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Abstract. High-resolution atmospheric transport simulations were used to investigate the potential for detecting carbon diox-

ide (CO2) plumes of the city of Berlin and neighboring power stations with the Copernicus Anthropogenic Carbon Dioxide

Monitoring (CO2M) mission, which is a proposed constellation of CO2 satellites with imaging capabilities. The potential for

detecting plumes was studied for satellite images of CO2 alone or in combination with images of nitrogen dioxide (NO2)

and carbon monoxide (CO) to investigate the added value of measurements of other gases co-emitted with CO2 that have5

better signal-to-noise ratios. The additional NO2 and CO images were either generated for instruments on the same CO2M

satellites (2×2 km2 resolution) or for the Sentinel-5 instrument (7.5×7.5 km2) assumed to fly two hours earlier than CO2M.

Realistic CO2, CO and NOX (= NO + NO2) fields were simulated at 1×1 km2 horizontal resolution with the Consortium for

Small-scale Modeling - Greenhouse Gases (COSMO-GHG) model for the year 2015, and used as input for an orbit simulator

to generate synthetic observations of columns of CO2, CO and NO2 for constellations of up to six satellites. A simple plume10

detection algorithm was applied to detect coherent structures in the images of CO2, NO2 or CO against instrument noise and

variability in background levels. Although six satellites with an assumed swath of 250 km were sufficient to overpass Berlin on

a daily basis, only about 50 out of 365 plumes per year could be observed in conditions suitable for emission estimation due to

frequent cloud cover. With the CO2 instrument only 6 and 16 of these 50 plumes could be detected assuming a high (σVEG50

= 1.0 ppm) and low noise (σVEG50 = 0.5 ppm) scenario, respectively, because the CO2 signals were often too weak. A CO15

instrument with specifications similar to the Sentinel-5 mission performed worse than the CO2 instrument, while the number

of detectable plumes could be significantly increased to about 35 plumes with an NO2 instrument. CO2 and NO2 plumes were

found to overlap to a large extent, although NOX had a limited lifetime (assumed to be 4 hours) and although CO2 and NOX

were emitted with different NOX:CO2 emission ratios by different source types with different temporal and vertical emission

profiles. Using NO2 observations from the Sentinel-5 platform instead resulted in a significant spatial mismatch between NO220

and CO2 plumes due to the two hours time difference between Sentinel-5 and CO2M. The plumes of the coal-fired power

plant Jänschwalde were easier to detect with the CO2 instrument (about 40-45 plumes per year), but again, an NO2 instrument
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could detect significantly more plumes (about 70). Auxiliary measurements of NO2 were thus found to greatly enhance the

capability of detecting the location of CO2 plumes, which will be invaluable for the quantification of CO2 emissions from

large point sources.25

1 Introduction

The signatory countries of the Paris climate agreement have set ambitious goals to reduce CO2 emissions and limit global

warming to below 2◦ C above pre-industrial levels (UNFCCC, 2015). The efficient implementation and management of long-

term policies will require consistent, reliable, and timely information on CO2 emissions (Ciais et al., 2015; Pinty et al., 2018).

The majority of these emissions are concentrated on a small fraction of the globe, primarily on cities and power plants. Ac-30

knowledging their important role, cities have started to devise policies for cutting CO2 emissions often surpassing the reduction

targets of the respective countries (e.g. C40 cities, 2018). However, many cities are currently lacking detailed CO2 emission

inventories and monitoring systems to evaluate their policies.

The European Space Agency (ESA) and the European Commission (EC) therefore propose the Copernicus Anthropogenic

Carbon Dioxide Monitoring (CO2M) mission, a constellation of CO2 satellites with imaging capability, to support the quan-35

tification of anthropogenic CO2 fluxes and to assist greenhouse gas mitigation policies at the national, city and facility level

(Sierk et al., 2019). The satellites are envisioned as an essential component of a CO2 emission monitoring and verification

support system to be established under Europe’s Earth observation program Copernicus (Ciais et al., 2015; Pinty et al., 2018).

The system would allow for observing CO2 plumes of individual point sources such as large cities and power plants and for

quantifying the respective emissions during single satellite overpasses (Bovensmann et al., 2010; Pillai et al., 2016; Velazco40

et al., 2011). A CO2 plume is defined here as an enhancement of CO2 concentrations above the background in the satellite

image caused by the emissions of a given source. The emissions of the source can be estimated from the CO2 enhancement

inside the plume, which requires that the plume location is identified in the satellite observations and assigned to the source. An

atmospheric transport model may be used for simulating the plume location and for estimating the emissions with an inversion

framework (e.g. Pillai et al., 2016; Broquet et al., 2018). However, the simulated plume might be significantly displaced due to45

uncertainties in wind fields and emission heights, which would result in systematic errors in the estimated emissions (Broquet

et al., 2018; Brunner et al., 2019). It is therefore desirable to detect the plume directly in the satellite observations, which would

make it possible to correct transport-related errors in the simulations but also to estimate the emissions directly from the CO2

enhancements in the plume using plume fitting or mass balance approaches, which only require an estimate of the mean wind

speed within the plume (Fioletov et al., 2015; Krings et al., 2013; Varon et al., 2018). While some potential for detecting and50

estimating emissions from CO2 fluxes has been demonstrated for strong CO2 plumes of megacities and large point sources

using the Orbiting Carbon Observatory 2 (OCO-2, Crisp et al. (2017)) (Nassar et al., 2017; Reuter et al., 2019), it remains a

major challenge to accurately determine the location of CO2 plumes, especially of weaker plumes with signal-to-noise ratios

near or below the detection limit for single pixels. The detection of CO2 plumes is additionally challenged by the interference

with signals from biospheric CO2 fluxes and other anthropogenic sources in the vicinity of the target. Therefore, measurements
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of auxiliary trace gases co-emitted with CO2 but little affected by biospheric processes such as carbon monoxide (CO) and5

nitrogen dioxide (NO2) were proposed to help separate anthropogenic from biospheric CO2 signals (Reuter et al., 2014; Ciais

et al., 2015).

This study presents results from the SMARTCARB project (use of Satellite Measurements of Auxiliary Reactive Trace gases

for fossil fuel CARBon dioxide emission estimation (Kuhlmann et al., 2019)), which aimed to assess the potential synergies

of measurements of CO and NO2 for observing and quantifying CO2 emissions and to help define the required satellite10

specifications for the CO2M mission. To address these questions, Observing System Simulation Experiments (OSSE) were

conducted, for which synthetic satellite observations were generated from high-resolution atmospheric transport simulations.

The model domain was centered on the city of Berlin and also covered several nearby power plants. Similar simulations were

already performed in previous OSSEs (Pillai et al., 2016; Broquet et al., 2018), but they did not have a comparable spatial

resolution or temporal extent or did not cover the additional species NO2 and CO as investigated here.15

Since the detection of the CO2 plume is a first and important step of a CO2 emission monitoring system, the aim of this

paper is to investigate whether and how often CO2 plumes are expected to be detected in the satellite images during a year

depending on the size of the CO2M satellite constellation and on instrument error scenarios. The detectability is studied for

satellite images of CO2 alone or in combination with images of NO2 and CO to investigate the added value of additional

measurements either on the same CO2M satellite (2×2 km2, overpass: 11:30 local time) or with the Sentinel-5 instrument20

(7.5×7.5 km2, overpass: 9:30 local time). In this paper, we analyse the signal-to-noise ratios of a city plume and of different

point sources for the different instruments. Furthermore, based on a newly developed simple plume detection algorithm, we

identify statistically significant plume signals against instrument noise and background variability. The results are used to

provide recommendations for the dimensioning of the CO2M mission, which will be a key component of the Copernicus CO2

emission monitoring and verification support system. In a companion paper Brunner et al. (2019) presented the overall model25

setup and emphasized the importance of properly accounting for the vertical placement of CO2 emissions from large point

sources in atmospheric CO2 simulations. In a follow-up study, we will quantify the emissions from Berlin and a few power

plants in the model domain from the synthetic satellite observations using both inverse and mass-balance approaches, building

on the plume detection presented here.

In a satellite image, a plume may be defined as a collection of spatially connected pixels with elevated signals starting at30

a source. Whether and how frequently the plume of a given source can be detected depends on several, partly interdependent

factors:

– The number of satellites and the instrument’s swath width, as they determine the number of overpasses over the plume

and how much of the plume is visible in the satellite image.

– The intensity of the emission source, which affects the amplitude of the enhancement above background.35

– The meteorological conditions, notably wind speed and turbulence, which determine the dilution and dispersion of the

emissions.

– The single sounding precision of the instrument, which determines if the enhancement within the plume can be detected.
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– The variability of the background, which is caused by anthropogenic emissions and biospheric fluxes in the vicinity of

the source and which is additionally affected by meteorology.40

– The presence of clouds partially or fully obscuring the plume.

Since most of these factors vary with season, the detectability also depends on the time of the year. Therefore, long simulations

covering a full year were conducted.

