throughout the history of ECC ozonesonde performance, the concentration of the KI
solution has been questioned (Thornton and Niazy, 1982; Barnes et al, 1985; Johnson et
al, 2002; Sterling et al, 2018). In the late 1960’s and early 1970’s the recommendation to
use 2.0 percent solution was unchallenged. In the mid-1970’s the concentration was
changed to 1.5 percent, and in 1995 the KI solution was changed once more to 1.0
percent. Employing the Wallops digital calibration bench enables adjustment of the
datasets obtained with the different concentrations to be homogenized to improve the
consistency of the measurements of the long-term database. The digital calibration bench
allows consistent, computer-controlled preparation of ECC instruments. The calibration
bench accurately measures the ozone reaching the ECC cells while a Thermo
Environmental, Inc. (TEI) ozone generator provides the source of ozone at partial
pressures between 0.0 and 30.0 mPa. A second TEI instrument accurately measures the
ozone sent to the ECC, providing a reference value. Thus, performance comparisons are

possible without expending costly instruments.

The Wallops digital calibration bench, shown in Fig. 1, consists of three major
components: 1) mass flow meter to control air flow, 2) an ozone generator and analyzer
(UV photometer), and 3) computer necessary to automate the timing of the programmed
functions and process the data. Another important component, the glass manifold, enables

the simultaneous distribution of the air flow to the ECC’s and the UV photometer. The
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manifold also is a buffer maintaining constant air flow and inhibiting flow fluctuation. A
graphical user interface controls the various input and output functions using an interface
board and communications portal enabling synchronous communication protocols. A
signal conditioning box allows connections to the ECC’s analog signals that are
conditioned with custom electronic components. Minor but necessary components
include pressure and temperature sensors, and valves and solenoids to direct the flow of
laboratory grade air. Calibration validity is accomplished by comparing the measured
ECC ozone partial pressure against a reference partial pressure obtained with the UV

photometer (TEI Analyzer).

Fig. 2, from an unpublished technical note (Baldwin, private communication), illustrates
the steps necessary to achieve a consistent calibration. By following the sequential flow
diagram shown in Fig. 2, upper panel, the operator can better understand the sequence of
tests. Each shape in the diagram is associated with a graphical window displayed on the
monitor, as are notices that pop-up to instruct or direct the operator. The computer
controlled digital bench follows the ECC preparation procedure in place at NASA
Wallops Island at the time of the system’s fabrication. Each ECC is recognized by its
manufacturing date and serial number and includes the manufacturers test data. Changes
to the steps are possible anytime through software reprogramming. The preparation
sequence begins by verifying whether ECC cells are new or were previously conditioned.
A different path is followed for either condition. New cells are flushed with high ozone
prior to manually adding KI solution. Cells previously having had solution added skip
over the high ozone step to determine the first background current. Following the first
background check the remaining steps are completed. Other measurements accumulated
with the digital bench include motor voltage, motor current, pump temperature, and linear
calibration at seven levels (0.0-30.0 mPa). Program steps are displayed on the computer

monitor with real-time information. All data are archived and backup files maintained.

Fig. 2, lower panel, illustrates the functional diagram detailing the essential operation of
the digital calibration bench. Software control is shown in blue and air flow in green.

Laboratory zero-grade dry air or desiccated compressed air is introduced into the TEI
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ozone generator where a controlled amount of ozone is produced. The ozone flows
simultaneously to the ECC cells and to the TEI Model 49C ozone analyzer. The analyzer

contains the UV photometer that provides the reference partial pressure.

The digital bench reads the air flow from a Hasting mass-flow meter permitting a precise
flow rate to be determined. The mass-flow is then converted to volume-flow by the
conventional conversion formula. The volume flow rate measurement was found to be
comparable to the flow rate determined with the volumetric bubble flow meter. The
digital calibration bench uses the Hasting Mass-Flow Meter model ENALU with a
HS500m transducer with a maximum mass-flow-range of 500 [scc/min]. In contrast, the
manual method uses a stop watch to estimate when 100 mL of air has flowed into a
chamber. An experienced operator, using a volumetric bubble flow meter is able to
measure the time to less than 1 second. Tarasick et al (2016) points out that the operator
uncertainty when reading the bubble flow meter is about 0.1-0.3 percent. Further, the
manual method requires that the effect of moisture from the bubble flow meter’s soap
solution be accounted for; flow rates determined with the digital calibration bench do not
require a correction for moisture. Unfortunately, the calibration bench cannot determine
the pump efficiency correction (PEC); this is taken into account differently. For a number
of years, the ECC’s PEC was physically measured at Wallops Island using a specially
adapted pressure chamber (Torres, 1981). This system is no longer available. However,
from its many years of use an extensive number of measurements are available. A sample
of 200 pressure chamber measurements were averaged to obtain a unique PEC that was

adopted for use at Wallops Island.

