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Abstract. Specific differential phase Kdp is one of the most important polarimetric radar variables, but the variance σ2(Kdp),

regarding the errors in the calculation of the range derivative of differential phase shift Φdp, is not well characterized due to

the lack of a data generation model. This paper presents a probabilistic method based on Gaussian mixture model for Kdp

estimation at X-band frequency. The Gaussian mixture method can not only estimate the expected values of Kdp by differenti-

ating the expected values of Φdp, but also obtain σ2(Kdp) from the product of the square of the first derivative of Kdp and the5

variance of Φdp. Additionally, ambiguous phase and backscattering differential phase shift are corrected via the mixture model.

The method is qualitatively evaluated with a convective event of a bow echo observed by the X-band dual-polarization radar

in the University of Missouri. It is concluded that Kdp estimates are highly consistent with the gradients of Φdp in the leading

edge of the bow echo, and large σ2(Kdp) occurs with high variation of Kdp. Furthermore, the performance is quantitatively

assessed by two-year radar-gauge data, and the results are compared to linear regression model. It is clear that Kdp-based rain10

amounts have good agreement with the rain gauge data, while the Gaussian mixture method gives improvements over linear

regression model, particularly for far ranges.

Copyright statement.

1 Introduction

Apart from radar reflectivity (ZH ) and differential reflectivity (ZDR), polarimetric radars also obtain differential phase shift15

(Φdp) to reflect the forward scattering property of hydrometeor scatterers (Seliga and Bringi, 1978; Sachidananda and Zrnić,

1986). Its range derivative, also called specific differential phase (Kdp), has some advantages over ZH and ZDR (Zrnić and

Ryzhkov, 1996), including insensitivity to attenuation, clutter, partial beam blockage and radar absolute calibration. The spe-

cific differential phase has played a key role in various meteorological applications—such as hydrometeor classification (Lim

et al., 2005; Park et al., 2009), raindrop size distribution retrieval (Bringi et al., 2002; Williams et al., 2014) and quantitative20

precipitation estimation (Ryzhkov et al., 2005; Cifelli et al., 2011)—sinceKdp is a phase variable independent of ZH and ZDR

and almost linearly proportional to rain rate.
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A linear regression model has been developed to derive Kdp from the slope of the range profile of Φdp for S-band radars.

In Hubbert et al. (1993), Φdp is first processed by a light filter that attenuates the Φdp magnitudes within a scale of 375 m

by 10 dB, and then heavily smoothed in 1.5 km by 10 dB. An iterative filtering technique is used for eliminating non-zero

backscattering differential phase shift (Hubbert and Bringi, 1995). The filtered Φdp measurements are finally fitted into a first-

order polynomial to estimate the Φdp slope in a given window. Liu et al. (1993) supply the accuracy of meanKdp as±0.25 deg5

km−1 using 128 pulses, while Aydin et al. (1995) indicate that the accuracy is within ±0.5 deg km−1 for a heavy rainfall event

using 64 pulses. On the other hand, Ryzhkov and Zrnić (1996) produce two kinds of Kdp for S-band radars: one is obtained

over 16 range gates (2.4 km) for ZH ≤40 dBZ, and the other is produced over 48 gates (7.2 km) for ZH>40 dBZ. Negative

Kdp is incorporated into the rain rate algorithm to avoid bias in low rain rate. The analyses of 15 storms show that the standard

error of Kdp is 0.04~0.10 deg km−1 for heavily filtered Kdp and 0.12~0.30 deg km−1 for lightly filtered Kdp using either 12810

or 64 pulses. Under the complex terrain, the Kdp retrieval algorithm needs to be modified to obtain the accurate rainfall rate.

Vulpiani et al. (2012) has opened new scenarios for the operational Kdp processing in the Italian C-band radar network. In

addition, Gorgucci et al. (1999) note that the nonuniform rainfall path produces large errors in the Kdp estimates, while the

errors increase as the radar reflectivity varies in dimensions.

X-band dual-polarization radars have drawn increasing attention in the radar meteorology community in recent years on15

account of low cost, fine resolution and high sensitivity to light precipitation (Chandrasekar et al., 2012; Lim et al., 2013;

Berne and Krajewski, 2013; Kalogiros et al., 2014; Oue et al., 2016). In the literature, X-band algorithms have been proposed

for Kdp estimation. For example, the linear regression method is adapted for the X-band radar data, and used to retrieve

rainfall (Matrosov et al., 2006). The ambiguous Φdp is naturally corrected by examining the complex values of the range

profiles of Φdp exponentials, and Kdp is then estimated by a regularization framework based on a cubic spline smoothing20

(Wang and Chandrasekar, 2009). In this method, the bias and variance are adjustable through the smoothing parameter, giving

high spatial resolutions of Kdp estimates. Comparing to S-band frequency, the Φdp measurements at X-band frequency are

affected by backscattering differential phase shift δco. Nevertheless, the constraints of Kdp−ZH −ZDR and δco−ZDR can

be used to improve the estimation of Kdp and δco (Otto and Russchenberg, 2011; Reinoso-Rondinel et al., 2018). Algorithms

of linear programming (Giangrande et al., 2013) and Kalman filter (Schneebeli et al., 2014) have also been applied to the Kdp25

estimation, yielding good performance for rainfalls and snowfalls. It is noticeable that the Kalman filter method minimizes the

Gaussian error function to obtain the mean profile of Kdp. It gives a significant improvement on the Kdp mean, particularly in

the small-scale structure with high peaks.

The recent algorithms are focused on the improvement of estimating the mean Kdp, whereas its variance
(
σ2(Kdp)

)
is

not well characterized due to the lack of a data generation model. The Kdp variance is often inherited from the Φdp variance30 (
σ2(Φdp)

)
leading to large relative errors for lowKdp with a fixed path length. In this study, we propose a probabilistic method

based on Gaussian mixture model forKdp estimation at X-band frequency. The Gaussian mixture method can not only estimate

the expected values ofKdp by differentiating the conditional expectation of Φdp, but also yield σ2(Kdp) by regarding the errors

in the calculation of the first derivative of Φdp. It is found that σ2(Kdp) is closely related to the square of the first derivative

of Kdp and σ2(Φdp), while large σ2(Kdp) is associated with high variation of Kdp estimates. When compared to the existing35
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methods, our method considers the joint probability density function of the data as the non-linear Gaussian mixture, leading

to better performance for the multimodal data. The Kdp variance can be used to calculate the variances of ZH , ZDR and rain

rate, and to study the streamflow trends in the hydrological model.

The paper is organized as follows. Section 2 provides background information about Kdp and the Gaussian mixture model.

Section 3 describes the radar and gauge data. Section 4 presents the methodology. We first remove the residual clutter using5

data masks (section 4.1), and then derive the joint probability density function to estimate the expected value of Φdp and

σ2(Φdp) (section 4.2). Next, we correct the ambiguous phase and δco via the mixture model (section 4.3). Last, we calculate

the expected value and variance of Kdp (section 4.4), and improve the Kdp profile by reducing σ2(Kdp) (section 4.5). To

evaluate the algorithm, section 5 gives a case study and a comparison between radar and gauge. Section 6 summarizes the

paper.10

2 Background

The specific differential phase is the first derivative of differential phase shift Φdp along the radar range, giving a way to estimate

Kdp by radar measurement of Φdp. Furthermore, the probability density function of Φdp can be modelled as a Gaussian mixture,

which is often obtained via an expectation-maximization (EM) approach. The mean and variance of the Gaussian mixture may

lead to the improvement of the Kdp estimation.15

In this section, we introduce the physical interpretation of Kdp and the regression model for estimating Kdp. Since the

Gaussian mixture is adopted as the data generation model, we also give a brief description of mathematical definition of the

Gaussian mixture model and the EM approach.

2.1 Specific differential phase (Kdp)

For linear polarization, Kdp is proportional to the integral of the raindrop size distribution and the real part of the difference of20

forward scattering amplitudes at orthogonal polarizations. It is mathematically formulated as

Kdp =
0.18λ

π

∞∫
0

N(D) · < [fhh (0,D)− fvv (0,D)]dD (deg km-1), (1)

where λ is radar wavelength in millimeters,D is raindrop size in millimeters,N(D) is size spectrum in m-3mm-1, fhh,vv(0,D)

is forward scattering amplitudes at horizontal and vertical polarizations, respectively.

