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Abstract. Methane is the second most important anthropogenic greenhouse gas in the Earth climate system but emission 

quantification of localized point sources has been proven challenging, resulting in ambiguous regional budgets and source 

categories distributions. Although recent advancements in airborne remote sensing instruments enable retrievals of methane 

enhancements at unprecedented resolution of 1-5 m at regional scales, emission quantification of individual sources can be 15 

limited by the lack of knowledge of local wind speed. Here, we developed an algorithm that can estimate flux rates solely from 

mapped methane plumes, avoiding the need for ancillary information on wind speed. The algorithm was trained on synthetic 

measurements using Large Eddy Simulation under a range of background wind speeds of 1-10 m/s and source emission rates 

ranging from 10 to 1000 kg/hr. The surrogate measurements mimic plume mapping performed by the next generation Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS-NG) and provide an ensemble of 2-D snapshots of column methane 20 

enhancements at 5m spatial resolution. We make use of the integrated total methane enhancement in each plume, denoted as 

Integrated Methane Enhancement (IME), and investigate how this IME relates to the actual methane flux rate. Our analysis 

shows that the IME corresponds to the flux rate non-linearly and is strongly dependent on the background wind speed over the 

plume. We demonstrate that the plume width, defined based on the plume angular distribution around its main axis, provides 

information on the associated background wind speed. This allows us to invert source flux rate based solely on the IME and 25 

the plume-shape itself. On average, the error estimate based on randomly generated plumes is approximately 30% for an 

individual estimate and less than 10% for an aggregation of 30 plumes. A validation against a natural gas controlled-release 

experiment agree to within 32%, supporting the basis for the applicability of this technique to quantifying point sources over 

large geographical area in airborne field campaigns and future space-based observations. 

 30 
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1 Introduction 

Methane is the 2nd most important anthropogenic greenhouse gas in the Earth’s atmosphere, with additional indirect 

impacts as it affects both tropospheric ozone and stratospheric water vapor. Despite its significance, our understanding of 

global and regional CH4 budgets has remained inadequate due to the fact that the strength and distribution of CH4 emissions 

from various source types are not well-constrained (Houweling et al., 2017; Turner et al., 2017). Estimates of CH4 emissions 5 

from point sources (e.g. at facilities scale) are particularly uncertain, since space-based observations lack sufficiently fine 

spatial resolutions while the in-situ measurements are too sparse and mostly representative of large-scale background 

concentrations. Improved estimates of the CH4 emissions at this point-source scale is critical in guiding emission mitigation 

efforts.  

Recent developments in airborne imaging spectroscopy techniques to quantify CH4 plumes have opened the way for 10 

CH4 measurements at sufficiently high spatial resolution needed to differentiate various local sources within regional scales 

(Frankenberg et al., 2016; Thompson et al., 2015; Thorpe et al., 2016a, 2017). A recent airborne campaign in the Four Corners 

region retrieved column methane enhancements at a resolution of 3-m (Frankenberg et al., 2016), enabling the observation of 

the plume shape in the direct vicinity of the point source. During the campaign, many plumes of various sizes ranging from a 

few tens of meters to hundreds of meters were detected across the region, with the majority of their source emission rates 15 

between 10 and 1000 kgCH4/hr  (Frankenberg et al., 2016). This allows for an effective way to remotely identify and locate 

CH4 emissions from point sources such as pipeline leaks or oil and gas facilities. The retrievals provide the quantification of a 

column enhancement (e.g. in molecule/cm2 above background), which can be integrated across the entire methane plume to 

derive the total amount of methane within the plume, denoted as Integrated Methane Enhancement (IME, either in molecule 

or mass units, Frankenberg et al., 2016). In addition, the retrievals measure the fine structure of the plume at an unprecedented 20 

spatial resolution. However, the flux inversion from the observed plumes to the actual emission rate at the source remains 

complicated due to the dependence on tropospheric boundary layer conditions such as wind speed and atmospheric stability 

during the overpass. To interpret the relationship between the observed plumes and flux rates, previous studies have relied on 

Gaussian plume inversion models (Krings et al., 2011, 2013; Rayner et al., 2014; Nassar et al., 2017; Schwandner et al., 2017) 

or a mass balance approach based on the enhancement downwind of the source (Conley et al., 2016; Jacob et al., 2016). 25 

Frankenberg et al. (2016) used a simple linear scaling between IME and flux rate, which allowed for a straightforward 

derivation of fluxes from the observed IME given an averaged wind speed across a large region for the campaign over several 

days. Varon et al., 2018 estimated flux rate as IME divided by the residence time of methane in the plume calculated based on 

the effective length of the plume from its area and the effective wind speed inferred from 10-m wind speed by in-situ 

measurement or meteorological reanalysis data. All of these methods rely on knowledge of local wind speed, which is acquired 30 

through either in situ wind measurements or the estimation from meteorological forecast or reanalysis data. The former can be 

costly and time consuming without prior knowledge of source locations, while the latter can be inaccurate due to the rapid 
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changes of a local plume over a much shorter temporal and spatial scale (minutes, hundreds of meters) than the typical 

atmospheric reanalysis products (a-few-hourly average, tens of kilometers).  

In this work, we aim to improve our understanding of how the inferred emission rates change under different 

atmospheric conditions, e.g. the errors due to a lack of accurate wind measurements. To investigate this relationship and 

associated errors, we used Large Eddy Simulations (LES, Matheou and Bowman, 2016) to simulate the plume dynamics at 5 

high spatial resolution (5m) with prescribed source rates under various background wind speeds and surface heat fluxes. Using 

3D LES model output for each time-step, we simulated synthetic 2D airborne measurements by applying the respective 

averaging kernels as well as retrieval noise (Section 5-5.1). Based on these synthetic measurements, we developed an algorithm 

to imply the wind speed from the plume spatial distribution and investigate the degree to which the flux rate can be inverted 

from only the remotely-sensed CH4 retrievals (Section 5.2). This allowed us to perform an end-to-end test of errors in inverted 10 

methane fluxes in both the absence and presence of ancillary information on the actual wind speed (Section 5.3).  

