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Abstract. Specific differential phase Kdp is one of the most important polarimetric radar variables, but the variance σ2(Kdp),

regarding the errors in the calculation of the range derivative of differential phase shift φdp, is not well characterized due to

the lack of a data generation model. This paper presents a probabilistic method based on Gaussian mixture model for Kdp

estimation at X-band frequency. The Gaussian mixture method can not only estimate the expected values of Kdp by differenti-

ating the expected values of φdp, but also obtain σ2(Kdp) from the product of the square of the first derivative of Kdp and the5

variance of φdp. Additionally, ambiguous φdp and backscattering differential phase shift are corrected via the mixture model.

The method is qualitatively evaluated with a convective event of a bow echo observed by the X-band dual-polarization radar

in the University of Missouri. It is concluded that Kdp estimates are highly consistent with the gradients of φdp in the leading

edge of the bow echo, and large σ2(Kdp) occurs with high variation of Kdp. Furthermore, the performance is quantitatively

assessed by three-year radar-gauge data, and the results are compared to linear regression model. It is clear thatKdp-based rain10

amounts have good agreement with the rain gauge data, while the Gaussian mixture method gives improvements over linear

regression model, particularly for far ranges.

1 Introduction

Apart from radar reflectivity (ZH ) and differential reflectivity (ZDR), polarimetric radars also measure differential phase shift15

(φdp) to reflect the forward scattering property of hydrometeor scatterers (Seliga and Bringi, 1978; Sachidananda and Zrnić,

1986). Its range derivative, also called specific differential phase (Kdp), has some advantages over ZH and ZDR (Zrnić and

Ryzhkov, 1996), including insensitivity to attenuation, clutter, partial beam blockage and radar absolute calibration. The spe-

cific differential phase has played a key role in various meteorological applications—such as hydrometeor classification (Lim

et al., 2005; Park et al., 2009), raindrop size distribution retrieval (Bringi et al., 2002; Williams et al., 2014) and quantitative20

precipitation estimation (Ryzhkov et al., 2005; Cifelli et al., 2011)—sinceKdp is a phase variable independent of ZH and ZDR

and almost linearly proportional to rain rate.
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A linear regression model has been developed to derive Kdp from the slope of the range profile of φdp for S-band radars. In

Hubbert et al. (1993), φdp is first processed by a light filter that attenuates the φdp magnitudes within a scale of 375 m by 10 dB,

and then heavily smoothed in 1.5 km by 10 dB. An iterative filtering technique is used for eliminating non-zero backscattering

differential phase shift (Hubbert and Bringi, 1995). The filtered φdp measurements are finally fitted into a first-order polynomial

to estimate the φdp slope in a given window. Liu et al. (1993) supply the accuracy of mean Kdp as ±0.25 deg km−1 using 1285

pulses, while Aydin et al. (1995) indicate that the accuracy is within ±0.5 deg km−1 for a heavy rainfall event using 64 pulses.

On the other hand, Ryzhkov and Zrnić (1996) produce two kinds of Kdp for S-band radars: one is obtained over 16 range gates

(2.4 km) for ZH ≤40 dBZ, and the other is produced over 48 gates (7.2 km) for ZH>40 dBZ. Negative Kdp is incorporated

into the rain rate algorithm to avoid bias in low rain rate. The analyses of 15 storms show that the standard error of Kdp is

0.04~0.10 deg km−1 for heavily filtered Kdp and 0.12~0.30 deg km−1 for lightly filtered Kdp using either 128 or 64 pulses.10

In addition, Gorgucci et al. (1999) note the radial smoothing introduces bias in nonuniform rain with high ZH variation by

simulation studies.

X-band dual-polarization radars have drawn increasing attention in the radar meteorology community in recent years on

account of low cost, fine resolution and high sensitivity to light precipitation (Chandrasekar et al., 2012; Lim et al., 2013;

Berne and Krajewski, 2013; Kalogiros et al., 2014; Oue et al., 2016). In the literature, X-band algorithms have been proposed15

forKdp estimation. For example, the linear regression method is adapted for the X-band radar data, and used to retrieve rainfall

(Matrosov et al., 2006). The ambiguous φdp is naturally corrected by examining the complex values of the range profiles of

φdp exponentials, and Kdp is then estimated by a regularization framework based on a cubic spline smoothing (Wang and

Chandrasekar, 2009). In this method, the bias and variance are adjustable through the smoothing parameter, giving high spatial

resolutions of Kdp estimates. Comparing to S-band frequency, the φdp measurements at X-band frequency are affected by20

backscattering differential phase shift δco. Nevertheless, the constraints of Kdp−ZH −ZDR and δco−ZDR can be used to

improve the estimation of Kdp and δco (Otto and Russchenberg, 2011; Reinoso-Rondinel et al., 2018). Algorithms of linear

programming (Giangrande et al., 2013) and Kalman filter (Schneebeli et al., 2014) have also been applied to theKdp estimation,

yielding good performance for rainfalls and snowfalls.

The recent algorithms are focused on the improvement of estimating the mean Kdp, whereas its variance
(
σ2(Kdp)

)
is not25

well characterized due to the lack of a data generation model. The Kdp variance is often assumed to be a constant inherited

from the φdp variance
(
σ2(φdp)

)
leading to large relative errors for lowKdp with a fixed path length. In this study, we propose a

probabilistic method based on Gaussian mixture model forKdp estimation at X-band frequency. The Gaussian mixture method

can not only estimate the expected values of Kdp by differentiating the conditional expectation of φdp, but also yield σ2(Kdp)

by regarding the errors in the calculation of the first derivative of φdp. The results are compared to a standard linear regression30

method and validated using rain gauge data. It is found that σ2(Kdp) is closely related to the square of the first derivative of

Kdp and σ2(φdp), while large σ2(Kdp) is associated with high variation of Kdp estimates.

The paper is organized as follows. Section 2 provides background information about Kdp and the Gaussian mixture model.

Section 3 describes the radar and gauge data. Section 4 presents the methodology. We first remove the residual clutter using

data masks (section 4.1), and then derive the joint probability density function to estimate the expected value of φdp and35
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σ2(φdp) (section 4.2). Next, we correct the ambiguous φdp and δco via the mixture model (section 4.3). Last, we calculate the

expected value and variance of Kdp (section 4.4), and improve the Kdp profile by reducing σ2(Kdp) (section 4.5). To evaluate

the algorithm, section 5 gives a case study and a comparison between radar and gauge. Section 6 summarizes the paper.

2 Background

The specific differential phase is the first derivative of differential phase shift φdp along the radar range, giving a way to estimate5

Kdp by radar measurement of φdp. Furthermore, the probability density function of φdp can be modelled as a Gaussian mixture,

which is often obtained via an expectation-maximization (EM) approach. Therefore, the mean and variance of the Gaussian

mixture may lead to the improvement of the Kdp estimation.

In this section, we introduce the physical interpretation of Kdp and the regression model for estimating Kdp. Since the

Gaussian mixture is adopted as the data generation model, we also give a brief description of mathematical definition of the10

Gaussian mixture model and the EM approach.

2.1 Specific differential phase (Kdp)

For linear polarization, Kdp is proportional to the integral of the raindrop size distribution and the real part of the difference of

forward scattering amplitudes at orthogonal polarizations. It is mathematically formulated as

Kdp =
0.18λ
π

∞∫

0

N(D) · < [fhh (0,D)− fvv (0,D)]dD (deg km-1), (1)15

where λ is radar wavelength in millimeters,D is raindrop size in millimeters,N(D) is size spectrum in m-3mm-1, fhh,vv(0,D)

is forward scattering amplitudes at horizontal and vertical polarizations, respectively.