By considering the Rayleigh-Gans scattering from identical and horizontally-oriented oblate spheroids, such as raindrops,25

the forward scattering amplitudes are proportional to the inverse square of radar wavelength, i.e., fhh,vv(0,D)∝ 1/λ2, leading

to the fact that Kdp is inversely proportional to radar wavelength, i.e., Kdp ∝ 1/λ. Therefore, the values of Kdp at X-band

are often larger than that at S-band by a factor of 3, indicating that X-band radar can provide better Kdp data than S-band

radar when retrieving the rainfall rate. The conclusion is still valid even if the Mie effect is taken into account (Bringi and

Chandrasekar, 2001; Chandrasekar et al., 2006).30
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However, Kdp cannot be detected by polarimetric radar directly, whereas its integral Φdp is measurable. Hence, Kdp can be

estimated as the range derivative of the profile of Φdp, i.e.,Kdp =
∆Φdp

2∆r ,where r is the radar range in kilometers. An alternative

approach to estimatingKdp is to apply a regression fit to the profile of Φdp, and the first order polynomial is usually considered

as the fitting function (Balakrishnan and Zrnić, 1990; Ryzhkov and Zrnić, 1995). Subsequently, if the Φdp measurements are

equally spaced in range by ∆r, Kdp is then estimated by5

Kdp =

∑n
i=1 Φdp (ri)

[
i− (n+1)

2 ∆r
]

1
6n(n− 1)(n+ 1)∆r2

, (2)

where n is the number of gates. Equation (2) shows that the accuracy of Kdp estimates is determined by the number of gates

(n), and the accuracy of Φdp. By assuming σ2(Φdp) is relatively stable for all gates along a ray and noting that Φdp(ri) is the

only variable in Eq. (2), σ2(Kdp) is formulated as

σ2 (Kdp) =
σ2 (Φdp)

1
3∆r2 [n(n− 1)(n+ 1)]

. (3)10

In Eq. (3), σ2 (Kdp) is proportional to σ2 (Φdp), which is related to the spectrum width, cross-correlation coefficient, and the

dwell time (Sachidananda and Zrnić, 1986; Hubbert et al., 1993), and inversely proportional to n3. This method has been

widely used in the existing radar system (Cifelli et al., 2018; Chandrasekar et al., 2018; Chen et al., 2017c, b). The details of

the regression-based estimation of Kdp are given in Bringi and Chandrasekar (2001) and Appendix A.

Moreover, it is notable that the backscattering phase shift is not negligible at X-band, thus the total propagation phase shift15

(Ψdp) consists of Φdp and the backscattering differential phase, δco, i.e., Ψdp = Φdp + δco. The backscattering phase shift is

often showed as a sudden jump over one or few range gates in a monotonically increasing Ψdp profile of rain (May et al.,

1999a), with a value much larger than standard deviation σ (Ψdp). The presence of δco over a small number of consecutive

gates can be eliminated by a simple filter (Hubbert and Bringi, 1995).

The specific differential phase is a unique polarimetric variable in terms of statistical errors in the rain rate estimation, since20

it is the range derivative of the phase measurement Φdp. The errors in the calculation of the first derivative also needs to be

taken into account. In this study, we consider a Gaussian mixture as the data generation model, which plays an important role

in the estimation of Kdp and σ2(Kdp).

2.2 Gaussian mixture model

The Gaussian mixture is a statistical model for data probability density estimation, assuming that the data points are generated25

by a mixture of a finite number of Gaussian distributions associated with their weights (McLachlan and Peel, 2000; Sung,

2004). Intuitively, it is used to model the multimodal data, with each Gaussian component corresponding to a subpopulation of

the data. The mathematical formulation is given as

f(z) =

m∑
i=1

wiN (z;µi,Σi) , (4)
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where m is the number of components in the Gaussian mixture, wi is a weight with
∑m
i=1wi = 1, and N (z;µi,Σi) is the

ith Gaussian distribution with mean µi and covariance Σi, i.e.,N (z;µi,Σi) =
∣∣(2π)kΣi

∣∣−1/2
exp

[
− 1

2 (z−µi)TΣ−1
i (z−µi)

]
,

where k is the data dimension.

It is prevalent to use an Expectation–Maximization (EM) algorithm to estimate the parameters, w, µ, and Σ, by constructing

the lower bound of log-likelihood based on Jensen inequality (Dempster et al., 1977). The EM algorithm is divided into two5

steps, namely, an expectation (E) step and a maximization (M) step. In the E step, a degree of membership toward to the jth

cluster is calculated, i.e.,

Qij = p
(
y(i) = j|x(i);w,µ,Σ

)
, (5)

where i is the ith data with a total number of n data points, and y is a latent variable that determines the corresponding cluster.

Here, Q gives a tight lower bound for the log-likelihood, equivalent to maximizing the expectation. In the M step, the exact10

form of the lower bound based on Jensen inequality is expressed as

L(w,µ,Σ) =
∑
i

∑
j

Qij log
exp

[
− 1

2 (xi−µ)TΣ−1(xi−µ)
]
wj√

|(2π)kΣ|Qij
. (6)

By maximizing the lower bound with respect to each parameter, wj , µj , and Σj are updated as (Petersen and Pedersen, 2012)

wj =

∑
iQ

i
j

n
, (7)

µj =

∑
iQ

i
jx

(i)∑
iQ

i
j

, (8)15

Σj =

∑
iQ

i
j(x

(i)−µj)(x(i)−µj)T∑
iQ

i
j

, respectively. (9)

Notably, the M step increases the log-likelihood monotonically, and the covariance retains positive definite with sufficiently

large data samples. Finally, the E step and M step are iteratively operated until the log-likelihood converges to a value with

the difference between two successive steps below a certain threshold. In addition, the EM algorithm requires a specification

of the number of clusters, m, prior to the E and M steps, and an inappropriate choice of m may lead to meaningless values of20

the parameters. To tackle this problem, the Bayesian information criterion is often calculated to select the optimal m, while a

Dirichlet process may also be used to model a prior probability to construct an infinite Gaussian mixture.

One of interpretations of the Gaussian mixture is to view each distribution as a cluster with a Gaussian probability density,

while the individual data point is attributed to a specific cluster or a weight toward the cluster, regarded as unsupervised

learning (Hastie et al., 2009). The clustering procedures based on Gaussian mixture have been applied to the identification of25

storm structure (Veneziano and Villani, 1996), and the particle identification at S-band (Wen et al., 2015, 2016b, 2017) and

X-band (Wen et al., 2016a) frequencies. Furthermore, the Gaussian mixture model can be extended to fit a set of unknown

parameters in the prior probability of the Bayesian framework, forming a Bayesian Gaussian mixture model (Li et al., 2012).

The prior is then multiplied with the known conditional probability of data given the parameters to be estimated, yielding the
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posterior probability with a new set of parameters. The expectation of the posterior is often used to retrieve the conditional

mean of the new parameters based on least square criteria.

For the regression problem, the characteristics of the Gaussian mixture imply that the direct modeling of a regression function

is very difficult. Nevertheless, the joint probability of the measurements and the estimated parameters may be modeled as a

Gaussian mixture, leading to a regression function derived from the joint density model. Due to the asymptotic consistency of5

a Gaussian mixture model, it is capable of estimating a general density function in Rn in any shape (Sung, 2004). Moreover,

the speed of calculating unknown parameters within a Gaussian mixture linearly depends on the number of the training data

points, and the computation of the outputs is independent of the size of the training data. Consequently, regression based on

a Gaussian mixture can be achieved very rapidly, compared to Gaussian process regression that grows with the data size. In

addition, the Gaussian mixture can also be used to solve the regression problem with multiple dimensions, and a subset of10

dimensions can be selected to handle the missing data (Wen et al., 2015).

3 Data

As part of the Missouri Experimental Project to Stimulate Competitive Research (EPSCoR), an X-band dual-polarization

radar in the University of Missouri (MZZU) was deployed at the South Farm Research Center (38.906◦N, 92.269◦W) in the

midwest of America in the summer of 2015. The details of the radar characteristics are described in Simpson and Fox (2017).15

The primary objective is to provide the observations of precipitation near the surface by means of low-cost and fine-scale

X-band radar, and to fill the observational gaps of the S-band radar network in Saint Louis (KLSX), Kansas City (KEAX),

and Springfield (KSGF). Within the MZZU radar coverage, the Hinkson Creek located near Columbia, MO, flows through a

catchment basin and eventually merges into the Missouri river, forming a typical urban watershed (Hubbart and Zell, 2013).

The radar can provide timely flash flooding warning for the Hinkson Creek watershed and surrounding areas.20

In this study, we analyze the data collected by the X-band MZZU dual-polarization radar. The maximum unambiguous range

of the MZZU radar is 94.64 km with a resolution of 260 m in range and 1◦ in azimuth. During the observational periods, the

radar operates in a volumetric scanning mode of nine elevations at 0.8◦, 2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 8.5◦, and 10◦, updated every

4 minutes. The raw radar data are organized and processed by an open-source software package called Python ARM Radar

Toolkit (Py-ART: Helmus and Collis, 2016). Moreover, to validate the Kdp estimation algorithm, we also use the data from25

tipping-bucket rain gauges in the Missouri Mesonet weather station network, including Bradford Farm (38.897◦N, 92.218◦W),

Sanborn Field (38.942◦N, 92.320◦W), Auxvasse (39.089◦N, 91.999◦W), and Williamsburg (38.907◦N, 91.734◦W). The hori-

zontal distances between the rain gauges and the radar center are 4.4 km, 6.0 km, 30.8 km, and 46.2 km, respectively. The first

elevations at Bradford and Sanborn may be affected by ground clutter, since the radar beams are very close to the ground, with

heights of 314.6 m and 336.9 m ASL, respectively, including the radar tower. Therefore, the second elevation at 2◦ is selected30

for validation. In contrast, the first elevations at Auxvasse and Williamsburg reach about 723.8 m and 999.0 m ASL, which

are less contaminated by ground clutter. Furthermore, the point measurement of rain gauge is different from the volumetric

measurement of radar, imposing additional errors on the comparison between radar and gauge (Anagnostou et al., 1999). The
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radar-based rain rate is then derived by averaging Kdp over three successive range gates and three successive azimuthal rays

with a total of 9 values centered over each gate in order to obtain good consistency between the instruments. In addition, the

rain gauges are carefully calibrated in terms of instrumentation failure, clogging, and other discrepancies between the devices

(Simpson and Fox, 2017), and well documented to provide long-term data for rainfall observations.