After eliminating deficiencies and improving functionality the automated system was
tested while obtaining research data, primarily comparisons between different KI solution
concentrations. Calibration from 0.0 mPa to 30.0 mPa generally exceeds the nominal
range of atmospheric ozone partial pressure. Calibration steps are made in 5.0 mPa
increments but larger or smaller increments are possible with minimal software
reprogramming. Differences between ECC and reference measurements, if seriously

large, provide an alarm to possibly reject the ECC, or after further study the differences
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between the ECC and reference calibration might be considered as a possible adjustment

factor that would be applied to observational data.

2.2 Operational Procedure

ECC preparation procedures at Wallops Island are carried out five to seven days prior to
preparing the ECC for flight. The pump, anode and cathode cells, and Teflon tubing are
flushed with high amounts of ozone to passivate their surfaces and is followed by
flushing with zero-grade dry air followed by filling of the cells. The cells are stored until

ready to be used.

Operation of the automated system is simple, requiring only a few actions by the operator
that include obtaining the first background current, air flow, 5 pA or high ozone (170 nb)
test, response test, second background current, linear calibration between 0.0 mPa and
30.0 mPa, and the final background current. As indicated in Fig. 2, upper panel, two cells
can be conditioned nearly simultaneously. i.e., the program alternates measurements

between ECC’s.

The operator must first determine whether the cell being conditioned had already been
filled with KI or never was filled. Whatever the status of the cell (wet or dry) the operator
enters the identification information before proceeding. When a new, or a dry cell is to be
processed the digital calibration bench initiates high ozone flushing. The program alerts the
operator to turn on the high ozone lamp after which V3 of Fig. 2, lower panel, is switched to high
ozone. The unit checks that ozone is flowing and after 30 minutes the program switches to zero
air for 10 minutes and V3 switches back to the ozone generator. When completed, the operator is
prompted by an instructional message on the monitor screen to fill the anode and cathode cells
with the proper concentrations of potassium iodide (KI) solution, i.e., the cathode cell is filled
first with 3 mL of 1.0 percent KI solution followed, after a 10 minute delay, by filling the anode
cell with a saturated KI solution. The cells are stored until ready for further conditioning and
calibration before being used to make an observation. Considering that the ECC cell had been
filled earlier with solution the digital bench instruction by-passes the high ozone flushing.

Ozonesonde identification is entered, as above. The operator, after fresh KI has been
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added to the cell, is prompted on the monitor screen to begin the first background current
measurement. In either case, whether a dry cell for which flushing is complete, or a wet
cell ready for calibration, the procedure starts with clicking the OK button displayed on
the monitor screen. After 10 minutes of dry air the background current is recorded. The
background current record contains the following information: date, time in 1-2 second
intervals, motor current, supplied voltage, pump temperature, and cell current. As the
measurement is being made identical information is displayed graphically on the monitor.

Following the background test all further steps are automatic.

Continuing to follow the steps outlined in Fig. 2, upper panel, the measurement of the air flow is
accomplished on one ECC pump at a time by switching V1, shown in Fig. 2, lower panel, to the
mass flow meter and at the same time V2 is switched to the glass manifold (ozone generator).
When completed, V1 is switched back to the glass manifold and V2 is switched to the flow meter
and the flow rate of the second cell is carried out. The air flow is output in sec/100 ml. The
information stored includes: date, time in seconds at intervals of 7-8 seconds, mass flow meter

temperature, atmospheric pressure, flow rate, and supply voltage.