By considering the Rayleigh-Gans scattering from identical and horizontally-oriented oblate spheroids, such as raindrops,

the forward scattering amplitudes are proportional to the inverse square of radar wavelength, i.e., fhh,vv(0,D)∝ 1/λ2, leading

to the fact that Kdp is inversely proportional to radar wavelength, i.e., Kdp ∝ 1/λ. Therefore, the values of Kdp at X-band20

are often larger than that at S-band by a factor of 3, indicating that X-band radar can provide better Kdp data than S-band

radar when retrieving the rainfall rate. The conclusion is still valid even if the Mie effect is taken into account (Bringi and

Chandrasekar, 2001; Chandrasekar et al., 2006).

However, Kdp cannot be detected by polarimetric radar directly, whereas its integral φdp is measurable. Hence, Kdp can be

estimated as the range derivative of the profile of φdp, i.e., Kdp = ∆φdp

2∆r ,where r is the radar range in kilometers. An alternative25

approach to estimating Kdp is to apply a regression fit to the profile of φdp, and the first order polynomial is usually considered

as the fitting function (Balakrishnan and Zrnić, 1990; Ryzhkov and Zrnić, 1995). Subsequently, if the φdp measurements are

equally spaced in range by ∆r, Kdp is then estimated by

Kdp =
∑n
i=1

[
φdp (ri)− φ̄dp

]
[6i− 3(n+ 1)]

n(n− 1)(n+ 1)∆r
, (2)
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where n is the number of gates, and φ̄dp is the mean value of φdp within the n radar gates. Equation (2) shows that the accuracy

of Kdp estimates is determined by the number of gates (n), and the accuracy of φdp. By assuming σ2(φdp) is relatively stable

for all gates along a ray and noting that φdp(ri) is the only variable in Eq. (2), σ2(Kdp) is formulated as

σ2 (Kdp) =
3 σ2 (φdp)

∆r2 [n(n− 1)(n+ 1)]
. (3)

In Eq. (3), σ2 (Kdp) is proportional to σ2 (φdp), which is related to the spectrum width, cross-correlation coefficient, and the5

dwell time (Sachidananda and Zrnić, 1986; Hubbert et al., 1993), and inversely proportional to n3. Moreover, it is notable that

the backscattering phase shift is not negligible at X-band, thus the total propagation phase shift
(
φ̂dp

)
consists of φdp and the

backscattering differential phase, δco, i.e., φ̂dp = φdp + δco. The backscattering phase shift is often showed as a sudden jump

over one or few range gates in a monotonically increasing φ̂dp profile of rain (May et al., 1999), with a value much larger than

standard deviation σ (φdp). The presence of δco over a small number of consecutive gates can be eliminated by a simple filter10

(Hubbert and Bringi, 1995).

The specific differential phase is a unique polarimetric variable in terms of statistical errors in the rain rate estimation, since

it is the range derivative of the phase measurement φdp. The errors in the calculation of the first derivative also needs to be

taken into account. In this study, we consider a Gaussian mixture as the data generation model, which plays an important role

in the estimation of Kdp and σ2(Kdp).15

2.2 Gaussian mixture model

The Gaussian mixture is a statistical model for data probability density estimation, assuming that the data points are generated

by a mixture of a finite number of Gaussian distributions associated with their weights (McLachlan and Peel, 2000; Sung,

2004). It is expressed as

f(z) =
m∑

i=1

wiN (z;µi,Σi) , (4)20

where m is the number of components in the Gaussian mixture, wi is a weight with
∑m
i=1wi = 1, and N (z;µi,Σi) is the

ith Gaussian distribution with mean µi and covariance Σi, i.e.,N (z;µi,Σi) =
∣∣(2π)kΣi

∣∣−1/2 exp
[
− 1

2 (z−µi)TΣ−1
i (z−µi)

]
,

where k is the data dimension.

It is prevalent to use an Expectation–Maximization (EM) algorithm to estimate the parameters, w, µ, and Σ, by constructing

the lower bound of log-likelihood based on Jensen inequality (Dempster et al., 1977). The EM algorithm is divided into two25

steps, namely, an expectation (E) step and a maximization (M) step. In the E step, a degree of membership toward to the jth

cluster is calculated, i.e.,

Qij = p
(
y(i) = j|x(i);w,µ,Σ

)
, (5)

where i is the ith data with a total number of n data points, and y is a latent variable that determines the corresponding cluster.

Here, Q gives a tight lower bound for the log-likelihood, equivalent to maximizing the expectation. In the M step, the exact30
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form of the lower bound based on Jensen inequality is expressed as

L(w,µ,Σ) =
∑

i

∑

j

Qij log
exp

[
− 1

2 (xi−µ)TΣ−1(xi−µ)
]
wj√

|(2π)kΣ|Qij
. (6)

By maximizing the lower bound with respect to each parameter, wj , µj , and Σj are updated as (Petersen and Pedersen, 2012)

wj =

∑
iQ

i
j

n
, (7)

µj =

∑
iQ

i
jx

(i)

∑
iQ

i
j

, (8)5

Σj =

∑
iQ

i
j(x

(i)−µj)(x(i)−µj)T∑
iQ

i
j

, respectively. (9)

Notably, the M step increases the log-likelihood monotonically, and the covariance retains positive definite with sufficiently

large data samples. Finally, the E step and M step are iteratively operated until the log-likelihood converges to a value with

the difference between two successive steps below a certain threshold. In addition, the EM algorithm requires a specification

of the number of clusters, m, prior to the E and M steps, and an inappropriate choice of m may lead to meaningless values of10

the parameters. To tackle this problem, the Bayesian information criterion is often calculated to select the optimal m, while a

Dirichlet process may also be used to model a prior probability to construct an infinite Gaussian mixture.

One of interpretations of the Gaussian mixture is to view each distribution as a cluster with a Gaussian probability density,

while the individual data point is attributed to a specific cluster or a weight toward the cluster, regarded as unsupervised

learning (Hastie et al., 2009). The clustering procedures based on Gaussian mixture have been applied to the identification of15

storm structure (Veneziano and Villani, 1996), and the particle identification at S-band (Wen et al., 2015, 2016b, 2017) and

X-band (Wen et al., 2016a) frequencies. Furthermore, the Gaussian mixture model can be extended to fit a set of unknown

parameters in the prior probability of the Bayesian framework, forming a Bayesian Gaussian mixture model (Li et al., 2012).

The prior is then multiplied with the known conditional probability of data given the parameters to be estimated, yielding the

posterior probability with a new set of parameters. The expectation of the posterior is often used to retrieve the conditional20

mean of the new parameters based on least square criteria.

For the regression problem, the characteristics of the Gaussian mixture imply that the direct modeling of a regression function

is very difficult. Nevertheless, the joint probability of the measurements and the estimated parameters may be modeled as a

Gaussian mixture, leading to a regression function derived from the joint density model. Due to the asymptotic consistency of

a Gaussian mixture model, it is capable of estimating a general density function in Rn in any shape (Sung, 2004). Moreover,25

the speed of calculating unknown parameters within a Gaussian mixture linearly depends on the number of the training data

points, and the computation of the outputs is independent of the size of the training data. Consequently, regression based on

a Gaussian mixture can be achieved very rapidly, compared to Gaussian process regression that grows with the data size. In

addition, the Gaussian mixture can also be used to solve the regression problem with multiple dimensions, and a subset of

dimensions can be selected to handle the missing data (Wen et al., 2015).30
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3 Data

As part of the Missouri Experimental Project to Stimulate Competitive Research (EPSCoR), an X-band dual-polarization

radar in the University of Missouri (MZZU) was deployed at the South Farm Research Center (38.906◦N, 92.269◦W) in the

midwest of America in the summer of 2015. The details of the radar characteristics are described in Simpson and Fox (2017).

