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Abstract 15 

Skin temperature (Tskin) derived from infrared sensors on board satellites provides a 16 

continuous view of Earth’s surface day and night and allows for the monitoring of 17 

global temperature changes relevant for climate trends. Tskin from the Infrared 18 

Atmospheric Sounding Interferometer (IASI) has not been properly exploited to date 19 

to assess its long-term spatio-temporal variability and no current homogenous Tskin 20 

record from IASI exists. In this study, we present a fast retrieval method of Tskin 21 

based on an artificial neural network from a set of IASI channels selected using the 22 

information theory/entropy reduction technique. We compare and validate our IASI 23 

Tskin product with that from EUMETSAT Level 2, ECMWF Reanalysis ERA5, SEVIRI 24 

land-surface temperature products, as well as ground measurements. Our results 25 

show good correlation between the IASI neural network product and the datasets 26 

used for validation, with a standard deviation between 1 and 4 °C. This method can 27 

be applied to other infrared measurements, and allows for the construction of a 28 

robust Tskin dataset, making it suitable for trend analysis. 29 

1. Introduction 30 

 31 

Land surface temperature, radiometric temperature, or as used hereafter, skin 32 

temperature Tskin depends on the energy fluxes between the surface and the 33 

atmosphere. It is an important factor for studying the Earth’s energy balance, 34 

convection at the surface, monitoring droughts and in numerical weather prediction 35 

(Goldberg et al., 2003; Zhou et al., 2003; Rhee et al., 2010). Although in situ 36 

observations play a major role in measuring relevant climate change indicators, local 37 

measurements are sparse and unevenly distributed. Global view observations are 38 

now routinely available from remote sensors on satellites, providing data from which 39 

https://doi.org/10.5194/amt-2019-185
Preprint. Discussion started: 5 June 2019
c© Author(s) 2019. CC BY 4.0 License.



2 
 

climate variables, such as Tskin can be derived using appropriate retrieval methods. 40 

The World Meteorological Organization (WMO) Global Climate Observing System 41 

(GCOS) program, aims at identifying requirements for the global climate monitoring 42 

system. It recommends 54 key variables (https://gcos.wmo.int/en/essential-climate-43 

variables/), called Essential Climate Variables (ECVs), as the atmospheric, land, and 44 

ocean components of this monitoring system (GCOS, 2017). Near-surface 45 

temperature and skin temperature are both ECVs. In the thermal infrared spectral 46 

range, satellites do not measure the well-known thermodynamic near-surface air 47 

temperatures (T2m); instead, they measure the skin temperature. It is called “skin” 48 

temperature since it corresponds to the radiation emitted from depths less or equal to 49 

the penetration depth at a given wavelength (Becker and Li, 1995), which can be as 50 

small as 10-20 micrometers at the ocean surface (McKeown et al., 1995). The 51 

relationship between Tskin and T2m is complex: differences between Tskin and T2m can 52 

reach several to ten or more degrees under cloud-free, low wind speed conditions, 53 

and is usually smaller under cloudy conditions or when solar insolation is low (Prigent 54 

et al., 2002; 2003; Good, 2016).  55 

Satellite retrievals of skin temperatures are available from a variety of polar-orbiting 56 

and geostationary platforms carrying microwave and infrared sensors, such as the 57 

Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary 58 

Meteosat Second Generation (Trigo et al., 2008), the Advanced Very High Resolution 59 

Radiometer (AVHRR) sensors onboard the different NOAA polar orbiting platforms 60 

and more recently on the suite of Metop satellites (Jin, 2004), the Moderate 61 

Resolution Imaging Spectroradiometer (MODIS) on board of the Terra and Aqua 62 

satellites (Wan and Li, 1997), the Atmospheric InfraRed Sounder (AIRS, Ruzmaikin 63 

et al., 2017), on board the Aqua satellite, and from the Infrared Atmospheric 64 

Sounding Interferometer (IASI) on board the three Metop satellites since 2007, 2012 65 

and 2018 (Siméoni et al., 1997; Blumstein et al., 2004; Hilton et al., 2012).  66 

With a polar orbit, IASI on Metop revisits all points on the Earth’s surface twice a day 67 

at around 9:30 am and 9:30 pm local time. IASI is designed for numerical weather 68 

prediction, climate research and atmospheric composition monitoring (Collard et al., 69 

2009; Clerbaux et al., 2009; Hilton et al., 2012). It measures radiances in the thermal 70 

infrared spectral range between 645 and 2760 cm-1 corresponding to 8461 spectral 71 

channels, every 0.25 cm−1, with an instrument response function of 0.5 cm−1 half-72 

width after apodization. With more than eleven years of data that are now readily 73 

available, the instrument provides more than 1.2 million radiance spectra per day with 74 

a footprint on the ground of 12 km diameter pixel (at nadir). IASI scenes are reduced 75 

by around one third when clear sky filtering (<10% cloud coverage) is applied, a 76 

necessity for accessing information at the surface. IASI has been used for 77 

atmospheric composition sounding, allowing near-real-time mapping of chemical 78 

species and aerosols, contributing to air traffic safety, and improving the 79 

understanding of atmospheric transport processes (e.g., Coheur et al., 2009; Clarisse 80 

et al., 2011; Clerbaux et al., 2015).  81 

https://doi.org/10.5194/amt-2019-185
Preprint. Discussion started: 5 June 2019
c© Author(s) 2019. CC BY 4.0 License.



