

1	
2	
3	
4	
5	
6	
7	An Automated Method for Preparing and Calibrating
8	
9	Electrochemical Concentration Cell (ECC) Ozonesondes
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	Francis. J. Schmidlin ¹ and Bruno A. Hoegger ²
21	
22	
23	
24	
25	
26	
27 28	
28 29	1) NASA/GSFC/Wallops Flight Facility; Wallops Island, Va. 23337 (Emeritus). E-mail: francis.j.schmidlin@nasa.gov
30	2) Bruno Hoegger Scientific Consulting; Marly, Switzerland CH1723. E-mail: hoegger.consulting@bluewin.ch
31	

- 32 Abstract
- 33

34	In contrast to the legacy manual method used to prepare, condition, and calibrate the
35	Electrochemical Concentration Cell (ECC) ozonesonde an automated digital calibration
36	bench similar to one developed by MeteoSwiss at Payerne, Switzerland was established
37	at NASA's Wallops Flight Facility and provides reference measurements of the same
38	ozone partial pressure as measured by the ECC. The purpose of an automated system is to
39	condition and calibrate ECC cells before launching on a balloon. Operation of the digital
40	calibration bench is simple and real-time graphs and summaries are available to the
41	operator; all information is archived. The parameters of interest include ozone partial
42	pressure, airflow, temperature, background current, response, and time (real and elapsed).
43	ECC cells, prepared with 1.0 percent solution of potassium iodide (KI) and full buffer,
44	show increasing partial pressure values when compared to the reference as partial
45	pressures increase. Differences of approximately 5-6 percent are noted at 200 nb.
46	Additional tests with different concentrations revealed the Science Pump Corp (SPC) 6A
47	ECC with 0.5 percent KI solution and one-half buffer agreed closer to the reference than
48	the 1.0 percent cells, this is in agreement with results of multi-sonde comparisons
49	obtained during BESOS. The information gained from the automated system allows a
50	compilation of ECC cell characteristics, as well as calibrations. The digital calibration
51	bench is recommended for ECC studies as it conserves resources.
52	

- 54 1. Introduction
- 55

56	Measurement disagreement between similar or identical instruments seems to be an
57	historical problem. Intercomparisons are generally conducted when new instruments are
58	introduced and when operational changes or improved procedures become available.
59	Such comparisons should be made under the same environmental conditions and include
60	a reference instrument as an aid for checking the accuracy and reliability of the
61	instruments. This would be ideal as a standard procedure. Unfortunately, balloon-borne
62	ozone reference instruments are not usually available, mostly because they are too
63	expensive for other than occasional use or to expend on non-recoverable balloon
64	packages. Ozonesonde pre-flight calibrations are conducted, however these are basically
65	single point calibrations made prior to its release. An automated system designed to
66	condition and calibrate the Electrochemical Concentration Cell (ECC) ozonesonde was
67	fabricated at Wallops Flight Facility. The automated system can provide calibration over
68	a wide range of ozone partial pressures. This system, designated the digital calibration
69	bench, enables consistent conditioning and calibration of the ECC along with
70	measurements of a reference value. In this paper the term ECC refers only to the Science
71	Pump Corp. (SPC) 6A ECC ozonesonde, although the automated system can
72	accommodate the EnSci ozonesonde as well.
73	
74	There are a variety of ground-, aircraft-, satellite-, rocket-, and balloon-borne instruments
75	available to measure the vertical structure of atmospheric ozone and its total content.
76	These instruments operate on different principles of measurement (Fishman et al, 2003;
77	Kohmyr, 1969; Krueger, 1973; Holland et al, 1985; Hilsenrath et al, 1986; Sen et al,
78	1996). Although their spatial distribution is limited, balloon-borne Electrochemical
79	Concentration Cell (ECC) ozonesondes have had a key role as a source of truth for the
80	other instruments and for establishing algorithms necessary for the retrieval of satellite
81	observations. Manual preparation of the ECC requires hands-on contact by an operator.
82	
83	Reducing subjectivity is important and was considered serious enough to engage in the
84	fabrication of the automated system. The user is prompted throughout the calibration

85	process while utilizing real-time graphs and summaries. The digital calibration bench
86	provides consistent preparation procedures. ECC measured ozone partial pressures vs.
87	reference partial pressures are discussed and the results corroborated with similar
88	comparison data obtained during the the 2004 comparison on the Balloon Experiment on
89	Standards for Ozonesondes (BESOS) mission (Deshler et al, 2008) and with dual ECC
90	comparisons at Wallops Island.
91	
92	Notwithstanding efforts to enhance ECC performance (Smit et al, 2004, 2007, 2014; Kerr
93	et al, 1994; Johnson et al, 2002; Torres, 1981) there remain uncertainties. Barnes (1982)
94	and Barnes et al (1985) estimated the accuracy of the ECC as 5-10 percent and also
95	pointed out that the accuracy varied with altitude. Uncertainties also arise from poor
96	compensation for the loss of pump efficiency; erroneous background current; air flow
97	temperature error and whether measured at the proper location; and, the use of the
98	appropriate potassium iodide (KI) concentration. Understanding the influence these
99	parameters have on the ozonesonde measurement capability is particularly important.
100	The digital calibration bench is able to measure these parameters in a consistent way over
101	a range of partial pressures.
102	
103	2 Digital Calibration Bench Description and Operational Procedure
104	
105	2.1 Description
106	
107	The computer-controlled preparation and calibration bench fabricated at NASA Wallops
108	Flight Facility follows the design of a similar bench developed by MeteoSwiss scientists
109	B. A. Hoegger and G. Levrat at Payerne, Switzerland. The MeteoSwiss digital calibration
110	bench was first available in the 1990's and continues to be used and is updated
111	periodically. A comparable bench furnished by MeteoSwiss to the meteorological station
112	at Nairobi, Kenya also has been in use for a number of years. The Wallops Island ozone
113	site was interested in the digital bench because of its capability to provide precise and
114	repeatable preparation of ECC's, and its automated feature requires less interaction with
115	the ECC then the manual preparation method.