Because the detection of weak anthropogenic CO2 plumes is affected by interference with biospheric CO2 signals, auxiliary

trace gases co-emitted with CO2 could be used for locating the CO2 plume in the satellite image. However, this requires45

that the plumes of CO2 and of the auxiliary trace gas are spatially congruent. This is usually the case when they are emitted

from the same source, for example, a power plant. The shape of the NO2 plumes might deviate from the CO2 plume for two

reasons. First, NO2 is emitted mainly as nitrogen monoxide (NO), which is converted to NO2 over time resulting in lower

NO2 concentrations near the source. Second, NO2 decays slowly with time reducing NO2 concentrations downstream. To

account for these two effects, we simulated nitrogen oxides (NOX = NO + NO2) that slowly decays with time and calculated50

NO2 from NOX concentrations offline by applying a formula frequently used to represent NO2:NOX ratios downstream of

emission sources (Düring et al., 2011). The situation is more complex for cities where the emissions originate from different

sectors (industry, heating, transport etc.) that emit with different temporal profiles and at different altitude levels, and which

have different emission ratios (Brunner et al., 2019). In this study, we therefore carefully consider the vertical and temporal

profiles of emissions from different sectors, which makes it possible to test for congruence.55

2 Data and methods

2.1 Synthetic satellite observations

2.1.1 Model simulations

The synthetic satellite observations were generated from high-resolution simulations conducted with the COSMO-GHG model.

COSMO is a hydrostatic, limited-area model developed by the Consortium for Small-scale Modeling (Baldauf et al., 2011), for60

which an extension has been developed for the simulation of greenhouse gases (COSMO-GHG)(Oney et al., 2015; Liu et al.,

2017).

COSMO-GHG was set up to simulate CO2, CO and NOx concentration fields for nearly the complete year 2015 (1 January

- 25 December). The model domain extended about 750 km in east-west and 650 km in south-north direction. It was centered

over the city of Berlin and also covered numerous power plants in Germany and neighboring countries. The spatial resolution65

was 1.1 km × 1.1 km horizontally with 60 vertical levels up to an altitude of 24 km. Figure 1 presents the model domain and

marks the location of Berlin and the six largest coal-fired power plants. The detailed model setup is described by Brunner et al.

(2019).
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Figure 1. Simulated XCO2 field on 23 April 2015 in the SMARTCARB model domain overlaid with an example of a 250 km wide swath
of the planned Sentinel CO2 instrument (low noise scenario). Missing CO2 measurements are shown in gray. Cloud cover is overlayed in
white with transparency corresponding to total cloud fraction.

Table 1. Emissions of largest power plants in model domain according to TNO/MACC-3 inventory for the year 2011 as used in this study.

Power plant CO2 (Mt yr−1) NOx (kt yr−1) CO (kt yr−1)

Jänschwalde 33.3 26.9 44.1
Boxberg 19.0 15.4 14.4
Lippendorf 15.3 12.3 2.7
Turów 8.7 13.1 1.3
Schwarze Pumpe 8.2 6.6 5.3

Initial and lateral boundary conditions (ICBC) for meteorological variables were provided by the operational European

COSMO-7 analyses of MeteoSwiss with hourly temporal and 7 km horizontal resolution. For the tracers, ICBCs were obtained70

from the European Center for Medium Range Weather Forecast (ECMWF) through the European Earth observation program

Copernicus. CO2 and CO boundary conditions were taken from a global free-running CO2 simulation with 137 levels and

about 15 km horizontal resolution (T1279 spectral resolution, experiment “gf39”, class “rd”)(Agustí-Panareda et al., 2014).

For NO and NO2, boundary conditions were taken from ECMWF’s operational global forecasts for aerosol and chemical

species with 60 vertical levels and a horizontal resolution of about 60 km (T255 resolution, experiment “0001”, class “mc”)75

(Flemming et al., 2015).
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Anthropogenic emissions were obtained by combining the Netherlands Organisation for Applied Scientific Research Euro-

pean Monitoring Atmospheric Composition and Climate version 3 (TNO/MACC-3) inventory (Kuenen et al., 2014, for Version

2) with a detailed inventory provided by the city of Berlin (AVISO GmbH and IE Leipzig, 2016). The inventories provide point

and area sources separately for different sectors (e.g. industry, heating and road-transport) using Selected Nomenclature for Air80

Pollution (SNAP) categories. The temporal variability of emissions was accounted for by applying diurnal, weekly, and sea-

sonal cycles according to SNAP categories. Furthermore, emissions were vertically distributed using specific vertical profiles

for the different emissions categories and plume rise calculations for six largest power plants and the major point sources in

Berlin (Brunner et al., 2019). Hourly biospheric fluxes both photosynthesis and respiration were generated with the vegetation

photosynthesis and respiration model (VPRM) at the resolution of the COSMO model (Mahadevan et al., 2008).85

According to the official inventory of the city of Berlin, total annual CO2 emissions of Berlin were 16.9 MtCO2 yr−1 (in

the reference year 2012 of the inventory). This is about a factor two smaller than in previous studies, e.g. in the LOGOFLUX

project (Chimot et al., 2013; Bacour et al., 2015; Pillai et al., 2016), which relied on unrealistically high emissions as provided

by the global EDGAR inventory (Version 4.1). Due to the diurnal cycle of emissions, emissions were somewhat larger (about

20.0 MtCO2 yr−1) around the time of the satellite overpasses (10-11 UTC). Table 1 summarizes the CO2, NOx and CO90

emissions of the five largest power plants in the domain.

The simulations included a total of 50 different passively transported tracers representing the three different gases further

divided into different sources, release times or release altitudes. This also included background tracers constrained at the

lateral boundaries by the global-scale models and two tracers for biospheric respiration and photosynthesis for CO2. Due to

the reactivity of NOx, five different NOx tracers with e-folding lifetimes of 2, 4, 12 and 24 hours and infinity were included,95

considering that the lifetime of NOx varies between about 2 and 24 hours (Schaub et al., 2007). The full list of tracers is

provided in the SMARTCARB final report (Kuhlmann et al., 2019, p. 15f)

In this study we use the following seven tracers that have been computed from the 50 tracers in the simulations:

– X_BER: concentrations from time-varying emissions of Berlin,

– X_PP: concentrations from time-varying emissions from the six largest power plants in the model domain,100

– X_ANTH: concentrations from other anthropogenic sources in the domain excluding emissions of Berlin (X_BER) and

the six largest power plants (X_PP),

– X_BIO: concentrations from local biospheric fluxes, i.e. respiration and photosynthesis within the domain (only for

CO2),

– X_TOT: concentrations from all emissions and biospheric fluxes as well as inflow from lateral boundaries,105

– X_BER_BG: concentrations from emissions, fluxes and lateral boundaries excluding emissions from Berlin (= X_TOT

– X_BER),
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Table 2. Satellite platforms and their orbit parameters used in this study. Note that some parameters slightly deviate from the real satellites
(see text for details).

Parameter CO2M satellite MetOp-SG-A

Orbit type Sun-synchronous Sun-synchronous
Inclination 97.77◦ 98.7◦

Orbits per day 14+10/11 14+6/29
Cycle duration 11 days 29 days
Cycle length 164 orbits 412 orbits
Altitude 602.24 km 830.16 km
Orbit Period 96.58 minutes 101.36 minutes
Local time in descending node 11:30 hrs 9:30 hrs
(equator crossing time)

Table 3. Observation geometries for instruments on the CO2M satellite and Sentinel-5 used in this study. Note that some parameters can
differ from the real satellites (see text for details).

Parameter CO2M satellite Sentinel-5

Number of across-track pixels 125 208
Swath 250 km 2670 km
Field of view 23.22◦ 107.1◦

Pixel size 2 × 2 km2 from 7.5 × 7.5 km2 (nadir) to 35×7.5 km2 (swath edge)
Along-track sampling time 0.286 seconds 1.13 seconds

– X_PP_BG: concentrations from emissions, fluxes and lateral boundaries excluding emissions from the six major power

plants (= X_TOT – X_PP),

where X is CO2, CO or NO2. NO2 concentrations were calculated from NOx concentrations using an empirical formula

used frequently for representing NO2:NOx ratios downstream of emission sources (Düring et al., 2011). For NO2 only the

tracers with a lifetime of 4 hours were used. Note that only the sum of the emissions from the six power plants was simulated

but not the power plants individually, which often complicated the analysis due to overlapping plumes. For the analysis, the

three-dimensional model fields were vertically integrated to compute column-averaged dry air mole fractions of CO2 (XCO2).5

Likewise, tropospheric CO and NO2 vertical column densities (VCD) were generated by considering only the model fields

below 10 km altitude.

2.1.2 Satellite instrument scenarios

The CO2M mission is a proposed constellation of satellites flying in a sun-synchronous low-earth orbit with equator crossing

times around 11:30 local time. Each satellite will carry an imaging spectrometer measuring in the near-infrared (NIR) and in10

two short-wave infrared spectral bands (SWIR-1 and SWIR-2) for retrieving CO2 as the main payload. The NIR band is used

to retrieve information on the dry air column, on surface pressure and on aerosols and clouds. The SWIR-1 and SWIR-2 bands

7



contain weak and strong absorption features of CO2 and provide additional information on aerosols and clouds, especially on

thin cirrus clouds. A CO2 retrieval using these three bands is described for example by O’Dell et al. (2012). CO2M is planned

to carry also additional instruments for measuring NO2, aerosols and clouds. In an earlier phase, also an instrument measuring15

CO was considered. The preliminary system concept envisages a pixel size of 4 km2 and swath width of 250 km or more.