3 
 

The interest in exploiting highly spectrally resolved IASI data to study climate 82 

variability has been previously highlighted (Clerbaux et al., 2003; Brindley et al., 83 

2015; Smith et al., 2015). However, relatively little has been done to generate 84 

systematic records for climate variables with IASI, although the spectral signature of 85 

climate variability and Tskin anomalies have been studied for similar instruments (e.g. 86 

AIRS, Brindley et al., 2016; Susskind et al., 2019). The instrument is relatively new 87 

(radiances are provided since July 2007) and the climate community is still not fully 88 

aware of its potential. It is also computationally demanding to systematically process 89 

the large amount of data generated by the instrument. However, since IASI is 90 

planned for flying at least 18 years, with the 3 instruments built at the same time and 91 

flying in constellation, continuity and stability are insured, and the potential of 92 

constructing a long-term climate data record is becoming evident. In addition, it is 93 

worth noting that the long-term continuation of the program is also guaranteed, as the 94 

new generation of Infrared Atmospheric Sounding Interferometers (IASI-NG) 95 

(Clerbaux and Crevoisier, 2013; Crevoisier et al., 2014), will be launched on three 96 

successive Metop - Second Generation satellites within the 2022-2040 timeframe.  97 

IASI data are disseminated by EUMETSAT (EUropean organization for the 98 

exploitation of METeorological SATellites) (Klaes et al., 2007). It processes a Tskin 99 

product from the series of the Metop satellites for day-to-day meteorological 100 

applications. This Tskin product is derived from IASI upwelling radiances but also 101 

relies on other microwave instruments on board of Metop, particularly for cloudy 102 

scenes. This dataset is not homogeneous in time, neither for the Level 1C (L1C), 103 

radiances, nor for Level 2 (L2) operational products (e.g. temperature, humidity, 104 

cloud cover, etc.). Changes occurred with evolving versions of the processing 105 

algorithm (EUMETSAT, 2017a; EUMETSAT, 2017b), with the algorithm mostly stable 106 

after 2016. The Metop-A L1C record has been reprocessed back in time at 107 

EUMETSAT for the period 2007-2017, and is used in this work, and will be publically 108 

available in summer 2019. L1C data after 2017 are not reprocessed because they 109 

are assumed to be up to date. The Level 2 series has not yet been reprocessed back 110 

in time, which complicates the construction of a homogeneous Tskin data record from 111 

IASI.  112 

More generally, high volumes of data resulting from IASI present many challenges in 113 

data transmission, storage, and assimilation. One of the simplest methods for 114 

reducing the data volume is channel selection. The goal of this study is to present a 115 

fast and reliable method developed to retrieve Tskin from radiances using a limited set 116 

of radiances from the newly reprocessed IASI L1C data record in the thermal infrared 117 

in order to have a consistent and homogeneous product covering the whole IASI 118 

sounding period.  119 

The challenge is therefore to find the optimal set of channels from which skin 120 

temperature can be retrieved. In the following section 2, we present an approach 121 

based on entropy reduction (Rodgers, 1996; Collard, 2007) from which we deduce a 122 

set of 100 channels most sensitive to skin temperature from the IASI 8461 channels. 123 

The dataset is then used to retrieve skin temperature from IASI’s cloud-free 124 
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radiances using an artificial neural network (ANN). In section 3 we validate the 125 

product and we conclude this paper with a discussion in section 4 of the current 126 

challenges in validation and comparison of different Tskin products. 127 

2. Data and methods 128 

2.1. Choice of IASI spectral window for Tskin retrieval 129 

IASI uses three detectors to fully cover the spectral range that extends from 645 to 130 

2760 cm-1 (15.5 to 3.62 μm) with no gaps. To understand the spectral window that 131 

must be used for Tskin retrieval, we show in Figure 1, upper panel, a IASI typical 132 

cloud-free spectra, with the corresponding Jacobian (the sensitivity of the IASI 133 

brightness temperature to the skin temperature), as well as Signal to Noise Ratio 134 

(SNR), and radiometric noise. The recorded spectrum, with an example shown in red 135 

in the upper panel of Figure 1, in brightness temperature units, exhibits signatures 136 

associated with spectroscopic absorption/emission lines of molecules present along 137 

the optical path between the Earth’s surface and the satellite detectors. From these 138 

spectra, geophysical data such as temperature profiles and atmospheric 139 

concentrations of trace gases can be derived from selected spectral windows. 140 

Channels that are candidates for Tskin retrieval are therefore located in spectral 141 

windows with little interference from other absorbing/emitting molecules, and are also 142 

those where the Tskin Jacobians (blue line in upper panel) are the highest. These are 143 

the spectral ranges before and after the ozone band, i.e., 800-1040 cm-1 and 1080-144 

1150 cm-1, the small spectral window after the water vapor continuum at ~2150 cm-1 145 

and the spectral range > 2400 cm-1. 146 

147 

 148 
Figure 1. Upper panel: brightness temperatures for a random cloud-free spectrum 149 

(red). On the right axis, Tskin Jacobians in k/k (dark blue), signal-to-noise ratio 150 

obtained for a variation of Tskin of 0.1 k (orange), and IASI radiometric noise spectrum 151 

(grey), calculated using RTTOV (Saunders et al., 2018). Lower panel: Average 152 

emissivity over land (black), and sea (blue), with the corresponding standard 153 

https://doi.org/10.5194/amt-2019-185
Preprint. Discussion started: 5 June 2019
c© Author(s) 2019. CC BY 4.0 License.



5 
 

deviation in shaded colors around the lines. The shaded vertical strip shows the 154 

spectral window used for Tskin retrievals in this study. 155 

 156 

The window > 2400 cm-1, as well as that around ~2150 cm-1 may be contaminated by 157 

solar radiation during the day. In terms of SNR, the very important values of the 158 

radiometric noise at >2400 cm-1 induces a low value of the SNR. The spectral band 159 

at ~2150 cm-1 presents a slightly weaker performance than the spectral ranges 160 

around the ozone absorption band. These two spectral bands (~2150 and > 2400 cm-161 
1) are therefore not critical for the Tskin retrieval and are discarded.  162 

 163 

The lower panel of Figure 1 shows the average emissivity over land (in black) and 164 

sea (in blue). Emissivity is needed to calculate Tskin from the radiative transfer 165 

equation. In this work, we want to use a method without prior assumption on 166 

emissivity. Nevertheless, we should be careful with our choice of channels’ emissivity 167 

in our selected spectral window. We can see that on the right of the ozone band, 168 

around 1100-1200 cm-1, the variability of the emissivity, especially over land is much 169 

more important than the window between 750 and 970 cm-1, shown in the shaded 170 

rectangle in Figure 1, where also the noise is smaller, and the SNR higher. This 171 

makes this spectral window the best candidate for Tskin retrieval.  172 

 173 

2.2. Channel Selection based on Entropy Reduction 174 

 175 

We use an iterative method where channels are selected based on their ability to 176 

reduce the uncertainty of retrieving temperature. It was proposed by Rodgers (1996, 177 