116

117	The Wallops digital calibration bench, shown in Fig. 1, consists of three major
118	components: 1) mass flow meter to control air flow, 2) an ozone generator and analyzer
119	(UV photometer), and 3) computer necessary to automate the timing of the programmed
120	functions and process the data. Another important component, the glass manifold, enables
121	the simultaneous distribution of the air flow to the ECC's and the UV photometer. The
122	manifold also is a buffer maintaining constant air flow and inhibiting flow fluctuation. A
123	graphical user interface controls the various input and output functions using an interface
124	board and communications portal enabling synchronous communication protocols. A
125	signal conditioning box allows connections to the ECC's analog signals that are
126	conditioned with custom electronic components. Minor but necessary components
127	include pressure and temperature sensors, and valves and solenoids to direct the flow of
128	laboratory grade air. Calibration validity is accomplished by comparing the measured
129	ECC ozone partial pressure against a reference partial pressure obtained with the UV
130	photometer.
131	

132

133 Fig. 2, from an unpublished technical note (Baldwin, private communication), illustrate 134 the steps necessary to achieve a consistent calibration. By following the sequential flow diagram shown in Fig. 2, upper panel, the operator can better understand the sequence of 135 136 tests. Each shape in the diagram is associated with a graphical window displayed on the 137 monitor, as are notices that pop-up to instruct or direct the operator. The computer controlled digital bench follows the ECC preparation procedure in place at NASA 138 Wallops Island at the time of the system's fabrication. Each ECC is recognized by its 139 140 manufacturing date and serial number and includes the manufacturers test data. Changes to the steps are possible anytime through software reprogramming. Operationally, the 141 142 preparation sequence begins by verifying whether ECC cells are new or were previously 143 conditioned. A different path is followed for either condition. New cells are flushed with 144 high ozone prior to manually adding KI solution. Cells previously having had solution 145 added skip over the high ozone step to determine the first background current. Following the first background check the remaining steps are completed. Other measurements 146

147	accumulated with the digital bench include motor voltage, motor current, pump
148	temperature, and linear calibration at seven levels (0-300 nb). Program steps are
149	displayed on the computer monitor with real-time information. All data are archived and
150	backup files maintained.
151	
152	Fig. 2, lower panel, illustrates the functional diagram detailing the essential operation of
153	the digital calibration bench. Software control is shown in blue and air flow in green.
154	Laboratory zero-grade dry air or desiccated compressed air is introduced into the ozone
155	generator (TEI Generator) where a controlled amount of ozone is produced. The ozone
156	flows simultaneously to the ECC cells and to the ozone analyzer (TEI Analyzer). The
157	analyzer provides the reference partial pressure.
158	
159	The measurement of the air flow and the corresponding time permits a precise flow rate
160	to be determined. In contrast, the manual method uses a stop watch to estimate when 100
161	ml of air has flowed into a chamber. An experienced operator, using a volumetric bubble
162	flow meter should be able to measure the time to within 1 second, possibly better.
163	Although great care is exercised to obtain this measurement an error of one second is
164	equivalent to an approximately three percent error in the measurement of ozone partial
165	pressure. Further, the manual method requires that the effect of moisture from the bubble
166	flow meter's soap solution be accounted for; flow rates determined with the digital
167	calibration bench do not require a correction for moisture. Unfortunately, the calibration
168	bench cannot determine the pump efficiency correction (PEC); this is taken into account
169	differently. For a number of years, the ECC's PEC was physically measured at Wallops
170	Island using a specially adapted pressure chamber (Torres, 1981). This system no longer
171	is available. However, from its many years of use an extensive number of measurements
172	are available. A sample of 200 pressure chamber measurements were averaged to obtain a
173	unique PEC that was adopted for use at Wallops Island.
174	
175	After eliminating deficiencies and improving functionality the automated system was
176	tested while obtaining research data, primarily comparisons between different KI solution
177	concentrations. Unfortunately, comparison with manually prepared ECC's was never

178	contemplated. Calibration from 0 nb to 300 nb generally exceeds the nominal range of
179	atmospheric ozone partial pressure. Calibration steps are made in 50 nb increments but
180	larger or smaller increments are possible with minimal software reprogramming.
181	Differences between ECC and reference measurements, if seriously large, provide an
182	alarm to possibly reject the ECC, or after further study the differences between the ECC
183	and reference calibration might be considered as a possible adjustment factor that would
184	be applied to observational data.
185	
186	2.2 Operational Procedure
187	
188	ECC preparation procedures at Wallops Island are carried out five to seven days prior to
189	preparing the ECC for flight. The pump, anode and cathode cells, and Teflon tubing are
190	flushed with high amounts of ozone to passivate their surfaces and is followed by
191	flushing with zero-grade dry air followed by filling of the cells. The cells are stored until
192	ready to be used.
193	
194	Operation of the automated system is simple, requiring only a few actions by the operator
195	that include obtaining the first background current, air flow, 5 μ A or high ozone (170 nb)
196	test, response test, second background current, linear calibration between 0 nb and 300
197	nb, and the final background current. Two cells can be conditioned nearly
198	simultaneously. i.e., the program alternates measurements between ECC's.
199	
200	The operator must first determine whether the cell being conditioned had already been
201	filled with KI or never was filled. Whatever the status of the cell (wet or dry) the operator
202	must enter the identification information before proceeding. When a new, or a dry cell is to
203	be processed the digital calibration bench initiates high ozone flushing. The program alerts the
204	operator to turn on the high ozone lamp after which V3 of Fig. 2, lower panel, is switched to high
205	ozone. The unit checks that ozone is flowing and after 30 minutes the program switches to zero
206	air for 10 minutes and V3 switches back to the ozone generator. When completed, the operator is
207	prompted by an instructional message on the monitor screen to fill the anode and cathode cells
208	with the proper concentrations of potassium iodide (KI) solution. The cells are stored until ready
209	for further conditioning and calibration before being used to make an observation. Considering