This work was inspired by the use of IME to quantify methane single-point sources from field campaigns 

using airborne instruments. These plumes generally are of small-to-medium sizes (<2 kilometers). The concept, 

nevertheless, can be applicable to larger sources as well as toward measurement of localized sources from space in 

the coming decade for satellite retrievals at a much finer spatial resolution (Thorpe et al., 2016b).  15 

Section 2 illustrates the plume observations and the instrument specifications. Section 3 will give a brief overview of 

Gaussian plume modelling. The setup of the LES and application of instrument operators to simulate airborne measurements 

is described in Section 4. Section 5 shows simulated plumes under different atmospheric scenarios and the relationship between 

observed IME and actual emission rates. The error analysis of flux inversion based on the IME method is also provided. The 

final section provides a discussion and conclusion. 20 

 

2 Plume Observations & Instrument Specifications 

 

Figure 1 shows examples of observed methane plumes using the next-generation Airborne Visible/Infrared Imaging 

Spectrometer (AVIRIS-NG) during the Four Corners flight campaign (Frankenberg et al., 2016). In this case, the aircraft 25 

repeatedly flew over a coal mine venting shaft, with approximately 15-minute revisit time. Evidently, the plumes are changing 

in time and exhibit fine-scaled features due to atmospheric turbulence. Quantifying the source rate from detected plumes using 

atmospheric simulations to understand their behavior and variations in space and time is the main subject of this work. In order 

to compare our simulations with actual observations, we need to take the measurement characteristics of the remote sensing 

instrument into account. This relates to both measurement precision, which determines detection thresholds which marks and 30 

defines the detected plume, as well as vertical sensitivity, which affects what parts of the plume structure can actually be 

observed. Depending on the techniques being used, both can vary widely. 
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The example scenes in Figure 1 are retrieved from the AVIRIS-NG instrument, which measures reflected solar 

radiation between 0.35 𝜇m and 2.5 𝜇m at 5 𝑛m resolution and sampling (Hamlin et al., 2011; Thompson et al., 2015). To first 

order, it has a uniform vertical sensitivity (Averaging Kernel) of one at each height (see Figure 2). Another instrument that 

was used in the Four Corners campaign is the Hyperspectral Thermal Emission Spectrometer (HyTES), which enables the 

detection of CH4 plumes due to its absorptions in the thermal infrared around 7.65 𝜇m (Hulley et al., 2016). It has varying 5 

sensitivities in the vertical layer, each of which can be calculated as the derivative of the retrieved total column amount with 

respect to the change in that particular layer. These vertical sensitivities are formally called column averaging kernels. They 

inform us how the methane enhancement at each height contributes to the measured total column enhancement. 

Mathematically, we can express this relationship as (Eq.1) 

𝐸(𝑖, 𝑗) = 	+(∆𝑥∆𝑦∆ℎ) ∗ 𝐶(𝑖, 𝑗, 𝑘) ∗ 𝐶𝐴𝐾(𝑘)
5

 (1) 

where 𝐸(𝑖, 𝑗) is the observed total column enhancement (mass or molecules) at the horizontal grid (𝑖, 𝑗), ∆𝑥, ∆𝑦 and ∆ℎ are 10 

grid sizes in 𝚤,̂ 𝚥̂ and 𝑘9  respectively, 𝐶  is the concentration (mass or molecules per volume), 𝐶𝐴𝐾(𝑘) denotes the column 

averaging kernel evaluated at level 𝑘. Technically, the 𝐶𝐴𝐾 can also be a function of location (𝑖, 𝑗) but for the purpose of 

producing synthetic measurements from our simulations in this work, we apply the 𝐶𝐴𝐾 only as a function of height. 

Figure 2 illustrates the difference between the column averaging kernels that we use to model AVIRIS-NG and 

HyTES synthetic measurements. The distinct column averaging kernels of both instruments hold significant importance, each 15 

with its advantages and disadvantages. The column averaging kernel of AVIRIS-NG is approximately uniform across all 

vertical levels, which implies that the retrieved column enhancement accurately reflects the actual column enhancement. On 

the other hands, the sensitivity of HyTES is almost zero near the surface but increases with height, becoming even larger than 

one at a certain height. This means that the instrument is almost blind to methane near the ground, while the enhancement at 

higher levels can be amplified to be even more than the actual methane amount in the column. It should be noted that the 20 

HyTES averaging kernel strongly depends on the temperature profile as well as the surface temperature, which can vary within 

and between scenes. In contrast, averaging kernels using short-wave reflected light are less variable.  

The detection thresholds of AVIRIS-NG and HyTES instruments can potentially be dependent on the surface 

properties such as surface reflectance and surface temperature respectively. However, given the typical scale of the plumes of 

our interest, we assume an average uniform detection threshold across the scene. Here, we use an average constant threshold 25 

value at 500 ppm-m (or 1.34 ∙ 10@A molecules/cm2), which is a common range for AVIRIS-NG. 