2000), evaluated for IASI by Rabier et al. (2002) and applied by Collard et al. (2007) 178 

to Numerical Weather Prediction (NWP). 179 

The method has been rigorously studied and relies on evaluating the impact of the 180 

addition of single channels on a theoretical retrieval based on a figure of merit, such 181 

as the Entropy Reduction (ER), used in this study, and defined as follows: 182 

 183 

 𝐸𝑅 =
1

2
𝑙𝑜𝑔2 (

𝐵

𝐴
).     Eq. (1) 184 

 185 

𝐸𝑅 measures the probabilities of the ensemble of possible states in the retrieval, and 186 

is maximal if all the states have an equal probability. The lower the entropy of the 187 

ensemble, the better the retrieval. The channel that reduces this entropy emphasizes 188 

a particular state of the retrieval. Entropy reduction is a metric derived from 189 

information theory. In Eq. (1), 𝐴 is the analysis-error covariance matrix, and 𝐵 is the 190 

background/a priori error covariance matrix, with:  191 

 192 

    𝐴 = (𝐵−1 + 𝐻𝑇𝑅−1𝐻)−1,  Eq. (2) 193 

 194 

Where 𝐻 is the Jacobian matrix of Tskin and 𝑅 the covariance matrix of instrumental 195 

and radiative transfer noises. “External variables” such as water vapor or ozone can 196 
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contaminate a given candidate Tskin channel by absorbing in the targeted spectral 197 

range. This might affect the selection, and introduces an error that should be added 198 

to the 𝐴 matrix (Aires et al. 2016, Pellet and Aires, 2016). If those errors were not 199 

included in the background 𝐵 matrix, the quality of the selected channels might be 200 

artificially over-estimated. When this contaminating effect is defined explicitly, Eq. (2) 201 

is updated to: 202 

 203 

𝐴𝑉−1 = 𝐵𝑉
−1 + 𝐻𝑉

𝑡  . (𝑅 + 𝐻𝜈 . 𝐵𝜈 . 𝐻𝜈
𝑡)−1. 𝐻𝑉  Eq. (3) 204 

  205 

 206 

Where 𝑉 is the variable to be retrieved (Tskin) and 𝜈 is the external variable (e.g. 207 

ozone or water vapor). This equation is valid by making some assumptions, in 208 

particular that no correlation between 𝑉 and 𝜈 exists and that the impact of this 209 

external variable contamination on the channel is an error with Gaussian distribution 210 

with covariance matrix 𝐻𝜈
𝑡  . 𝐵𝜈 . 𝐻𝜈 . 211 

 212 

In most channel selection analyses, the errors from external variables (such as that 213 

of relative humidity or ozone) are not taken into account in the measurement of the 214 

information content of the candidate channel. Collard (2007) attempted to take into 215 

account the effects of trace gases not included in the radiative transfer simulation by 216 

inflating the observation errors for channels that showed sensitivity to the missing 217 

species. A more complete approach was adopted by Ventress and Dudhia (2014), 218 

who used climatological variability of atmospheric constituent species to model their 219 

effect on the radiances during the channel selection process.  220 

In this work, we explicitly consider the contamination effect in the selection process of 221 

dedicated Tskin related-channels. This refined methodology improves the 222 

representation of contamination effects from atmospheric species and therefore the 223 

reliability of the background error covariance matrix 𝐵. This matrix 𝐵 characterizes 224 

the quality of the a priori information and varies in space and time in order to account 225 

for its complex state-dependence. For this work, we derive a Gaussian 𝐵 matrix as: 226 

𝐵 = 𝐶𝑜𝑣(𝑥, 𝑦) = 𝐶𝑜𝑟𝑟(𝑥, 𝑦) ∙ 𝜎(𝑥) ∙ 𝜎(𝑦), where 𝜎 is the standard deviation of each of 227 

the variables to consider (Tskin, atmospheric temperature, relative humidity, and 228 

ozone) at the vertical level x and y. An uncertainty of 𝜎 = 2 k is chosen for Tskin as 229 

done in the study by Collard (2007). The covariance and correlation matrices of the 230 

background errors for relative humidity and ozone are calculated based on the widely 231 

used assumption that humidity (or ozone) error correlation between the vertical layers 232 

is close to the actual associated humidity (or ozone) correlation. We choose to have 233 

the covariance matrices 𝐵 for humidity and ozone based on the raw humidity and 234 

ozone correlation matrices, and an error variance (𝜎2) of 20% for humidity, and 30% 235 

for ozone on each vertical atmospheric layer. As humidity and ozone can impact Tskin 236 

channel selection, error along the vertical is needed for Tskin retrieval. 237 

An iterative method (Rodgers, 1996) is used to forwardly select the most informative 238 

channels. In order to speed up the computations, an efficient algorithm was 239 
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developed assuming that the observation errors are uncorrelated between channels. 240 

However, as the IASI radiances are apodized, and thus have highly-correlated errors 241 

between adjacent channels, a channel is not selected if its immediate neighbor is 242 

already chosen (Collard, 2007).  243 

The iterative procedure is initialized with 𝐴0 = 𝐵, and the Jacobian 𝐻 (which is 244 

constant during the iteration) is normalized with the instrumental noise covariance 245 

matrix 𝑅, as follows: 𝐻′ = 𝑅−1/2𝐻. 246 

According to Rodgers (1996), the updated analysis error covariance matrix at each 247 

iteration step 𝑖 can be calculated from the previous step 𝑖 − 1 as follows: 248 

𝐴𝑖 = 𝐴𝑖−1 −
(𝐴𝑖−1ℎ′)(𝐴𝑖−1ℎ′)𝑇

1 + (𝐴𝑖−1ℎ′)𝑇ℎ′
 249 

 250 

Where ℎ′ is the column vector equal to the row of 𝐻’ for the candidate channel. 251 