Table 1 summarizes the characteristics of rainfalls observed at Bradford, Sanborn, Auxvasse and Williamsburg between5

April 2016 and June 2018. It is clear that the hourly rain amounts are dominated by light rain, with similar means of 2.0–2.1

mm at the four sites, indicating uniformly distributed rainfalls within the experimental region. On the other hand, the standard

deviations of Bradford and Williamsburg are 3.5 mm and 3.7 mm, respectively, a little larger than that of 3.3 mm at Sanborn

and Auxvasse. Moreover, Sanborn gives the highest hourly rain amount, the lowest total rain amount, and the second lowest

duration out of the four sites, due to the effects of urban heat island (Hubbart et al., 2014). The second highest maximum10

hourly rain amount is recorded at Williamsburg, however, the total rain amount and duration are also the highest among the

four sites, implying that convective rain is the most frequent at Williamsburg. In contrast, stratiform rain is more common

at Bradford, since the gauge records the lowest maximum hourly rain amount and duration, and the second total hourly rain

amount. In addition, it can be seen that Auxvasse also provides useful data for the comparisons between gauges and between

radar and gauge, though the statistics are all ranked in the middle of the four sites. Overall, the rain gauge data at Bradford,15

Sanborn, Auxvasse and Williamsburg are representative and sufficiently large, leading to a valid dataset for testing the Kdp

and Kdp-based rain amounts.

4 Kdp retrieval

As discussed in section 2, the joint probability density function (PDF) based on a Gaussian mixture can be used to derive the

regression model for Kdp estimation. The Gaussian mixture method (GMM) not only estimates the expected values of Kdp by20

differentiating the conditional expectation of Φdp, but also gives an estimation of Kdp variance by regarding the errors in the

calculation of the first derivative of Φdp. In this section, we describe GMM for the Kdp estimation using MZZU radar data.

Figure 1 illustrates the flowchart of GMM (Fig. 1.b), comparing to that of the linear regression model (LR; Fig. 1.a).

From the chart of LR in Fig. 1.a, we can see that after the radar measurements are collected, the Ψdp is unfolded, and then

the clutter is removed. After these corrections, an iterative filtering method is applied to the Ψdp profile. An adaptive method25

is finally used to estimate the Kdp profile according to the values of ZH . The Gaussian mixture model, on the other hand,

processes Ψdp differently. First of all, the clutter is masked out according to the thresholds of ZH and the variation of Ψdp.

Secondly, the range r and Ψdp are fitted into a Gaussian mixture to yield the joint PDF, while the Ψdp mean and the Ψdp

variance are obtained by taking the first raw and second central moments of the conditional PDF of Ψdp given r. Thirdly,

some specific clusters in the Gaussian mixture PDF are adjusted to solve the problems of ambiguous Ψdp and backscattering30

differential phase shift δco in order to derive the PDF of Φdp. Fourthly, a rawKdp profile is calculated from the first derivative of

the expected values of Φdp, and the associated variances are obtained via a Taylor series expansion. Finally, the rawKdp profile
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is smoothed, and consequently, the variances are reduced. In addition, new Φdp with lower variances can be re-constructed from

the Kdp estimates.

4.1 Data masking

The presence of clutter in the Ψdp measurements may severely affect the Kdp estimation, producing significantly large varia-

tions on the estimates. It is well known that the effect of clutter can be reduced by applying a spectrum filter to the time-series5

data (e.g., May and Strauch, 1998; Hubbert et al., 2009). However, some residual clutter echoes are still shown on the radar

measurements including Ψdp (Wen et al., 2017). Therefore, the clutter needs to be well handled in GMM, prior to the deviation

of the regression model based on the joint PDF.

In LR, the clutter is often eliminated by some criteria based on Ψdp or ρhv . For instance, we use the thresholds of local

standard deviation of Ψdp less than 10◦ to classify valid points. Further, ten consecutive range gates of valid points signify10

the beginning of a rain cell, and five consecutive gates of invalid points finish the associated rain cell. Overall, the thresholds

give a fairly good performance on the MZZU radar, however, the clutter may be incorrectly identified in the regions of high

reflectivity or for the echoes mixed by weather and clutter, which are often associated with large Ψdp variation.

In contrast, GMM adopts sophisticated procedures, as depicted in Figure 2. It is clear that there are five stages in the data

masking, beginning with the input of raw Ψdp and ending with masked data. At the first stage, the raw data are fitted to a15

Gaussian mixture initialized by the k-means clustering, while the covariance is set to be diagonal for simplicity. The clusters

with no more than 5 points are promptly masked out, before they pass to the second stage. Stages two, three and four of

the process all involve the clusters. At the second stage, the clusters are validated according to two sets of thresholds with

respect to mean reflectivity. For the MZZU radar, the ratio of the standard deviations, σ(Ψdp)/σ(r), less than 14.2◦ km−1, and

σ(Ψdp) less than 4.1◦ are used for ZH less than 41 dBZ. To reduce the mis-classification in the hail regions, the thresholds20

are increased for higher ZH , resulting in σ(Ψdp)/σ(r)< 47.9◦ km−1 and σ(Ψdp)< 6.3◦. Next, the entire Ψdp profile is

divided into multiple rain cell segments by considering the gaps between two consecutive clusters. Similar to the first stage,

the segments containing no more than 5 points are excluded from the output of masked data. Following this, the dominant is

determined for each segment by comparing the weight accumulations of weather and clutter clusters. For a clutter segment

with mean height below 200 m, the clusters within the segment are re-evaluated by thresholds of σ(Ψdp)/σ(r)< 2.0◦ km−125

and σ(Ψdp)< 0.8◦, on the other hand, the clusters in a weather segment are re-examined using σ(Ψdp)/σ(r)< 34.7◦ km−1

and σ(Ψdp)< 6.1◦. This step can efficiently identify the clutter-contaminated weather echoes, which are often associated with

large variances. At the last stage, some isolated points along the azimuth are obscured in the final results.

Figure 3 illustrates two examples for data masking, including a convective case (Fig. 3.a) and a stratiform case (Fig. 3.b).

The data points in the two cases show steadily increasing trends related to anisotropic media along the wave propagation path.30

However, between 1.3 and 15 km at an azimuth of 252◦ in the convective case (Fig. 3.a), the data present significant fluctuations

with the minimum value at about 0◦ but the maximum value at 180◦. Since the dynamic range of Ψdp is from 0 to 180◦ for

the MZZU radar, the measurements near the ground are likely to be the clutter returns, verifying the results of data masking.

After 15 km, the Ψdp points start from about 50◦ and go all the way up to 180◦. Notwithstanding this trend, the points sharply
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decrease to about 10◦ at about 40 km, indicating the occurrence of phase folding. The data masking can effectively detect

the phase folding, and provide valid masked data for deriving the joint PDF. On the other hand, the weather echoes are more

frequently observed at 1◦ in azimuth in the stratiform case (Fig. 3.b). By taking a closer inspection on the Ψdp data, we can

discern that the points largely fluctuate between 40 and 80 km due to low signal-to-noise ratio. In LR, these points may be

incorrectly discarded based on σ(Ψdp) thresholds, leading to some missing data in the stratiform regions. In contrast, the data5

masking accurately identifies weather echoes characterized by a number of vertically-oriented density ellipses. The continuous

and uniformly-distributed regimes are consistent with the physical interpretation of stratiform precipitation. In addition, the

data masking is also sensitive to sudden jumps at the beginning of the Ψdp data, which may be caused by δco.