3 Gaussian Plumes Modelling & Its Limitations 

The simplest way to simulate plumes is Gaussian plume modelling, which assumes a steady and uniform wind U 

along the x-axis and orthogonal spreading of the plume in crosswind (y-axis) and vertical (z-axis) directions. The spreading of 

the plume depends on the dispersion functions 𝜎C(𝑥) and 𝜎D(𝑥). The dispersion functions depend on the atmospheric stability 30 
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classification (e.g., Pasquill, 1961). For instance, convective conditions favor vertical dispersion, whereas in a stable 

atmosphere the plume primarily disperses in the horizontal directions (Briggs, 1973; Matheou and Bowman, 2016; Sutton, 

1931). The three-dimensional Gaussian plume equation is given by (Eq.2, Matheou and Bowman, 2016) 

𝐶	(𝑥, 𝑦, 𝑧) = 	
1

2𝜋𝜎C(𝑥)𝜎D(𝑥)
∙
𝑄
𝑈
∙ exp	 M

−𝑦O

2𝜎CO(𝑥)
P	+ Qexp M−

(𝑧 − 2𝑚𝑧S)O

2𝜎DO(𝑥)
P + exp M−

(𝑧 + 2𝑚𝑧S)O

2𝜎DO(𝑥)
PU

V

WXY

 (2) 

 

where C (x, y, z) is the (equilibrium) concentration at each point in the 3-dimensional space within the atmospheric boundary 5 

layer with inversion height 𝑧S. Q is the source flux rate at the origin. The variances 𝜎C(𝑥) and 𝜎D(𝑥) are given by empirical 

relations based on atmospheric stability following the Pasquill classification (Matheou and Bowman, 2016; Pasquill, 1961).  

By integrating Equation 2 in the Z-direction, the methane column enhancement can be modelled in analytical form 

as (Eq.3)  

𝐶̅(𝑥, 𝑦) =
1

√2𝜋	𝜎C(𝑥)
∙
𝑄
𝑈 ∙ exp	

M
−𝑦2

2𝜎𝑦2(𝑥)
P (3) 

 10 

Based on this model, we can vary source rates, wind speeds, and stability categories to simulate the 2D concentration field. 

We then apply a device detection threshold to illustrate how the synthetic Gaussian plume column enhancement may change 

under distinct atmospheric conditions. Examples of the simulated Gaussian plumes with a flux rate of 300 kg/hr are shown in 

Figure 3. The left column of Figure 3 shows the Gaussian plumes under different wind speeds for a fixed stability category, 

while the right column demonstrates those under a fixed wind speed at 4 m/s but different stability regimes. 15 

The wind speed U influences the column enhancement, which, based on Equation 1, is proportional to the ratio Q/U. 

Thus, the Gaussian plume model suggests a strong dependence of the IME on wind speed, which in turn does not explicitly 

affect the shape of the plume. One way of quantifying a plume shape is using an aspect ratio in the x-y plane. In the Gaussian 

plume model, the aspect ratio of the plume only changes when the stability switches from one category to another. Thus, the 

wind speed is only implicitly linked to the shape of the plumes by affecting the stability categories and changing the crosswind 20 

variances (as can be seen in Equation 3).  

The stability categories in this model, nonetheless, are based on empirical formulae. In reality, the wind speed can 

influence the shape and distribution of the plumes more directly through advection of the tracer along the flow. The actual 

plume observations from the Four Corners campaign (Figure 1) demonstrate that the plumes are of turbulent nature - at times 

being discontinuous - and cannot be modeled as Gaussian when only one plume snapshot in time is recorded. Therefore, we 25 

utilize an LES model, which yields realistic realization of the turbulent flow and the methane plume, to quantify the effect of 

wind speed on the plumes structure. 
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4 Large-Eddy Simulation and Pseudo-Measurement  

4.1 LES Set Up 

Realistic modeling of CH4 plumes is a prerequisite for this study. We use Large Eddy Simulations (LES) to model 

the time-resolved 3-dimensional spatial CH4 distribution in the boundary layer under different atmospheric conditions at 

resolutions currently available from aircraft (1-5m). The LES model setup for the simulation of plumes emanating from point 5 

sources is as described in Matheou and Bowman (2016). Further details of the model formulation, including the turbulence 

parameterization, are in Matheou and Chung (2014). A methane surface point source with a specific emission rate in a cloud-

free convective atmospheric boundary layer is simulated. The buoyancy of methane is currently being ignored – a good 

approximation for the present methane concentrations away from the source.   

The atmospheric boundary layer is initialized with a mixed layer–inversion–free troposphere structure with an initial 10 

inversion height 𝑧S = 800	m. The initial potential temperature and specific humidity in the mixed layer are 𝜃 = 298	K and 

𝑞b = 6.6	g	kgf@. The inversion is 𝛥𝜃/𝛥𝑧 = @O
@YY

K	mf@. The flow in the boundary layer is driven by a constant geostrophic 

wind in the x-direction, 𝑢j. Different values of the geostrophic wind from 1 to 10 m/s are used. The surface sensible and latent 

heat fluxes are 400 and 40 W/m2, based on the typical field campaign data. Surface momentum fluxes are estimated using 

Monin–Obukhov similarity theory (MOST).  15 

The model domain is 10.24 x 2.56 x 1.5 km in the x, y, and z directions and the grid resolution is uniform and isotropic 𝛥𝑥 =

𝛥𝑦 = 𝛥ℎ = 5	m. Following one hour of model “spin up”, where fully-developed three-dimensional turbulence is established 

in the boundary layer, the three-dimensional concentration at each location at one-minute intervals is used to construct the 

synthetic observations. Furthermore, the 10-m and 2-m wind speeds are extracted from the model output to compare with the 

large-scale geostrophic wind value in each run. 20 

 

4.2 Synthetic Measurement 

With the output from the LES runs, we can create synthetic measurement of a plume instance that would enable 

simulation of observations from any instrument. The procedure is that we apply vertical integration as described by Equation 

1 to the 3-D concentration at a given time step, using the column averaging kernel of the instrument of interest. We apply the 25 

column averaging kernel of AVIRIS-NG as well as that of HyTES to produce synthetic measurements for these instruments. 

This allow us to understand to what extent each instrument can detect CH4 plumes under various wind speeds.  
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5 Results 

The output from the LES run provides a more realistic simulation, compared to the Gaussian model, of the plume 

dynamics as shown in Figure 4 for AVIRIS-NG synthetic measurements. The left column of Figure 4 represents a single 

snapshot of plumes, while the right column shows the time-averaged plumes from an ensemble of 60 timesteps, spanning a 

duration of 60 sequential minutes in total, under distinct background wind speeds but with the constant flux rate. Based on this 5 

simulation, we see that the plume varies rapidly in shape and orientation from snapshot to snapshot due to turbulence. The 

ensemble averages in the right column also still exhibit some structure as we only averaged 60 individual snapshots. Overall, 

the simulated plumes from the LES closely resemble actual plumes from remotely-sensed observation as shown in Figure 1. 