For the CO2, CO and NO2 satellite observations, different instrument scenarios were prescribed by ESA for this study

in terms of orbit, spatial resolution and spatial and temporal coverage of the CO2M instrument. In addition, the Sentinel-

5 instrument on-board the Meteorological Operational Satellite – Second Generation - A (MetOp-SG-A) was studied as an

alternative platform for CO and NO2 measurements. Sentinel-5 will be an imaging spectrometer measuring, among others,20

NO2 and CO columns with a spatial resolution of 7×7 km2 and a 2650-km swath. MetOp-SG-A will be also on a sun-

synchronous orbit but with different equator crossing times and repeat cycles than the CO2M mission.

In addition to a single satellite, the potential of a constellation of multiple CO2M satellites was also studied. The basic

assumption for a constellation is that the individual satellites are spaced with equal angular distance in the same orbit with

the same orbit parameters, for instance separated by 180°, 120° and 90° on a full circle in case of 2, 3 and 4 satellites. The25

individual satellites can be distinguished by their starting longitude at the equator of the first orbit in the repeat cycle. Here, we

analyze constellations between one and six satellites.

For the computation of orbits, we adopted the orbit simulator of the Netherlands Institute for Space Research (SRON). Since

this simulator makes a few simplifying assumptions such as circular orbits and tiled ground pixels, satellite and instrument

parameters were slightly modified to preserve essential parameters. In particular, orbit periods were calculated to match a30

given cycle duration and length. The period then determines the altitude and inclination of a circular, sun-synchronous orbit.

The altitude of the circular orbits is slightly larger than the typically used mean altitude for elliptic orbits. Since the altitude

affects the size of the ground pixels and the width of the swath, field of view and along-track sampling time were set to

match exactly the prescribed pixel size at sub-satellite point as well as the prescribed swath width. As a result, the number of

across-track pixels for simulated Sentinel-5 did not match exactly the number of pixels for the real Sentinel-5 instrument.35

Tables 2 and 3 summarize the orbits and viewing geometries of the two satellites. The CO2M satellite is assumed to have a

250-km wide swath and 11-day repeat cycle. Within the 11-day cycle, the instrument provides nearly global spatial coverage

(Fig. 2). For locations in the SMARTCARB model domain, either one or two overpasses occur during the 11-day repeat cycle

depending on the equator starting longitude of the satellite. The wider swath of Sentinel-5 results in near-daily global coverage

(not shown).40

XCO2, CO and NO2 column densities were sampled along the satellite swath for one year using the tracers from the

COSMO-GHG simulations. For CO2M, XCO2, CO and NO2 columns were mapped onto the 2 km× 2 km size pixels along

the 250-km wide swath.

For Sentinel-5, CO and NO2 columns were sampled with up to 7.5 km× 7.5 km resolution along the 2670-km wide swath

of the Sentinel-5 instrument. Due to the wide swath, the pixel sizes grow towards the edge of the swath. In this study, only the45

spatial overlap between Sentinel-5 and CO2M were of interest, because Sentinel-5 was used for detecting the CO2 emission

plumes inside the swath of CO2M.
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Figure 2. Spatial coverage of one CO2M satellite within its 11-day repeat cycle (a) globally and (b) over Europe. The white square marks
the COSMO-GHG model domain in which the number of overpasses is either one or two. The exact locations of the "stripes" are arbitrary
and depend on the equator starting longitude (here: 0 ◦E) of the satellite.

Table 4. Instrument uncertainty scenarios. VEG50 refers to a reference scene with a surface albedo of a vegetated surface and a solar zenith
angle (SZA) of 50◦.

Scenario name Species Satellite(s) Reference noise (σVEG50 / σref )
absolute1 relative1

CO2 low noise CO2 CO2M 0.5 ppm -
CO2 medium noise CO2 CO2M 0.7 ppm -
CO2 high noise CO2 CO2M 1.0 ppm -
NO2 low noise NO2 CO2M 1.0×1015 molec. cm−2 15%
NO2 high noise NO2 CO2M 2.0×1015 molec. cm−2 20%
NO2 Sentinel-5 NO2 Sentinel-5 1.3×1015 molec. cm−2 20%
CO low noise CO Sentinel-5 and CO2M 4.0×1017 molec. cm−2 10%
CO high noise CO Sentinel-5 and CO2M 4.0×1017 molec. cm−2 20%
1 whichever is larger

2.1.3 Instrument error characteristics

The error characteristics of the CO2, NO2 and CO instruments were specified in collaboration with ESA based on previous

studies for Carbonsat (Buchwitz et al., 2013) and on performance requirements for Sentinel-5 (Ingmann et al., 2012). For the50

instruments on the CO2M satellites, two or three scenarios were included in order to cover a realistic range between more or

less demanding instruments. Table 4 summarizes the single sounding precision of the different instruments.

For XCO2, three different uncertainty scenarios were considered which relate back to the performance estimates derived for

the Carbonsat mission concept. Carbonsat was a CO2 imaging spectrometer proposed for ESA’s eighth Earth Explorer mission

with specifications similar to those of the CO2M mission. A detailed error budget for Carbonsat was presented in the Carbonsat55

Report for Mission Selection (ESA, 2015). In the LOGOFLUX study, error parameterization formulas (EPF) for random and

9



systematic errors were developed, which account for errors introduced by solar zenith angle (SZA), surface reflectance in the

near infrared (NIR) and shortwave infrared (SWIR-1), cirrus clouds, and aerosol optical depth (Buchwitz et al., 2013).

Here, the same EPFs were adopted but only applied to compute random errors. These were calculated based on SZA and

surface reflectance in the NIR and SWIR-1 band. Surface reflectances were taken from the MODIS MCD43A3 product (Version60

006) at 1 km spatial resolution (Schaaf and Wang, 2015). A detailed consideration of cirrus clouds and aerosols and their impact

on systematic errors was outside the scope of the study as it would have required the collection and processing of a large amount

of additional data. The possible impact of not considering systematic errors will briefly be discussed in Sect. 4.

The random error calculated with the EPFs for the so-called vegetation-50 scenario (VEG50, i.e. vegetation albedo and SZA

of 50◦) is about 1.5 ppm. In the model domain, mean random errors are slightly smaller at 1.3 ppm. To obtain random errors65

for the three instrument scenarios with σVEG50 of 0.5, 0.7 and 1.0 ppm, the computed errors were divided by 3.0, 2.14 and 1.5,

respectively.

For NO2 VCDs, the overall uncertainties are due to (a) measurement noise and spectral fitting affecting the slant column

densities, (b) uncertainties related to the separation of the stratospheric and tropospheric column and (c) uncertainties in the

auxiliary parameters used for air mass factor (AMF) calculations such as clouds, surface reflectance, a priori profile shapes70

and aerosols (Boersma et al., 2004). The total uncertainties are dominated by uncertainties from spectral fitting for background

pixels and by uncertainties in AMF calculations for polluted pixels, respectively. Typical spectral fitting uncertainty of previous

instruments such as OMI were of the order of 1-2×1015 molecules cm−2 and AMF uncertainties of the order of 15-20%. These

ranges were used to define two different scenarios for a possible CO2M NO2 instrument (Table 4). For the Sentinel-5 UVNIS

instrument, we assumed a relative uncertainty of 20% and a minimum uncertainty of 1.3×1015 molecules per cm−2. In the75

presence of clouds, the reference noise was increased using the empirical formula developed by Wenig et al. (2008). For a

cloud fraction of 30%, random noise is approximately doubled.

For CO VCDs, the total uncertainty depends on the (a) fitting noise and (b) a priori CO and CH4 profiles and (c) surface

reflectance, aerosols and clouds. We assumed a single sounding precision of 4.0×1017 molecules per cm2 and a relative

precision of 10% and 20% for both Sentinel-5 and the CO2M mission.80

2.1.4 Cloud filtering

Satellite observations require filtering for clouds, which significantly reduces the number of observations available for plume

detection. For the CO2 product, we removed all CO2 pixels with cloud fractions larger than 1%, because the CO2 requires

rigorous cloud filtering (Taylor et al., 2016). The NO2 retrieval can tolerate larger errors and is therefore less sensitive to

clouds. For the NO2 product, we used a cloud threshold of 30% as often applied in satellite NO2 studies (e.g. Boersma et al.,85

2011). For CO, a cloud threshold of 5% was used, which is motivated by the cloud threshold used for the MOPITT CO product

(Deeter et al., 2017; MOPITT Algorithm Development Team, 2017).

Previous studies used the MODIS cloud mask product available at 1 km resolution (Ackerman et al., 2017) for masking

cloudy CO2 observations (Buchwitz et al., 2013; Pillai et al., 2016). Since CO and NO2 observations can tolerate larger cloud

fractions, a cloud fraction product would be needed for masking pixels with different thresholds but the MODIS cloud product90
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Figure 3. Schematic of the processing steps of the plume detection algorithm: (a) A large (blue) and small plume (red) with sources marked
by arrows are located within the satellite overpass. (b) Pixels detected based on Z-test are marked with "D". (c) Connected pixels are given a
unique number each denoting a different plume. (d) All plumes not connected with the source of interest (blue circle) are rejected.

is only available at 5 km resolution (Platnick et al., 2017). Therefore, we used total cloud fractions computed by COSMO-

GHG, i.e. the same model as used for the tracer transport simulations, that are available at model resolution. COSMO-GHG

computes total cloud fraction from layer cloud fractions assuming minimum overlap. The differences between clouds masks

derived from COSMO-GHG and MODIS products and their effects on data yield are discussed in Section 4.1.