The ER change between two iterations can now be written as: 252 

𝛿𝐸𝑅 =
1

2
𝑙𝑜𝑔2(1 + ℎ′𝑇𝐴𝑖−1ℎ′) 253 

At each step, the channel that has the largest information content (measured as a 254 

reduction of the entropy of the corresponding Tskin retrieval when the candidate 255 

channel is used) is selected, given the information content of the previously selected 256 

channel(s). The channel selection starts with no channel selected, and sequentially 257 

chooses the channel with the highest information content in complement to the 258 

information from all the previously selected channels.  259 

The spectra and Jacobians used in this study were simulated using the last version of 260 

the Optimum Spectral Sampling (OSS) radiative transfer model (Moncet et al., 2008), 261 

using the Thermodynamic Initial Guess Retrieval (TIGR3) database (Chevallier et al., 262 

1998), and more detailed description on the atmospheric profiles, the radiative 263 

transfer code, and the Jacobians, can be found in Pellet and Aires (2018).  264 

Here, a channel selection is only performed over the spectral window of Tskin retrieval 265 

as was discussed in section 2.1, and is shown in Figure 2. The IASI spectral window 266 

was divided into 100 spectral subsets and a channel selection was applied to each. 267 

Using this method, we selected the best 100 channels in terms of information content 268 

and the resulting selection is listed in Table 1 and presented in Figure 2. The figure 269 

shows that most of the selected channels are between 760 and 980 cm-1. However, 270 

few channels are also selected for wavenumbers < 760 cm-1 since in this part of the 271 

spectrum, the atmospheric vertical levels are very correlated to one another and 272 

therefore information on the surface exists in these channels. 273 

 274 

Figure 2. The location of the 100 275 

selected channels using the ER 276 

method displayed on a IASI spectrum. 277 

 278 

 279 

 280 

 281 

7 
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 282 

 283 

 284 

 285 

Table 1. The 100 channels used for Tskin retrieval selected using the Entropy 286 

Reduction (ER) method. Channels are sorted from the highest to the lowest 287 

information content (top to bottom and left to right). 288 

Chann
el 

Wavenum
ber (cm-1) 

Chann
el 

Wavenum
ber 

(cm-1) 

Chann
el 

Wavenum
ber (cm-1) 

Chann
el 

Wavenum
ber (cm-1) 

1300 969.75 1038 904.25 853 858.00 682 815.25 

1282 965.25 1100 919.75 984 890.75 582 790.25 

1249 957.00 1001 895.00 862 860.25 630 802.25 

1272 962.75 1321 975.00 771 837.50 625 801.00 

1254 958.25 1209 947.00 759 834.50 574 788.25 

1294 968.25 1069 912.00 752 832.75 584 790.75 

1230 952.25 997 894.00 797 844.00 547 781.50 

1164 935.75 1070 912.25 745 831.00 551 782.50 

1267 961.50 921 875.00 775 838.50 565 786.00 

1194 943.25 962 885.25 801 845.00 516 773.75 

1179 939.50 1051 907.50 714 823.25 510 772.25 

1222 950.25 940 879.75 706 821.25 593 793.00 

1311 972.50 916 873.75 698 819.25 534 778.25 

1086 916.25 1114 923.25 844 855.75 484 765.75 

1157 934.00 950 882.25 726 826.25 472 762.75 

1172 937.75 869 862.00 810 847.25 488 766.75 

1142 930.25 1237 954.00 736 828.75 494 768.25 

1203 945.50 926 876.25 824 850.75 466 761.25 

1018 899.25 961 885.00 691 817.50 619 799.50 

1141 930.00 875 863.50 669 812.00 609 797.00 

1009 897.00 979 889.50 661 810.00 521 775.00 

1089 917.00 889 867.00 786 841.25 454 758.25 

1115 923.50 899 869.50 827 851.50 447 756.50 

1025 901.00 897 869.00 642 805.25 435 753.50 

1126 926.25 1052 907.75 650 807.25 429 752.00 

 289 

2.3.  Artificial Neural Network for Tskin retrievals 290 

Artificial neural networks (ANN) method is used to approximate the complex radiative 291 

transfer function that maps the radiances to skin temperature. The training dataset is 292 

constructed out of clear-sky (cloud cover <10%) Level 1C (L1C) IASI radiances over 293 

the 100 channels selected in section 2.2. We train our ANN with these IASI radiances 294 

but test two different datasets as output/target. In the first, we use the Tskin from the 295 

ERA5 reanalysis (Copernicus Climate Change Service, 2017) as output/target. Tskin 296 

is very sensitive to surface properties, which depend on local meteorological 297 

conditions (Good, 2016). To this end, a few dedicated ERA5 experiments were 298 

performed at ECMWF at a 12-minute time-step (as opposed to the publicly released 299 
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hourly Tskin product), each spanning a couple of days. The aim of these experiments 300 

is to increase the temporal resolution and therefore increase the performance of the 301 

neural network obtained. Four days in January and June 2018 are used for the 302 

training to represent seasonality. We interpolate ERA5 space/time grid to IASI’s 303 

observations (at 9:30 AM and PM local time). We provide more information on the 304 

ERA5 reanalysis in section 3. The resulting training dataset is formed out of around 305 

5.9 x 105 scenes. 306 

In the second training, we use EUMETSAT L2 Tskin product as target. EUMETSAT 307 

Tskin is derived from Metop observations and the IASI instrument. They are therefore 308 

collocated in space and time. Since major and minor updates on the processing 309 

algorithms of the L1C and L2 EUMETSAT product took place in the past 10 years 310 

(EUMETSAT, 2017a; 2017b), the ANN training in this study uses a recent and 311 

coherent year, 2018. To represent the seasonal variability, scenes from January 1st, 312 

April 1st, July 1st, and October 1st 2018 are used. The resulting training dataset is 313 

formed out of around 9 x 105 scenes for EUMETSAT. More information on the 314 

EUMETSAT Tskin product is provided in section 3. 315 

Since IASI has more frequent overpasses at the poles (given its polar orbit), a 316 

weighting function is applied to equally distribute the number of scenes around the 317 

globe. The training is done using mini-batches with a maximum of 10.000 epochs to 318 

train. The ANN has 2 hidden layers with 4 nodes, and a network training function that 319 

updates weight and bias values according to Levenberg-Marquardt optimization.  320 