The primary objective is to provide the observations of precipitation near the surface by means of low-cost and fine-scale5

X-band radar, and to fill the observational gaps of the S-band radar network in Saint Louis (KLSX), Kansas City (KEAX),

and Springfield (KSGF). Within the MZZU radar coverage, the Hinkson Creek located near Columbia, MO, flows through a

catchment basin and eventually merges into the Missouri river, forming a typical urban watershed (Hubbart and Zell, 2013).

The radar can provide timely flash flooding warning for the Hinkson Creek watershed and surrounding areas.

In this study, we analyze the data collected by the X-band MZZU dual-polarization radar. The maximum detectable range of10

the MZZU radar is 94.64 km with a resolution of 260 m in range and 1◦ in azimuth. During the observational periods, the radar

operates in a volumetric scanning mode of nine elevations at 0.8◦, 2◦, 3◦, 4◦, 5◦, 6◦, 7◦, 8.5◦, and 10◦, updated every 4 minutes.

The raw radar data are organized and processed by an open-source software package called Python ARM Radar Toolkit (Py-

ART: Helmus and Collis, 2016). Moreover, to validate the Kdp estimation algorithm, we also use the data from tipping-bucket

rain gauges in the Missouri Mesonet weather station network, including Bradford Farm (38.897◦N, 92.218◦W), Sanborn Field15

(38.942◦N, 92.320◦W), Auxvasse (39.089◦N, 91.999◦W), and Williamsburg (38.907◦N, 91.734◦W). The horizontal distances

between the rain gauges and the radar center are 4.4 km, 6.0 km, 30.8 km, and 46.2 km, respectively. The first elevations at

Bradford and Sanborn may be affected by ground clutter, since the radar beams are very close to the ground, with heights

of 314.6 m and 336.9 m, respectively, and therefore the second elevation at 2◦ is selected for validation. In contrast, the first

elevations at Auxvasse and Williamsburg reach about 723.8 m and 999.0 m, which are less contaminated by ground clutter.20

Furthermore, the point measurement of rain gauge is different from the volumetric measurement of radar, imposing additional

errors on the comparison between radar and gauge (Anagnostou et al., 1999). The radar-based rain rate is then derived by

averaging Kdp over three successive range gates and three successive azimuthal rays with a total of 9 values centered over

each gate in order to obtain good consistency between the instruments. In addition, the rain gauges are carefully calibrated in

terms of instrumentation failure, clogging, and other discrepancies between the devices (Simpson and Fox, 2017), and well25

documented to provide long-term data for rainfall observations.

Table 1 summarizes the characteristics of rainfalls observed at Bradford, Sanborn, Auxvasse and Williamsburg between

April 2016 and June 2018. It is clear that the hourly rain amounts are dominated by light rain, with similar means of 2.0–2.1

mm at the four sites, indicating uniformly distributed rainfalls within the experimental region. On the other hand, the standard

deviations of Bradford and Williamsburg are 3.5 mm and 3.7 mm, respectively, a little larger than that of 3.3 mm at Sanborn30

and Auxvasse. Moreover, Sanborn gives the highest hourly rain amount, the lowest total rain amount, and the second lowest

duration out of the four sites, due to the effects of urban heat island (Hubbart et al., 2014). The second highest maximum

hourly rain amount is recorded at Williamsburg, however, the total rain amount and duration are also the highest among the

four sites, implying that convective rain is the most frequent at Williamsburg. In contrast, stratiform rain is more common
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at Bradford, since the gauge records the lowest maximum hourly rain amount and duration, and the second total hourly rain

amount. In addition, it can be seen that Auxvasse also provides useful data for the comparisons between gauges and between

radar and gauge, though the statistics are all ranked in the middle of the four sites. Overall, the rain gauge data at Bradford,

Sanborn, Auxvasse and Williamsburg are representative and sufficiently large, leading to a valid dataset for testing the Kdp

and Kdp-based rain amounts.5

4 Kdp estimation

As discussed in section 2, the joint probability density function (PDF) based on a Gaussian mixture can be used to derive the

regression model for Kdp estimation. The Gaussian mixture method (GMM) not only estimates the expected values of Kdp by

differentiating the conditional expectation of φdp, but also gives an estimation of Kdp variance by regarding the errors in the

calculation of the first derivative of φdp. In this section, we describe GMM for the Kdp estimation using MZZU radar data.10

Figure 1 illustrates the flowchart of GMM (Fig. 1b), comparing to that of the linear regression model (LR; Fig. 1a).

From the chart of LR in Fig. 1a, we can see that after the radar measurements are collected, the φdp is unfolded, and then

the clutter is removed. After these corrections, an iterative filtering method is applied to the φdp profile. An adaptive method

is finally used to estimate the Kdp profile according to the values of ZH . The Gaussian mixture model, on the other hand,

processes φdp differently. First of all, the clutter is masked out according to the thresholds of ZH and the variation of φdp.15

Secondly, the range measurements r and processed φdp are fitted into a Gaussian mixture to yield the joint PDF, while a

smoothed φdp profile and the variances are obtained by taking the first raw and second central moments of the conditional PDF

of φdp given r. Thirdly, some specific clusters in the Gaussian mixture PDF are adjusted to solve the issues, such as ambiguous

φdp and backscattering differential phase shift δco. Fourthly, a raw Kdp profile is calculated from the first derivative of the

expected values of φdp, and the associated variances are obtained via a Taylor series expansion. Finally, the raw Kdp profile is20

smoothed, and consequently, the variances are reduced. In addition, new φdp with lower variances can be re-constructed from

the Kdp estimates.

4.1 Data masking

The presence of clutter in the φdp measurements may severely affect the Kdp estimation, producing significantly large varia-

tions on the estimates. It is well known that the effect of clutter can be reduced by applying a spectrum filter to the time-series25

data (e.g., May and Strauch, 1998; Hubbert et al., 2009). However, some residual clutter echoes are still shown on the radar

measurements including φdp (Wen et al., 2017). Therefore, the clutter needs to be well handled in GMM, prior to the deviation

of the regression model based on the joint PDF.

In LR, the clutter is often eliminated by some criteria based on φdp or ρhv . For instance, we use the thresholds of local

standard deviation of φdp less than 10◦ to classify valid points. Further, ten consecutive range gates of valid points signify30

the beginning of a rain cell, and five consecutive gates of invalid points finish the associated rain cell. Overall, the thresholds
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give a fairly good performance on the MZZU radar, however, the clutter may be incorrectly identified in the regions of high

reflectivity or for the clutter-contaminated weather echoes, which are often associated with large φdp variation.