2.2 Plume detection algorithm95

2.2.1 Algorithm

We developed a new but simple plume detection algorithm that uses a statistical test to detect signal enhancements which are

significant with respect to instrument noise and variability in background levels. The plume is then identified as a coherent

structure of significant pixels. The algorithm involves three processing steps as laid out in Fig. 3.

The first step of the the plume detection algorithm finds satellite pixels with CO2, CO or NO2 values significantly larger100

than the background field using a statistical Z-test, for which the distribution of the test statistics can be approximated by a

normal distribution (e.g. v. Storch and Zwiers, 2003). The Z-test computes a z-value given by

z =
x−µ

σ
(1)
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Figure 4. Examples of neighborhoods with different sizes (ns) used for calculating the local mean.

where x is an observation from a population with mean value µ and standard deviation σ. The value x is considered significantly

larger than µ when the z-value is greater or equal a critical value. The critical value is calculated from the inverse cumulative5

distribution function of the normal distribution for a probability q. The probability that x is not significantly larger than µ is

the p-value (p= 1− q).

A key feature of the algorithm is that the trace gas observation of a single pixel is replaced by a spatial average of pixels in

a defined neighborhood. This allows identifying weak plumes with signals of individual pixels well below instrument noise,

but also bares the risk of diluting the signal at the plume edges. Figure 4 shows examples of neighborhoods with different10

sizes ns that have been used for testing the algorithm. A large neighborhood results in a stronger smoothing and may therefore

produce a larger number of false positives, i.e. pixels outside of the plume that are wrongly assigned to the plume. An ideal

neighborhood size balances the need for sensitive plume detection with the requirement of a low fraction of false positives.

Whether a signal enhancement is detectable is primarily determined by the z-value (Eq. 1) which can also be interpreted as

the signal-to-noise ratio (SNR) at a spatially smoothed satellite pixel. Thereby, the signal is the enhancement above background15

due to the plume, and the noise is composed of both instrument noise and spatial variability in the background. Since the

background, i.e. the trace gas field in the absence of the plume, can not directly be observed, it needs to be estimated either

from the observable trace gas field surrounding the plume or from a climatology or a model. Instrument noise and background

variability can have both random and systematic components. The random component would reduce with the inverse square

root of the number of valid pixels n in the neighborhood, whereas the systematic error would be approximately independent20

of n. The number of valid pixels n can be smaller than the size of the neighborhood ns when pixels are missing, e.g. due to

clouds or at the boundary of the satellite swath. Therefore, the z-value or the SNR can be calculated as follows:

SNR =
Xobs −Xbg√
σ2
rand

n +σ2
sys

(2)
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where Xobs are the spatially averaged satellite observations, Xbg is the estimated background value, and σrand and σsys are

the random and systematic errors, respectively. Equation (2) can be calculated for each satellite pixel and compared with the25

critical value to determine which Xobs are significanlty larger than Xbg.

To compute the SNRs from the satellite image, we computed observed values Xobs as the local means of a neighborhood of

size ns (Fig. 4). For sake of simplicity, the background Xbg in this study was estimated from the X_BER_BG and X_PP_BG

model tracers for a 200×200 km2 square centered on the city of Berlin and a 100×100km2 square centered on each power

plants. The implications of this assumption are discussed in Sect. 4.30

For random and systematic errors we assumed that the instrument uncertainty is purely random and that the background

variability is purely systematic. For the instrument uncertainty, random errors as listed in Table 4 were used, which reduce with

the number of valid pixels in the local neighborhood n due to the inverse scaling by the number of pixels. The background

uncertainty σ2
bg was computed from the spatial variance of the background model tracer in a fixed domain surrounding the

source as described above. Since it is assumed to be systematic, it does not decrease with the size of the neighborhood.35

The result of the Z-test is a binary image with “true” values where pixels are significantly enhanced above the background

and “false” values where they aren’t (Fig. 3b). Since the local mean can still be computed for missing center pixels - using

neighboring pixels - missing pixels can also be detected as enhanced above the background.

In the second step, pixels that are enhanced (“true”) and connected are assumed to belong to the same plume. We label regions

of connected pixels using a standard labeling algorithm. Neighboring pixels are identified using a Moore neighborhood, where5

each pixel has eight potential neighbors. Each region is assigned a unique integer value (Fig. 3c).

Finally, in the third step, all connected regions that do not intersect with the source region are removed leaving only regions

that overlap with the source of the plume (Fig. 3d). For cities, the “source region” is defined by a circle with a radius of 15 km

and for point sources by a circle with a radius of 5 km. The last step may remove regions that are part of the real plume but

separated from the source by weak signals or missing values (e.g. the region labeled “2” in Fig. 3c).10

2.2.2 Performance evaluation

The plume detection algorithm was applied to the CO2 plumes of Berlin and Jänschwalde. The detectability of CO2 plumes

was evaluated for the different instrument scenarios by comparing the detected plume with the “true plume” defined by the

field of the CO2 tracer released by the respective source (CO2_BER in case of Berlin, CO2_PP for Jänschwalde) above a low

threshold. For Jänschwalde, the performance had to be additionally evaluated by visual inspection due to frequent overlaps15

with the plumes of other power plants also contained in the CO2_PP tracer.

To evaluate the performance of the Sentinel-5 with respect to detecting plumes as observed by CO2M, detected pixels had

to be projected onto the pixels of the CO2M instrument. Sentinel-5 pixels were thus only used over the swath of the CO2M

satellite rather than over the whole swath of Sentinel-5.

When using NO2 or CO for plume detection, the performance was assessed by comparing the detected pixels with the20

true CO2 plume rather than the true plume of the auxiliary gas. In this way, the degree of congruence between the CO2 and

auxiliary trace gas plumes was considered as well.
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For the evaluation, we computed true positives (TP), false positives (FP) and the positive predictive value (PPV = TP/(TP+

FP)) (Ting, 2010). A good algorithm should have a much smaller number of FP than TP and, therefore, a PPV close to 1. To

remove the impact of different cloud thresholds, TP, FP and PPV were only computed for cloud-free pixels using a cloud25

threshold of 1%, because we are primarily interested in valid CO2 observations that can be used for estimating CO2 emissions.

3 Results

3.1 Coverage and potential for plume detection

In this section, the potential for plume detection is analyzed based on the simulated tracers emitted by the source of interest.

These “true plumes” will be used in the following sections as reference to evaluate the performance of the plume detection30

algorithm. They can be interpreted as the maximum number of plumes detectable by a perfect, noise-free instrument.

The frequency with which the CO2 plumes of a given source can be observed depends on how often a satellite passes over

the source, how often the CO2 signal is larger than the threshold and how often cloud-free conditions dominate during the

overpass. We define an overpass as an intersection between the satellite swath and the “source region” as specified above. The

number of overpasses scales with the number of satellites and the swath width of the instrument. The scaling with the number35

of satellites is not trivial, however, since individual satellites may pass over the source either once or twice during the 11-day

repeat cycle depending on the satellite’s equator starting longitude (see Fig. 2).

The total number of overpasses per satellite is either 34 or 66 per year, depending on whether the satellite has one or two

overpasses per 11-days repeat cycle. Since one out of four satellites has only one overpass per 11 days, the number of overpasses

per year roughly scales with a factor 1.75 times the number of satellites times the number of 11-day periods per year (about40

33). A constellation of six satellites covers the model domain nearly daily.

To define the extent of a plume in the satellite image, we have to set a signal threshold for the tracer field (XCO2_BER

for Berlin) above which a pixel is considered as belonging to the plume. A possible threshold is the value at which the signal

would become larger than the variability of the background, i.e. where the signal is larger than the standard deviation of the

background. Based on the time series of standard deviations of the model background tracer (XCO2_BER_BG for CO2)45

computed for a 200×200 km2 square centered on the city of Berlin (Fig. 7c, f and i), we defined a threshold of 0.05 ppm for

XCO2, 0.2×1015 molec. cm−2 for NO2 and 0.06×1017 molec. cm−2 for CO approximately corresponding to the minimum

of the standard deviations. Note that these thresholds are significantly smaller than the noise level of the instruments.

A plume was defined as the collection of pixels for which the signal is larger than the threshold. However, we also required

that Berlin is inside the swath of the instrument to be able to unambiguously assign a plume to the city. Furthermore, we50

removed parts of plumes that re-entered the swath after leaving it, because it is often not possible to correctly assign these parts

to their source.

Since a satellite image can be obscured by clouds, we need to define how many pixels are needed to make up a “useful”

plume. This number depends on the application. For example, to estimate emissions of cities, we require that the plume must

extend beyond the city limits to contain emissions from the whole city area. The cross-wind diameter of Berlin’s CO2 plume55
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(a) 75l satellite pixels (b) 194 satellite pixels

(c) 11 satellite pixels (d) 20 satellite pixels

(e) 44 satellite pixels (f) 152 satellite pixels

Figure 5. Examples of true XCO2 plumes of Berlin (XCO2 signal > 0.05 ppm) with different cloud cover fractions (cc). The numbers of
XCO2 pixels are shown for cloud fractions ≤1%. (a-d) Plumes with increasing cloud fraction, (e) plume close to the edge of the swath, (f)
plume without cloud-free CO2 observations connected to Berlin. 15



is typically about 20 km or 10 satellite pixels, which is roughly the diameter of the part of the city with the highest emissions.