The instantaneous plumes exhibit non-Gaussian behavior; sometimes the plume can even be discontinuous as eddies can 

rupture the plume structure. However, we found that the total enhancement across the scene (the IME) remains rather constant 10 

over time for a given wind speed and flux rate, making it a reliable variable for performing the flux inversion of the source. In 

addition, we also found that the plumes have distinct features in both magnitude and spatial characteristics for different wind 

speeds, which are evident in the plume snapshots as well as their ensemble means as shown in Figure 4.  

Figure 5 illustrates the differences between the synthetic observations from AVIRIS-NG and those from HyTES over 

the same plume for three different wind speed conditions. Because the column averaging kernel of the HyTES is close to zero 15 

near the ground, the measurements from HyTES miss parts of the plume near the surface, and detect only the parts of the 

plume that have risen high enough. This is consistent with the HyTES averaging kernel shown in Figure 2. This is especially 

apparent for the case of high wind speed where the majority of the CH4 is advected horizontally resulting in the plume 

remaining near the ground. The insensitivity of HyTES near the ground makes it complicated to locate the source accurately 

and there are additional uncertainties in the methane retrievals associated with averaging kernels that vary with environmental 20 

conditions (Kuai et al., 2016). The advantage of the HyTES instrument, on the other hand, is the fact that in principle it can 

operate at night when there is no sunlight, which is a prerequisite for AVIRIS-NG instrument. For AVIRIS-NG, the total 

column CH4 enhancement in each pixel is also better constrained given the averaging kernel is approximately one throughout 

the column. For these reasons, we proceed to focus only on AVIRIS-NG results in the current study, while we will study the 

information content of joint measurements in the future. 25 

Multiple LES runs from a combination of typical point-source flux rates and wind speeds enable us to quantify the 

relationship between the actual source rate and the resulting IME for a given wind speed. This gives us the first step to invert 

the flux rate. Furthermore, we show how different wind speeds affect this relationship for the flux inversion. The output from 

the LES gives us not only the IME but also the spatial distribution of the plume snapshots that correspond to a given pair of 

flux rate and wind speed. We analyze how the morphology of the plumes is linked with the underlying background wind 30 

speeds. This helps us understand how we can use the remotely-sensed airborne imagery of the plume to predict the wind, and 

thus ultimately the flux rate, together with its associated errors.  
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In our analysis, we primarily refer to the wind speed in each scene from our model runs by using the geostrophic wind 

speed, as opposed to the instantaneous wind at 2-m (U-2) or 10-m (U-10) above ground which is usually used in literature. For 

reference, the average U-10 across the horizontal domain in our run ranges from 1/2 to 2/3 of the background geostrophic wind 

speed in the run. The main reason is that our timesteps from each LES run is extracted every minute, thus we only have the 

information of the U-10 and the plume structure at every minute, which can change rapidly in direction and magnitude. 5 

However, the overall structure of the plume at any given instance could be influenced by the average wind cumulatively from 

the past minute. The constraint on the output that we have makes it ambiguous to choose what values of near surface winds 

should be applied when making the prediction of the flux rate from the spatial structure of a plume snapshot. We thus resort 

to using a background wind speed, which, in turn, is one of the key governing drivers for U-10 itself. While using the large-

scale background wind speed might not be as accurate as the ideal case of having continuous U-10 output, it has been found 10 

in our work to provide a robust correlation with the overall pattern of the plume (see Section 5.2). In other words, in the 

following, we are using the shape of the plume to predict the value of background geostrophic wind speed that underlies the 

wind that has driven CH4 from the point source into the detected plume over that geographical location, and use that 

background wind speed to quantify the source rate. 

 15 

5.1 Source Flux Rate and the IME 

For each wind speed and flux rate, we have 60 timesteps of methane plumes from the LES model output, each with 

one minute apart. We can thus directly compute the mean and the standard deviation of the IME across these ensembles. 

Although the shape of the plumes can vary strongly in time, the IME is relatively stable, varying only within approximately 

20% among snapshots under the same wind speed and flux rate. This emphasizes the benefit of using the IME to characterize 20 

methane in the scene because the total sum of the gas in the scene remains approximately the same regardless of the advection 

of methane from one pixel to another with time. This can potentially induce less uncertainty compared to other mass balance 

approaches where the measurements are commonly location-dependent. The mean values corresponding to various background 

wind speed and flux rate are plotted in Figure 6. The uncertainties reflect the standard deviations of the IME within all 60 

temporal snapshots. 25 

The plot of the IME and flux rate at different wind speeds reveals two noticeable findings: as expected, there is a 

significant dependence of the relationship between the IME and flux rate on wind speed but there is also a non-linearity, which 

has been ignored in previous studies. The non-linearity can be explained from the fact that we impose the detection threshold 

value to mask out the plume. In the absence of a detection threshold, the scaling between flux rate and IME would be perfectly 

linear, as was assumed in Frankenberg et al., (2016). However, as the fraction of pixels with methane enhancement below the 30 

detection threshold varies with flux rate and wind speed, the truncated IME below the threshold can induce a considerable 

non-linearity. The stronger the flux rate, the higher the number of pixels above the threshold used to calculate the IME. Figure 

7 illustrates this connection by showing the percentage of the total enhancement that is missed because of specific thresholds. 
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We use three different flux rates (90, 180, 360 kg/hr) to illustrate the non-linearity. We can see that when the flux rate drops 

by a factor of 2, the missing amount does not necessarily decrease by the same factor. How the IME is scaled up with the flux 

rate depends on the spatial distribution of the plume: if the methane is concentrated in a small area, then it is more likely that 

a stronger flux rate will make the column enhancements exceed the threshold, as opposed to when the plume is more dispersed, 

in which case some pixel enhancements will be too diluted to be detected even at a strong flux rate. This is a primary reason 5 

why the IME varies with the flux rate with different degree of non-linearity at different wind speeds as found in Figure 6. The 

background wind speed is the integral component that drives the spatial distribution of the plume and entangles the IME and 

the flux rate inversion. This means that in order to achieve a reliable flux inversion, both the IME and the effective wind speed 

over the scene of the point source must be known. 