4.2 Ψdp density estimation

In the previous section, it is shown that the Ψdp profile varies along the range r. It rises quickly for horizontally-oriented10

anisotropic scatterers, and conversely, it falls steadily for vertically-oriented particles (Marzano et al., 2010). To estimate the

relationship between r and Ψdp, we consider r as an independent variable, denoted as x, and Ψdp as a dependent variable,

denoted as y. If the minimization of mean square error is required, the regression function is obtained by taking the average

value of y at fixed x, equivalent to estimating the expected values of y conditioned on x, i.e.,

ȳ(x) = E(y|x) =

∫
yp(y|x,β) dx, (10)15

where β is a set of unknown variables, for example, β = (m,w,µ,Σ) for the mixture model. Since the Gaussian mixture can

be used to model any shapes of probability density with a rapid speed, the (x,y) points are then assumed to follow a joint PDF

of Gaussian mixture, as defined in Eq. (4). Moreover, the properties of the multivariate Gaussian distribution in each cluster

determine the Gaussianity of the marginal distribution of either variable and the conditional distribution of one variable given

the other (Bishop, 2006). Therefore, the conditional PDF of y given x is expressed as20

p(y|x,β) =

m∑
i=1

w
y|x
i N

(
y;µ

y|x
i ,Σ

y|x
i

)
, with (11)

µ
y|x
i = µyi + Σyxi (Σxxi )−1(x−µxi ), (12)

Σ
y|x
i = Σyyi −Σyxi (Σxxi )−1Σxyi , (13)

w
y|x
i =

fi(x)

f(x)
=

wiN (x;µxi ,Σ
xx
i )∑m

j=1wjN (x;µxj ,Σ
xx
j )

, (14)

where wi, µi = (µxi ,µ
y
i )T and Σi =

Σxxi Σxyi

Σyxi Σyyi

 are obtained by the EM algorithm. In Eq. (14), f(x) is the marginal25

PDF of x with the parameters identical to the mixture, and fi(x) is the weighted marginal PDF of each cluster, i.e., f(x) =∑m
i=1 fi(x). By substituting Eq. (11) into Eq. (10) and noting the linearity of the mathematical expectation, the expected value
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of y conditioned on x is then obtained as

E(y|x) =

m∑
i=1

fi(x)

f(x)
(aix+ bi), with (15)

ai = Σyxi (Σxxi )−1, (16)

bi = µyi −Σyxi (Σxxi )−1µxi , (17)

and the conditional variance is given as (see Appendix B)5

σ2(y|x) =

m∑
i=1

w
y|x
i

[
Σ
y|x
i +

(
µ
y|x
i

)2
]
−

(
m∑
i=1

w
y|x
i µ

y|x
i

)2

. (18)

Equations (15) and (18) play an important role in the joint PDF-based regression analysis, called the regression and skedastic

functions (Spanos, 1999). In Eq. (15), it can be seen that the regression function in GMM consists of multiple linear kernels,

which is similar to LR. However, the weighting function wy|xi is not determined by the local structure but the marginal PDF

of global data x. Comparing to LR, GMM is more flexible to capture the data information, while it still retains a finite set of10

parameters. Moreover, Eq. (18) readily estimates the point-wise variances σ2(y|x) that characterize the random errors in the

measurements, whereas these errors σ(Ψdp) are often considered as small and stable values in LR.

Figure 4 compares the Ψdp profiles given by Eqs. (15) and (18) with that obtained by LR. Figure 4.a gives the same example

as Fig. 3.a, but the EM algorithm is configured differently. In the Ψdp density estimation, the mixture with full covariance

yields density ellipses of random shapes. Furthermore, the algorithm repeats the fitting procedures three times to avoid the15

local maxima of the log-likelihood. Meanwhile, the choice of the cluster number relies on the Bayesian information criterion

calculated for each m, starting at 10 clusters. It can be seen that the mixture composed by density ellipses well characterizes

the data points, since the root-mean-square error is small relative to the expected values. Between 15 and 35 km, the narrow

ellipses result in Ψdp with a rising trend consistent with LR. On the other hand, the mixture has very small variances, giving

a high confidence for the fitted parameters. From 35 km, the ellipses become wider, and the associated variances increase due20

to low signal-to-noise ratio at the edge of radar echoes. What is notable, however, is that the Ψdp profile dramatically increases

to a large value, whereas LR remains a relatively steady trend. It indicates the importance of the Ψdp unfolding for the Ψdp

density estimation.

Figure 4.b presents another example of the density estimation. It is clear that the Ψdp profiles produced by GMM and LR

both rise considerably along the range, and the trends for the two methods are very similar with a strong correlation of 0.998.25

The profile starts at about 50◦, and remains relatively stable before rising dramatically between 35 and 55 km. By 65 km, Ψdp

has more than doubled, and then, there is a steady increase for Ψdp reaching about 130◦ at the end of the profile, which is

around 70◦ up on the ranges of 0 and 35 km, and 10◦ more than recorded at the ranges of 55 and 65 km. If we examine Ψdp

measured at X-band frequency, we can see that some points fall out of the dash lines corresponding to one standard error (i.e.,

95% interval). Most notably, between 18 and 20 km, the Ψdp profile shows a sudden slump, indicating the occurrence of δco. In30

conclusion, the expected value and the variance of Ψdp can be obtained from the joint PDF, but the mixture needs to be tuned

in terms of Ψdp unfolding and δco elimination in order to obtain the PDF of Φdp.
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4.3 Ψdp unfolding and δco elimination

According to the continuity and consistency of the phase data, we can discern that some issues exist in the density estimation,

such as ambiguous Ψdp and δco. Since Ψdp is an range accumulative measurement of propagation phase, depending on the

initial Ψdp(0). The measurements may exceed the dynamic range of 0–180◦ when the wave propagates through a rain medium.

This situation is even more significant at X-band frequency than S-band due to the inverse relation of the wavelength and the5

rate of phase shift. Nevertheless, it can be noted that Ψdp gives a non-negative trend along the range for rain, and therefore, the

ambiguous Ψdp may be corrected accordingly (Wang and Chandrasekar, 2009).

In LR, Ψdp is first averaged over a small window for weather data, and a linear fit is then performed to obtain the increment

for the range gate next to the window. In the following stage, a reference is predicted by summing up the average and the

increment, and compared to the observed value at the same gate. If the difference between the predicted and observed values10

is larger than 90◦, the observed Ψdp is then increased by 180◦. Finally, the correction process is iteratively operated until the

last gate.

On the other hand, the Ψdp unfolding is more straightforward in GMM. Figure 5 shows the flowchart of the Ψdp unfolding

and the δco elimination. After obtaining the PDF of Ψdp, the initial step of the Ψdp unfolding selects the density ellipses with at

least 6 data points. Next, the second step calculates the difference of the means µi between the two consecutive density ellipses15

along the range. At this point, the PDF of Ψdp is ready to be corrected for ambiguous Ψdp. In the final step, the mean of the

latter density ellipse is added up 180◦, if the former mean is larger than the latter one by 80◦.

As illustrated in Fig. 4.a, the profile Ψdp reaches 180◦ at about 38 km, and then becomes ambiguous between 38 and 42 km.

In LR, the Ψdp values at these locations are interpolated according to the trend of the previous few gates, and the maximum

value is 180◦. In contrast, the corrected density ellipses in GMM show an upward trend between 38 and 42 km, while the Ψdp20

profile reaches a maximum value of about 195◦, indicating the effectiveness of the Ψdp unfolding in the region of heavy rain.

In addition to ambiguous Ψdp, the estimation of the joint PDF may also be affected by non-zero δco, which is defined as the

phase difference between the horizontal and vertical polarizations upon the backscattering of the particles in a radar resolution

volume. This effect occurs more frequently at X-band frequency than S-band due to Mie scattering (Trömel et al., 2013). The

δco is shown as a sudden phase change over a small number of gates in a monotonically increasing trend for rain. According to25

this manifestation, the magnitude and gate number of the Ψdp perturbation can be used to eliminate δco (Matrosov et al., 2002;

Otto and Russchenberg, 2011).

The linear regression model often adopts an iterative filter technique, which generates a new Φdp profile from either the raw

data or the filtered one based on a threshold (Hubbert and Bringi, 1995). If the filtering alters the data by 4◦, the new profile

selects the filtered data, otherwise the raw data are remained. The new profile is then used as input in the next iteration until30

the convergence condition is satisfied.

As shown in Fig. 5, the δco elimination is embedded into the process of the Ψdp unfolding. For two consecutive density

ellipses, the latter density ellipse is removed if its mean is larger than the former one by 85◦. Prior to this step, the mean of the

first density ellipse in the mixture should be below 90◦ to reduce the δco effect at the first few gates. Since δco occurs over a
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small number of range gates, a mixture pruning is also employed to remove the density ellipses with weights less than 0.0501,

equivalent to 2% of the data.

It is clear from Fig. 4.b that δco has occurred at multiple locations in the data. The Ψdp profile starts at a high value and drops

somewhat over the first two gates. Notably, there is a narrow gap between 18 and 20 km, which is non-zero δco. These data are

characterized by a density ellipse with a slightly decreasing trend in GMM, and the resulting expected values are consistent5

with the filtered data in LR. Between 70 and 90 km, a few isolated points beyond the density ellipses are associated with δco.

Both of the two methods can produce Φdp following the main trend of the data, which suggests that the process is effective for

the δco elimination.