To cover at least the whole city area, we only consider CO2 plumes with at least 100 cloud-free CO2 pixels to be useful. For

the power plants, the cross-wind diameter is less than five pixels near the source. Therefore, 10 pixels were used to define the

minimum number for a useful plume in this case. It should be noted that this number of pixels is not necessarily sufficient for

estimating the emissions of a source with certain accuracy, which depends, among others, on instrument precision, meteorology60

and source strength. Nonetheless, detecting the full crosswind diameter is the minimum requirement, for example, for flux-

based inversion methods (e.g. Krings et al., 2013; Reuter et al., 2019). The number of detected pixels is a useful measure for

comparing the detectability of CO2 plumes with CO2, CO and NO2 observations, because source strength and meteorology

are the same for a given source.

For a signal threshold of 0.05 ppm, Berlin’s CO2 plume has always more than 100 pixels above the signal threshold. How-65

ever, many plumes are partly or fully covered by clouds significantly reducing the number of useful plumes. Figure 5a-d

presents examples of CO2 plumes under different cloud conditions with an increasing fraction of cloudy pixels. Figures 5c

and d show examples with plumes of only 11 and 20 pixels, much smaller than the area of the city. On the other hand, the

100-pixel threshold does not necessarily remove swaths with plumes in broken clouds (e.g. Fig. 5b), for which it will also be

challenging to estimate emissions, because adjacent cloudy pixels increase the XCO2 uncertainty (Taylor et al., 2016). The70

number of plumes with at least 100 pixels is also reduced when the source is close to the edge of the swath and winds are

pushing the plume out of the view of the satellite (e.g. Fig. 5e). These overpasses occur every 11 days due to the repeat cycle

of the satellite. As a result, orbits with plumes near the edge of the swath can have up to 20% less useful plumes.

Figure 6 presents the number of useful city plumes (>100 pixels) per month for CO2, NO2 and CO for constellations of

one to six satellites. Plumes without cloud-free observations over the source region (e.g. Fig. 5f) were removed, because they75

cannot be detected by the algorithm used in this study. A constellation of six satellites observes only 50±5 CO2 plumes within

one year despite almost daily overpasses due to the small number of days with low cloud fractions. Except for February, which

was an unusually sunny month in 2015, there is a clear tendency of higher cloud fractions and correspondingly fewer plume

observations in winter than in summer. The standard deviations shown in the figures as vertical black bars were estimated from

the scatter of observable plumes using satellites with different equator starting longitudes. The presence of clouds thus reduces80

the opportunity for plume detection by a factor as a large as 5 to 6 over the city of Berlin. The number of observable NO2

plumes per year (108±8) is about twice as large as for CO2, which is primarily due to the larger cloud threshold of 30%. For

CO the number of observable plumes per year is 58±5. The average number of plumes per satellite and year is thus about 8

(range: 3-13), 9 (4-15) and 17 (7-23) for CO2, CO and NO2, respectively.

The number of observable plumes varies strongly between the individual satellites of a constellation, because the number85

of cloud-free days per year is quite small and the overpass days are different for different equator starting longitudes. Since

satellites are equally spaced in orbit, changing the number of satellites changes the starting longitudes and overpass days of

the satellites. As a consequence, the number of observable plumes per constellation can also fluctuate strongly. According to

Fig. 6, for example, a constellation of two satellites seems almost equivalent to a constellation of three, but this result is merely

a consequence of the fact that cloud cover was often large during these overpasses and Berlin was at the edge of the swath for90
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Figure 6. Number of cloud-free plumes of the city of Berlin with at least 100 pixels per month for (a) CO2, (b) NO2 and (c) CO. The
cloud threshold is 1% for CO2, 30% for NO2 and 5% for CO observations. Error bars are obtained by comparing all available satellites. The
number of expected plumes per satellite is 8, 17 and 9 for the CO2, NO2 and CO instrument, respectively.

the satellite with a starting longitude of 8◦. The result would be different for another starting longitude of the first satellite,

another city, or another year.
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Figure 7. Time series of CO2, NO2, CO plume signals (left column), mean backgrounds (middle) and standard deviations of backgrounds
(right) for Berlin. Signals are the largest local mean values of the X_BER model tracer using a 37-pixel-neighborhood. Background means
and standard deviations were obtained from the X_BER_BG tracer for a 200 × 200 km2 square centered over Berlin. Reference uncertainties
(σVEG50/ref ) corresponding to the different instrument scenarios are shown as horizontal lines for comparison.

3.2 Signal-to-noise ratios

The key measure that determines the detectability of a CO2 plume is the SNR (Eq. 2), which compares the amplitude of the

plume signal to the instrument noise and the variability of the background. SNRs provide a first indication of an instrument’s95

suitability for detecting a plume.

Time series of the CO2, NO2 and CO plume signals were computed from the X_BER and X_PP tracers for Berlin and the

power stations Jänschwalde and Lippendorf at the overpass time of CO2M, i.e. about 11 UTC. The signals were computed as
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Table 5. 5th, 50th and 95th percentile of CO2, NO2 and CO signals of Berlin as well as Jänschwalde and Lippendorf power stations.

Species 5th 50th 95th

Berlin:
CO2 (ppm) 0.16 0.33 1.03
NO2 (1016 molec. cm−2) 0.30 0.63 1.56
CO (1017 molec. cm−2) 0.12 0.27 0.96

Jänschwalde power station:
CO2 (ppm) 1.28 2.69 6.64
NO2 (1016 molec. cm−2) 2.09 4.30 10.0
CO (1017 molec. cm−2) 0.55 1.14 2.88

Lippendorf power station:
CO2 (ppm) 0.53 1.29 3.73
NO2 (1016 molec. cm−2) 0.85 2.03 5.37
CO (1017 molec. cm−2) 0.03 0.08 0.22

Table 6. Median signal-to-noise ratios for signals of Berlin, Jänschwalde and Lippendorf using different uncertainty scenarios. The signals
were computed as largest local mean values using a local neighborhood size ns of 37 and 5 for cities and power stations, respectively.

Scenario name Signal-to-noise ratio
Berlin Jänschwalde Lippendorf

CO2 low noise 1.4 10.4 4.3
CO2 medium noise 1.4 8.0 3.5
CO2 high noise 1.2 5.8 2.6
NO2 low noise 9.0 14.3 8.8
NO2 high noise 8.4 10.8 7.5
CO low/high noise 0.4 0.6 0.0

maximum values of the local means within the source region, i.e. a circle with 15 or 5 km radius. Thereby, the local means were

computed with a neighborhood ns of size 37 for Berlin and 5 for the power stations (Fig. 4). A large neighborhood reduces100

the random noise of the measurements and therefore allows detecting smaller signals. On the other hand, a large neighborhood

will include background values in the computation of the averages at the plume edges and reduce the signal. The sizes used

here roughly correspond to the typical diameters of the CO2 plumes from Berlin (about 15 km) and the power stations (about

6 km), respectively, and were also found most suitable for the plume detection algorithm, because they maximize TPs without

reducing PPVs too much (see also Kuhlmann et al., 2019). The results for Berlin are presented in Fig. 7 for the three trace

gases. The figure compares the daily plume signals (left panels) to the daily mean background values (middle) and their spatial

variability (right). The 5th, 50th and 95th percentiles of the time series are summarized in Table 5 for Berlin as well as for the5

power stations. The signals have a large range due to the variability of emissions (e.g. lower during weekends) and meteorology.

The CO2 and NO2 signals of the power stations are between five and ten times larger than those of Berlin. The CO signal of
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Lippendorf, on the other hand, is smaller than the signal of Berlin. The power plants produce strong local enhancements easily

detectable by the CO2 satellite, but the corresponding plumes are much narrower than those of Berlin.

Figures 7b and c present the spatial means and standard deviations of the background around Berlin. Background XCO210

has a strong annual cycle with an amplitude of about 16 ppm. Since the XCO2 plume signal of Berlin is typically only about

0.2 to 1.0 ppm, it is critical to accurately estimate the background XCO2 value in Eq. (2). The spatial variability σbg of the

background, on the other hand, is typically only of the order of a few tenths of a ppm. Despite higher XCO2 in winter than in

summer, the variability is somewhat larger in summer due to stronger biospheric activity in combination with lower average

wind speeds, especially in July and August. Large peaks in the background variability are often caused by plumes from other15

anthropogenic sources such as the power stations in the south-east of Berlin (Fig. 1).

For NO2, the annual cycle of the background is relatively constant for our idealized NO2 tracer with a constant lifetime of

4 hours (Fig. 7e and f). In reality, the lifetime will likely be longer and the variability correspondingly higher in winter. The

NO2 signal of Berlin is significantly larger than the background and its variability. Similar to CO2, the CO time series has a

strong annual cycle with an amplitude of about 5×1017 molec. cm−2 (Fig. 7h and i) requiring again an accurate estimation of20

the background. The standard deviation of the background is about half of the CO signal.

Table 6 summarizes the median of all SNRs of Berlin and the two power stations for the different satellite instrument

scenarios that have been computed from the time series of highest signals. To understand the numbers, it should be noted that

a plume pixel would be detectable when the SNR is larger than 2.3, i.e. z(q) = 2.3 for q = 99%. For Berlin, the CO2 SNRs are

below this detection limit for all noise levels while NO2 SNRs are above the limit. For the two power stations, SNRs are above25

the detection limit both for the CO2 and NO2 instrument scenarios, but SNRs for the NO2 instrument scenarios are always

larger.