- that the ECC cell had been filled earlier with solution the digital bench instruction by-210 211 passes the high ozone flushing. Ozonesonde identification is entered, as above. The 212 operator, after fresh KI has been added to the cell, is prompted on the monitor screen to 213 begin the first background current measurement. In either case, whether a dry cell for 214 which flushing is complete, or a wet cell ready for calibration, the procedure starts with 215 clicking the OK button displayed on the monitor screen. After 10 minutes of dry air the background current is recorded. The background current record contains the following 216 217 information: date, time in 1-2 second intervals, motor current, supplied voltage, pump 218 temperature, and cell current. As the measurement is being made identical information is 219 displayed graphically on the monitor. Following the background test all further steps are 220 automatic.
- 221

Continuing to follow the steps outlined in Fig. 2, upper panel, the measurement of the air flow is
accomplished on one ECC pump at a time by switching V1, shown in Fig. 2, lower panel, to the
mass flow meter and at the same time V2 is switched to the glass manifold (ozone generator).
When completed, V1 is switched back to the glass manifold and V2 is switched to the flow meter
and the flow rate of the second cell is carried out. The air flow is output in sec/100 ml. The
information stored includes: date, time in seconds at intervals of 7-8 seconds, mass flow meter
temperature, atmospheric pressure, flow rate, and supply voltage.

229

230 Response of the ECC to ozone decay requires setting the ozone generator to produce 170 nb 231 ozone partial pressure (approximately 5 uA). As ozone is produced the ozone level increases until 232 the set level is reached. The elapsed time to reach this level is noted. The 170 nb of ozone is the 233 reference level used to initiate the response test. After recording 170 nb of ozone for one minute 234 the ECC response check begins. To measure the response, the cells would have to be switched to 235 zero air quicker than the cell responds. This is accomplished by switching both cells (assuming 236 two cells are being calibrated) to the mass flow meter, the source of zero air. This is more 237 efficient than setting the generator to zero and waiting for the manifold and residual ozone in the 238 system to reach the zero level. Thus, VI and V2 of Fig. 2, lower panel, are switched to the mass 239 flow meter for immediate zero air and the program triggers a timer. The decreasing ozone is 240 measured and recorded at five points used to reflect the cell response. As the ozone decays, 241 measurements at 3-4 second intervals provide a detailed record of the response while also being

242 displayed real-time on the monitor. The detailed record is hacked by the program at five points (1,

243	2, 3, 5 and 10 minutes) successively and calculates the percentage of ozone change that occurred
244	at the one-minute point which should be 80-90 percent lower than the reference of 170 nb. V1
245	and V2 are switched back to the ozone generator and the next 10-min background current
246	measurement begins. The response record contains the following: date, time in seconds, motor
247	current, supply voltage, temperature, mass flow, cell current, and atmospheric pressure. Data are
248	displayed on the monitor in real-time.
249	
250	The ECC cells have been conditioned and are ready for the linear calibration. The 0 nb to 300 nb
251	calibration is performed. Step changes begin with 0 nb, followed by measurements at 50, 100,
252	150, 200, 250, and 300 nb. Each step requires approximately 2-3 minutes to complete allowing
253	time for the cell to respond to each ozone step change. The linear calibration includes the
254	reference measurement made simultaneously with the ECC measurement. After the upward
255	calibration reaches the 300-nb level the calibration continues downward, to 0 nb. The
256	measurements are displayed on the monitor for the operators use and also sent to an Excel file.
257	Generally, the downward calibration experiences small differences from the upward calibration
258	Only the upward calibrations are used.
259	
260	Following the linear calibration, the final background current is obtained. As before this requires
261	10 minutes of zero grade dry air before making the measurement. The data are recorded.
262	
263	A summary is provided of the calibration giving supply voltage, motor current, flow rate, pump
264	temperature, response, and three background currents.
265	
266	3 Digital Calibration Bench Practical Application
267	
268	Repetitive comparison operations can be carried out with the digital calibration bench as
269	often as necessary. This could result in a potential cost saving as there would not be a
270	need to expend radiosondes, ECC's, and balloons. The testing with the digital calibration
271	bench is limited to sea level conditions
272	
273	3.1 Digital Calibration Bench (General)
274	

275	Quasi-simultaneous testing of two ECC's is possible, enabling comparisons of different
276	concentrations of KI solutions. Comparison of 2.0-, 1.5-, 1.0-, and 0.5- percent KI
277	concentrations demonstrated that agreement with the reference improved with lower
278	concentrations. Only the SPC 6A ECC's with 1.0 percent KI solution and full buffer
279	(1.0%,1.0B) and 0.5 percent KI solution and one-half buffer (0.5%,0.5B) concentrations
280	are discussed, however.
281	
282	Testing indicated the pressure and vacuum measurements were nominal, some
283	insignificant variation occurred but was not a cause of concern. Pump temperatures,
284	controlled by the room air temperature, varied 0.1°C to 0.2°C. Motor currents showed
285	some variation, some measured over 100 μ A, suggesting a tight fit between the piston
286	and cylinder. For example, one ECC motor current initially was 100 μ A, a second
287	measurement a week later the reading was 110 μ A, a final reading after running the
288	motor for a short time was 96.5 μ A. Flow rates fell within the range of 27 to 31 seconds
289	per 100 ml, a range comparable to flow rates manually measured with a bubble flow
290	meter. Background currents were consistent. The lowest background current allowed by
291	the digital bench is 0.0044 μ A. The final background currents often were somewhat
292	higher than background currents experienced with manual preparation, generally 0.04 μA
293	on average. Final background currents obtained prior to a balloon release was in the
294	range between 0.01 and 0.02 μ A. Finally, the response of all the cells was good, falling
295	within the necessary 80 percent decrease within less than one minute. Graphically
296	checking a small sample of high-resolution responses found some variation as ozone
297	decreased to 0 nb. The linear calibration (0-300 nb), is useful for comparing different KI
298	concentrations.
299	
300	3.2 Calibration and Potassium Iodide (KI) Solution Comparisons
301	
302	As a practical example of the usefulness of the digital calibration bench is its capability to
303	nearly simultaneously obtain measurements from two ECC's, one prepared with
304	(1.0%, 1.0B) and the second with $(0.5%, 0.5B)$. Conditioning of the ECC's followed the
305	steps given in Fig. 2, upper and lower panels. In the free atmosphere ozone partial