4.4 Kdp density estimation

As discussed in section 2.1, Kdp is the first derivative of Φdp with respect to the range r. According to the mean value and10

dominated convergence theorems, the derivative of the expected value of Φdp conditioned on r is equal to the expected value

of the derivative of Φdp with respect to r, i.e., Kdp (see Appendix C). Following the notation in section 4.2, we denote Kdp as

y′. Therefore, the expected value of Kdp is obtained by taking the derivative of Eq. (15), yielding

E (y′|x) =
1

f2(x)


m∑
i=1

m∑
j=1

fi(x)fj(x)

[(
x−µxj
Σxxj

− x−µxi
Σxxi

)
(aix+ bi) + ai

] . (19)

The variance of y′ conditioned on x can be approximated by the first-order Taylor series expansion (see Appendix D), i.e.,15

σ2 (y′|x) = [E′′(y|x)]
2
σ2(y|x), (20)

where σ2(y|x) is given in Eq. (18). By taking the derivative of Eq. (19), E′′(y|x) is expressed as

E′′(y|x) = 2

[
m∑
i=1

ai

(
w
y|x
i

)′]
+

m∑
i=1

(aix+ bi)
(
w
y|x
i

)′′
. (21)

From Eq. (C8) in Appendix C, it is clear that

(
w
y|x
i

)′
=
gi(x)

f2(x)
=

1

f2(x)

m∑
j=1

fj(x)fi(x)

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
, (22)20

where gi(x) is the summation term. Subsequently, the second derivative of wy|xi is given as(
w
y|x
i

)′′
=
g′i(x)f(x)− 2f ′(x)gi(x)

f3(x)
, where (23)

f ′(x) =−
m∑
j=1

(
x−µxj
Σxxj

)
fj(x), (24)

g′i(x) =

m∑
j=1

fj(x)fi(x)

(x−µxi
Σxxi

)2

−

(
x−µxj
Σxxj

)2

+
1

Σxxj
− 1

Σxxi

 . (25)
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Equations (19) and (20) are the regression and skedastic functions for the Kdp estimation. In Eq. (19), it is clear that

the expected value of Kdp can be divided into two components, including Eqs. (C7) and (C11). On one hand, Eq. (C7) is

related to the changing rate ai weighted by the marginal distribution of each cluster in the mixture, equivalent to a linearly

weighted combination of small portions of data. If a data point is dominated by a specific cluster, i.e., the weight of a cluster

is significantly larger than the others, Kdp is determined by the coefficients of the cross-correlation and auto-correlation of r,5

and independent of the means and auto-correlation of Φdp, yielding a constant value within the dominated cluster. On the other

hand, Eq. (C11) shows that the weighting function also contributes to theKdp estimates by considering the Gaussian derivative

of the Φdp estimates in two or three adjacent clusters along the range. The sign of Kdp is then determined by the marginal

means and variances of the clusters, weighted by the difference of their contributions to Φdp.

In Eq. (20), it can be seen that σ2(Kdp) is proportional to σ2(Φdp), which is similar to Eq. (3) in LR. However, σ2(Φdp)10

varies along the range due to the random errors of the Φdp estimates in GMM, whereas σ2(Φdp) is stable in LR. In addition,

the statistical errors with respect to signal processing may be included in Eq. (20) as an additive term, independent of Φdp.

Moreover, the radar gate spacing and gate number for the Kdp estimation are often fixed in Eq. (3), indicating σ2(Kdp) is also

stable in LR. In contrast, σ2(Kdp) in GMM is closely related to the first derivative of Kdp in Eq. (20). As the changing rate of

Kdp increases, the random errors associated with the Kdp estimates rise dramatically.15

Figure 6.b illustrates Kdp and its variance estimated from Φdp in Fig. 6.a, which is the same case as given in Figs. 3.a and

4.a. It is apparent that the Kdp estimates present a large fluctuation, while the associated variances are significant. In GMM,

Kdp starts from about 0.5 deg km−1, and then fluctuates between 17 and 20 km and between 24 and 42 km. In the profile,

there are six local peaks with the maximum at about 8.5 deg km−1. Meanwhile, the Kdp variances vary as the Kdp estimates

change. Between 15 and 17 km and between 20 and 24 km, the Kdp estimates stand at a value, leading to small Kdp variances20

in these regions. When short excursions are present, such as that between 18 and 20 km, Kdp variances increase significantly

due to the contribution of the first derivative of Kdp in Eq. (20). Furthermore, the large Φdp variances between 35 and 42 km

also result in an increase of the Kdp variances. In contrast, LR gives less fluctuation in Kdp estimates with two peaks at about

20 and 34 km. The comparison of Kdp obtained by the two methods may suggest that a smoothing procedure is required to

reduce the significant variance in GMM.25

4.5 Kdp smoothing

As discussed previously, the Kdp variance is small for high Kdp, but relatively large for low Kdp. Therefore, an adaptive

estimation is adopted in LR. For radar reflectivity (ZH ) less than 20 dBZ, the gate number n in Eq. (2) is set as 15, while n is

8 for 20≤ ZH < 35 dBZ, and 2 for ZH ≥ 35 dBZ, respectively. On the other hand, GMM also applies an adaptive technique

based on finite impulse filter (FIR) to the expected values ofKdp in order to reduce the associated variances. Figure 7 shows the30

time responses of the FIR with the cutoff frequency of 0.053 and the Gaussian window of 28, which yield the best performance

for the MZZU radar. The impulse response (Fig. 7.a) is peaked at the center, and gradually decreases towards the two ends.

Furthermore, the step response (Fig. 7.b) gives the accumulation of the impulse response, indicating that the magnitudes around

the center change faster than that at the two ends. If a longer window is required, the order of the FIR is increased accordingly.
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In this study, we gradually increase the order number to calculate the difference between the Kdp profiles obtained by the FIR

filters with two adjacent order numbers. The optimal order of the FIR filter is then set when the relative square error of the

two Kdp is below 0.001. For profiles with sufficiently large data points, the order number is between 29 and 33 for the MZZU

radar.

To obtain the reduced variance, we consider the filter as a number of weighting functions, denoted as hi(x), and subsequently,5

the smoothed data become

y =

n∑
i=1

hi ∗xi (26)

where y is a smoothed data point, xi is the original data within the smoothing window, and n is the window length. By taking

the variance on both sides of Eq. (26), we have

σ2(y) =

n∑
i=1

h2
iσ

2(xi). (27)10

Therefore, the variance of the smoothed data is the weighted sum of the variances of the original data within the smoothing

window. Since the FIR coefficients are much less than unity, σ2(y) is smaller than σ2(x) at the same gate. Furthermore, the

Kdp estimates with the reduced variances can be used to re-construct Φdp to obtain smaller Φdp variances. For a fixed gate

spacing ∆r, the re-constructed Φdp for the jth range gate is

Φjdp =

j∑
i=1

Ki
dp∆r, and (28)15

σ2(Φjdp) =

j∑
i=1

σ2(Ki
dp)∆r

2. (29)

The red curves in Figs. 6.a and 6.b illustrate the re-constructed Φdp and the smoothed Kdp using FIR, respectively. The

smoothed Kdp in Fig. 6.b is more consistent with the LR results compared to the original Kdp produced by the GMM. In the

first few kilometers, the smoothed Kdp gradually rises, and then peaks at about 21 km. With no fluctuations, the smoothed Kdp

falls gradually, followed by a growth before reaching a plateau at 33 km. After a slight decrease between 33 and 36 km, Kdp20

rises dramatically, which is very different from LR. Meanwhile, the variances are small at the beginning, but get larger as Kdp

is climbing up. Between 20 and 33 km, the Kdp estimates do not change very much, leading to small variances in this region.

But after 33 km, the variances begin to increase and retain large values until the end of the profile. Overall, the smoothed

Kdp is stable, producing a profile considerably consistent with LR, and the variances are significantly reduced comparing

to the original data. In addition, the re-constructed Φdp (Fig. 6.a) constantly increases with few local fluctuations, while the25

associated variances are smaller than the Φdp variances in GMM.

5 Evaluation

In this section, a case study is first presented to qualitatively analyze the storm structure and evolution based on Kdp . The

radar-gauge dataset is then used to provide a quantitative evaluation for the Kdp estimation in terms of root mean squared error
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(RMSE), normalized bias (NB) and Pearson correlation coefficient (ρRG), which are defined as

RMSE =

√∑N
i=1 (Ri−Gi)2

N
, (30)

NB =

∑N
i=1(Ri−Gi)∑N

i=1Gi
, (31)

ρRG =

∑N
i=1(Ri− R̄)(Gi− Ḡ)√∑N

i=1(Ri− R̄)2

√∑N
i=1(Gi− Ḡ)2

, (32)

where N is the sample size, Ri is the individual radar hourly rain amount, Gi is the gauge data, and R̄ and Ḡ are the sample5

means for radar and gauge, respectively. The radar hourly rain amount is calculated based on the CASA radar rainfall algorithm,

which is given as (Wang and Chandrasekar, 2010; Chen and Chandrasekar, 2015)

R(Kdp) = 18.15K0.79
dp , (33)

where R is the instantaneous rain rate in mm h−1. It is noted that the radar collects instantaneous measurements every 4–5

minutes, whereas RGs obtain the precipitation accumulations over 60 minutes. Therefore, it is necessary to average 12–1510

consecutive radar scans to derive the hourly rain amounts.