Based on the SNRs, the NO2 plumes should be well detectable. For Berlin, the detection of the CO2 plume with the CO2

instrument will often be challenging due to low SNRs. The CO SNRs are always much smaller than those for CO2, making a

CO instrument with the given specifications little suitable for the purpose of plume detection. In the following, we therefore30

only investigate the potential benefit of auxiliary NO2 observations.

3.3 Plume detection algorithm

The plume detection algorithm was applied to the CO2 plumes of Berlin and Jänschwalde for different instrument scenarios.

The probability q was set to 99% and neighborhood sizes of 37 and 5 were selected for Berlin and the power stations, respec-

tively. In the case of Sentinel-5, the corresponding neighborhood sizes were set to 5 and 1 due the larger pixels of this satellite.35

Based on an analysis of the positive predictive values (PPV), these neighborhood sizes were found most suitable for detecting

the city and power plant plumes (Kuhlmann et al., 2019). For Berlin, twenty synthetic satellite images were created for each

single overpass with different patterns of random noise. The plume detection algorithm was subsequently applied to each image

and the results were averaged to obtain more robust results independent of the selected noise pattern. For Jänschwalde, only

one synthetic satellite image was created for each overpass, because no model tracer was available to compare the results with40

a true plume.
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Figure 8. Example of plume detection with CO2M’s CO2 and NO2 instrument and Sentinel-5’s NO2 instrument on 21 April 2015. Signif-
icant pixels detected by the algorithm are highlighted as black crosses. The outlines of the true CO2 and NO2 plumes based on the XBER

tracers are overlaid as solid and dashed lines, respectively. (a) Low-noise CO2 instrument. (b) high-noise CO2 instrument. (c) High-noise
NO2 instrument on the CO2M satellite. (d) NO2 instrument on Sentinel-5.

3.3.1 Examples of detected plumes from Berlin

Figure 8 shows the CO2 and NO2 plumes of Berlin on 21 April 2015 observed by CO2M and Sentinel-5 for different instrument

scenarios. The outlines of the real plumes are overlaid as solid and dashed lines for CO2 and NO2, respectively. Since the CO2

instruments have a lower cloud threshold, a band of cirrus clouds is obscuring the plume in the CO2 observations but not45

in NO2. Successfully detected pixels are shown as black crosses and the number of detected pixels (median of all 20 noise

realizations) are presented in the legend. On average, a CO2 instrument detects 116±46, 48±40 and 24±30 pixels with noise

scenarios σVEG50 of 0.5, 0.7 and 1.0 ppm, respectively (Fig. 8a and b). The number of true positives is slightly smaller having

on average two false positive pixels. Consequently, the PPV is high, ranging between 0.85 and 0.99 for high and low noise,

respectively.50

For the NO2 measurement the band of thin cirrus clouds is not an issue. The NO2 instrument can therefore detect a much

larger number of pixels, i.e., 1242±99 and 1203±155 in the case of the low and the high noise scenarios, respectively (Fig. 8c).
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Figure 9. (a) Example of 27 February 2015 where plume detection with a CO2 instrument fails because of pronounced horizontal gradients
in the CO2 background field. (c) Example of 2 July 2015 where the plume detection fails due to small CO2 signals as a result of high wind
speeds. In both cases, the plume can readily be detected with a high noise NO2 instrument (panels b and d).

On average, the fraction of FP is relatively large and the PPV is only 0.80±0.05 and 0.77±0.10 for the low and high noise

scenarios, respectively. The small PPV is caused by interference with the plume of Jänschwalde, which is just south of the

plume of Berlin. For cases where no neighboring plumes have been detected falsely with the NO2 instrument, the spatial

match between CO2 and NO2 plumes is generally high, suggesting a high degree of spatial overlap between the CO2 and NO2

plumes.

The Sentinel-5 NO2 instrument is also able to detect the CO2 plume with 879±114 CO2M pixels, but since it is measured

two hours earlier, the NO2 plume seen by Sentinel-5 (dashed line in Fig. 8d) is slightly shifted with respect to the CO2 plume5

(solid line). As a consequence, the PPVs is low (0.60±0.04).

Figure 9 presents two examples where the CO2 instrument fails to detect the CO2 plume. In Fig. 9a, the CO2 field has a

pronounced spatial gradient resulting in a high variance of the background. This gradient is not present in the much shorter

lived trace gas NO2 making it possible to detect the plume using an NO2 instrument (Fig. 9b). Similar situations occur in

roughly 20% of cloud-free swaths. Figures 9c and d show a second example where the CO2 instrument cannot detect the10
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Figure 10. Examples of comparing plume detection between the Sentinel-5 and CO2M’s NO2 instruments (a, b) Due to time-lag of two
hours, the scene is cloudy during the Sentinel-5 overpass but not during the CO2M overpass (3 December 2015). (c, d) The plume position
clearly changed between the two overpasses (17 June 2015).

plume, because the signal is very weak due to strong winds. Owing to its better SNR, the NO2 instrument is able to detect the

plume also in this situation.

Figure 10 presents two examples comparing the NO2 plume observed by Sentinel-5 to the CO2 plume observed two hours

later by CO2M satellite. In the first example (panels a and b), Sentinel-5 fails to detect any plume due to clouds, which have

largely disappeared by the time of the CO2M overpass. In the second example, both Sentinel-5 and the CO2M satellite detect15

a plume of similar size, but the Sentinel-5 plume is significantly displaced due to changes in the prevailing winds between the

two overpasses.

3.3.2 Number and sizes of detected Berlin plumes

To count the number of plumes detectable under the different instrument scenarios, we analyze the fifty plumes observed by a

constellation of six satellites, which we had classified in Sect. 3.1 as being potentially “useful” based on the idealized tracer20

XBER having more than 100 pixels above a threshold of 0.05 ppm. Table 7 summarizes the results in terms of number and
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Table 7. Number of CO2 plumes from Berlin and 5th, 50th and 95th percentiles of the number of detected CO2 pixels (TP if PPV ≥ 0.8
and cloud fraction < 1%) for a constellation of six CO2M satellites or one Sentinel-5 satellite. The maximum number of detectable plumes
would be 50, corresponding to all potentially useful plumes with at least 100 CO2 pixels with values of the tracer XBER above a threshold
of 0.05 ppm.

Instrument scenario Plumes with ≥100 CO2 pixels Plume size at percentile
number percentage (%) 5th 50th 95th

CO2 low noise 16±1 32±3 0 5 323
CO2 medium noise 10±1 20±3 0 3 261
CO2 high noise 6±1 12±2 0 7 181
NO2 low noise 34±1 68±2 52 294 600
NO2 high noise 35±2 70±3 50 279 527
NO2 Sentinel-5 10±2 20±3 0 140 396

size of the detected plumes. A plume was only counted as detected when at least 100 CO2 pixels were correctly detected (true

positives) and when at least 80% of the detected pixels were true positives (PPV ≥ 0.80). The PPV threshold was found useful

for removing plumes interfering with others or plumes shifted due to the earlier overpass time of Sentinel-5.

Table 7 shows that the CO2 instruments detect significantly fewer plumes than the NO2 instruments. Depending on instru-25

ment noise scenario, the CO2 instruments detect plumes with more than 100 pixels with a success rate of only 12% to 32%,

while for the NO2 instruments the success rates are 68% to 70%. Surprisingly, the NO2 instrument with low noise performs

slightly worse than the high noise instrument. This is an artifact of the algorithm often detecting small plumes not related to

emissions from Berlin in the case of a low-noise instrument. The Sentinel-5 NO2 instrument detects 20% of the plumes, thus

only half the success rate of the NO2 instrument on the CO2M satellite. The main reason for this low success rate is the spatial30

mismatch of the plumes due to the two hours difference in overpass times.

Figure 11 shows the number of plumes per month with at least 100 detected pixels for different constellations between

one and six satellites for the CO2 low noise and the NO2 high noise scenario. The number of plume detections per month is

small and therefore highly sensitive to the specific orbit configuration. For example, two satellites seem to detect more plumes

than three, but this result is caused by an unfavorable orbit for observing Berlin for the constellation with three satellites and35

unfavorable cloud cover as already discussed earlier. The standard deviation was estimated from the number of detectable

plumes using satellites with different starting longitudes (i.e. east-west displacements of all orbits). The figure shows that

the number of observed plumes generally increases with the number of satellites as expected, but statistical noise can mask

the increase from one constellation to the next. The figure confirms the much lower success rates of the CO2 instruments as

compared to the NO2 instruments as expected from the computed signal-to-noise ratios.

3.3.3 Detection of plumes from power stations

There are six major power plants in the model domain: Jänschwalde, Boxberg, Schwarze Pumpe, Lippendorf, Turow and

Patnow. Because no model tracer was defined for individual power plants but only for the sum of all of them, the true plume
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Figure 11. Number of detected plumes with at least 100 pixels (TP≥100 and PPV≥0.80) for one to six satellites with the (a) CO2 low noise
and (b) NO2 high noise scenario. Error bars were estimated from all available satellites with different equator starting longitudes.

Table 8. Number of plumes detected for Jänschwalde with six satellites. The number of plumes are provided for plumes with at least 10
detected CO2 or NO2 pixels and in addition with at least 10 CO2 pixels (cloud cover <1%). In both cases, plumes were included where
neighboring plumes were detected in addition to Jänschwalde, i.e. detection with a large number of false positives (e.g. Fig. 13c). These
plumes are also shown separately. The classification uncertainty is about ±5 plumes. The neighborhood size was set to ns = 5.