- 306 pressures usually range up to 150 nb to 200 nb. Linear calibrations to 300 nb are
- 307 obtained, although a lower range may be reprogramed.
- 308
- 309 Figure 3 is a graphical example of differences between the reference ozone and the measurements of (1.0%, 1.0B) and (0.5%, 0.5B) KI concentrations. Rather than showing 310 311 the differences from a single measurement, a sample of 18 digital bench measurements 312 were averaged to give a more representative set of differences. Fig. 3 suggests that the 313 two concentrations measured nearly identical amounts of ozone between 0 nb and 80 nb. Both curves begin to separate and diverge above 80 nb. The averaged data at 100 nb 314 315 indicate that (1.0%,1.0B) is 3.6 nb, or 3.6 percent higher than the reference and 316 (0.5%, 0.5B) is 0.4 nb, or 0.4 percent higher; at 150 nb the difference is 6.7 nb, or 4.3 317 percent and 1.7 nb or 1.1 percent higher, respectively; at 200 nb the difference for (1.0%,1.0B) is 11.1 nb, or 5.5 percent and (0.5%,0.5B) is 4.8 nb or 2.4 percent higher, 318 319 respectively. A check at the 300 nb level indicated (1.0%,1.0B) was 7.2 percent above the 320 reference and (0.5%,0.5B) was 3.7 percent above. The ECC with (0.5%,0.5B) KI 321 concentration is closer to the reference than (1.0%,1.0B) KI. Both ECCs' partial pressure 322 curves have a slope greater than 1 trending toward higher amounts of ozone when 323 compared to the reference value as ozone partial pressure increases. It is clear from the digital bench testing that the (1.0%,1.0B) KI solution increases at a faster rate than the 324 325 (0.5%.0.5B) solution as ozone partial pressure increases. This non-linearity is not 326 explained here. The intent of the examples is merely illustrative of the advantage 327 provided by the digital bench to examine ECC behavior. Further, Fig. 3 indicates that the 328 1.0 percent KI measurement is further from the reference than the 0.5 percent KI while 329 the percentage difference between the two concentrations is nearly constant at 3.2 330 percent, or in terms of a ratio between the two solutions, 0.968. Referring to the SPC 331 ozonesondes compared during BESOS, Deshler et al (2017, Fig.5 and Table 2) indicates non-linearity between the (0.5%,0.5B) and (1.0%,1.0B) KI solutions and similar ratio 332 333 values, 0.970/0.960. 334 The digital calibration bench turned out to be an ideal tool to obtain repeated ECC 335
- 336 calibrations. The digital bench can calibrate two ECC's nearly simultaneously reducing

337 the need to expend costly dual-ECC balloons. A negative aspect, possibly, is calibration 338 occurs under sea level conditions so cannot provide knowledge of ECC behavior under 339 atmospheric conditions. A series of calibrations were performed over a period of three weeks. Two new ECC's were prepared with (1.0%,1.0B) and (0.5%,0.5B) KI solutions. 340 Although a number of time-separated calibrations were conducted, only one three-week 341 342 test is shown in Fig. 4a, b, c. The result shown is characteristic of similar calibrations performed over a similar number of weeks. The cells were flushed and fresh KI solutions 343 344 were used with each weekly test. Calibration over the full range, 0-300 nb was carried out, only the 300 nb partial pressures are discussed. During the first week, Fig. 4a, the 345 346 (1.0%,1.0B) KI solution was approximately 21 nb, or 7 percent higher than the 347 corresponding reference value. The (0.5%,0.5B) KI solution was about 6-7 nb or about 2 348 percent lower than the reference value. A second calibration one week later, designated week two in Figure 4b, showed the ECC with the (1.0%,1.0B) KI solution had moved 349 350 further away from the reference, about 27-28 nb or 9 percent higher (approximately 6-7 nb higher than during week one), while the ECC with the (0.5%,0.5B) KI was now 12 nb 351 or 4 percent higher than the reference. A third calibration, week three in Fig. 4c, showed 352 both ECC calibrations had moved again. The (1.0%,1.0B) KI calibration increased an 353 354 additional 2 nb and was now about 30 nb, or 10 percent higher than the reference. The ECC with (0.5%,0.5B) KI increased an additional 1 nb and now was 13 nb, 4 percent 355 356 higher than the reference value. Providing an explanation for the changes observed 357 between week one and week three is difficult. Changes that might be due to improper 358 preparation and conditioning procedures is not considered since, by definition, the digital bench is consistent in how ECC's are prepared, i.e., it is expected that carrying out the 359 preparation would be repeatable from week-to-week. Consideration also must be given to 360 361 the fact that the ECC has a memory. It is very possible that calibrations taking place 362 following week one could still be under the influence of the previous measurement due to some impurity residuals present on the ion bridge. On the other hand, the changes could 363 364 simply be a normal evolution of typical ECC performance. 365

The curves shown in Fig. 4a, b, and c merely show the calibrated ECC offset relative to areference, or "true" partial pressure. To bring the ECC measurements into