Measuring the response of the ECC to ozone decay requires setting the ozone generator to
produce 17.0 mPa ozone partial pressure (approximately 5 uA). As ozone is produced the ozone
level increases until the set level is reached. The elapsed time to reach this level is noted. The
17.0 mPa of ozone is the reference level used to initiate the response test. After recording 17.0
mPa of ozone for 10 minutes the ECC response check begins. To measure the response, the cells
would have to be switched to zero air quicker than the cell responds. This is accomplished by
switching both cells (assuming two cells are being calibrated) to the mass flow meter, the source
of zero air. This is more efficient than setting the generator to zero and waiting for the manifold
and residual ozone in the system to reach the zero level. Thus, V1 and V2 of Fig. 2, lower panel,
are switched to the mass flow meter for immediate zero air and the program triggers a timer. The
decreasing ozone is measured and recorded at five points used to reflect the cell response. As the
ozone decays, measurements at 3-4 second intervals provide a detailed record of the response
while also being displayed real-time on the monitor. From the detailed record the program selects
five points (1, 2, 3, 5 and 10 minutes) successively that are used to calculate the response of
ozone change that should be 80-90 percent lower than the reference of 17.0 mPa. V1 and V2 are

switched back to the ozone generator and the next 10-min background current measurement
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begins. The response record contains the following: date, time in seconds, motor current, supply
voltage, temperature, mass flow, cell current, and atmospheric pressure. Data are displayed on the

monitor in real-time.

The ECC cells have been conditioned and are ready for the linear calibration. The 0.0 mPa to 30.0
mPa calibration is performed. Step changes begin with 0.0 mPa, followed by measurements at
5.0, 10.0, 15.0, 20.0, 25.0, and 30.0 mPa. Each step requires approximately 2-3 minutes to
complete allowing time for the cell to respond to each ozone step change. The linear calibration
includes the reference measurement made simultaneously with the ECC measurement. After the
upward calibration reaches the 30.0-mPa level the calibration continues downward, to 0.0 mPa.
The measurements are displayed on the monitor for the operators use and also sent to an Excel
file. Generally, the downward calibration experiences small differences from the upward
calibration. The available test data reveals that the downward calibrations are always higher than
the upward calibrations. It is conjectured that this occurs because the ECC sensor retains the
memory of experiencing the high ozone concentration measured at the 30.0 mPa calibration
value. Between 5.0 mPa and 25.0 mPa the downward calibrations of the 1.0 percent KI solution
are 0.8 mPa to 1.0 mPa higher than the upward calibration. The 0.5 percent solution downward
calibration varies between 0.5 mPa and 0.9 mPa for the same partial pressures. Only the upward
calibrations are used. Following the linear calibration, the final background current is obtained.
This requires 10 minutes of zero grade dry air before making the measurement. The data are
recorded in a summary file that contains the supply voltage, motor current, flow rate, pump

temperature, response, and the background currents.

3 Digital Calibration Bench Practical Application

Repetitive comparison operations can be carried out with the digital calibration bench as
often as necessary. This could result in a potential cost saving as there would be no need
to expend radiosondes, ECC’s, and balloons. The testing with the digital calibration

bench is limited to the ranges of pressures and temperatures at sea level and would be an

imprecise representation in the upper altitudes.

3.1 Digital Calibration Bench (General)

10
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Quasi-simultaneous testing of two ECC’s is possible, enabling comparisons of different
concentrations of KI solutions. Comparison of 2.0-, 1.5-, 1.0-, and 0.5- percent KI
concentrations were carried out on the digital bench demonstrating that agreement with
the ozone reference value improved with lower concentrations. In an earlier paper
Johnson et al (2002), using SPC and EnSci ECC’s demonstrated similar changes occurred
when testing various solution concentrations that also included varying amounts of
buffer. Only the SPC 6A ECC’s with 1.0 percent KI solution and full buffer (1.0%,1.0B)
and 0.5 percent KI solution and one-half buffer (0.5%,0.5B) concentrations are discussed

here.

During the checkout of the digital calibration bench ECCsondes were calibrated in pairs
and included different KI solutions. Tests indicated the pressure and vacuum
measurements were nominal, some insignificant variation occurred but was not a cause
for concern. Pump temperatures, controlled by the room air temperature, varied 0.1°C to
0.2°C. Motor currents showed some variation, some measured over 100 mA, suggesting a
tight fit between the piston and cylinder. For example, one ECC motor current initially
was 100 mA, a second measurement a week later the reading was 110 mA, a final reading
after running the motor for a short time was 96.5 mA. Flow rates fell within the range of
27 to 31 seconds per 100 ml, a range comparable to flow rates manually measured with a
bubble flow meter. Background currents were consistent. The lowest background current
allowed by the digital bench is 0.0044 pA. The final background currents obtained with
the digital bench often were somewhat higher than background currents experienced with
manual preparation, generally about 0.04 pA. Although 0.4 pA is relatively small it is
possible the higher background current value results from the ECC’s residual memory
following exposure to the high ozone concentration during the previous linear calibration
step. The final background currents, obtained manually immediately prior to an ECC
balloon release, were in the range between 0.01 and 0.02 pA. Finally, the response of all
the cells was good, falling within the required 80 percent decrease within less than one
minute. Graphically checking a small sample of high-resolution responses found some

variation as the ozone decayed.