Instrument Number of plumes with
scenario ≥ 10 detected pixels ≥ 10 CO2 pixels large number of false positives

CO2 low noise 44 42 7
CO2 medium noise 42 40 6
CO2 high noise 41 40 4
NO2 low noise 90 68 38
NO2 high noise 91 68 34

of an individual power plant is not known. Therefore, we applied a visual inspection to identify those plume detections which5

erroneously included neighboring plumes. Furthermore, we limit the analysis to Jänschwalde.
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(a) (b)

(c) (d)

Figure 12. Example of plume detection for Jänschwalde power plant on 2 November 2015 using (a, b) the CO2 instrument with σVEG50 of
0.5 and 1.0 ppm, (c) the NO2 instrument with the high noise scenario and (d) the NO2 instrument on Sentinel-5.
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(a) (b)

(c) (d)

Figure 13. Example of plume detection for Jänschwalde power plant on 17 February 2015 using (a, b) the CO2 instrument with σVEG50 of
0.5 and 1.0 ppm, (c) the NO2 instrument with the high noise scenario and (d) the NO2 instrument on Sentinel-5
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As an example, Fig. 12 shows the successful detection of the CO2 plume of Jänschwalde on 2 November 2015 by different

instruments. Since CO2 emissions of Jänschwalde are high with 33.3 Mt CO2 yr−1, the XCO2 signal is very strong and can be

detected well even with a high noise instrument (σVEG50 = 1.0 ppm). With low noise (σVEG50 = 0.5 ppm) the weaker plumes of

Schwarze Pumpe and Boxberg are visible as well. The NO2 instrument detects the four plumes in the region well. On this day10

also the Sentinel-5 NO2 instrument successfully detects the plume of Jänschwalde and other point sources. Figure 13 presents

a second, more challenging example for 17 February 2015. The CO2 instrument successfully detects the plume with 0.5 ppm

uncertainty, but with 1.0 ppm uncertainty, the number of detected pixels is likely too small to be useful for emission estimation.

The reason for the low number of detected pixels in this case is the strong horizontal gradient in the CO2 background. The NO2

instrument detects the plume, but because the NO2 plume of Jänschwalde overlaps with neighboring plumes, these plumes are15

erroneously assigned to Jänschwalde as well. At the coarser resolution of Sentinel-5 the plumes of the individual power plants

can hardly be separated and, moreover, the time difference of two hours results in a plume location that is shifted with respect

to the plume seen by the CO2M satellite.

Table 8 summarizes the results of the plume detection for Jänschwalde under the different instrument scenarios. It shows

the number of detected plumes with at least 10 pixels and in addition, the number of plumes with at least 10 valid CO2 pixels20

(cloud cover <1%). Note that in the case of the much narrower plumes from power plants, fewer pixels are required to form

a useful plume. We classified detections that include large parts of the background as failed, but still counted detections that

include neighboring plumes as successful (e.g. Fig. 13c), because they successfully identified the location of the plume. Since

the classification is not always unambiguous, we assigned an uncertainty of about ±5 plumes at most.

In the year 2015, the number of detectable plumes with more than 10 pixels for a constellation of six satellites was between25

40 and 45 for a CO2 instrument with σVEG50 of 0.5, 0.7 and 1.0 ppm. At the same time, the NO2 instrument detected about

90 plumes for the low and high noise scenario. When only plumes with more than 10 cloud-free CO2 observations were

considered, the number was reduced to about 70 plumes. For a smaller number of satellites, the number of detectable plumes

would be correspondingly smaller. The NO2 instrument detects more plumes because of its lower sensitivity to clouds, which

makes it possible to trace the plume to the source even for partly cloudy scenes. On the other hand, the NO2 instrument30

often detects overlapping plumes (e.g. Boxberg and Schwarze Pumpe), because the instrument is much more sensitive to small

signals further away from the origin than the CO2 instrument. The mean plume size was about 100 pixels for the low noise

CO2 instrument. The plumes detected with the high noise CO2 instrument were about half the size. The NO2 instruments

detected a similar number of CO2 pixels as the low noise CO2 instrument, but when all detected pixels are counted the number

of pixels doubles.35

4 Discussion

4.1 Comparison with previous studies

In this study we investigated whether and how frequently the CO2 plume of Berlin and power stations can be detected by

different constellations of satellites using either CO2 observations alone or in combination with observations of the co-emitted

28



trace gases CO and NO2. To address the question, high-resolution CO2, CO and NO2 fields were simulated with the COSMO-40

GHG model for the year 2015 and used to generate synthetic XCO2, CO and NO2 satellite observations for Sentinel-5 and

a constellation of CO2M satellites. Similar OSSEs studies were conducted by Pillai et al. (2016) and Broquet et al. (2018)

for Berlin and Paris, respectively, as part of the LOGOFLUX study (Bacour et al., 2015). However, their simulations did not

include NO2 and CO fields. A fundamental difference of our study compared to previous studies is the realistic, i.e. not as a

random noise, account for transport model errors in the present study, where the location of the plume is not taken from the45

model but detected in the satellite image using either CO2 or NO2 observations. For this reason, the focus of this paper is

on the detectability of the plume, while Pillai et al. (2016) and Broquet et al. (2018) focused on the inversion, which we will

describe in a follow-up publication.

Pillai et al. (2016) simulated CO2 fields with the WRF-GHG model with 10 × 10 km2 spatial resolution for the year 2008.

The resolution was relatively low compared to the 1.1 × 1.1 km2 resolution used in our study. They used CO2 emissions from50

the EDGAR inventory (Version 4.1), which are more than twice as high as the emissions reported in the inventory of the city

of Berlin as mentioned earlier. A consequence of the unrealistic high emissions are higher CO2 signals (0.80 - 1.35 ppm) for

Berlin than in our study (0.16 - 1.03 ppm, see Table 5). Note that the signal strength also depends on the spatial resolution, but

our XCO2 signals were computed for a local mean (ns = 37, i.e. 148 km2 spatial resolution) that is comparable to the model

resolution used by Pillai et al. (2016). For Paris, Broquet et al. (2018) conducted simulations with the CHIMERE atmospheric55

transport model with 2 km spatial resolution. CO2 emissions for the greater urban area were 40-50 Mt CO2 yr−1 that resulted

in a XCO2 signal of ~1 ppm, quite consistent with the plume signals reported here.

For Berlin, we estimated that 3 to 13 potentially useful CO2 plumes (defined as plumes with at least 100 cloud-free pixels

above a threshold of 0.05 ppm) would be observable, but not necessarily detectable, during one year by a single CO2M satellite

with a 250-km wide swath. Pillai et al. (2016) identified 41 potentially useful orbits for estimating emissions with a 500-km60

wide swath. Although a direct comparison of these two numbers is difficult because of the different swath widths and the

different definitions of “usefulness”, we can still conclude that our study identified significantly fewer plumes than Pillai et al.

(2016) even after halving their number to account for their wider swath.

Clouds have a strong impact on the number of cloud-free observations. A major difference between Pillai et al. (2016) and

our study are the different approaches for masking cloudy observations. Pillai et al. (2016) used the MODIS cloud mask product65

(MOD35_L2) while we used cloud masks derived from cloud fractions simulated with the COSMO-GHG model. To compare

these two approaches, we computed the number of cloud-free pixels using the MODIS cloud mask product (MOD35_L2),

the MODIS cloud product (MOD06_L2) and COSMO-GHG simulations. The COSMO-GHG cloud fractions were spatially

averaged over the MODIS pixels. The comparison shows that monthly fractions of cloud-free pixels agree well between masks

computed from COSMO-GHG and MODIS cloud fractions for both a 1% and 30% cloud fraction, while the cloud-free pixels70

based on the MODIS cloud mask product are about twice as high (Figure S1 in the supplement). The larger fraction of cloud-

free observations obtained from the MODIS cloud mask product is also consistent with a validation study showing that the

product is not very sensitive to optically thin clouds (Ackerman et al., 2008). The differences likely explain the different number
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of potentially useful orbits between Pillai et al. (2016) and our study. It also suggests that Pillai et al. (2016) overestimate the

number of potentially useful orbits while our results are likely more accurate.75

Further differences are to be expected because small plumes with less than 100 pixels were excluded in our case and because

of different meteorology, especially cloud cover and wind speed, for the different simulation periods. In addition, Pillai et al.

(2016) used higher emissions and did not consider vertical profiles of emissions, which results in stronger and correspondingly

larger plumes, which are less likely to be fully covered by clouds (Brunner et al., 2019).

Since the number of “useful” plumes observable by a satellite critically depends on its orbit (with one or two overpasses80

over Berlin per 11-day repeat cycle), the number of useful plumes per satellite may easily be overestimated if only an optimal

orbit is considered. Comparing different equator starting longitudes as applied in this study reduces the sensitivity to a specific

orbit selection.

4.2 Benefits of CO and NO2 measurements

Out of 50 potentially useful plumes, many plumes were too weak to be easily seen by the CO2 instrument. Plumes of Berlin85

with more than 100 detectable pixels could only be detected in about 12% of cloud-free cases with a high-noise instrument

(σVEG50 = 1.0 ppm) and about 32% with a low-noise instrument (σVEG50 = 0.5 ppm). The success rate of 32% for an imperfect

but still precise instrument (σVEG50 = 0.5 ppm) would only allow for 2 to 3 favorable plume observations per year and satellite.