The key question in our study is can we predict the underlying background wind speed associated with the observed 10 

plume by its spatial characteristics rather than relying on ground measurements or reanalysis weather data. This is investigated 

in the following section. 

5.2 Wind Speed and Plume Morphology 

As can be seen in Figure 4, the spatial distribution of the plumes varies under different wind speeds. Visually, the 

shape of simulated CH4 plumes provides qualitative intuition on the origin, wind direction and relative strength of the 15 

background windspeed. At a higher wind speed, plumes tend to be more elongated, whereas at a lower wind speed, plumes 

tend to be more spread out around the origin. We quantify the characteristics of the plume by first constructing an angular 

mass distribution for each snapshot: we count the mass within the angular bin size of 0.5° sweeping across the scene with the 

center at the origin. We then find the angle at which the mass of methane in the 0.5° bin is maximum and define that as the 

main axis of that plume snapshot. The plume snapshot is then rotated such that its main axis aligns with the x-coordinate. We 20 

can then plot the angular distribution across the plume as well as the Cartesian distribution along the plume, as illustrated in 

Figure 8, for every single snapshot. This procedure allows us to find the ensemble-averaged plume distributions for a particular 

wind speed where the ensemble members consist of the rotated snapshots from all available time outputs in the model runs at 

various flux rates in the range of our interest, 10–1000 kg/hr. 

Figure 9 shows that the angular distributions of the plume can be distinguishable under different wind speeds. 25 

Evidently, the angular distribution of the plume at high wind speed case, i.e. 10 m/s, is narrower than the rest on average, and 

the angular spreading becomes increasingly wider for lower wind speeds. Motivated by this finding based on the average 

distribution, we quantified the relationship between the angular spreading of the plume and the wind speed. For each snapshot, 

we calculated the cone width of the plume defined as the angles between the 10th and the 90th percentiles from its angular mass 

distribution. The mean and the standard deviation of the cone width corresponding to a given wind speed were then computed 30 

from an ensemble of 60 time-snapshots and various flux rates. The result of this analysis is plotted in Figure 10 and shows a 

monotonically decreasing cone width with respect to wind speed. Our choice of parameterization for fitting the curve in Figure 

10 is a fifth-degree polynomial, which adequately captures the present relationship. This result illustrates that the cone width 
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is a metric that can differentiate wind speeds based on using only the spatial distribution of the plume. This finding, together 

with the IME in the plume as explained earlier in Figure 6, can therefore provide flux inversion without the need for ground 

measurements. The next section describes steps for estimating the flux rates and its associated uncertainties. 

5.3 Flux Inversion and Error Analysis 

Based on the IME and plume morphology of any given scene, we can estimate the flux rate. First, by using the value 5 

of the IME that is observed in the scene, we can draw a line to estimate what the corresponding flux rates would be for different 

discrete wind speeds using the relationship in Figure 6. We can then parameterize this relationship between the flux rate and 

the wind speed for this particular value of the IME. An example for the case of the IME value of 50 kg is demonstrated in 

Figure 11. Secondly, based on the spatial distribution of the plume in the scene, we can follow the procedure to construct the 

angular mass distribution. The cone width can then be evaluated and applied to the relationship in Figure 10 to estimate the 10 

wind speed, both the mean value and the uncertainties from the lower and upper 1-SD error bars in the plot. The wind speed 

and its uncertainty can hence be translated into the estimate of the mean flux rate as well as the corresponding uncertainties 

from the relationship of the flux rate and wind speed, as in Figure 11. 

With this approach, we selected 90 random snapshots with random prescribed flux rates and wind speeds. We predict 

the flux rate from the IME and the spatial distribution of each of the scene and compare it to its actual prescribed value, as 15 

shown in Figure 12. The average percentage error of the predicted and the actual values is approximately 30%, while the 

reduced 𝜒O  value is 3.84.  

The results shown in Figure 12 demonstrates that this method permits estimation of emission magnitude. Most 

importantly, accounting for non-linearities and variable wind speed helps to avoid systematic biases. Thus, the method 

employed here can minimize systematic errors that could be induced by assumptions on wind speed. To verify this point, we 20 

performed an aggregation analysis by bootstrapping 30 plumes out of 500 plumes of various flux rates and wind speeds, with 

3000 repetitions. The size of 30 is chosen arbitrarily but is large enough represent a situation when we consider the total fluxes 

from a region. The comparison between the predicted and the actual sum of 30 plumes aggregation is shown in Figure 13. 

Most of the aggregation predictions lie on 1-to-1 line, implying that there are no significant systematic biases in our method. 

The mean percentage error of all these aggregates is 2.9% with the standard deviation of 5.9%. 25 

To further demonstrate the validity of this method, we applied this to a controlled release experiment from a natural 

gas pipeline with the flux rate of 89 ± 4 kg/hr. Based on a sample from the actual AVIRIS-NG scene over the source location, 

we measured the IME, constructed the angular distribution of the plume to obtain the width to predict the wind speed and 

hence predicting the flux rate. The value that we predict is 118 ± 30 kg/hr, consistent with the actual release flux within an 

error estimate. 30 
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6 Discussion and Conclusion 

In this study, we showed that Gaussian plume modeling cannot be used for a meaningful comparison with observed 

methane plumes from a point source. Thus, Large-Eddy Simulations (LES) were used to generate realistic synthetic 

measurements of methane plumes under different background wind speeds and source flux rates. This allowed a comparison 

of the performances of two considered instruments, one measuring in the short-wave infrared (AVIRIS-NG) and the other in 5 

the thermal infrared (HyTES), resulting in widely different vertical sensitivities towards methane enhancements. The AVIRIS-

NG was found to provide an unambiguous identification and quantification of the methane source as it is sensitive to methane 

throughout the air column. While the HyTES instrument has the potential for night time observations, variations in the 

integrated methane enhancements depended highly on vertical plume structure, rendering interpretation more challenging. 