In contrast, GMM adopts sophisticated procedures, as depicted in Figure 2. It is clear that there are five stages in the data

masking, beginning with the input of raw φdp and ending with masked data. At the first stage, the raw data are fitted to a

Gaussian mixture initialized by the k-means clustering, while the covariance is set to be diagonal for simplicity. The clusters5

with no more than 5 points are promptly masked out, before they pass to the second stage. Stages two, three and four of the

process all involve the clusters. At the second stage, the clusters are validated according to two sets of thresholds with respect

to mean reflectivity. For the MZZU radar, the ratio of the standard deviations, σ(φdp)/σ(r), less than 14.2◦ km−1, and σ(φdp)

less than 4.1◦ are used for Z less than 41 dBZ. To reduce the effect of hail contamination, the thresholds are increased for

higher Z, resulting in σ(φdp)/σ(r)< 47.9◦ km−1 and σ(φdp)< 6.3◦. Next, the entire φdp profile is divided into multiple rain10

cell segments by considering the gaps between two consecutive clusters. Similar to the first stage, the segments containing no

more than 5 points are excluded from the output of masked data. Following this, the dominant is determined for each segment

by comparing the the weight accumulations of weather and clutter clusters. For a clutter segment with mean height below 200

m, the clusters within the segment are re-evaluated by thresholds of σ(φdp)/σ(r)< 2.0◦ km−1 and σ(φdp)< 0.8◦, on the other

hand, the clusters in a weather segment are re-examined using σ(φdp)/σ(r)< 34.7◦ km−1 and σ(φdp)< 6.1◦. This step can15

efficiently identify the clutter-contaminated weather echoes, which are often associated with large variances. At the last stage,

some isolated points along the azimuth are obscured in the final results.

Figure 3 illustrates two examples for data masking, including a convective case (Fig. 3a) and a stratiform case (Fig. 3b).

The data points in the two cases show steadily increasing trends related to anisotropic media along the wave propagation path.

However, between 1.3 and 15 km at an azimuth of 252◦ in the convective case (Fig. 3a), the data present significant fluctuations20

with the minimum value at about a few hundredths π rad but the maximum value at π rad. Since the dynamic range of φdp

is from 0 to 180◦ for the MZZU radar, the measurements near the ground are likely to be the clutter returns, verifying the

results of data masking. After 15 km, the φdp points start from about π/4 rad and go all the way up to π rad. Notwithstanding

this trend, the points sharply decrease to a few hundredths π rad at about 40 km, indicating the occurrence of ambiguous φdp.

The data masking can effectively detect the ambiguous φdp, and provide valid masked data for deriving the joint PDF. On the25

other hand, the weather echoes are more frequently observed at 1◦ in azimuth in the stratiform case (Fig. 3b). By taking a

closer inspection on the φdp data, we can discern that the points largely fluctuate between 40 and 80 km due to low signal-to-

noise ratio. In LR, these points may be incorrectly discarded based on σ(φdp) thresholds, leading to some missing data in the

stratiform regions. In contrast, the data masking accurately identifies weather echoes characterized by a number of vertically-

oriented density ellipses. The continuous and uniformly-distributed regimes are consistent with the physical interpretation of30

stratiform precipitation. In addition, the data masking is also sensitive to sudden jumps at the beginning of the φdp data, which

may be caused by δco.
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4.2 φdp density estimation

In the previous section, it is shown that the φdp profile varies along the range r. It rises quickly for horizontally-oriented

anisotropic scatterers, and conversely, it falls steadily for vertically-oriented particles. To estimate the relationship between

r and φdp, we consider r as an independent variable, denoted as x, and φdp as a dependent variable, denoted as y. If the

minimization of mean square error is required, the regression function is obtained by taking the average value of y at fixed x,5

equivalent to estimating the expected values of y conditioned on x, i.e.,

ȳ(x) = E(y|x) =
∫
yp(y|x,β) dx, (10)

where β is a set of unknown variables, for example, β = (m,w,µ,Σ) for the mixture model. Since the Gaussian mixture can

be used to model any shapes of probability density with a rapid speed, the (x,y) points are then assumed to follow a joint PDF

of Gaussian mixture, as defined in Eq. (4). Moreover, the properties of the multivariate Gaussian distribution in each cluster10

determine the Gaussianity of the marginal distribution of either variable and the conditional distribution of one variable given

the other (Bishop, 2006). Therefore, the conditional PDF of y given x is expressed as

p(y|x,β) =
m∑

i=1

w
y|x
i N

(
y;µy|xi ,Σy|xi

)
, with (11)

µ
y|x
i = µyi + Σyxi (Σxxi )−1(x−µxi ), (12)

Σy|xi = Σyyi −Σyxi (Σxxi )−1Σxyi , (13)15

w
y|x
i =

fi(x)
f(x)

=
wiN (x;µxi ,Σ

xx
i )∑m

j=1wjN (x;µxj ,Σ
xx
j )

, (14)

where wi, µi = (µxi ,µ
y
i )T and Σi =


Σxxi Σxyi

Σyxi Σyyi


 are obtained by the EM algorithm. In Eq. (14), f(x) is the marginal

PDF of x with the parameters identical to the mixture, and fi(x) is the weighted marginal PDF of each cluster, i.e., f(x) =
∑m
i=1 fi(x). By substituting Eq. (11) into Eq. (10) and noting the linearity of the mathematical expectation, the expected value

of y conditioned on x is then obtained as20

E(y|x) =
m∑

i=1

fi(x)
f(x)

(aix+ bi), with (15)

ai = Σyxi (Σxxi )−1, (16)

bi = µyi −Σyxi (Σxxi )−1µxi , (17)

and the conditional variance is given as (see Appendix A)

σ2(y|x) =
m∑

i=1

w
y|x
i

[
Σy|xi +

(
µ
y|x
i

)2
]
−
(

m∑

i=1

w
y|x
i µ

y|x
i

)2

. (18)25

Equations (15) and (18) play an important role in the joint PDF-based regression analysis, called the regression and skedastic

functions (Spanos, 1999). In Eq. (15), it can be seen that the regression function in GMM consists of multiple linear kernels,
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which is similar to LR. However, the weighting function wy|xi is not determined by the local structure but the marginal PDF

of global data x. Comparing to LR, GMM is more flexible to capture the data information, while it still retains a finite set of

parameters. Moreover, Eq. (18) readily estimates the point-wise variances σ2(y|x) that characterize the random errors in the

measurements, whereas these errors σ(φdp) are often considered as constant in LR.

Figure 4 compares the φdp profiles given by Eqs. (15) and (18) with that obtained by LR. Figure 4.a gives the same example5

as Fig. 3.a, but the EM algorithm is configured differently. In the φdp density estimation, the mixture with full covariance

yields density ellipses of random shapes. Furthermore, the algorithm repeats the fitting procedures three times to avoid the

local maxima of the log-likelihood. Meanwhile, the choice of the cluster number relies on the Bayesian information criterion

calculated for each m, starting at 10 clusters. It can be seen that the mixture composed by density ellipses well characterizes

the data points, since the root-mean-square error is small relative to the expected values. Between 15 and 35 km, the narrow10

ellipses result in φdp with a rising trend consistent with LR. On the other hand, the mixture has very small variances, giving a

high confidence for the fitted parameters. From 35 km, the ellipses become wider, and the associated variances increase due to

low signal-to-noise ratio at the edge of radar echoes. What is notable, however, is that the φdp profile dramatically increases to

a large value, whereas LR remains a relatively steady trend. It indicates the importance of the φdp unfolding for the φdp density

estimation.15

Figure 4.b presents another example of the density estimation. It is clear that the φdp profiles produced by GMM and LR

both rise considerably along the range, and the trends for the two methods are very similar with a strong correlation of 0.998.