368	correspondence with the reference suggests that downward adjustment should be applied
369	to each curve. However, how should such time-separated calibrations be treated; should
370	only the final calibration (e.g., week 3) be used or an average of the three calibrations.
371	Regardless, after obtaining a large sample of similar digital bench measurements it would
372	be possible to design a table of adjustments relative to ozone partial pressure to be used to
373	adjust in-flight ozonesonde measurements. However, the calibrations are made at sea
374	level and cannot account for the influence of atmospheric pressure and temperature.
375	Nevertheless, any adjustment seemingly would be in the right direction and would aid in
376	obtaining more representative ozone values.
377	
378	Although digital bench calibration comparisons are instructive, important comparisons
379	have been made between ECC's and reference instruments using other methods. ECC
380	measurement comparability have been quantified through in situ dual instrument
381	comparisons (Kerr et al, 1995; Stubi et al, 2008; Witte et al, 2019), laboratory tests at the
382	World Ozone Calibration facility at Jülich, Germany (Smit et al, 2004, 2007, 2014) and
383	by occasional large balloon tests such as BOIC (Hilsenrath et al, 1986), STOIC (Kohmyr
384	et al, 1995) and BESOS (Deshler et al, 2008). BESOS provided important performance
385	information about the SPC 6A ECC and the EnSci ozonesondes. Only the SPC 6A ECC
386	is discussed. However, these complicated large balloon experiments that seem to occur
387	every 10 years are expensive. The environmental chamber used in the Jülich tests covers
388	a full pressure range but is also expensive to use. The purpose here is to show a
389	calibration method that is simpler to use and provides calibration that includes a useful
390	reference value, and is complementary to other methods, such as employed in the Jülich
391	Ozone Sonde Intercomparison Experiment (Smit et al, 2007).
392	
393	BESOS was conducted from Laramie, Wyoming during April 2004, employed a large
394	balloon carrying a gondola fitted with 12 dedicated ozonesondes. The gondola also
395	carried an independent power supply, a multiplexer/transmitter, and a UV photometer.
396	The photometer (Proffitt and McLaughlin, 1983) was used for over 20 years in various
397	tests conducted at the Jülich facility. Other instruments included on the gondola are not
398	germane to the present discussion. The ECC's were divided into two groups, each group

399 consisting of six SPC-6A and six EnSci ECC's. Each group of six ECC's was further 400 partitioned into two sub-groups. One sub-group was prepared with 1.0 percent fully 401 buffered KI solution, the second sub-group was prepared with 0.5 percent KI and one-402 half the buffer. Only the two SDC-6A sub-groups and the UV photometer are of interest 403 to this discussion. The BESOS test design allowed comparison of: the differences 404 between (1.0%,1.0B) and (0.5%,0.5B) KI solutions; the differences between SPC-6A and EnSci ECC's; and, the differences between both ECC types and the reference photometer 405 406 (Deshler et al, 2008). 407 408 The photometer data were noisy during the early portion of the flight and did not provide 409 reliable data. The remainder of the flight experienced intermittent data loss, but overall 410 sufficient data were available to carry out an analysis, particularly in the stratosphere (Deshler et al, 2008). Partial pressures lower than 60 nb are not discussed. The data were 411 412 separated into two displays of ozone partial pressures as shown in Fig. 5a and Fig. 5b. 413 The filled diamonds, filled triangles, and filled circles illustrate the ECC/photometer 414 relationship. 415 416 The least-squares method was used to fit the ozonesonde data in Fig. 5a, b. The ECCs' with the 1.0 percent KI, shown in Fig. 5a, measured increasingly more ozone than the 417 418 reference as the ozone partial pressure increases. There is 3 percent more ozone measured 419 at 100 nb, and 5 percent more ozone measured at 150 nb, than the photometer reference. 420 This is within reasonable agreement with the digital calibration bench estimates, of 3.6 and 4.3 percent, respectively. The relationship between SPC-6A ECCs' prepared with 0.5 421 422 percent KI solution and the UV photometer, shown in Fig. 5b, is in closer agreement with 423 the UV photometer than the 1.0 percent KI solution. The 0.5 percent partial pressures are 424 mostly the same as the photometer values, but a small negative slope can be discerned. 425 426 In the 1998-2002 period the Wallops ozone station released a number of dual-ECC 427 balloons, twelve pair successfully provided measurements to 30 km, and higher. The ECC's were attached about 35 meters below the balloon and each ECC was separated 2 428 429 meters. Each pair was composed of an ECC with (1.0%, 1.0B) and (0.5%, 0.5B) KI

430	solutions. The profiles were averaged, and are displayed in Fig. 6. The profiles are
431	interesting in that the 1 percent ECC and the 0.5 percent ECC measured virtually the
432	same ozone partial pressure until reaching 70-80 nb, at an atmospheric pressure of
433	approximately 65 hPa. At this level the (0.5%,0.5B) ECC began to measure less ozone
434	than the (1.0%,1.0B) ECC. A similar feature was noted in Fig. 3 where the separation of
435	the ECC's with different concentrations occur at about 80-90 nb. Fig. 6 shows the
436	maximum ozone level was about 140 nb, near 22 hPa, where (0.5%,0.5B) KI measured
437	approximately 10 nb, or 7 percent less ozone than that of the (1.0%,1.0B) KI
438	concentration. This difference is approximately 4 percent higher than the result given by
439	the digital calibration bench results of Fig.3, where, at 150 nb, the difference between the
440	ECC 1 percent KI and ECC 0.5 percent is 3.2 percent.
441	
442	Given that the digital bench tests revealed the $(0.5\%, 0.5B)$ KI solution is in closer
443	agreement with the reference measurement than the $(1.0\%, 1.0B)$ solution suggested that a
444	KI solution with a weaker concentration may possibly give even closer agreement. A
445	small number of dual ECC tests were carried out. The decision was made to try a solution
446	of 0.3 percent with one-third buffer (03%,0.3B). Six sets of ECC's were prepared for
447	calibration. Each dual ECC test consisted of one ECC prepared with (1.0%,1.0B) KI
448	solution and one with (0.3%,0.3B) KI solution. The digital bench comparison result
449	disclosed the (1.0%,1.0B) result replicated the earlier results discussed above. As
450	assumed, the lower concentration was nearly equal to, or slightly less than the reference.
451	Average values derived from the six tests are shown in Fig. 7. To corroborate the bench
452	results three balloon-borne dual ECC sondes were flown, each with 1.0 and 0.3 percent
453	KI solutions. Unhappily, the results were inconclusive: one flight showed (0.3%,0.3B) to
454	be higher than (1.0%,1.0B), a second flight showed it to be lower, and the third flight
455	showed (0.3%,0.3B) to be nearly the same value. Although the 0.3 percent solution might
456	appear to be a better choice additional tests are necessary.
457	
458	4 Summary