These numbers illustrate the challenge and call for a larger constellation or a wider swath to increase the opportunities for plume

detection and emission quantification, and for a CO2 instrument with as low noise as possible.90

Adding an NO2 instrument greatly enhanced the opportunities for detecting the CO2 plumes (68%-70% of cloud-free cases),

since the NO2 plumes largely overlap with the CO2 plumes and since the signal-to-noise ratio is better for the NO2 instrument.

Furthermore, variability in the background is less important than for CO2, and the NO2 observations are less sensitive to clouds.

Nevertheless, the number of detectable plumes with an NO2 instrument remained small with 5 to 6 per satellite and year. A

CO instrument with specifications similar to the CO instrument on Sentinel-5 had a smaller signal-to-noise ratio than the CO295

instrument. Such an instrument would add little useful information over a developed region like Germany where combustion

processes are well controlled and CO:CO2 emission ratios correspondingly small. The question whether CO signals would be

sufficiently high in other regions of the globe was outside the scope of this study.

The Sentinel-5 NO2 instrument is well suited to detect the NO2 plume of Berlin. However, the different overpass times of

the CO2M satellite (11:30 local time) and Sentinel-5 (9:30 local time) frequently resulted in a significant spatial mismatch100

between the plumes, which reduced the number of matching plumes to 20% of the cloud-free cases. This is similar as for the

CO2 instrument with medium noise but three to four times lower than in the case of an NO2 instrument placed directly on the

CO2M satellite.

The detection of plumes from strong point sources like the power plant Jänschwalde was easier than the detection of city

plumes, because point sources tend to have stronger and more confined CO2 plumes for the same amount of emitted CO2. In

addition, the number of pixels required to map out such a plume was smaller, with only 10 detectable pixels being typically

sufficient for identifying the main part of the plume. With a constellation of six satellites, about 40-45 plumes from Jänschwalde5
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(33.3 Mt CO2 yr−1 emissions) with more than 10 detectable pixels could be observed per year even with a high-noise CO2

instrument. This corresponds to 6 to 8 plumes per satellite and year, which is significantly better than for Berlin with the

best instrument. The number of detectable plumes further increased by about 50% with the NO2 instrument (about 70 plumes).

Smaller point sources with emissions of about 10 Mt CO2 yr−1 (e.g. Lippendorf, Schwarze Pumpe and Turow) were sometimes

detectable with a low-noise CO2 instrument, but could also be detected with an NO2 instrument.10

Our study did not include systematic errors in the satellite observations from aerosols, clouds and surface reflectance, which

can result in spatial patterns resembling plume structures and therefore complicate plume detection. We therefore might over-

estimate the number of detectable plumes. Although systematic errors affect all satellite products, the effect would be more

severe for XCO2 than for NO2 due to the much smaller signal-to-noise ratios. How much aerosols enhance measurement

uncertainties and correspondingly reduce the ability to detect plumes cannot be quantified here, but will be studied, for ex-15

ample, in a study on the use of aerosol information for estimating fossil fuel CO2 emissions (AEROCARB) performed by a

consortium led by SRON.

Our study could not simulate detailed NOX chemistry due to the high computational costs. We can therefore not rule out a

larger mismatch between some CO2 and NO2 plumes than simulated here, for example, because of different NO2 decay rates

at different altitudes. However, Reuter et al. (2019) found no obvious mismatch when comparing co-located CO2 and NO220

plumes from OCO-2 and TROPOMI observations. A follow-up study for quantifying the effect of NOx chemistry would be

certainly desirable.

Since the shape and extent of the plume can be imaged more accurately with an NO2 instrument on the CO2M satellites,

the NO2 instrument can also be used to assess and correct transport simulations and improve these simulations through data

assimilation.25

4.3 Limitations of current plume detection algorithm

The main objective of this study was to compare the basic detectability of CO2 plumes with CO2, NO2 and CO observations.

Our plume detection algorithm was able to detect weak signals well below the single sounding precision, but tended to fail

when the CO2 or NO2 field was complex, for example when several plumes from adjacent sources overlapped or when the

background had a spatial gradient. These cases can be easily identified by a trained human as done in this study, but will have30

to be automatized for application at the global scale, for example by applying machine learning methods.

In our study area, the attribution of detected enhancements to sources was relatively simple, because the locations of the

sources were known and plumes were rarely overlapping with plumes from other sources. Source attribution can be more

challenging when source location are not precisely known or when several sources are close to each other. For such cases, the

algorithm will have to be extended to be operationally applicable.35

The algorithm assumed accurate knowledge of the mean and variance of the background, which were estimated directly

from a simulated background tracer. It is possible that due to this optimistic assumption the number of detectable plumes was

overestimates. On the other hand, mean and variance were computed in a rather simple way from a large window centered

on the source (200×200 km2 for Berlin). In the present algorithm, spatial gradients in the background field contributed to the
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variance of the background and thus reduced the ability for plume detection. However, such gradients, if sufficiently smooth,

could potentially be accounted for in a more advanced algorithm through spatial interpolation of the background surrounding

the plume.

When applied to real satellite observations the background and its variance could either be taken from a model or estimated5

directly from the satellite observations. Although atmospheric transport models have large uncertainties at the level of indi-

vidual plumes, they could provide reasonable estimates of the CO2 and NO2 background. Likely the best option is to derive

the background directly from the satellite data, which requires further development of the plume detection algorithm presented

here. An improved algorithm could start with an a priori estimate of plume location and background and would then be updated

iteratively to improve both plume location and background. A model could be used here to determine a suitable a priori plume10

location and background. An improved version of the algorithm presented in this paper has the potential for increasing the

number of detectable plumes per satellite as well as the number of CO2 pixels per plume.

5 Conclusions

In this paper the potential for detecting CO2 plumes of the city of Berlin and neighboring power stations was investigated for

the Copernicus anthropogenic CO2 monitoring mission (CO2M), which is a proposed constellation of CO2 satellites of the15

European Copernicus program. Since the interference of biospheric CO2 makes the identification of weak anthropogenic CO2

plumes challenging, plumes were detected either from CO2 observations or from observations of the co-emitted trace gases

CO and NO2. The study used high-resolution atmospheric transport simulations to create realistic CO2, CO and NO2 fields at

1×1 km2 horizontal resolution to generate synthetic observations of XCO2, CO and NO2 for constellations of up to six CO2M

satellites and one Sentinel-5 satellite.20

For the city of Berlin about 50±5 potentially “useful” CO2 plumes were identified for the year 2015 for a constellation

of six satellites, i.e. about eight plumes could be observed by a single CO2M satellite per year. This number is somewhat

smaller than reported in earlier studies (Bacour et al., 2015; Pillai et al., 2016), mainly because masking cloudy pixels based

on the simulated cloud fields leads to less cloud-free observations than using the MODIS cloud mask product. Many of these

fifty potentially observable plumes were too weak to be easily detectable by the CO2 instrument. Plumes with more than 10025

detectable pixels could only be identified in 12% and 32% of cloud-free cases with a high-noise (σVEG50 = 1.0 ppm) and low-

noise CO2 instrument (σVEG50 = 0.5 ppm), respectively. A CO instrument with the uncertainty scenario used in this study had

a signal-to-noise ratio that was lower than for the CO2 instrument and was therefore not suitable for detecting CO2 plumes. On

the other hand, adding an NO2 instrument significantly increased the number of detectable plumes (68%-70% of cloud-free

cases), because CO2 and NO2 plumes generally overlapped well. The better performance of the NO2 instrument was partly30

due to the higher signal-to-noise ratio and partly due to the lower sensitivity to clouds. The Sentinel-5 instrument was also

well suited to detect the NO2 plumes, but the different overpass times of the CO2M satellites (11:30 local time) and Sentinel-5

(9:30 local time) often resulted in a large spatial mismatch.
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Strong point sources like the power plant Jänschwalde could be detected more easily with the CO2 instrument (40-45

plumes), because the plumes were spatially more confined and the signals were stronger. The number of detectable plumes35

increased further with the NO2 instrument by about 50% (about 70 plumes). The Sentinel-5 instrument could also detect the

CO2 plume, but could not always distinguish the plumes from neighboring power plants due to the lower spatial resolution. In

addition, the spatial mismatch between CO2M and Sentinel-5 was large due to the 2-hour time difference between overpasses.

Smaller point sources with emissions of about 10 Mt CO2 yr−1 were only detectable with a low-noise CO2 instrument, but

were in most cases readily detectable with an NO2 instrument.40

In this study, power plant plumes could be detected even with an NO2 instrument with high noise. The power plants were

equipped with wet scrubber technology for reducing SO2 and NOx emissions but not with the latest available technology.

Future updates using selective catalytic or non-catalytic reduction have the potential to further reduce NOx emissions by 20

to 50% (Lecomte et al., 2017), which would place higher requirements on the NO2 instrument and would make the low noise

scenario more beneficial.45

This study demonstrates the huge benefit of adding an NO2 instrument to a constellation of CO2M satellites for detecting

city plumes and weaker point sources. The major advantages of the NO2 instruments are the higher signal-to-noise ratio and

the lower sensitivity to clouds. Therefore, adding an NO2 instrument is highly recommended and the low-noise instrument is

preferable for detecting also weaker and cleaner plumes in terms of NO2 emissions. Furthermore, development of an advanced

plume detection algorithms that can detect CO2 plumes reliable will be essential for the application on an operational satellite.50
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