The profile starts at about 1 rad, and remains relatively stable before rising dramatically between 35 and 55 km. By 65 km, φdp

has more than doubled, and then, there is a steady increase for φdp reaching about 2.3 rad at the end of the profile, which is

around 1.3 rad up on the ranges of 0 and 35 km, and 0.3 rad more than recorded at the ranges of 55 and 65 km. If we examine20

φdp measured at X-band frequency, we can see that some points fall out of the error bars corresponding to one standard error

(i.e., 95% interval). Most notably, between 18 and 20 km, the φdp profile shows a sudden slump, indicating the occurrence of

backscattering differential phase shift. In conclusion, the expected value and the variance of φdp can be obtained from the joint

PDF, but the mixture needs to be tuned in terms of φdp unfolding and δco elimination.

4.3 φdp unfolding and δco elimination25

According to the continuity and consistency of φdp data, we can discern that some issues exist in the density estimation, such

as ambiguous φdp and δco. Since φdp is an range accumulative measurement of propagation phase, depending on the initial

φdp(0). The measurements may exceed the dynamic range of 0–180◦ when the wave propagates through a rain medium. This

situation is even more significant at X-band frequency than S-band due to the inverse relation of the wavelength and the rate

of phase shift. Nevertheless, it can be noted that φdp gives a non-negative trend along the range for rain, and therefore, the30

ambiguous φdp may be corrected accordingly (Wang and Chandrasekar, 2009).

In LR, φdp is first averaged over a small window for weather data, and a linear fit is then performed to obtain the increment

for the range gate next to the window. In the following stage, a reference is predicted by summing up the average and the

increment, and compared to the observed value at the same gate. If the difference between the predicted and observed values is
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larger than 90◦, the observed φdp is then increased by 180◦. Finally, the correction process is iteratively operated until the last

gate.

On the other hand, the φdp unfolding is more straightforward in GMM. After the initial stage of generating the mixture, the

density ellipses corresponding to more than 6 data points are transformed into the next stage, which compares the means µi

of two consecutive density ellipses along the range. At this point, the mixture is ready to be corrected for ambiguous φdp. The5

mean of the latter density ellipse is finally added up 180◦, if the former mean is larger than the latter one by 80◦.

As illustrated in Fig. 4.a, the profile φdp reaches π rad at about 38 km, and then becomes ambiguous between 38 and 42 km.

In LR, the φdp values at these locations are interpolated according to the trend of the previous few gates, and the maximum

value is π rad. In contrast, the corrected density ellipses in GMM show an upward trend between 38 and 42 km, while the φdp

profile reaches a maximum value of about 3.5 rad, indicating the effectiveness of the φdp unfolding in the region of heavy rain.10

In addition to ambiguous φdp, the estimation of the joint PDF may also be affected by non-zero δco, which occurs more

frequently at X-band frequency than S-band due to Mie effects. δco is shown as a sudden phase change over a small number of

gates in a monotonically increasing trend for rain. According to this manifestation, the magnitude and gate number of the φdp

perturbation can be used to eliminate δco (Matrosov et al., 2002; Otto and Russchenberg, 2011; Trömel et al., 2013).

The linear regression model often adopts an iterative filter technique, which generates a new φdp profile from either the raw15

data or the filtered one based on a threshold (Hubbert and Bringi, 1995). If the filtering alters the data by 4◦, the new profile

selects the filtered data, otherwise the raw data are remained. The new profile is then used as input in the next iteration until

the convergence condition is satisfied.

In GMM, the δco elimination is embedded into the process of the φdp unfolding. For two consecutive density ellipses, the

latter density ellipse is removed if its mean is larger than the former one by 85◦. Prior to this step, the mean of the first density20

ellipse in the mixture should be below 90◦ to reduce the δco effect at the first few gates. Since δco occurs over a small number

of range gates, a mixture pruning is also employed to remove the density ellipses with weights less than 0.0501, equivalent to

2% of the data.

It is clear from Fig. 4.b that δco has occurred at multiple locations in the data. The φdp profile starts at a high value and drops

somewhat over the first two gates. Notably, there is a narrow gap between 18 and 20 km, which is non-zero δco. These data are25

characterized by a density ellipse with a slightly decreasing trend in GMM, and the resulting expected values are consistent

with the filtered data in LR. Between 70 and 90 km, a few isolated points beyond the density ellipses are associated with δco.

Both of the two methods can produce φdp following the main trend of the data, which suggests that the process is effective for

the δco elimination.

4.4 Kdp estimation30

As discussed in section 2.1, Kdp is the first derivative of φdp with respect to the range r. According to the mean value and

dominated convergence theorems, the derivative of the expected value of φdp conditioned on r is equal to the expected value

of the derivative of φdp with respect to r, i.e., Kdp (see Appendix B). Following the notation in section 4.2, we denote Kdp as

11
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y′. Therefore, the expected value of Kdp is obtained by taking the derivative of Eq. (15), yielding

E (y′|x) =
1

f2(x)





m∑

i=1

m∑

j=1

fi(x)fj(x)

[(
x−µxj
Σxxj

− x−µxi
Σxxi

)
(aix+ bi) + ai

]
 . (19)

The variance of y′ conditioned on x can be approximated by the first-order Taylor series expansion (see Appendix C), i.e.,

σ2 (y′|x) = [E′′(y|x)]2σ2(y|x), (20)

where σ2(y|x) is given in Eq. (18). By taking the derivative of Eq. (19), E′′(y|x) is expressed as5

E′′(y|x) = 2

[
m∑

i=1

ai

(
w
y|x
i

)′
]

+
m∑

i=1

(aix+ bi)
(
w
y|x
i

)′′
. (21)

From Eq. (B8) in Appendix B, it is clear that

(
w
y|x
i

)′
=
gi(x)
f2(x)

=
1

f2(x)

m∑

j=1

fj(x)fi(x)

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
, (22)

where gi(x) is the summation term. Subsequently, the second derivative of wy|xi is given as

(
w
y|x
i

)′′
=
g′i(x)f(x)− 2f ′(x)gi(x)

f3(x)
, where (23)10

f ′(x) =−
m∑

j=1

(
x−µxj
Σxxj

)
fj(x), (24)

g′i(x) =
m∑

j=1

fj(x)fi(x)



(
x−µxi
Σxxi

)2

−
(
x−µxj
Σxxj

)2

+
1

Σxxj
− 1

Σxxi


 . (25)

Equations (19) and (20) are the regression and skedastic functions for the Kdp estimation. In Eq. (19), it is clear that

the expected value of Kdp can be divided into two components, including Eqs. (B7) and (B11). On one hand, Eq. (B7) is

related to the changing rate ai weighted by the marginal distribution of each cluster in the mixture, equivalent to a linearly15

weighted combination of small portions of data. If a data point is dominated by a specific cluster, i.e., the weight of a cluster

is significantly larger than the others, Kdp is determined by the coefficients of the cross-correlation and auto-correlation of r,

and independent of the means and auto-correlation of φdp, yielding a constant value within the dominated cluster. On the other

hand, Eq. (B11) shows that the weighting function also contributes to theKdp estimates by considering the Gaussian derivative

of the φdp estimates in two or three adjacent clusters along the range. The sign of Kdp is then determined by the marginal20

means and variances of the clusters, weighted by the difference of their contributions to φdp.

In Eq. (20), it can be seen that σ2(Kdp) is proportional to σ2(φdp), which is similar to Eq. (3) in LR. However, σ2(φdp)

varies along the range due to the random errors of the φdp estimates in GMM, whereas σ2(φdp) is stable in LR. In addition,

the statistical errors with respect to signal processing may be included in Eq. (20) as an additive term, independent of φdp.