5.1 Case study

On 24 March 2016, a severe storm developed in central Missouri and moved eastward across Columbia, MO, causing strong

winds and heavy precipitation at the surface. When the storm became mature, the radars at Kansas City and St. Louis observed

the storm structure at high levels, since each radar was about 150 km away from the storm. Notably, the Kansas City radar15

showed positive and negative Doppler velocities in a small area (not shown), indicating the occurrence of a downburst. On

the other hand, the MZZU radar illustrated a bow echo of ZH close to the radar center (Figs. 8.b). In addition to ZH , the

GMM-based Kdp (Figs. 8.d, e and f) was also obtained to investigate the storm structure near the surface.

Figure 8 illustrates that the convective storm evolves from a strong and large echo to a bow shape echo, and then dissipates

at far range. At 0304 UTC (Fig. 8.a), a cell with strong ZH moves into the radar area, while Kdp is moderate with a maximum20

of about 3 deg km−1 (Fig. 8.d). As the cell is transforming to a bow shape, the radar echo becomes intensive, and forms a rain

band with embedded convective cores (Fig. 8.b). It is clear to see thatKdp reaches over 10 deg km−1 in these core regions (Fig.

8.e), indicating very heavy precipitation at the surface. With the fast movement of the storm, the downburst has been weaken,

and the storm starts to dissipate (Fig. 8.c). At 0441 UTC, it can be seen that Kdp is gradually reduced at the far range, while its

maximum is much less than that at the mature stage.25

In this storm, the bow echo is shown as a number of convective cores embedded in a rain band, while the downbursts

occured at the leading edge near the echo center. The bow echo can be considered as a mesoscale convection with a horizontal

dimension of more than 60 km. To gain a further insight, Fig. 9 shows raw Φdp and Kdp for the bow echo. In Fig. 9.a, raw Φdp

presents large gradients along the leading edge, rising from about 50◦ to over 140◦. Due to the sharp increase, Φdp exceeds the
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maximum dynamic range, leading to ambiguity in the areas of X:-20~-18 km and Y:12~18 km and X:-40~-23 km and Y:-8~-5

km. In addition, the echoes behind the convective cores occasionally vanish as a result of signal attenuation. Nevertheless, LR

(Fig. 9.b) produces continuous Kdp by Φdp unfolding and linear interpolation according to the trends of the profiles, but some

missing data still exist within the storm, due to low signal-to-noise ratio. In contrast, GMM (Fig. 9.c) corrects these data with

the expected values derived from the joint PDF, and simultaneously obtains the statistical errors in the production of Kdp. It5

is evident that the GMM method can efficiently handle the missing data via the mixture model, which is another advantage

over the LR model. Furthermore, the statistical errors are not very large in these areas, since the missing data are filled by the

distribution of the entire data profile. Additionally, the GMM Kdp estimates are generally a few deg km−1 higher than the LR

ones, particularly for the regions of high ZH .

By taking a closer look at GMM Kdp, we can see that the bow echo is generally characterized by Kdp of above 2.5 deg10

km−1, while five pockets of high Kdp are identified. In the bow head, the first pocket presents very high Kdp associated with

a rapid growth of Φdp. Behind this pocket, there is a region of negative Kdp, whereas LR generally yields positive values.

It may be due to a reduction of cross-correlation coefficient caused by low signal-to-noise ratio, since the signals have been

significantly attenuated after propagating through the pocket. In the middle of the second and third pockets in the bow center,

LR and GMM both show lower Kdp comparing to the two pockets, while Kdp is substantially consistent with the gradient of15

Φdp in the area. By considering the high ZH in Fig. 8, these moderate Kdp values may indicate less anisotropic scatterers,

such as small hail in the process of wet growth. Similarly, a hail signature with maximum ZH of above 66 dBZ and small Kdp

of 1~2 deg km−1 can also be identified in the middle of the fourth and fifth pockets in the bow tail. Along with the expected

values of GMM Kdp, Fig. 9.d depicts the statistical errors σ(Kdp) in the calculation of the expected values. The five pockets

of high Kdp are generally associated with small σ(Kdp) of a few tenths deg km−1. However, the estimates behind the top four20

pockets yield very large σ(Kdp) with a maximum above 10 deg km−1, and the expected values of Kdp are sometimes below 0

deg km−1, such as X:-25~-20 km and Y:11~20 km. In contrast, a region of high σ(Kdp) appears in front of the bottom pocket,

superimposed on the high ZH area associated with hail. In conclusion, the GMM Kdp estimates of high confidence give good

agreement with the gradients of Φdp in the leading edge of the bow echo, while large σ(Kdp) are expected at the region of high

variation of the Kdp estimates.25

Moreover, the computational time is crucial for the real-time application of the Kdp retrieval algorithms. For the data in Fig.

9, the GMM takes about 7.058/4.068 seconds to process the Kdp with/without the data masking, whereas the LR reduces the

time to about 2.037 seconds. It indicates that the LR has the advantages of simplicity and efficiency. Nevertheless, the GMM

can obtain more information from the radar data, which is useful for the model studies.

5.2 Statistical analysis30

In order to quantitatively evaluate the accuracy of GMM Kdp, hourly accumulated rain amounts are derived from the X-

band rainfall rate algorithm (Chen and Chandrasekar, 2015), and compared to the rain gauge data collected at Bradford,

Sanborn, Auxvasse and Williamsburg between 1 April 2016 and 2 June 2018. The scatterplots presented in Fig. 10 illustrate
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the comparison between GMM-based radar and gauge rain amounts, and the accompanying table (Table 2) gives RMSE, NB

and ρRG results obtained by GMM and LR.

Consistent with the data in Table 1, the rainfall at the four sites is predominately made up of light rain with hourly rain

amounts no more than 2.5 mm h−1. Nevertheless, according to Fig. 10, moderate rain with amounts between 2.6 and 8 mm

h−1 gives a considerable contribution to the total rain events, followed by a small portion of heavy rain with amounts more5

than 8 mm h−1. When we study the scatterplots and statistics for each of the four sites, it is apparent that Bradford (Fig. 10.a

and b) and Sanborn (Fig. 10.c and d) are more concentrated on the red line than Auxvasse (Fig. 10.e and f) and Williamsburg

(Fig. 10.g and h), since Bradford and Sanborn are closer to the radar. Accordingly, RMSEs for Bradford and Sanborn (Table

2) are relatively small, about 13%~35% lower than Auxvasse and Williamsburg. Furthermore, it can be seen that Bradford and

Sanborn show negative bias associated with negative NBs, indicating an underestimation of rain amounts by GMM Kdp. In10

contrast, a slight overestimation may be concluded for Auxvasse and Williamsburg by considering the point trends and the

positive NBs. Additionally, Sanborn claims the highest ρRG out of the four sites, yielding the best consistency between radar

and gauge.

When compared to LR statistics as given in Table 2, it is clear that GMM improves the RMSEs, NBs and ρRG for Auxvasse

and Williamsburg. Notably, the GMM-based NB for Auxvasse reaches a very small value of 0.04, one fifths of LR-based NB.15

For Bradford, RMSE is reduced by GMM, but the absolute value of NB is slightly increased, while ρRG remains the same. On

the other hand, for Sanborn, the GMM-based RMSE, NB and ρRG get worse by a few hundredths of millimeters, which may

be due to the local complex terrain near the radar. Overall, the rainfall estimates of GMM Kdp give a better performance than

that of LR in terms of RMSE, NB and ρRG at the far ranges.

It is clear that the rain rates based on the GMM Kdp have a moderate consistency with the rain gauge data. To improve20

the results, some advanced rain rate algorithms can be considered, such as the rain-ice separation technique in the IFloodS

campaign (Chen et al., 2017b) and the radar-gauge comparison method in the MC3E campaign (Giangrande et al., 2014).

Nevertheless, the GMM has the advantage over the existing methods, since it can yield the variance of Kdp. Furthermore, the

variance of R can also be obtained by the Kdp mean and the Kdp variance via the R–Kdp relation, leading to the variability in

the error characteristics of R. Thus, the variances can be used to study the streamflow trends in the hydrological model.25

6 Summary and discussions

In this study, we proposed a probabilistic method based on Gaussian mixture model to estimate the specific differential phase

Kdp, which is the range derivative of differential phase shift Φdp. The Gaussian mixture method (GMM) not only obtained the

expected values of Kdp by differentiating the conditional expectation of Φdp, but also yielded the variance σ2(Kdp) regarding

the errors in the calculation of the first derivative of Φdp.30

As an initial step of GMM, the data masking was performed to eliminate the residual clutter in the measurements of the total

differential phase (Ψdp). The data of r and Ψdp were first fitted into a simplified Gaussian mixture to generate a number of

clusters, which were validated against the two sets of the σ(Ψdp) and σ(Ψdp)/σ(r) thresholds given by radar reflectivity ZH .
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The clusters were then combined to form the rain cell segments, and the segments were classified by comparing the weight

accumulations of weather and clutter clusters. Next, the clusters within each segment were re-evaluated by the thresholds

according to the segment types. Finally, the azimuthally isolated points were masked out.