459

- The concept of an automated method with which to pre-flight condition and calibrate 460 461 ECC ozonesondes was originally considered by MeteoSwiss scientists over 20 years ago. 462 Drawing on their expertise, a facility designated as the digital calibration bench was 463 fabricated at NASA Wallops Flight Facility between 2005-2007. The digital bench was put to use immediately to study ECC performance, conduct comparisons of different KI 464 465 concentrations, enabled ECC repeatability evaluation, as well as calibrating the ECC over 466 a range of partial pressures, including associated reference values. Tests conducted with 467 the digital bench were performed under identical environmental conditions. The digital 468 bench eliminates the expense and time associated with making similar tests in the 469 atmosphere. 470 471 Early use of the digital bench was to calibrate ECC's, prepared with (1.0%,1.0B) KI 472 solution, over a range of partial pressures from 0 nb to 300 nb. Comparison between 473 ECC's with (0.5%,0.5B) and (1.0%,1.0B) KI solution and comparing their measurements 474 with simultaneously obtained reference values revealed both KI solution strengths were 475 measuring more ozone than the reference. There was an increasing difference between the ECC's and the reference as the partial pressure increased. For example, the ECC 476 477 measurements slope upward to increasingly larger differences from the reference ozone measurements, i.e., increasing from 4.3 percent higher partial pressure at 150 nb (Fig. 3) 478 479 to about 7 percent higher at 300 nb. 480 481 An instruments ability to repeat the same measurement is important, however, ozonesondes are used only one time. (There are exceptions when an occasional 482 483 instrument is found and returned, but, unfortunately because of Wallops Island's coastal 484 location nearly all sonde instruments fall into the Atlantic Ocean rendering them unfit to 485 be reclaimed). The digital bench provided the opportunity to obtain repeatable calibrations of the ECC. Results from testing ECC cells over a period of three weeks, one 486 487 test each week, showed the calibration changed, e.g., about 10 percent for 1.0 percent KI 488 and 4-5 percent for the 0.5 percent solution.
- 489

490	Results from the digital bench also corroborate differences found between SPC 6A
491	ECC'c flown on BESOS and also with dual-instrument flights flown at Wallops Island.
492	The difference between ozonesondes at a pressure of 22 hPa showed the $(0.5\%, 0.5B)$
493	ECC to be about 10 nb lower than the (1.0%,1.0B) ECC.
494	
495	The digital calibration bench provides a capability to apply a variety of test functions
496	whereby the valuable information gathered helps to better understand the ECC
497	instrument. Evaluating SPC ECC performance using an automated method diminishes the
498	requirement for expensive comparison flights. The tests performed, i.e., KI solution
499	differences, calibrations over a time period, and dual-instrumented balloon flights, were
500	consistent, giving similar results. The tests described in this paper are simply examples of
501	the digital bench utility. Furthermore, not mentioned earlier, the digital calibration bench
502	preparation facility potentially could contribute to an understanding of separating ECC
503	variability from atmospheric variability. Thus, the automated conditioning and calibration
504	system provides valuable information, and as a useful tool should continue to be a
505	valuable aid.
506	
507	5 Data Availability
508	Data are available from the authors.
509	
510	6 Author Contribution
511	The first author acquired and prepared the data for processing and the second author was
512	instrumental in certifying the digital calibration bench was working properly. Both
513	contributed equally to manuscript preparation.
514	
515	7 Competing Interests
516	
517	The authors declare they have no conflict of interest.
518	
519	8 Disclaimer
520	

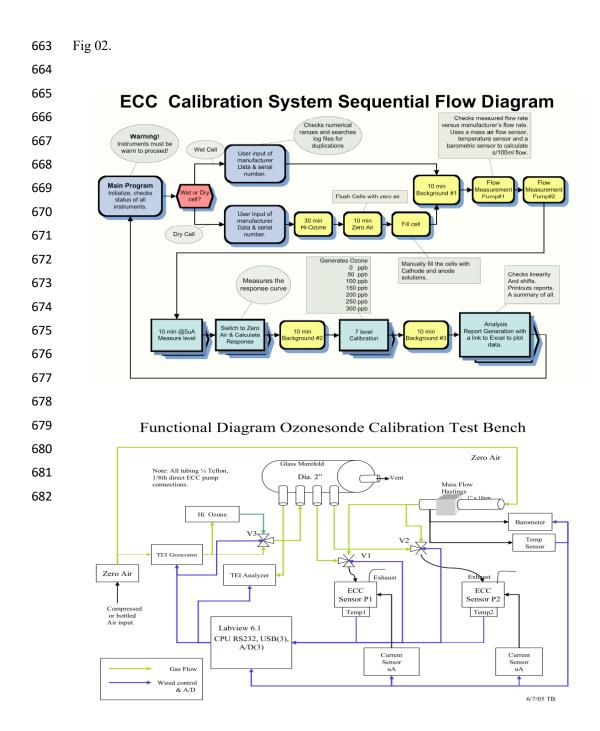
521	None
522	
523	9 Acknowledgments
524	We acknowledge the successful use of the digital calibration bench to the skillful efforts
525	of Gilbert Levrat (retired) of the MeteoSwiss site Payerne, Switzerland for his foresight
526	in designing the original bench and its simplicity, and to Tony Baldwin (retired) of
527	NASA Wallops Flight Facility for his electronic skill and programming expertise.
528	
529	10 References
530	Barnes, R. A.: The accuracy and precision of electrochemical concentration cell
531	ozonesondes, PhD Thesis., Drexel University, Philadelphia, Pennsylvania, USA, 291 pp,
532	1982.
533	
534	Barnes, R. A., Bandy, A. R., and Torres, A. L.: Electrochemical Concentration Cell
535	ozonesonde accuracy and precision, J. Geophys. Res., Vol. 90, No. D5, 7881-7887, 1985.
536	
537	Deshler, T., Mercer, J. L., Smit, H. G. J., Stubi, R., Levrat, G., Johnson, B. J., Oltmans, S.
538	J., Kivi, R., Thompson, A. M., Witte, J., Davies, J., Schmidlin, F. J., Brothers, G., and
539	Sasaki, T.: Atmospheric comparison of electrochemical cell ozonesondes from different
540	manufacturers, and with different cathode solution strengths: The Balloon Experiment on
541	Standards for Ozonesondes, J. Geophys. Res., 113, D04307,
542	https://doi.org/10.1029/2007JD008975, 2008.
543	
544	Deshler, T., Stubi, Rene, Schmidlin, Francis J., Mercer, Jennifer L., Smit, Herman G. J.,
545	Johnson, Bryan J., Kivi, Rigel, and Nardi, Bruno,: Methods to homogenize
546	electrochemical concentration cell (ECC) ozonesonde measurements across changes in
547	sensing solution concentration or ozonesonde manufacturer, Atmos. Meas. Tech., 10,
548	2021-2043, https://doi.org/10.5194/amt-10-2021-2017, 2017.
549	
550	Fishman, J., Wozniak, A. E., and Creilson J. K.: Global distribution of tropospheric