11
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3.2 Calibration and Potassium lodide (KI) Solution Comparisons

As a practical example of the usefulness of the digital calibration bench is its capability to
nearly simultaneously obtain measurements from two ECC’s, one prepared with
(1.0%,1.0B) and the second with (0.5%,0.5B). The recommended KI solution strength to
be used with the SPC 6A ECC’s is 1.0 percent the with full buffer (Smit and ASOPOS
PANEL, 2014). Conditioning of the ECC’s followed the steps given in Fig. 2, upper and
lower panels. In the free stratosphere ozone partial pressures usually range from 15.0
mPa to 20.0 mPa. Linear calibrations to 30.0 mPa are obtained, although a lower range

may be reprogramed.

Figure 3 is a graphical example of differences between the reference ozone measurement
and the measurements of (1.0%,1.0B) and (0.5%,0.5B) KI concentrations. A sample of
18 digital bench measurements were averaged to provide a representative set of
differences. The close proximity between the curves shown in the figure render the
standard deviation lines too small, also they overlay each other to some extent. The
standard deviations have been added to the figure for greater clarity. The variations,
although small, indicate greater variability with the (1.0%,1.0B) KI solution. Fig. 3
suggests that the two concentrations measured nearly identical amounts of ozone between
0.0 mPa and 8.0 mPa. Both curves begin to separate and diverge above 8.0 mPa. The
averaged data at 10.0 mPa indicate that (1.0%,1.0B) is 0.36 mPa, or 3.6 percent higher
than the reference and (0.5%,0.5B) is 0.04 mPa, or 0.4 percent higher; at 15.0 mPa the
difference is 0.67 mPa, or 4.3 percent and 0.17 mPa or 1.1 percent higher, respectively; at
20.0 mPa the difference for (1.0%,1.0B) is 1.11 mPa, or 5.5 percent and (0.5%,0.5B) is
0.48 nb or 2.4 percent higher. A check at the 30.0 mPa level indicated (1.0%,1.0B) was
6.8 percent above the reference and (0.5%,0.5B) was 3.2 percent above. The ECC with
(0.5%,0.5B) KI concentration is closer to the reference than (1.0%,1.0B) KI . Both ECCs’
partial pressure curves have a slope greater than 1 trending toward higher amounts of
ozone when compared to the reference value as ozone partial pressure increases. It is
clear that the (1.0%,1.0B) KI solution increases at a faster rate than the (0.5%.0.5B)

solution. Johnson et al (2002) have explained the effect of different KI solution

12
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concentrations as well as the side effects from the buffers used. Their study of the
standard (1.0%,1.0B) solution indicated the ECC can report higher ozone amounts, up to
5-7 percent under constant ozone conditions and can also increase the ozone amount to
higher values from the buffer reactions. Fig. 3 indicates that the 1.0 percent KI
measurement is further from the reference than the 0.5 percent KI. The percentage
difference between the two KI concentrations is virtually constant at 3.2 percent, or in
terms of a ratio between the two solutions, 0.968. Referring to the SPC ozonesondes
compared during BESOS, Deshler et al (2017, Fig.5 and Table 2) indicate non-linearity
between the (0.5%,0.5B) and (1.0%,1.0B) KI solutions and similar ratio values,
0.970/0.960 .

The digital calibration bench turned out to be an ideal tool to obtain repeated ECC
calibrations. The digital bench can calibrate two ECC’s nearly simultaneously reducing
the need to expend costly dual-ECC balloons. A negative aspect, possibly, is that
calibration at sea level cannot provide knowledge of ECC behavior under upper altitude
conditions. Eleven ECC pairs were calibrated over a period of three weeks. Two ECC’s
were prepared with (1.0%,1.0B) and (0.5%,0.5B) KI solutions. A number of time-
separated calibrations were conducted with the expectation the resulting calibrations
would be repeatable week-to-week. The cells were flushed and fresh KI solutions were
used with each weekly test. Calibration over the full range, 0.0-30.0 mPa was carried out,
Changes that might be due to improper preparation and conditioning procedures were not
considered since, by definition, the digital bench is consistent in how ECC’s are prepared.
Consideration also must be given to the fact that the ECC sensor has a memory that may
have an effect of inhibiting repeatability. The individual weekly calibrations showed
varying results. Some calibrations showed an increase each week while other calibrations
did not. An average of the data showed small increases week-to-week but these were too
small to be significant. In essence no particular pattern was evident suggesting that

calibrations on a week-to-week schedule would not be repeatable

To bring the ECC measurements into correspondence with the reference suggests that

downward adjustment should be applied to each curve. When a large sample of similar