The neural network learns how to associate any set of radiances to a corresponding 321 

skin temperature. The feasibility of using ANN to Tskin retrieval has been shown for 322 

instance by Aires et al. (2002) for IASI, and has also been performed to tackle 323 

various problems in atmospheric remote sensing (Blackwell and Chen, 2009; Hadji-324 

Lazaro et al., 1999; Whitburn et al., 2016; Van Damme et al., 2017). In the following 325 

“TANN” refers to the product developed in this study using artificial neural networks 326 

from IASI radiances. 327 

 328 

Figure 3 shows the training results when the TANN is compared with the TERA5 dataset 329 

is used for the training, and in Figure 4 when the TEUMETSAT is used for the training. 330 

We achieve a good agreement with a standard deviation of 2.2 and 1.6 respectively 331 

and a correlation coefficient close to 1. The largest differences are for points located 332 

near the poles and at high altitudes. One of the reasons behind the discrepancies in 333 

mountainous regions is the general under-representation of the orography in global 334 

numerical weather prediction (NWP) and climate models, due to their limited 335 

horizontal resolution. Orographic features exert drag and its correct representation in 336 

models is extremely challenging. The incorrect representation of drag might lead to 337 

errors in simulating surface properties and might be responsible for the bias seen in 338 

mountainous regions (ECMWF, 2016).  Moreover, with altitudes and variable 339 

emissivity in these regions, the neural network fails (to some extent) to properly map 340 

the altered radiances due to surface inhomogeneity into a correct skin temperature. 341 
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Figures 3b and 4b also show how the difference between the two products is lowest 342 

over the sea, which can suggest the robustness of this method, in particular for sea 343 

skin temperature analysis.  344 

(a) (b)   345 

 346 

Figure 3. Neural network performance when trained with ERA5 data: (a) scatterplot 347 

and correlation, (b) gridded and averaged spatial comparison.  348 

 349 

 350 

 351 
Figure 4. Neural network performance when trained with EUMETSAT data: (a) 352 

scatterplot and correlation, (b) gridded and averaged spatial comparison.  353 

 354 

 355 

2.4. Datasets used for validation 356 

 357 

We compare the TANN from the two training datasets to the EUMETSAT L2 product, 358 

the ECMWF ERA5 reanalysis, the SEVIRI satellite retrieval, and ground 359 

observations. We described each briefly hereafter. 360 

2.4.1. EUMETSAT Tskin product 361 

Meteorological L2 data from EUMETSAT (August et al., 2012) are provided for nearly 362 

all IASI observations by deriving Tskin primarily from IASI for cloud-free scenes and 363 

using the Advanced Microwave Sounding Unit (AMSU), and the Microwave Humidity 364 
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Sounder (MHS) for cloudy scenes (EUMETSAT, 2017a; 2017b). AMSU and MHS are 365 

multi-channel microwave radiometers, which measure radiances in 15 and 5 discreet 366 

frequency channels respectively, and provide information on various aspects of the 367 

Earth's atmosphere and surface. They both can be used for cloud-contaminated 368 

scenes, since they are synchronized with IASI’s scanning. The algorithm is based on 369 

optimal estimation. Since the algorithm uses on instruments on board of Metop, the 370 

IASI ANN cloud-free radiances used in this study are also co-localized in space and 371 

time. 372 

2.4.2.  ERA5 Tskin product 373 

In the framework of the ECMWF latest reanalysis (ERA5) (Hersbach and Dee, 2016; 374 

Hersbach et al., 2018; Copernicus Climate Change Service, 2017), skin temperature 375 

is defined as the temperature of the surface at radiative equilibrium. It is derived from 376 

the surface energy balance within the land model in ERA5 and no assimilation of 377 

surface skin temperature observations takes place. Radiances on the other hand, are 378 

assimilated. The surface energy balance is satisfied independently for each tile by 379 

calculating its skin temperature. The skin layer represents the vegetation layer, the 380 

top layer of the bare soil, or the top layer of the snow pack. In order to calculate the 381 

skin temperature, the surface energy-balance equation is linearized for each tile 382 

leading to an expression for the skin temperature (ECMWF, 2016). Over the ocean, 383 

the sea surface temperature (SST) is specified from an analysis provided by the 384 

Operational Sea Surface Temperature and Ice Analysis (OSTIA, McLaren et al., 385 

2016) from September 2007 and prior to that date from the Met Office Hadley Centre 386 

HadISST2 product (Hirahara et al., 2016). The SST analysis is a blend of satellite 387 

retrievals and in situ observations from ships, and ensures a detailed horizontal 388 

distribution from satellite data anchored to the sparse ship observations. The 389 

resulting SST fields are therefore calibrated as if they are ship observations and 390 

therefore they represent bulk SST fields (i.e. measured a few meters deep). Since 391 

the ocean skin temperature (<1 mm thickness) might be cooler than the SST 392 

because of the turbulent and long wave radiative heat loss to the atmosphere, 393 

parameterizations of different near surface ocean effects are included in the code 394 

(ECMWF, 2016).  395 

2.4.3. SEVIRI Tskin product 396 

The Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the 397 

geostationary Meteosat Second Generation (MSG) satellite scans the Earth surface 398 

every 15 min and provides observations in 12 spectral channels with a sampling 399 

distance of 3 km at nadir. MSG’s nominal position at 0° longitude and SEVIRI’s large 400 

field of view (up to 80° zenith angle) allows for frequent observations of a wide area 401 

encompassing Africa, most of Europe and part of South America (Schmetz et al., 402 

2002). 403 
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The land surface temperature (LST) product (LSA-001) used for validation here 404 

(Trigo et al., 2011; Freitas et al., 2010) is retrieved by the EUMETSAT Land Surface 405 