Moreover, the radar gate spacing and gate number for the Kdp estimation are often fixed in Eq. (3), indicating σ2(Kdp) is also25
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constant in LR. In contrast, σ2(Kdp) in GMM is closely related to the first derivative of Kdp in Eq. (20). As the changing rate

of Kdp increases, the random errors associated with the Kdp estimates rise dramatically.

Figure 5.b illustrates Kdp and its variance estimated from φdp in Fig. 5.a, which is the same case as given in Figs. 3.a and

4.a. It is apparent that the Kdp estimates present a large fluctuation, while the associated variances are significant. In GMM,

Kdp starts from about 0.5 deg km−1, and then fluctuates between 17 and 20 km and between 24 and 42 km. In the profile,5

there are six local peaks with the maximum at about 8.5 deg km−1. Meanwhile, the Kdp variances vary as the Kdp estimates

change. Between 15 and 17 km and between 20 and 24 km, the Kdp estimates stand at a value, leading to small Kdp variances

in these regions. When short excursions are present, such as that between 18 and 20 km, Kdp variances increase significantly

due to the contribution of the first derivative of Kdp in Eq. (20). Furthermore, the large φdp variances between 35 and 42 km

also result in an increase of the Kdp variances. In contrast, LR gives less fluctuation in Kdp estimates with two peaks at about10

20 and 34 km. The comparison of Kdp obtained by the two methods may suggest that a smoothing procedure is required to

reduce the significant variance in GMM.

4.5 Kdp smoothing

As discussed previously, the Kdp variance is small for high Kdp, but relatively large for low Kdp. Therefore, an adaptive

estimation is adopted in LR. For radar reflectivity (ZH ) less than 20 dBZ, the gate number n in Eq. (2) is set as 15, while n is15

8 for 20≤ ZH < 35 dBZ, and 2 for ZH ≥ 35 dBZ, respectively. On the other hand, GMM also applies an adaptive technique

based on finite impulse filter (FIR) to the expected values of Kdp in order to reduce the associated variances. Figure 6 shows

the time responses of FIR. The impulse response (Fig. 6.a) is peaked at the center, and gradually decreases towards the two

ends. If a longer window is required, the cut-off bounds are extended accordingly. Furthermore, the step response (Fig. 6.b)

gives the accumulation of the impulse response, indicating that the magnitudes around the center change faster than that at the20

two ends. In this study, the length of the FIR window is subject to relative square error of two adjacent iterations. For profiles

with sufficiently large data points, the window length is between 29 and 33 for the MZZU radar.

To obtain the reduced variance, we consider the filter as a number of weighting functions, denoted as hi(x), and subsequently,

the smoothed data become

y =
n∑

i=1

hi ∗xi (26)25

where y is a smoothed data point, xi is the original data within the smoothing window, and n is the window length. By taking

the variance on both sides of Eq. (26), we have

σ2(y) =
n∑

i=1

h2
iσ

2(xi). (27)

Therefore, the variance of the smoothed data is the weighted sum of the variances of the original data within the smoothing

window. Since the FIR coefficients are much less than unity, σ2(y) is smaller than σ2(x) at the same gate. Furthermore, the30

Kdp estimates with the reduced variances can be used to re-construct φdp to obtain smaller φdp variances. For a fixed gate
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spacing ∆r, the re-constructed φdp for the jth range gate is

φjdp =
j∑

i=1

Ki
dp∆r, and (28)

σ2(φjdp) =
j∑

i=1

σ2(Ki
dp)∆r

2. (29)

The red curves in Figs. 5.a and 5.b illustrate the re-constructed φdp and the smoothed Kdp using FIR, respectively. The

smoothed Kdp in Fig. 5.b is more consistent with the LR results compared to the original Kdp produced by the GMM. In the5

first few kilometers, the smoothed Kdp gradually rises, and then peaks at about 21 km. With no fluctuations, the smoothed

Kdp falls gradually, followed by a growth before reaching a plateau at 33 km. After a slight decrease between 33 and 36 km,

Kdp rises dramatically, which is very different from LR. Meanwhile, the variances are small at the beginning, but get larger

as Kdp is climbing up. Between 20 and 33 km, the Kdp estimates do not change very much, leading to small variances in this

region. But after 33 km, the variances begin to increase and retain large values until the end of the profile. Overall, the smoothed10

Kdp is stable, producing a profile considerably consistent with LR, and the variances are significantly reduced comparing to the

original data. In addition, the re-constructed φdp (Fig. 5.a) constantly increases with few local fluctuations, while the associated

variances are smaller than the φdp variances in GMM.

5 Evaluation

In this section, a case study is first presented to qualitatively analyze the storm structure and evolution based on Kdp . The15

radar-gauge dataset is then used to provide a quantitative evaluation for the Kdp estimation in terms of root mean squared error

(RMSE), normalized bias (NB) and Pearson correlation coefficient (ρRG), which are defined as

RMSE =

√∑N
i=1 (Ri−Gi)2

N
, (30)

NB =
∑N
i=1(Ri−Gi)∑N

i=1Gi
, (31)

ρRG =
∑N
i=1(Ri− R̄)(Gi− Ḡ)√∑N

i=1(Ri− R̄)2

√∑N
i=1(Gi− Ḡ)2

, (32)20

where N is the sample size, Ri is the individual radar hourly rain amount, Gi is the gauge data, and R̄ and Ḡ are the sample

means for radar and gauge, respectively. The radar hourly rain amount is calculated based on the CASA radar rainfall algorithm

(Wang and Chandrasekar, 2010; Chen and Chandrasekar, 2015).

5.1 Case study

On 24 March 2016, a severe storm developed in central Missouri and moved eastward across Columbia, MO, causing strong25

winds and heavy precipitation at the surface. When the storm became mature, the radars at Kansas City and St. Louis observed
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the storm structure at high levels, since each radar was about 150 km away from the storm. Notably, the Kansas City radar

showed positive and negative Doppler velocities in a small area (not shown), indicating the occurrence of a downburst. On

the other hand, the MZZU radar illustrated a bow echo of ZH close to the radar center (Figs. 7.b). In addition to ZH , the

GMM-based Kdp (Figs. 7.d, e and f) was also obtained to investigate the storm structure near the surface.

Figure 7 illustrates that the convective storm evolves from a strong and large echo to a bow shape echo, and then dissipates5

at far range. At 0304 UTC (Fig. 7.a), a cell with strong ZH moves into the radar area, while Kdp is moderate with a maximum

of about 3 deg km−1 (Fig. 7.d). As the cell is transforming to a bow shape, the radar echo becomes intensive, and forms a rain

band with embedded convective cores (Fig. 7.b). It is clear to see thatKdp reaches over 10 deg km−1 in these core regions (Fig.

7.e), indicating very heavy precipitation at the surface. With the fast movement of the storm, the downburst has been weaken,

and the storm starts to dissipate (Fig. 7.c). At 0441 UTC, it can be seen that Kdp is gradually reduced at the far range, while its10

maximum is much less than that at the mature stage.