While we attempt to make use of the vertical information in the future, we focus this study on results from the AVIRIS-NG 10 

synthetic plume measurements. Using the IME method and a large ensemble, we derived the relationship between the detected 

IME of a plume and its source flux rate. This relationship is found to be non-linear because of the device detection threshold, 

which causes a variable fraction of the true IME to fall below the detection limit. In addition, the inversion of IME to an 

accurate flux rate depends strongly on the wind speeds during the measurements. This finding is expected and confirms the 

significance of wind speeds on the methane point-source flux estimations from remote sensing data. To study whether we can 15 

gain additional information from the plume shape itself, we performed an analysis on a large ensemble of plume snapshots 

from wide-ranging source flux rates and wind speeds. We found that the angular width of the plume negatively correlates with 

the wind speed, allowing us to constrain the effective wind-speed from the shape itself. The angular width is defined based on 

the plume angular distribution around its main axis and is found to be effectively independent of the source rates. 

Using the relationship between the IME and the flux rates for different wind speeds together with the connection 20 

between plume shape and the wind speed, we can disentangle the source flux rate based on an observed snapshot of the plume 

which provides both the IME and the spatial distribution. Our error analysis of this method applied on randomly generated 

snapshots of various flux rates in the range of 10-1000 kg/hr showed an error of around 30% on average for an individual point 

source estimate. Given that point source are highly uncertain and also fluctuate in time, this single measurement error appears 

acceptable. More important than single-measurement precision is accuracy for larger ensemble averages, which informs 25 

regional emission estimates. Thus, we also performed an error analysis for aggregated flux estimates from 30 plumes. We used 

bootstrap sampling and found the aggregation error estimate to be in the range of less than 10%. This provides a significant 

improvement from other pre-existing approaches that rely on wind data, for which reliable meteorological reanalysis data 

might not be available at high spatial resolution everywhere.  

Furthermore, our method is validated from the application of this method on an actual scene from a controlled release 30 

experiment from a natural gas pipeline in 2017, which demonstrated an error of 32% from the controlled flux rate of 89 kg/hr, 

a notable accuracy given the simplicity of our algorithm that does not require wind speed data. This provides great values in 
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quantifying methane point sources emissions especially in locations where atmospheric reanalysis products and surface 

meteorological observations are not available. 

It should be noted that in our LES runs for this study, we primarily set the sensible and latent heat fluxes to the typical 

condition during the Four Corner field campaign. Changing the setting of these heat fluxes can potentially affect the vertical 

structure of the simulated plumes and the dynamics of the plumes in time. Nevertheless, our method involves the column-5 

integrated enhancement and hence should not be significantly impacted by the surface heat fluxes, as demonstrated by the 

controlled release test case. On the other hand, setting the device detection threshold level in our synthetic modelling to higher 

values does impact the robustness of the correlation between the plume width and the wind speed. For our purpose, we set the 

threshold value to 500 ppm-m throughout our study to match the current capability of the current instrumentations. Future 

instruments with improved gas sensitivity (Thorpe et al., 2016b), will likely improve our ability to estimate emission rates. 10 

Repeat overflights that results in multiple snapshots of the same source can also further reduce the uncertainties from the 

transient variations of the plume due to turbulence.  

In this study, we have demonstrated the ability to estimate flux rates of methane point sources based solely on the 

remotely sensed column methane enhancement without the need for ground measurements or weather reanalysis data. These 

methods could be applied to recent large-scale flight campaigns to improve previous emission rate estimates. This also has 15 

immediate implications for future AVIRIS-NG flight campaigns, in particular over parts of the world lacking available wind 

data. The methodology described in this study could also be applied to anticipated satellites that will provide methane 

measurements at finer spatial resolutions than currently available. A path towards an improved understanding of the regional 

methane budget as well as insights into methane source distributions by categories is made possible. 

 20 

6 Acknowledgements 
This work is part of SJ’s NASA Earth and Space Science Fellowship (NESSF). We acknowledge the Resnick 

Sustainability Institute at Caltech for their kind support with computing resources. This work was supported in part by NASA’s 

Carbon Monitoring System (CMS) Prototype Methane Monitoring System for California. We also thank NASA’s Earth 

Science Division, particularly Dr. Jack Kaye, for continued support of AVIRIS-NG and HyTES methane science.  Additional 25 

funding was provided to JPL by the California Air Resources Board under ARB-NASA Agreement 15RD028 Space Act 

Agreement 82-19863 and the California Energy Commission under CEC-500-15-004.  A portion of this research was carried 

out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and 

Space Administration (NNN12AA01C).  We thank the AVIRIS-NG team and colleagues at Pacific Gas and Electric Company 

for their support for controlled release experiments. 30 

References 

Briggs, G.: Diffusion estimation for small emissions, Atmos. Turbul. Diffus. Lab. Natl. Ocean. Atmos. Adm., ATDL contr, 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-173
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 6 May 2019
c© Author(s) 2019. CC BY 4.0 License.



13 
 

1973. 

Conley, S., Franco, G., Faloona, I., Blake, D. R., Peischl, J. and Ryerson, T. B.: Methane emissions from the 2015 Aliso 

Canyon blowout in Los Angeles , CA, , 2348(February), 1–7, 2016. 