551 ozone from satellite measurements using the empirically corrected tropospheric ozone

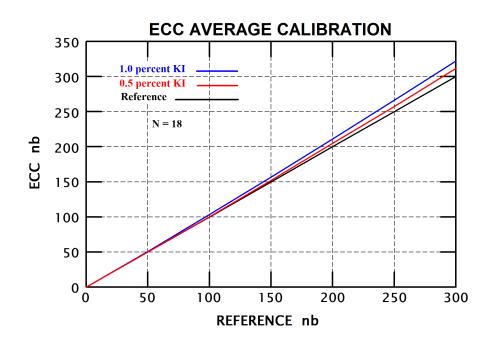
- residual technique: Identification of the regional aspects of air pollution, Atmos. Chem.
- 553 And Phys. Discussions, 3, pp 1453-1476, 2003.
- 554
- 555 Hilsenrath, E. W., Attmannspacher, W., Bass, A., Evens, W., Hagemeyer, R., Barnes, R.
- 556 A., Komhyr, W., Maursberger, K., Mentall, J., Proffitt, M., Robbins, D., Taylor, S.,
- 557 Torres, A., and Weinstock, E.: Results from the Balloon Ozone Intercomparison
- 558 Campaign (BOIC), J. Geophys. Res., Vol 91, 13,137-13,152, 1986.
- 559
- 560 Holland, A. C., Barnes, R. A., and Lee, H. S.: Improved rocket ozonesonde (ROCOZ-A)
- 1: Demonstration of Precision, Applied Optics, Vol. 24, Issue 19, 3286-3295, 1985.
- 562
- 563 Johnson, B. J., Oltmans, S. J., and Vömel, H.: Electrochemical Concentration Cell
- 564 (ECC) ozonesonde pump efficiency measurements and tests on the sensitivity to ozone of
- 565 buffered and unbuffered ECC sensor cathode solution,. J. Geophys. Res., Vol 107, No
- 566 D19, 4393, doi: 10.1029/2001JD000557, 2002.
- 567
- 568 Kerr, J. B. et al: The 1991 WMO international ozonesonde intercomparisons at Vanscoy,
- 569 Canada. Atmospheres and Oceans, 1994.
- 570
- 571 Komhyr, W. D.: Electrochemical concentration cells for gas analysis, Ann. Geophys.,
- 572 Vol 25, No 1, 203-210, 1969.
- 573
- 574 Komhyr, W. D., Barnes, R. A., Brothers, G. B., Lathrop, L. A., and Opperman, D. P.:
- 575 Electrochemical Concentration Cell ozonesonde performance evaluation during
- 576 STOIC,1989, J. Geophys. Res., 100, D5, 9231-9244, 1995.
- 577
- 578 Krueger, A. J.: The mean ozone distribution from several series of rocket soundings to 52
- 579 km at latitudes 58°S to 64°N., PAGEOPH 106,1, 1272-1280, 1973.
- 580

581	Proffitt, M. H., and McLaughlin, R. J.: Fast-response dual-beam UV absorption ozone
582	photometer suitable for use on stratospheric balloons, Rev. Sci. Instru., 54, 1719-1728,
583	1983.
584	
585	Sen, B., Sheldon, W. R., and Benbrook, J. R.: Ultraviolet-absorption photometer for
586	measurement of ozone on a rocket-boosted payload, Applied Optics, Vol 35, No. 30,
587	6010-6014, 1996.
588	
589	Smit, H. G. J., and Sträter, W.,: JOSIE2000, Jülich Ozone Sonde Intercomparison
590	Experiment: The 2000 WMO international intercomparison of operating procedures for
591	ECC ozone sondes at the environmental simulator facility at Jülich, WMO Global
592	Atmospheric Watch, Report No. 158 (WMO TD No. 1225). 2004.
593	
594	Smit, H. G. J., Straeter, W., Johnson, B., Oltmans, S., Davies, J., Tarasick, D. W.,
595	Hoegger, B., Stubi, R., Schmidlin, F. J., Northam, E. T., Thompson, A., Witte, J., Boyd,
596	I., Posny, F.: Assessment of the performance of ECC-ozonesondes under quasi-flight
597	conditions in the environmental simulation chamber: Insights from the Juelich Ozone
598	Sonde Intercomparison Experiment (JOSIE), J. Geophys Res., 112, D19306,
599	doi:10.1029/2006JD007308, 2007.
600	
601	Smit, H. G. J. and ASOPOS Team Members: Quality assurance and quality control for
602	ozonesonde measurements in GAW, GAW Report No. 201. 87 pages, 2014.
603	
604	Torres, A. L., ECC ozonesonde performance at high altitudes: pump efficiency, NASA
605	Technical Memorandum 73290, 10 pp, 1981.
606	
607	Witte, Jacquelyn C., Thompson, Anne M., Schmidlin, F. J., Northam, E. Thomas, Wolff,
608	Katherine R., and Brothers, George B., The NASA Wallops Flight Facility digital
609	ozonesonde record: reprocessing, uncertainties, and dual launches.
610	Doi.org/10,1029/2018JD0030098, 2018.
611	