Analysis Satellite Application Facility (LSA SAF) with the generalized split-window 406 

method, which requires land surface emissivity as input data. IASI and SEVIRI data 407 

are spatially co-located when observations from each instrument are less than 5 408 

minutes apart, and within 0.25 degrees in longitude and latitude. 409 

  410 

 2.4.4 Ground observations  411 

 412 

The ground observations are from Gobabeb wind tower, Namibia (23.551° S 15.051° 413 

E, location shown in Figure 7, Göttsche et al., 2016). Gobabeb station is located on 414 

the large and homogenous Namib gravel plains (Göttsche and Hulley, 2012). 415 

Göttsche et al. (2013) showed that the station Tskin is representative for an area of 416 

several 100 km2, making it suitable for validation with satellite measurements. Tskin is 417 

obtained once per minute with the station’s core instrument, an infrared precision 418 

radiometer (Heitronics KT15.85 IIP) measuring radiances between 9.6 and 11.5 µm. 419 

The temperature resolution is given as 0.03 K with an uncertainty of ±0.3 K over the 420 

relevant range, and high stability with a drift of less than 0.01% per month (Goettsche 421 

et al., 2013). 422 

 423 

3. Results 424 

To validate the TANN product, the month of June 2016 is chosen. Since we train our 425 

neural network with 2018 data, 2016 is a good choice and data is readily available for 426 

this year. TANN is calculated from the two ANNs obtained in section 2 by applying it to 427 

each set of 100 radiances retrieved from IASI for all cloud-free observations in June 428 

2016.  429 

3.1. Validation of the TANN obtained from the ERA5 neural network 430 

Figure 5 shows the comparison of the TANN IASI obtained from the training of IASI 431 

radiances with ERA5 12-minute data. We start by performing the validation with the 432 

EUMETSAT, ERA5, and SEVIRI Tskin datasets. The upper panel shows the 433 

correlation plots, superimposed with the average difference by latitude in red. TANN 434 

from IASI compares best with the EUMETSAT Tskin product (standard deviation 435 

σ=1.83°C), which is plausible since it is also obtained from IASI radiances. 436 

Comparison with ERA5 also shows a correlation close to 1, and σ=2.17°C. The 437 

largest differences for both EUMETSAT and ERA5 products are found around the 438 

poles, which are probably due to the sensitivity of radiances to surface properties and 439 

to orography-related physical processes in the ECMWF model as previously 440 

discussed. Moreover, ERA5 data are at 0.25°x0.25° resolution (native horizontal 441 

resolution of ERA5 is ~31km) and are interpolated to the center of the IASI pixel 442 

observation, which might correspond to a different surface type and might lead to 443 

differences in temperatures. For the comparisons between TANN IASI and Tskin 444 
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SEVIRI a standard deviation of σ=3.78 K is determined with the largest differences 445 

over the Arabian Peninsula. For large viewing angles, in particular near the edge of 446 

the Meteosat disk (such as the Arabian Peninsula), the uncertainty of SEVIRI Tskin is 447 

high (Freitas et al., 2010). A study by Trigo et al. (2015) reported similar to larger cool 448 

biases in the rest of the domain between the ECMWF model data and SEVIRI, 449 

especially over semiarid regions, such as North Africa, Sahara, and Namibia. In the 450 

rest of the domain, the two datasets agree reasonably well.  451 

 452 

 453 
Figure 5. Validation of the Tskin ANN product (TANN) from the neural net training of 454 

IASI radiances with ERA5, with products from EUMETSAT, ERA5 and SEVIRI, for 455 

June 2016. Upper panel: correlation plots weighted with the number of co-localized 456 

observations during one month. Lower panel: gridded and averaged spatial 457 

difference [T – TANN]. For day + night data: σ (TEUMETSAT – TANN) =1.83, σ (TERA5 – 458 

TANN) =2.17, σ (TSEVIRI – TANN) =3.78. The total number of points for the global 459 

comparison is 8.2 x 106 and 4.96 x 105 for the SEVIRI comparison. 460 

 461 

 462 

While this paper focuses on validating IASI TANN, inter-comparisons between the 463 

different products (ERA5 with EUMETSAT L2 or EUMETSAT L2 with SEVIRI, etc.) 464 

are valuable for assessing their differences. Figure 6 shows the box plot of these 465 

inter-comparisons, with the absolute bias and standard deviation of the comparison 466 

between the products. We perform inter-comparisons for day- and night-times 467 

separately. At nighttime, the absence of solar illumination allows a direct comparison 468 

of the skin temperature retrieved or modelled from different instruments. It can be 469 

seen that the TANN product developed in the framework of this study is within the 470 

range of biases among the other products comparison. 471 
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 472 
Figure 6: Boxplot of the June 2016 inter-comparison of the different Tskin products 473 

used in this study. Since the matching with SEVIRI leads to fewer co-localized data 474 

points covering the SEVIRI disk, they are shown on a separate figure on the right. 475 

The central mark indicates the median, and the bottom and top edges of the box 476 

indicate the 25th and 75th percentiles.  477 

 478 

Figure 6 shows that the night observations of TANN, TEUMETSAT and TERA5 seem to 479 

agree better with each other, an expected result and also detected for other satellite 480 

data (August et al., 2012; Martin et al., 2019).  481 

Comparison with SEVIRI shows a consistent negative bias during the night when 482 

compared to TANN, TEUMETSAT and TERA5. Several studies (e.g., Garand, 2003; Zheng 483 

et al., 2012) already reported cold biases between SEVIRI and other Tskin products. 484 

For the ECMWF model, the cold bias over land was identified for a previous version 485 

of the model by Trigo and Viterbo (2003) and for a more recent version by Trigo et al. 486 

(2015). A misrepresentation of surface energy fluxes, either because of deficiencies 487 

in the parameterization of aerodynamic resistances, or in the partitioning between 488 

latent and sensible heat fluxes are frequent causes of these deviations (Trigo et al., 489 

2015). The EUMETSAT Tskin product seem to agree the least with SEVIRI both 490 

during the day and the night, similar to what was reported by August et al., 2012. The 491 

standard deviation is the largest during the day, since the comparison is affected by 492 

the different Sun–surface–instrument geometries. Shadows due to orography or 493 

vegetation for example change in daytime with varying SEVIRI and Metop scan angle 494 

(August et al., 2012).  495 

 496 

We also use station data for June 2016 for validating the TANN product. This site is 497 

chosen in order to minimize complications from spatial scale mismatch between 498 

ground-based and satellite sensors. IASI cloud-free data was co-localized in space 499 

and time (within 1 minute of the station data). The spatial matching is done around 500 

0.5o of a validation site [15.17oE, 23.18oS] which location is shown in shown in panel 501 

(a). This validation location was chosen because it is close of the station site and is 502 

representative of the same gravel plain surface, yet, away from the sand dunes 503 

limiting the station. The location of the station and the corresponding IASI 504 

https://doi.org/10.5194/amt-2019-185
Preprint. Discussion started: 5 June 2019
c© Author(s) 2019. CC BY 4.0 License.