Frankenberg, C., Thorpe, A. K., Thompson, D. R., Hulley, G., Kort, E. A., Vance, N., Borchardt, J., Krings, T., Gerilowski, 

K., Sweeney, C., Conley, S., Bue, B. D., Aubrey, A. D., Hook, S. and Green, R. O.: Airborne methane remote measurements 5 

reveal heavy-tail flux distribution in Four Corners region, Proc. Natl. Acad. Sci., 113(35), 9734–9739, 

doi:10.1073/pnas.1605617113, 2016. 

Hamlin, L., Green, R. O., Mouroulis, P., Eastwood, M., Wilson, D., Dudik, M. and Paine, C.: Imaging spectrometer science 

measurements for terrestrial ecology: AVIRIS and new developments, IEEE Aerosp. Conf. Proc., 1–7, 

doi:10.1109/AERO.2011.5747395, 2011. 10 

Houweling, S., Bergamaschi, P., Chevallier, F., Heimann, M., Kaminski, T., Krol, M., Michalak, A. M. and Patra, P.: Global 

inverse modeling of CH 4 sources and sinks : an overview of methods, , 235–256, doi:10.5194/acp-17-235-2017, 2017. 

Hulley, G. C. C., Duren, R. M., Hopkins, F. M. M., Hook, S. J. J., Vance, N., Guillevic, P., Johnson, W. R. R., Eng, B. T. T., 

Mihaly, J. M. M., Jovanovic, V. M. M., Chazanoff, S. L. L., Staniszewski, Z. K. K., Kuai, L., Worden, J., Frankenberg, C., 

Rivera, G., Aubrey, A. D., Miller, C. E. E., Malakar, N. K. K., Sánchez Tomás, J. M., Holmes, K. T. T., Tomás, J. M. S., 15 

Holmes, K. T. T., Sánchez Tomás, J. M. and Holmes, K. T. T.: High spatial resolution imaging of methane and other trace 

gases with the airborne Hyperspectral Thermal Emission Spectrometer (HyTES), Atmos. Meas. Tech. Discuss., 2016(5), 1–

32, doi:10.5194/amt-9-2393-2016, 2016. 

Jacob, D. J., Turner, A. J., Maasakkers, J. D., Sheng, J., Sun, K., Liu, X., Chance, K., Aben, I., McKeever, J. and Frankenberg, 

C.: Satellite observations of atmospheric methane and their value for quantifying methane emissions, Atmos. Chem. Phys., 20 

16(22), doi:10.5194/acp-16-14371-2016, 2016. 

Krings, T., Gerilowski, K., Buchwitz, M., Reuter, M., Tretner, A., Erzinger, J., Heinze, D., Pflüger, U., Burrows, J. P. and 

Bovensmann, H.: MAMAP – a new spectrometer system for column-averaged methane and carbon dioxide observations from 

aircraft: retrieval algorithm and first inversions for point source emission rates, Atmos. Meas. Tech., 4(9), 1735–1758 [online] 

Available from: http://www.atmos-meas-tech.net/4/1735/2011/, 2011. 25 

Krings, T., Gerilowski, K., Buchwitz, M., Hartmann, J., Sachs, T., Erzinger, J., Burrows, J. P. and Bovensmann, H.: 

Quantification of methane emission rates from coal mine ventilation shafts using airborne remote sensing data, Atmos. Meas. 

Tech., 6(1), 151–166, doi:10.5194/amt-6-151-2013, 2013. 

Kuai, L., Worden, J. R., Li, K.-F., Hulley, G. C., Hopkins, F. M., Miller, C. E., Hook, S. J., Duren, R. M. and Aubrey, A. D.: 

Characterization of anthropogenic methane plumes with the Hyperspectral Thermal Emission Spectrometer (HyTES): a 30 

retrieval method and error analysis, Atmos. Meas. Tech., 9(7), 3165–3173, doi:10.5194/amt-9-3165-2016, 2016. 

Matheou, G. and Bowman, K. W.: A recycling method for the large-eddy simulation of plumes in the atmospheric boundary 

layer, Environ. Fluid Mech., 16(1), 69–85, doi:10.1007/s10652-015-9413-4, 2016. 

Matheou, G., Chung, D., Matheou, G. and Chung, D.: Large-Eddy Simulation of Stratified Turbulence. Part II: Application of 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-173
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 6 May 2019
c© Author(s) 2019. CC BY 4.0 License.



14 
 

the Stretched-Vortex Model to the Atmospheric Boundary Layer, J. Atmos. Sci., 71(12), 4439–4460, doi:10.1175/JAS-D-13-

0306.1, 2014. 

Nassar, R., Hill, T. G., McLinden, C. A., Wunch, D., Jones, D. B. A. and Crisp, D.: Quantifying CO2 Emissions From 

Individual Power Plants From Space, Geophys. Res. Lett., 44(19), 10,045-10,053, doi:10.1002/2017GL074702, 2017. 

Pasquill, F.: THE METEOROLOGICAL MAGAZINE, Meteorol. Mag., 90(1063), 33–49, doi:10.1175/1520-5 

0493(1920)48<219e:tmm>2.0.co;2, 1961. 

Rayner, P. J., Utembe, S. R. and Crowell, S.: Constraining regional greenhouse gas emissions using geostationary 

concentration measurements : a theoretical study, , (2003), 3285–3293, doi:10.5194/amt-7-3285-2014, 2014. 

Schwandner, F. M., Gunson, M. R., Miller, C. E., Carn, S. A., Eldering, A., Krings, T., Verhulst, K. R., Schimel, D. S., Nguyen, 

H. M., Crisp, D., Dell, C. W. O., Osterman, G. B., Iraci, L. T. and Podolske, J. R.: carbon dioxide sources, Science (80-. )., 10 

5782(358), 6360, doi:10.1126/science.aam5782, 2017. 

Sutton, O. G.: A Theory of Eddy Diffusion the Atmosphere., , 215(1915), 143–165, 1931. 