13
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digital bench measurements are obtained it should be possible to design a table of
adjustments relative to ozone partial pressure that could be used to adjust ozonesonde
measurements. However, since the calibrations are made at sea level such an adjustment
table would not be able to account for the influence of upper atmospheric pressure and
temperature. Nevertheless, any adjustment, seemingly, would be in the right direction and

would aid in obtaining more representative ozone values.

Although digital bench calibration comparisons are instructive, important comparisons
have been made between ECC’s and reference instruments using other methods. ECC
measurement comparability have been quantified through in situ dual instrument
comparisons (Kerr et al, 1995; Stubi et al, 2008; Witte et al, 2019), laboratory tests at the
World Ozone Calibration facility at Jiilich, Germany (Smit et al, 2004, 2007, 2014) and
by occasional large balloon tests such as BOIC (Hilsenrath et al, 1986), STOIC (Kohmyr
et al, 1995) and BESOS (Deshler et al, 2008). BESOS provided important performance
information about the SPC 6A ECC and the EnSci ozonesondes. However, these
complicated large balloon experiments that seem to occur every 10 years are expensive.
The environmental chamber used in the Jiilich tests (Smit et al, 2007) covers a full
pressure range but is also expensive to use. The purpose here is to show a calibration
method that is simple to use and provides calibrations that include useful reference
values, and is complementary to other methods, such as employed in the Jiilich Ozone

Sonde Intercomparison Experiment (Smit et al, 2004; Smit et al, 2007).

In the 1998-2004 period the Wallops ozone station released a number of dual-ECC
balloons, twelve pair successfully provided measurements to 30 km, and higher. The
ECC’s were attached about 35 meters below the balloon and each ECC separated a
distance of 2 meters. Each pair was composed of an ECC with (1.0%,1.0B) and
(0.5%,0.5B) KI solutions. The profiles were averaged, and are displayed in Fig. 4. It can
be noted in the figure that the mean (0.5%,0.5B) solution reveals less ozone being
measured than that of the (1.0%,1.0B) solution. Near the 65-70 hPa level the
(0.5%,0.5B) ECC begins to report increasingly less ozone than the (1.0%,1.0B) ECC as

the partial pressure increases. A similar feature was noted in Fig. 3 where the separation

14
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of the ECC’s with different concentrations occur with increasing partial pressure. Fig. 4
shows the maximum ozone partial pressure level was about 14.0 mPa, near 22 hPa, where
the (0.5%,0.5B) KI solution measured approximately 1.0 mPa, or 7 percent less ozone
than the ECC with the (1.0%,1.0B) KI concentration. This difference is approximately 4
percent higher than the result given by the digital calibration bench results of Fig.3,
where, at 15.0 mPa, the difference between the (1.0%,1.0B) KI and (0.5%,0.5B) KI is 3.2
percent. Observations obtained with the Wallops Island Dobson spectrophotometer are
available since 1963 and have provided meaningful research data (Harris et al, 2003).
Dobson observations also permit comparisons of total ozone with each of the ECC
profiles. The average profiles shown in Fig. 4 were in excellent agreement with
(0.5%,0.5B), e.g., the total ozone difference between the Dobson (309.5 DU) and
(1.0%,1.0B) (330.4 DU) is 20.9 DU; between the Dobson and (0.5%,0.5B) (308.3 DU)
the difference is 1.2 DU.

Given that the digital bench tests revealed the (0.5%,0.5B) KI solution is in closer
agreement with the reference measurement than the (1.0%,1.0B) solution suggested that a
KI solution with a weaker concentration may, possibly, give even better agreement. A
small number of dual ECC tests were carried out with a solution of 0.3 percent with one-
third buffer (03%,0.3B). Six sets of ECC’s were prepared for calibration. Each dual ECC
test consisted of one ECC prepared with (1.0%,1.0B) KI solution and one with
(0.3%,0.3B) KI solution. The digital bench comparison result disclosed the (1.0%,1.0B)
result replicated the earlier results discussed above. As assumed, the lower concentration
was nearly equal to, or slightly less than the reference. Average values and standard
deviations derived from the six tests are shown in Fig. 5. Although the 0.3 percent

solution might appear to be a better choice additional tests are necessary.