In this storm, the bow echo is shown as a number of convective cores embedded in a rain band, while the downbursts

occured at the leading edge near the echo center. The bow echo can be considered as a mesoscale convection with a horizontal

dimension of more than 60 km. To gain a further insight, Fig. 8 shows raw φdp and Kdp for the bow echo. In Fig. 8.a, raw φdp

presents large gradients along the leading edge, rising from about 50◦ to over 140◦. Due to the sharp increase, φdp exceeds the15

maximum dynamic range, leading to ambiguity in the areas of X:-20~-18 km and Y:12~18 km and X:-40~-23 km and Y:-8~-5

km. In addition, the echoes behind the convective cores occasionally vanish as a result of signal attenuation. Nevertheless, LR

(Fig. 8.b) produces continuous Kdp by φdp unfolding and linear interpolation according to the trends of the profiles, but some

missing data still exist within the storm. In contrast, GMM (Fig. 8.c) corrects these data with the expected values derived from

the joint PDF, and simultaneously obtains the statistical errors in the production of Kdp. It is evident that the GMM method20

can efficiently handle the missing data via the mixture model, which is another advantage over the LR model. Furthermore, the

statistical errors are not very large in these areas, since the missing data are filled by the distribution of the entire data profile.

Additionally, the GMM Kdp estimates are generally a few deg km−1 higher than the LR ones, particularly for the regions of

high ZH .

By taking a closer look at GMM Kdp, we can see that the bow echo is generally characterized by Kdp of above 2.5 deg25

km−1, while five pockets of high Kdp are identified. In the bow head, the first pocket presents very high Kdp associated with

a rapid growth of φdp. Behind this pocket, there is a region of negative Kdp, whereas LR generally yields positive values.

It may be due to a reduction of cross-correlation coefficient caused by low signal-to-noise ratio, since the signals have been

significantly attenuated after propagating through the pocket. In the middle of the second and third pockets in the bow center,

LR and GMM both show lower Kdp comparing to the two pockets, while Kdp is substantially consistent with the gradient30

of φdp in the area. By considering the high ZH in Fig. 7, these moderate Kdp values may indicate less anisotropic scatterers,

such as small hail in the process of wet growth. Similarly, a hail signature with maximum ZH of above 66 dBZ and small Kdp

of 1~2 deg km−1 can also be identified in the middle of the fourth and fifth pockets in the bow tail. Along with the expected

values of GMM Kdp, Fig. 8.d depicts the statistical errors σ(Kdp) in the calculation of the expected values. The five pockets

of high Kdp are generally associated with small σ(Kdp) of a few tenths deg km−1. However, the estimates behind the top four35
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pockets yield very large σ(Kdp) with a maximum above 10 deg km−1, and the expected values of Kdp are sometimes below 0

deg km−1, such as X:-25~-20 km and Y:11~20 km. In contrast, a region of high σ(Kdp) appears in front of the bottom pocket,

superimposed on the high ZH area associated with hail. In conclusion, the GMM Kdp estimates of high confidence give good

agreement with the gradients of φdp in the leading edge of the bow echo, while large σ(Kdp) are expected at the region of high

variation of the Kdp estimates.5

5.2 Statistical analysis

In order to quantitatively evaluate the accuracy of GMM Kdp, hourly accumulated rain amounts are derived from the X-

band rainfall rate algorithm (Chen and Chandrasekar, 2015), and compared to the rain gauge data collected at Bradford,

Sanborn, Auxvasse and Williamsburg between 1 April 2016 and 2 June 2018. The scatterplots presented in Fig. 9 illustrate the

comparison between GMM-based radar and gauge rain amounts, and the accompanying table (Table 2) gives RMSE, NB and10

ρRG results obtained by GMM and LR.

Consistent with the data in Table 1, the rainfall at the four sites is predominately made up of light rain with hourly rain

amounts no more than 2.5 mm h−1. Nevertheless, according to Fig. 9, moderate rain with amounts between 2.6 and 8 mm h−1

gives a considerable contribution to the total rain events, followed by a small portion of heavy rain with amounts more than

8 mm h−1. When we study the scatterplots and statistics for each of the four sites, it is apparent that Bradford (Fig. 9.a) and15

Sanborn (Fig. 9.b) are more concentrated on the red line than Auxvasse (Fig. 9.c) and Williamsburg (Fig. 9.d), since Bradford

and Sanborn are closer to the radar. Accordingly, RMSEs for Bradford and Sanborn (Table 2) are relatively small, about

13%~35% lower than Auxvasse and Williamsburg. Furthermore, it can be seen that Bradford and Sanborn show negative bias

associated with negative NBs, indicating an underestimation of rain amounts by GMMKdp. In contrast, a slight overestimation

may be concluded for Auxvasse and Williamsburg by considering the point trends and the positive NBs. Additionally, Sanborn20

claims the highest ρRG out of the four sites, yielding the best consistency between radar and gauge.

When compared to LR statistics as given in Table 2, it is clear that GMM improves the RMSEs, NBs and ρRG for Auxvasse

and Williamsburg. Notably, the GMM-based NB for Auxvasse reaches a very small value of 0.04 mm, one fifths of LR-based

NB. For Bradford, RMSE is reduced by GMM, but the absolute value of NB is slightly increased, while ρRG remains the

same. On the other hand, for Sanborn, the GMM-based RMSE, NB and ρRG get worse by a few hundredths of millimeters,25

which may be due to the local complex terrain near the radar. Overall, the rain amounts deduced from GMM Kdp are highly

consistent with the rain gauge data, and GMM gives a better performance than LR in terms of RMSE, NB and ρRG at the far

ranges.

6 Summary and discussions

In this study, we proposed a probabilistic method based on Gaussian mixture model to estimate the specific differential phase30

Kdp, which is the range derivative of differential phase shift φdp. The Gaussian mixture method (GMM) not only obtained the
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expected values of Kdp by differentiating the conditional expectation of φdp, but also yielded the variance σ2(Kdp) regarding

the errors in the calculation of the first derivative of φdp.

As an initial step of GMM, the data masking was performed to eliminate the the residual clutter in the φdp measurements.

The data of r and φdp were first fitted into a simplified Gaussian mixture to generate a number of clusters, which were validated

against the two sets of the σ(φdp) and σ(φdp)/σ(r) thresholds given by radar reflectivity ZH . The clusters were then combined5

to form the rain cell segments, and the segments were classified by comparing the weight accumulations of weather and clutter

clusters. Next, the clusters within each segment were re-evaluated by the thresholds according to the segment types. Finally,

the azimuthally isolated points were masked out.

Secondly, the joint PDF was obtained by fitting the data of r and φdp into a mixture model with full covariance, where the

cluster number m, weight w, mean µ and covariance Σ were optimized via the Expectation-Maximization (EM) algorithm.10

Subsequently, the PDF of φdp conditioned on r was also a mixture with parameters related to the joint PDF. Finally, new φdp

was estimated by the conditional expectation, and the statistical errors σ2(φdp) were given by the conditional variance, which

was not always constant, but varied with w and the marginal PDF of r.

Thirdly, the ambiguous φdp and backscattering differential phase shift δco were corrected by examining the two adjacent

density ellipses in the mixture. On one hand, if the former density ellipse had a mean larger than the latter one by 80◦, the latter15

mean was added to 180◦ for φdp unfolding. On the other hand, if the former mean was smaller than the latter one by 85◦, the

latter density ellipse was removed as δco. Moreover, for δco elimination, the first density ellipse mean was assumed as below

90◦, while the density ellipses with small weights were also removed.

Fourthly, the joint PDF of r and φdp was used in the calculations of Kdp and σ2(Kdp). Since Kdp was the range derivative

of φdp, the expected values of Kdp were then obtained via the derivative of the expected value of φdp. Moreover, by taking the20

first-order Taylor series expansion, σ2(Kdp) was the product of the square of the first derivative of Kdp and σ2(φdp), yielding

non-constant values of σ2(Kdp).