Secondly, the joint probability density function (PDF) was obtained by fitting the data of r and Ψdp into a mixture model

with full covariance, where the cluster number m, weight w, mean µ and covariance Σ were optimized via the Expectation-5

Maximization (EM) algorithm. Subsequently, the PDF of Ψdp conditioned on r was also a mixture with parameters related

to the joint PDF. Finally, the Ψdp mean was estimated by the conditional expectation, and the statistical errors σ2(Ψdp) were

given by the conditional variance, which was not always constant, but varied with w and the marginal PDF of r.

Thirdly, the ambiguous Ψdp and backscattering differential phase shift δco were corrected by examining the two adjacent

density ellipses in the mixture. On one hand, if the former density ellipse had a mean larger than the latter one by 80◦, the latter10

mean was added to 180◦ for Ψdp unfolding. On the other hand, if the former mean was smaller than the latter one by 85◦, the

latter density ellipse was removed as δco. Moreover, for δco elimination, the first density ellipse mean was assumed as below

90◦, while the density ellipses with small weights were also removed.

Fourthly, the joint PDF of r and Φdp was used in the calculations of Kdp and σ2(Kdp). Since Kdp was the range derivative

of Φdp, the expected values of Kdp were then obtained via the derivative of the expected value of Φdp. Moreover, by taking the15

first-order Taylor series expansion, σ2(Kdp) was the product of the square of the first derivative of Kdp and σ2(Φdp), yielding

non-constant values of σ2(Kdp).

In the final step, the expected values of Kdp were smoothed to reduce the associated σ2(Kdp). An FIR filter was imple-

mented, and iteratively applied to the data to search for an optimal window length. Subsequently, the reduced σ2(Kdp) was

obtained by the sum of the original σ2(Kdp) weighted by the FIR coefficient squares within the window. Additionally, new20

Φdp were re-constructed from the smoothed Kdp, while σ2(Φdp) was also reduced.

The experimental results with a severe storm observed by the X-band polarimetric radar in the University of Missouri

(MZZU) revealed the advantages of GMM. By studying the structure and evolution of a bow echo in the storm, it was concluded

that the GMM Kdp was consistent with the gradients of raw Φdp along the leading edge of the bow echo, while large σ2(Kdp)

occurred with high variation of Kdp. The GMM method produced results similar to the LR method, with the ability to handle25

the missing data. Moreover, the hourly rain amounts based on Kdp were compared to the rain gauge data, showing fairly good

agreement between radar and gauge measurements. The rain amounts obtained by GMM Kdp gave improvements over the

linear regression model, particularly for the far ranges.

The potential applications of GMM Kdp and σ2(Kdp) include quantitative precipitation estimation (Cifelli et al., 2011;

Chen et al., 2017a) and attenuation correction (Park et al., 2005). For quantitative precipitation estimation, the relationship30

between Kdp and rain rate R is almost linear, since Kdp is about the fourth-order moment of raindrop size distribution, and

R is the 3.67th-order moment. As illustrated in Fig. 10, the R (Kdp) algorithm is consistent with the in situ measurements. To

further investigate the R errors, it is necessary to consider the Kdp errors in the calculation of the first derivative of Φdp. The

standard deviation σ(Kdp) is then related to σ(R) by a factor of R/Kdp (Bringi and Chandrasekar, 2001). In a similar manner,

Kdp is linearly proportional to specific attenuation AH and specific differential attenuation ADP (Bringi and Hendry, 1990).35
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Therefore, the errors of radar reflectivity ZH and differential reflectivity ZDR may also be proportional to σ(Kdp) after the

attenuation correction, and eventually contribute to the R errors via R(ZH) and R(ZH ,ZDR). Moreover, the error estimates

can be used to provide streamflow trends in hydrological model. In the future study, the algorithm will also be extended to

other frequencies, such as C-band (Vulpiani et al., 2012; May et al., 1999b) and S-band (Bringi and Chandrasekar, 2001). The

thresholds in the data masking, the Ψdp unfolding and the δco elimination will be adjusted according to the radar specifications.5

Nevertheless, the steps for the calculations of the PDFs of Ψdp and Kdp will be remained.

Appendix A: Regression-based estimation ofKdp

Let the total differential phase Ψdp be y, and the range gate r be x. The Ψdp profile over small range segments can be

approximated by a first-order polynomial, i.e,

y = β0 +β1x+ ε, (A1)10

where β0 and β1 are the coefficients in the linear approximation, and ε is an error function. It can be assumed that ε is

independent and individual distributed with zero mean and variance of σ2
ε = σ2.

In the linear regression, it is easy to find that

β1 =

∑
i(xi− x̄)(yi− ȳ)∑

i(xi− x̄)2
. (A2)

where x̄ and ȳ are the means of x and y in the segment, respectively. Since15 ∑
i

(xi− x̄)(yi− ȳ) =
∑
i

(xi− x̄)yi−
∑
i

(xi− x̄)ȳ (A3)

and∑
i

(xi− x̄)ȳ = ȳ

(∑
i

xi−Nx̄

)
= ȳ(Nx̄−Nx̄) = 0, (A4)

we have

β1 =

∑
i(xi− x̄)yi∑
i(xi− x̄)2

, (A5)20

where N is the number of the gates in the segment.

It is noted that the range gate r is equally spaced with an interval of ∆r, Ψdp is the two-way propagation phase shift, and

Kdp is the one-way specific differential phase. The Kdp is then estimated by

Kdp =

∑n
i=1 Ψdp (ri)

[
i− (n+1)

2 ∆r
]

1
6n(n− 1)(n+ 1)∆r2

. (A6)

At S-band, the backscattering differential phase shift δco is often negligible, and thus Ψdp and Φdp are interchangeable, leading25

to Eq. (2).
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By taking the variance on both sides of Eq. (A5) and noting ε is the only variable, we have

σ2(β1) = σ2

(∑
i(xi− x̄)(β0 +β1xi + ε)∑

i(xi− x̄)2

)
(A7)

=

∑
i(xi− x̄)2σ2

ε

[
∑
i(xi− x̄)2]

2 (A8)

=
σ2∑

i(xi− x̄)2
(A9)

Similar to Eq. (A6), we have5

σ2 (Kdp) =
σ2 (Ψdp)

1
3∆r2 [n(n− 1)(n+ 1)]

. # (A10)

Appendix B: Variance of Φdp

We consider the range r as an independent variable, denoted as x, and Φdp as a dependent variable, denote as y. The joint

distribution of z = (x,y) follows a Gaussian mixture as

p(z) =

m∑
i=1

wiN (z;µi,Σi), (B1)10

where wi, µi and Σi are the weight, mean and covariance for each component, respectively. The probability of y conditioned

on x is also a Gaussian mixture with parameters wy|xi , µy|xi and Σ
y|x
i , leading to the conditional expectation as

E(y|x) =

∫
y

m∑
i=1

w
y|x
i N

(
y;µ

y|x
i ,Σ

y|x
i

)
dy, (B2)

=

m∑
i=1

w
y|x
i

∫
y N

(
y;µ

y|x
i ,Σ

y|x
i

)
dy, (B3)

=

m∑
i=1

wiµ
y|x
i . (B4)15

and the second-order moment as

E(y2|x) =

∫
y2

m∑
i=1

w
y|x
i N

(
y;µ

y|x
i ,Σ

y|x
i

)
dy, (B5)

=

m∑
i=1

w
y|x
i

∫
y2N

(
y;µ

y|x
i ,Σ

y|x
i

)
dy, (B6)

=

m∑
i=1

w
y|x
i

[
Σ
y|x
i +

(
µ
y|x
i

)2
]
. (B7)

Therefore, the conditional variance is expressed as20

σ2(y|x) = E(y2|x)− [E(y|x)]
2 (B8)

=

m∑
i=1

w
y|x
i

[
Σ
y|x
i +

(
µ
y|x
i

)2
]
−

(
m∑
i=1

w
y|x
i µ

y|x
i

)2

. # (B9)
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Appendix C: Conditional expectation ofKdp

First, we need to show that the derivative of the expected value of random variable y as a function of random variable x is equal

to the expected value of the derivative of the expected value of y. By the definition, the derivative of y is expressed as

E′[y(x)] = lim
h→0

1

h
{E[y(x+h)]−E[y(x)]} (C1)

= lim
h→0

E

[
y(x+h)− y(x)

h

]
(C2)5

= lim
h→0

E {y′[τ(h)]} , (C3)

where τ(h) ∈ (x,x+h) exists by the mean value theorem. By assuming |y′[τ(h)]| ≤ Z, we can use the dominated convergence

theorem to obtain

E′[y(x)] = E

{
lim
h→0

y′[τ(h)]

}
(C4)

= E [y′(x)] . (C5)10

According to the conclusion in Eq. (C5), the expected value of y′ is expressed as