4 Summary

The concept of an automated method with which to pre-flight condition and calibrate

ECC ozonesondes was originally considered by MeteoSwiss scientists over 20 years ago.

Drawing on their expertise, a facility designated as the digital calibration bench was

15



460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

fabricated at NASA Wallops Flight Facility between 2005-2008. The digital bench was
put to use immediately to study ECC performance, conduct comparisons of different KI
concentrations, enabled ECC repeatability evaluation, as well as calibrating the ECC over
a range of partial pressures, including associated reference values. Tests conducted with
the digital bench were performed under identical environmental conditions. The digital
bench eliminates the expense and time associated with making similar tests in the

atmosphere.

Early use of the digital bench was to calibrate ECC’s, prepared with (1.0%,1.0B) KI
solution, over a range of partial pressures from 0.0 mPa to 30.0 mPa. Comparison
between ECC’s with (0.5%,0.5B) and (1.0%,1.0B) KI solution and simultaneously
obtained reference values revealed the two KI solution strengths were measuring more
ozone than the reference. There was an increasing difference between the ECC’s and the
reference as the partial pressure increased. For example, the ECC measurements slope
upward to increasingly larger differences from the reference ozone measurements, i.e.,
increasing from 4.3 percent higher partial pressure at 15.0 mPa (Fig. 3) to about 7 percent

higher at 30.0 mPa.

Results from the digital bench also corroborate differences found between SPC 6A
ECC’c flown on dual-instrument flights at Wallops Island. The difference between
ozonesondes at a pressure of 22 hPa showed the (0.5%,0.5B) ECC to be about 1.0 mPa
lower than the (1.0%,1.0B) ECC. Comparison between ECC profiles of both (1.0%,1.0B)
and (0.5%,0.5B) KI solutions reveals very good agreement between Wallops Island
Dobson observations and the (0.5%,0.5B) mean ECC profile.

The digital calibration bench provides a capability to apply a variety of test functions
whereby the valuable information gathered helps to better understand the ECC
instrument. Evaluating SPC ECC performance using an automated method diminishes the
requirement for expensive comparison flights. The tests performed, i.e., KI solution
differences, calibrations over a time period, and dual-instrumented balloon flights, were

consistent, giving similar results. The tests described in this paper are simply examples of
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the utility of the digital bench. Furthermore, the digital calibration bench preparation
facility potentially could contribute to an understanding of separating ECC measurement
variability from atmospheric variability. Thus, the automated conditioning and calibration
system provides valuable information, and as a useful tool should continue to be a

valuable aid.
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11 Figures

Fig01. Digital calibration bench showing operational configuration and mounting
position of two ECC ozonesondes. Major components include ozone generator and
analyzer, computer, flow meter, and glass manifold.

Fig02. Digital calibration bench diagrams: a) sequential steps, and b) functional steps.
Fig03. Comparison of ECC ozonesondes prepared with (1.0%,1.0B) [blue] and
(0.5%,0.5B) [red] KI solution concentrations. The reference curve is shown in black.
Calibrations are made in 5.0 mPa steps from 0.0 mPa to 30.0 mPa.

Fig04. Average ozone profiles from 12 pairs of SPC 6A ECC ozonesondes indicating at
the 22 hPa pressure level that the (0.5%,0.5B) ECCs’ measured 0.7-0.8 mPa less ozone,

approximately 5 percent less, than the (1.0%,1.0B) ECCs’.

Fig05. Digital calibration bench results between (1.0%,1.0B) solution, blue curve, and

(0.3%,0.3B) solution, red curve; the reference curve is shown in black.
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Fig 01.

DIGITAL CALIBRATION BENCH

Manual insertion of KI
solution required

The system consists of a
computer, mass flow meter, TEI
49C ozone generator, TEI 49C
ozone analyzer, and incidental
equipment.

The TEI generator and analyzer are
calibrated each month using a
primary standard 3-meter long-path
photometer.
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Fig 02.

ECC Calibration System Sequential Flow Diagram
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Fig 03.
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