15 
 

observations is shown in Figure 7, panel (a). The total number of coincident IASI data 505 

points around this area is 82. The validation of the TANN with in-situ Tskin is shown in 506 

Figure 7 panels (b), (c) and (d).  507 

 508 

 509 

(a)     (b)        510 

          (c) (d)  511 

Figure 7: Comparison of IASI TANN with ground observations at Gobabeb: (a) station 512 

location and the 82 coincident IASI observations in June 2016 around the validation 513 

site chosen so all IASI observations fall in the gravel plains; (b) Diurnal variation of 514 

Tskin; (c) TANN versus in-situ Tskin during the day; and (d) during the night. 515 

 516 

Panel (b) of Figure 7 shows the strong diurnal variation of Tskin observed at Gobabeb. 517 

The IASI data are either from the morning (~9-10 am depending on the satellite 518 

swath) or evening overpass (~9-10 pm): they are therefore always separated by ~12 519 

hours.  520 

Day and night correlation coefficients are > 0.9. Table 2 lists how the different 521 

datasets used for validation compare to ground measurements. During the day, TANN 522 

agrees the least with the station data, driven by the one point in Figure 7 panel (c) 523 

that has the largest bias. At night, TANN comparison with ground measurements is 524 

better, so is the comparison with other datasets, as also seen in Figure 7. Absolute 525 

biases mostly range between 0 and 2 K, which is similar to the Tskin spatial variability 526 

around Gobabeb station determined with detailed measurements carried by 527 

Goettsche et al. (2013). Comparison with other satellite measurements shows a 528 

general bias between -2 and 5 kelvins in summer months (Martin et al., 2019). 529 

 530 

Table 2. Correlation coefficient, standard deviation, and absolute relative bias (%), 531 

between ground based Tskin and the different datasets used in this study 532 

 Day Night 
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 Standard 
deviation [o] 

Absolute bias 
 [o] 

Standard 
deviation [o] 

Absolute bias 
 [o] 

TANN – ground 3.12 2.14 1.67 1.41 

TEUMETSAT – ground 1.99 2.03 1.00 1.06 

TERA5 – ground 1.57 1.18 1.06 1.01 

TSEVIRI – ground 1.67 1.50 2.45 2.09 

 533 

3.2. Validation of the TANN obtained from the EUMETSAT neural 534 

network 535 

The validation presented hereafter is similar to what was shown in Figures 5, 6, and 536 

7, and the discussion used for the discussion of the biases in those figures applies 537 

here too. Since the TANN validated here is derived from the EUMETSAT L2 product, it 538 

compares best with it as it is seen in Figure 8.  539 

 540 

Figure 8. Same as Figure 5 but for TANN derived from the EUMETSAT Tskin neural 541 

network. For day + night observation: σ (TEUMETSAT – TANN) =1.56, σ (TERA5 – TANN) 542 

=2.41, σ (TSEVIRI – TANN) =3.67. The total number of points for the global comparison 543 

is 8.2 x 106 points and 4.96 x 105 for the SEVIRI comparison. 544 

     545 

 546 

Figure 9 is derived from data used in Figure 8, but separated into day and night, and 547 

includes the inter-comparison of the different products with each other. The y-axis 548 

limit is kept the same as in Figure 6 for quick comparisons. Again, TANN in this case 549 

agrees best with the EUMETSAT product, but also shows a similar good 550 

performance when compared to other datasets. 551 
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 552 
 553 

Figure 9: Boxplot of the June 2016 inter-comparison of the different Tskin products 554 

used in this study. Since the matching with SEVIRI leads to fewer co-localized data 555 

points covering the SEVIRI disk, they are shown on a separate figure on the right. 556 

The central mark indicates the median, and the bottom and top edges of the box 557 

indicate the 25th and 75th percentiles.  558 

 559 

Finally, comparison with ground observation in Figure 10 shows a better performance 560 

of TANN than what was presented in Figure 6. Table 3 hereafter details the day and 561 

night biases where we can see that the TANN in this case agrees better with ground 562 

measurements that what we presented in Table 2. 563 

 564 

Figure 10: Comparison of IASI TANN derived from EUMETSAT neural network with 565 

ground observation at Gobabeb. Left panel: day, right panel: night.  566 

 567 

 568 

 569 

 570 

 571 

 572 

 573 
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Table 3. Correlation coefficient, standard deviation, and absolute relative bias (%), 574 

between ground based Tskin and the different datasets used in this study 575 

 
 

Day Night 

Standard 
deviation [o] 

Absolute bias 
 [o] 

Standard 
deviation [o] 

Absolute bias 
 [o] 