612	
613	11 Figures
614	
615	Fig01. Digital calibration bench showing operational configuration and mounting
616	position of two ECC ozonesondes. The major instrumentation includes ozone generator
617	and analyzer, computer, flow meter, and glass manifold.
618	
619	Fig02. Digital calibration bench diagrams showing a) sequential steps, and b) functional
620	steps.
621	
622	Fig03. Simultaneous measurements of ECC ozonesondes, prepared with different KI
623	solution concentrations. Average differences are shown between 1.0 and 0.5 percent KI
624	strengths. The blue curve represents $(1.0\%, 1.0B)$ KI, the red curve $(0.5\%, 0.5B)$ KI and
625	the reference curve is shown in black. Calibrations are made in 50 nb steps from 0 nb to
626	300 nb.
627	
628	Fig04. Calibrations of two ECC ozonesondes, one using 1.0 percent KI solution and the
629	other 0.5 percent KI, over a three week period.
630	
631	Fig05. Correlation between SPC 6A ECC ozonesondes and UV photometer
632	measurements obtained during the BESOS mission: a) 1.0 percent KI solution, and b) 0.5
633	percent KI solution.
634	
635	Fig06. Average ozone profiles from 12 pair of SPC 6a ECC ozonesondes indicating, at
636	the 22 hPa pressure level, that the (0.5%,0.5B) ECCs' measured 7-8 nb less ozone,
637	approximately 5 percent less, than the (1.0%,1.0B) ECCs'.
638	
639	Fig07. Digital calibration bench results between (1.0%,1.0B) solution, blue curve, and
640	(0.5%,0.5B) solution, red curve; the reference curve is shown in black.
641	

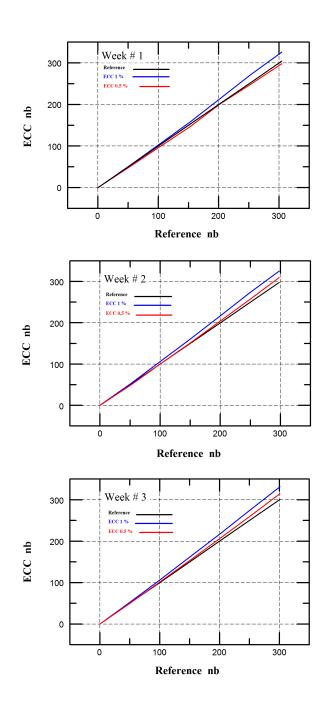


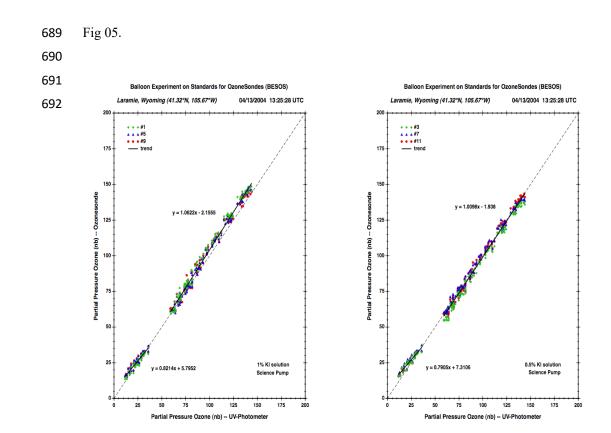
642	
643	
644	Fig 01.
645	
646	
647	DIGITAL CALIBRATION BENCH
648	
649	
650	
651	Manual insertion of KI solution required
652	
653	The system consists of a
654	computer, mass flow meter, TEI 49C ozone generator, TEI 49C
655	ozone analyzer, and incidental
656	equipment.
657	
658	The TEI generator and analyzer are calibrated each month using a
659	primary standard 3-meter long-path photometer.
660	photometer.
661	
662	
502	



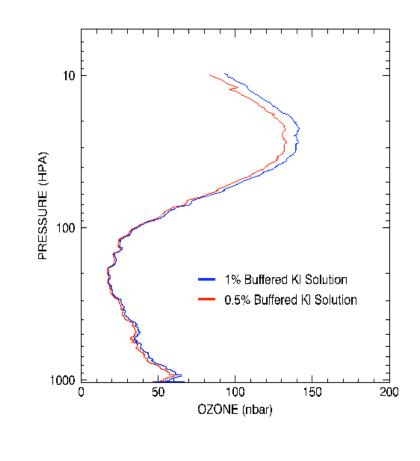
683 Fig 03.

684

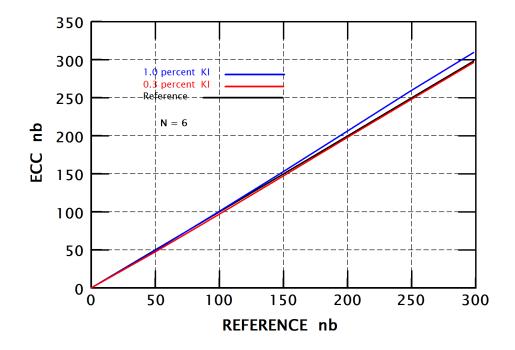




687



693 Fig 06.694



695 696

698 Fig 07.699700