E(y′|x) = E′(y|x) =

m∑
i=1

w
y|x
i

(
µ
y|x
i

)′
+

m∑
i=1

(
w
y|x
i

)′
µ
y|x
i . (C6)

Since
(
µ
y|x
i

)′
= ai and wy|xi = fi(x)

f(x) , the first term is equal to

m∑
i=1

w
y|x
i

(
µ
y|x
i

)′
=

m∑
i=1

ai
fi(x)

f(x)
. (C7)

Meanwhile, the second term is given as15

m∑
i=1

(
w
y|x
i

)′
µ
y|x
i =

m∑
i=1

f ′i(x)f(x)− fi(x)f ′(x)

f2(x)
(aix+ bi). (C8)

Based on the properties of Gaussian function, the derivatives of fi(x) and f(x) are expressed as

f ′i(x) =−x−µ
x
i

Σxxi
fi(x), and (C9)

f ′(x) =−
m∑
j=1

x−µxj
Σxxj

fj(x). (C10)

By substituting Eqs. (C9) and (C10) into Eq. (C8), the second term is transformed as20

m∑
i=1

(
w
y|x
i

)′
µ
y|x
i =

1

f2(x)

 m∑
i=1

m∑
j=1

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
fi(x)fj(x)(aix+ bi)

 . (C11)

By substituting Eqs. (C7) and (C11) into Eq. (C6), we obtain

E (y′|x) =
1

f2(x)


m∑
i=1

m∑
j=1

fi(x)fj(x)

[(
x−µxj
Σxxj

− x−µxi
Σxxi

)
(aix+ bi) + ai

] #. (C12)
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Appendix D: Variance ofKdp

The first-order Taylor expansion is defined as

g(y) = g(θ) + g′(θ)(y− θ) + ε, (D1)

where θ = E(y) is the mean of random variable y, and ε is the sum of the higher-order Taylor series. By considering the

conclusion in Eq. (C5), it can be noted that the expected values of the coefficients associated with the derivatives in Eq. (D1)5

are zeros if the series is expanded at the mean value of y. By taking mathematical expectations on both sides of Eq. (D1), it is

transformed as

E[g(y)]≈ g(θ) + g′(θ)[E(y)− θ] (D2)

= g(θ). (D3)

From Eqs. (D1) and (D3), the variance of g(y) is approximated as10

σ2[g(y)]≈ E
{

[g(y)− g(θ)]2
}

(D4)

≈ E
{

[g′(θ)(y− θ)]2
}

(D5)

= g′(θ)2σ2(y) (D6)

Let g(y) be y′, and then we have

σ2(y′|x) = [E′′(y|x)]2σ2(y|x). (D7)15

From Eq. (B9), we can see that

σ2(y|x) =

m∑
i=1

w
y|x
i Σ

y|x
i +

m∑
i=1

w
y|x
i

(
µ
y|x
i

)2

−

(
m∑
i=1

w
y|x
i µ

y|x
i

)2

. (D8)

By taking the derivative of Eq. (C6), the second derivative of the expected value of y conditioned on x becomes

E′′(y|x) =

m∑
i=1

w
y|x
i (µ

y|x
i )′′+ 2

m∑
i=1

(µ
y|x
i )′(w

y|x
i )′+

m∑
i=1

µ
y|x
i (w

y|x
i )′′ (D9)

= 2

m∑
i=1

ai(w
y|x
i )′+

m∑
i=1

(aix+ bi)(w
y|x
i )′′, (D10)20

since (µ
y|x
i )′ = ai and (µ

y|x
i )′′ = 0. From Eq. (C8), the first derivative of the weighting function in the conditional probability

is(
w
y|x
i

)′
=

1

f2(x)

m∑
j=1

fj(x)fi(x)

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
. (D11)
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Let gi(x) be the summation term. The second derivative is then expressed as(
w
y|x
i

)′′
=
g′i(x)f(x)− 2f ′(x)gi(x)

f3(x)
, where (D12)

gi(x) =

m∑
j=1

fj(x)fi(x)

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
. (D13)

According to the properties of Gaussian mixture, the first derivative of the marginal distribution of x is

f ′(x) =−
m∑
j=1

(
x−µj

Σj

)
fj(x). (D14)5

Similarly, the first derivative of g(x) if given as

g′i(x) =

m∑
j=1

[
−
x−µxj
Σxxj

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
fj(x)fi(x)− x−µxi

Σxxi

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
fj(x)fi(x) +

(
1

Σxxj
− 1

Σxxi

)
fj(x)fi(x)

]
(D15)

=

m∑
j=1

[(
x−µxi
Σxxi

−
x−µxj
Σxxj

)(
x−µxi
Σxxi

+
x−µxj
Σxxj

)
fj(x)fi(x) +

(
1

Σxxj
− 1

Σxxi

)
fj(x)fi(x)

]
(D16)

=

m∑
j=1

(x−µxi
Σxxi

)2

−

(
x−µxj
Σxxj

)2
fj(x)fi(x) +

(
1

Σxxj
− 1

Σxxi

)
fj(x)fi(x) (D17)

=

m∑
j=1

fj(x)fi(x)

(x−µxi
Σxxi

)2

−

(
x−µxj
Σxxj

)2

+
1

Σxxj
− 1

Σxxi

 . # (D18)10
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Figure 1. Flowcharts of Kdp estimation algorithms used in the MZZU radar: (a) linear regression model, and (b) Gaussian mixture method.
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Figure 2. Flowchart of data masking.
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Figure 3. Examples of data masking: (a) a convective case (azimuth 252◦), and (b) a stratiform case (azimuth 1◦). The blue points and

ellipses represent the clutter data and clusters, respectively, while the red color corresponds to the weather echoes.
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Figure 4. Examples of Ψdp density estimation: (a) a Ψdp unfolding case, and (b) a δco case. The blue points are the Ψdp data, the green curve

represents the Ψdp profile obtained by the linear regression model (LR), and the red curve indicates the Ψdp profile produced by the Gaussian

mixture method (GMM). The dash lines are the standard deviations, while the colored ellipses show the components of the Gaussian mixture.
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Figure 5. Flowchart of the Ψdp unfolding and the δco elimination. The µ0 is the mean of the first density ellipse. The µ1 and µ2 are the

means of the two consective density ellipses along the range. The µ1 is the mean of the former one, and the µ2 is the mean of the latter one.

32



Figure 6. Examples of Kdp estimation: (a) Φdp, and (b) Kdp. The blue curves are the Φdp and Kdp estimates obtained by the Gaussian

mixture method (GMM), the green curves represent the estimates derived from the linear regression model (LR), and the red curves indicate

the reconstructed Φdp and smoothed Kdp profiles (FIR). The dash lines are the standard deviations.
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Figure 7. Responses of finite impulse filter: (a) Impulse response, and (b) step response.
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Figure 8. A case study for GMM: (a) raw ZH at the development stage (03:04 UTC), (b) raw ZH at the mature stage (03:39 UTC), and

(c) rawZH at the dissipation stage (04:41 UTC). (d), (e) and (f) are the same as (a), (b) and (c), respectively, but for Kdp. The data were

collected at a elevation of 0.85◦ by the MZZU radar between 0304 and 0441 UTC on 24 March 2016.
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Figure 9. Kdp estimation for the mature stage: (a) raw Ψdp, (b) LR-based Kdp, (c) GMM-based Kdp, and (d) GMM-based σ(Kdp). The

data were collected at 0339 UTC on 24 March 2016.

36



Figure 10. Comparison between hourly radar and gauge data derived from GMM Kdp and LR Kdp. (a) GMM Bradford, (b) LR Bradford,

(c) GMM Sanborn, (d) LR Sanborn, (e) GMM Auxvasse, (f) LR Auxvasse, (g) GMM Williamsburg and (h) LR Williamsburg. The data were

collected between 1 April 2016 and 2 June 2018.
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Table 1. Characteristics of hourly rain gauge data at Bradford, Sanborn, Auxvasse, and Williamsburg between April 2016 and June 2018.

Mean: mean values, Std: standard deviation, Max: maximum values, Total: sums of rain amounts, and Duration: sum of rainfall time.

Sites Mean (mm) Std (mm) Max (mm) Total (mm) Duration (h)

Bradford 2.1 3.5 38.1 2224.9 1080

Sanborn 2.0 3.3 43.7 2181.4 1082

Auxvasse 2.0 3.3 38.4 2284.3 1144

Williamsburg 2.1 3.7 40.1 2495.9 1191
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Table 2. Statistics for the comparison between radar and gauge. RMSE: root mean squared error, NB: normalized bias, ρRG: Pearson

correlation coefficient; LR: linear regression model, GMM: Gaussian mixture method.

Algorithm Sites RMSE (mm) NB ρRG

LR Bradford 2.87 -0.28 0.84

Sanborn 1.97 -0.08 0.89

Auxvasse 3.25 0.21 0.67

Williamsburg 3.55 0.20 0.70

GMM Bradford 2.71 -0.31 0.84

Sanborn 2.06 -0.13 0.88

Auxvasse 3.14 0.04 0.69

Williamsburg 3.20 0.14 0.76
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