TANN – ground 3.37 2.61 1.05 0.85 

TEUMETSAT – ground 1.99 2.04 1.00 1.06 

TERA5 – ground 1.57 1.18 1.06 1.01 

TSEVIRI – ground 1.67 1.50 2.45 2.09 

 576 

 577 

4. Discussion and Conclusions 578 

Satellite data are able to provide systematic global temperature data, at least in 579 

cloud-free areas, from pole to pole on a regular basis. EUMETSAT has been 580 

updating different versions of algorithms to retrieve the skin temperature from IASI, 581 

and at the same time, relying on different instruments (particularly for cloudy scenes) 582 

to derive a Tskin product. Consequently, no homogenous consistent IASI Tskin record 583 

exists to date. In this study, we derive a Tskin product using Metop-A IASI L1C 584 

radiances. The first challenge is to find the channels with access to surface 585 

information. To this end, we present a method based on entropy reduction, to find the 586 

channels with the highest information content in skin temperature. An efficient and 587 

fast IASI retrieval algorithm based on artificial neural networks is then used to 588 

calculate Tskin from the upwelling IASI radiances. While empirical methods using ANN 589 

can deal with hundreds to thousands of channels (Aires et al., 2002), we show in this 590 

study how ANN and channel selection can be used to retrieve Tskin, making this 591 

method fast and reliable for near real-time application, as well as to reprocess more 592 

than 11 years of IASI data. In this study, we perform two ANN trainings in 2018 with 593 

IASI radiances as input and we use two distinct datasets for two separate trainings. 594 

In the first, a dedicated ERA5 12-minute simulation is used as output, and in the 595 

second EUMETSAT L2 data is used as output. Each of the resulting neural networks 596 

is then applied for a different year (2016) and validated. Our results show the 597 

potential of ANN in mapping radiances globally and locally to skin temperature. We 598 

show how both neural networks perform similarly well when compared to other 599 

datasets, with the EUMETSAT-derived network performing better (in particular during 600 

nighttime) when it is compared to ground station Tskin. To compare the two products 601 

obtained from the two neural networks, we show in Figure 11 the daily variation of the 602 

skin temperature in 2017, for the Northern Hemisphere in the left panel and the 603 

Southern Hemisphere in the right panel. Generally, all datasets agree well with one 604 

another, with TANN obtained from the ERA5 Tskin product closer to the latter (which is 605 

expected) same as TANN obtained from the EUMETSAT L2 Tskin product is closer to 606 

the actual EUMETSAT Tskin product.  607 
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 608 

Figure 11. Daily averaged Tskin from the different global datasets used (ERA5 and 609 

EUMETSAT L2) and produced (TANN obtained from ERA5 and EUMETSAT L2) in this 610 

study.  611 

More generally, retrieval of Tskin from space measurements faces many challenges. 612 

First, the Tskin calculation from the radiance within the radiative transfer equation is an 613 

ill-posed problem. The solution of the radiative transfer equation requires the 614 

simultaneous knowledge of two unknowns: Tskin and the surface emissivity. This is 615 

generally solved with the assumption of a good initial guess to constrain the solution 616 

(Aires et al., 2001; Paul et al., 2012) and a rapid and accurate direct transfer model 617 

(Rodgers, 1976). Since the observed radiance spectra are affected by the surface 618 

properties, using it as input to the ANN takes emissivity knowledge into account.  619 

Second, infrared retrievals are only available under clear-sky conditions, reducing the 620 

amount of global data by roughly one third. This study has been performed with data 621 

from IASI on Metop A, and it implies that with IASI on Metop B and Metop C, the 622 

global coverage can be enhanced.  623 

Third, validation and inter-comparison between different products are challenges that 624 

not only bound to this study. The diversity in sensor characteristics and sensor-625 

specific skin temperature retrieval algorithms, as well as the different challenges 626 

facing current NWP models, make it difficult to homogenize different skin temperature 627 

products for proper comparison. Moreover, for polar-orbiting satellite products, inter-628 

comparison between different Tskin satellite products is challenging since the crossing 629 

times of the satellites, and the shape of the field of view are different. For example, 630 

MODIS (with overpass time at 10:30 am/pm on TERRA) and MODIS and AIRS, on 631 

the AQUA platform (with an overpass time of 1:30am/pm), both offer a good skin 632 

temperature product. IASI on the other hand, has an overpass time of 9:30 am/pm 633 

local-time. Since skin temperature, particularly over the land surfaces vary strongly in 634 

space and time (Prata et al., 1995), inter-comparison between IASI and MODIS or 635 

AIRS, with a time difference of 1 to more than 4 hours can imply a difference of the 636 

order of 10 degrees or more in some regions. This makes inter-comparison with other 637 

satellite products with different crossing time very difficult to achieve. Moreover, 638 

considering IASI’s pixel area to be a circle of π x 12 x 12 km2 at nadir and an ellipse 639 
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with an area up to π x 20 x 39 km2 at its outermost viewing angle of 48° (off-nadir), 640 

several surface types with varying skin temperature and emissivities will co-exist 641 

within one pixel. The resulting skin temperature is therefore an “effective” measure of 642 

the average of the surface-heterogeneity existing in the pixel. This alone complicates 643 

the physical understanding of the Tskin values retrieved from space from different 644 

instruments with different pixel shapes (round/ellipse vs square/rectangle, etc.), and 645 

sizes. Moreover, the satellite viewing angle also a role in the Tskin at the surface: the 646 

comparison is affected by the different Sun–surface–instrument geometries, as a 647 

result of shadows due to orography or vegetation for example (August et al., 2012). 648 

Finally, the scarcity of in situ Tskin ground-observations impedes proper validation, 649 

which in turn is difficult to be properly performed since ground observation is usually 650 

taken at one specific location and time. Given that Tskin might strongly change within 651 

short distances (less than a meter, Li et al., 2013), co-locating a satellite 652 

measurement with a ground observation, as we attempted in section 3.3, might 653 

undergo similar large differences as well. Here, a comparison was made at a station 654 

located in a homogenous area to overcome this problem. 655 

Using channel selection and artificial neural network, this work shows a Tskin retrieval 656 

method that can serve as a baseline for constructing the first homogeneous dataset 657 

of skin temperature from IASI, and can be extended to other infrared remote 658 

measurements. Future work will look at constructing a Tskin time series from IASI 659 

during 2007-present and using Metop A, B, and C for climate trends application. 660 

Regional and seasonal variations can be studied using the atlas for the surface skin 661 

temperature distributions. The daily/monthly/yearly variations will be studied in terms 662 

of the main climate drivers (solar, volcanic eruptions, aerosols and greenhouse 663 

gases) and modes of variability at the inter-annual and decadal timescales.  664 
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