Thompson, D. R., Leifer, I., Bovensmann, H., Eastwood, M. L., Fladeland, M., Frankenberg, C., Gerilowski, K., Green, R. O., 

Kratwurst, S., Krings, T., Luna, B. and Thorpe, A. K.: Real-time remote detection and measurement for airborne imaging 

spectroscopy: A case study with methane, Atmos. Meas. Tech., 8(10), doi:10.5194/amt-8-4383-2015, 2015. 15 

Thorpe, A. K., Frankenberg, C., Aubrey, A. D., Roberts, D. A., Nottrott, A. A., Rahn, T. A., Sauer, J. A., Dubey, M. K., 

Costigan, K. R., Arata, C., Steffke, A. M., Hills, S., Haselwimmer, C., Charlesworth, D., Funk, C. C., Green, R. O., Lundeen, 

S. R., Boardman, J. W., Eastwood, M. L., Sarture, C. M., Nolte, S. H., Mccubbin, I. B., Thompson, D. R. and McFadden, J. 

P.: Mapping methane concentrations from a controlled release experiment using the next generation airborne visible/infrared 

imaging spectrometer (AVIRIS-NG), Remote Sens. Environ., 179, 104–115, doi:10.1016/j.rse.2016.03.032, 2016a. 20 

Thorpe, A. K., Frankenberg, C., Green, R. O., Thompson, D. R., Aubrey, A. D., Mouroulis, P., Eastwood, M. L. and Matheou, 

G.: The Airborne Methane Plume Spectrometer (AMPS): Quantitative imaging of methane plumes in real time, in IEEE 

Aerospace Conference Proceedings, vol. 2016–June., 2016b. 

Thorpe, A. K., Frankenberg, C., Thompson, D. R., Duren, R. M., Aubrey, A. D., Bue, B. D., Green, R. O., Gerilowski, K., 

Krings, T., Borchardt, J., Kort, E. A., Sweeney, C., Conley, S., Roberts, D. A. and Dennison, P. E.: Airborne DOAS retrievals 25 

of methane, carbon dioxide, and water vapor concentrations at high spatial resolution: Application to AVIRIS-NG, Atmos. 

Meas. Tech., 10(10), 3833–3850, doi:10.5194/amt-10-3833-2017, 2017. 

Turner, A. J., Frankenberg, C., Wennberg, P. O. and Jacob, D. J.: Ambiguity in the causes for decadal trends in atmospheric 

methane and hydroxyl, , 114(21), 5367–5372, doi:10.1073/pnas.1616020114, 2017. 

Varon, D. J., Jacob, D. J., McKeever, J., Jervis, D., Durak, B. O. A., Xia, Y. and Huang, Y.: Quantifying methane point sources 30 

from fine-scale satellite observations of atmospheric methane plumes, Atmos. Meas. Tech., 11(10), 5673–5686, 

doi:10.5194/amt-11-5673-2018, 2018. 

 

 

Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-173
Manuscript under review for journal Atmos. Meas. Tech.
Discussion started: 6 May 2019
c© Author(s) 2019. CC BY 4.0 License.



15 
 

 

 
Figure 1: Methane plume over a venting shaft in the Four Corners region, observed from four individual airborne instrument 
AVIRIS-NG overpasses at 7-9 minutes apart on April 22nd, 2015 between 16:19:02 and 16:45:06 UTC. 

 5 

 
Figure 2: A plot showing column averaging kernels for two instruments, AVIRIS-NG (in blue) and HyTES (in orange), as a function 

of height. 
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Figure 3: (a) – (c) Gaussian plumes under wind speeds of 1,4, and 10 m/s respectively, with Pasquil stability type “A”. (d) – (f) 

Gaussian plumes under wind speed of 4 m/s in the stability type “A”, “B”, and “C” respectively. All with flux rate of 300 kg/hr and 

detection threshold is set at 500 ppm-m. The IME is calculated over the entire scene and is in kg. 5 
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Figure 4: (a) – (c) Snapshots of simulated plumes under wind speeds of 1,4, and 10 m/s respectively. (d) – (f) time-averaged plumes 

from 60 timesteps under the wind speeds of 1,4, and 10 m/s respectively. All with flux rate of 300 kg/hr and detection threshold is 

set at 500 ppm-m. All are based on AVIRIS-NG averaging kernels. The IME is calculated over the entire scene and is in kg. Note 

that the average did not reach a true ensemble average yet as sample size was finite (i.e. the average still exhibit fine structure). 5 
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Figure 5: (a)-(c) Snapshots from simulated plumes under 1, 4, and 10 m/s respectively, when observed by AVIRIS-NG instrument 

column averaging kernel. (d)-(f) Snapshots from the exact same plumes as in (a)-(c) respectively, but instead observed with HyTES. 

The flux rates are all 300 kg/hr and the detection threshold is set at 500 ppm-m. The IME is in kg. 
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Figure 6: Mean and standard deviation of the IME associated with a range of flux rates under various background wind speeds 

from 1 to 10 m/s.   

 

 5 
Figure 7: Missing IME, shown as a percentage, for different ppm-m threshold values. Each curve corresponds to a prescribed source 

flux rate. The flux rates are incremented by a factor of 2. 
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Figure 8: A rotated plume snapshot from a run of 4 m/s background wind speed and 300 kg/hr flux rate with its angular distribution 

across the plume (right) and its Cartesian distribution along the plume (top).  
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Figure 9: Ensemble-averaged angular distributions of the plume, averaging over all available timesteps at various flux rates. 

Different colors represent different wind speeds. Each distribution is normalized by its maximum value. 

 

 
Figure 10: Relationship between the wind speed and the associated cone width averaged over time steps and flux rates.  5 
 

 
Figure 11: Relationship between flux rates and wind speeds for 50 kg IME. 
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Figure 12: Comparison between the prescribed flux rate in the model run and the predicted flux rate based on our methods of using 

the IME and the angular width of plume in a given scene.  

 

 5 
Figure 13: Comparison between the predicted and the actual total flux of 30 plumes, from 3000 bootstrap rounds.  
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