In the final step, the expected values of Kdp were smoothed to reduce the associated σ2(Kdp). An FIR filter was imple-

mented, and iteratively applied to the data to search for an optimal window length. Subsequently, the reduced σ2(Kdp) was

obtained by the sum of the original σ2(Kdp) weighted by the FIR coefficient squares within the window. Additionally, new25

φdp were re-constructed from the smoothed Kdp, while σ2(φdp) was also reduced.

The experimental results with a severe storm observed by the X-band polarimetric radar in the University of Missouri

(MZZU) revealed the advantages of GMM. By studying the structure and evolution of a bow echo in the storm, it was concluded

that the GMM Kdp was consistent with the gradients of raw φdp along the leading edge of the bow echo, while large σ2(Kdp)

occurred with high variation of Kdp. The GMM method produced results similar to the LR method, with the ability to handle30

the missing data. Moreover, the hourly rain amounts based on Kdp were compared to the rain gauge data, showing good

agreement between radar and gauge measurements. The rain amounts obtained by GMM Kdp gave improvements over the

linear regression model, particularly for the far ranges.

The potential applications of GMMKdp and σ2(Kdp) include quantitative precipitation estimation (Cifelli et al., 2011; Chen

et al., 2017) and attenuation correction (Park et al., 2005). For quantitative precipitation estimation, the relationship between35
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Kdp and rain rate R is almost linear, since Kdp is about the fourth-order moment of raindrop size distribution, and R is the

3.67th-order moment. As illustrated in Fig. 9, the R (Kdp) algorithm is consistent with the in situ measurements. To further

investigate the R errors, it is necessary to consider the Kdp errors in the calculation of the first derivative of φdp. The standard

deviation σ(Kdp) is then related to σ(R) by a factor of R/Kdp (Bringi and Chandrasekar, 2001). In a similar manner, Kdp is

linearly proportional to specific attenuation Ah and specific differential attenuation Ahv (Bringi and Hendry, 1990). Therefore,5

the errors of radar reflectivity ZH and differential reflectivity ZDR may also be proportional to σ(Kdp) after the attenuation

correction, and eventually contribute to the R errors via R(ZH) and R(ZH ,ZDR). In addition, the error estimates can be used

to provide streamflow trends in hydrological model.

Appendix A: Variance of φdp

We consider the range r as an independent variable, denoted as x, and φdp as a dependent variable, denote as y. The joint10

distribution of z = (x,y) follows a Gaussian mixture as

p(z) =
m∑

i=1

wiN (z;µi,Σi), (A1)

where wi, µi and Σi are the weight, mean and covariance for each component, respectively. The probability of y conditioned

on x is also a Gaussian mixture with parameters wy|xi , µy|xi and Σy|xi , leading to the conditional expectation as

E(y|x) =
∫
y

m∑

i=1

w
y|x
i N

(
y;µy|xi ,Σy|xi

)
dy, (A2)15

=
m∑

i=1

w
y|x
i

∫
y N

(
y;µy|xi ,Σy|xi

)
dy, (A3)

=
m∑

i=1

wiµ
y|x
i . (A4)

and the second-order moment as

E(y2|x) =
∫
y2

m∑

i=1

w
y|x
i N

(
y;µy|xi ,Σy|xi

)
dy, (A5)

=
m∑

i=1

w
y|x
i

∫
y2N

(
y;µy|xi ,Σy|xi

)
dy, (A6)20

=
m∑

i=1

w
y|x
i

[
Σy|xi +

(
µ
y|x
i

)2
]
. (A7)

Therefore, the conditional variance is expressed as

σ2(y|x) = E(y2|x)− [E(y|x)]2 (A8)

=
m∑

i=1

w
y|x
i

[
Σy|xi +

(
µ
y|x
i

)2
]
−
(

m∑

i=1

w
y|x
i µ

y|x
i

)2

. # (A9)
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Appendix B: Conditional expectation ofKdp

First, we need to show that the derivative of the expected value of random variable y as a function of random variable x is equal

to the expected value of the derivative of the expected value of y. By the definition, the derivative of y is expressed as

E′[y(x)] = lim
h→0

1
h
{E[y(x+h)]−E[y(x)]} (B1)

= lim
h→0

E

[
y(x+h)− y(x)

h

]
(B2)5

= lim
h→0

E {y′[τ(h)]} , (B3)

where τ(h) ∈ (x,x+h) exists by the mean value theorem. By assuming |y′[τ(h)]| ≤ Z, we can use the dominated convergence

theorem to obtain

E′[y(x)] = E

{
lim
h→0

y′[τ(h)]
}

(B4)

= E [y′(x)] . (B5)10

According to the conclusion in Eq. (B5), the expected value of y′ is expressed as

E(y′|x) = E′(y|x) =
m∑

i=1

w
y|x
i

(
µ
y|x
i

)′
+

m∑

i=1

(
w
y|x
i

)′
µ
y|x
i . (B6)

Since
(
µ
y|x
i

)′
= ai and wy|xi = fi(x)

f(x) , the first term is equal to

m∑

i=1

w
y|x
i

(
µ
y|x
i

)′
=

m∑

i=1

ai
fi(x)
f(x)

. (B7)

Meanwhile, the second term is given as15

m∑

i=1

(
w
y|x
i

)′
µ
y|x
i =

m∑

i=1

f ′i(x)f(x)− fi(x)f ′(x)
f2(x)

(aix+ bi). (B8)

Based on the properties of Gaussian function, the derivatives of fi(x) and f(x) are expressed as

f ′i(x) =−x−µ
x
i

Σxxi
fi(x), and (B9)

f ′(x) =−
m∑

j=1

x−µxj
Σxxj

fj(x). (B10)

By substituting Eqs. (B9) and (B10) into Eq. (B8), the second term is transformed as20

m∑

i=1

(
w
y|x
i

)′
µ
y|x
i =

1
f2(x)



m∑

i=1

m∑

j=1

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
fi(x)fj(x)(aix+ bi)


 . (B11)

By substituting Eqs. (B7) and (B11) into Eq. (B6), we obtain

E (y′|x) =
1

f2(x)





m∑

i=1

m∑

j=1

fi(x)fj(x)

[(
x−µxj
Σxxj

− x−µxi
Σxxi

)
(aix+ bi) + ai

]
 #. (B12)
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Appendix C: Variance ofKdp

The first-order Taylor expansion is defined as

g(y) = g(θ) + g′(θ)(y− θ) + ε, (C1)

where θ = E(y) is the mean of random variable y, and ε is the sum of the higher-order Taylor series. By considering the

conclusion in Eq. (B5), it can be noted that the expected values of the coefficients associated with the derivatives in Eq. (C1)5

are zeros if the series is expanded at the mean value of y. By taking mathematical expectations on both sides of Eq. (C1), it is

transformed as

E[g(y)]≈ g(θ) + g′(θ)[E(y)− θ] (C2)

= g(θ). (C3)

From Eqs. (C1) and (C3), the variance of g(y) is approximated as10

σ2[g(y)]≈ E
{

[g(y)− g(θ)]2
}

(C4)

≈ E
{

[g′(θ)(y− θ)]2
}

(C5)

= g′(θ)2σ2(y) (C6)

Let g(y) be y′, and then we have

σ2(y′|x) = [E′′(y|x)]2σ2(y|x). (C7)15

From Eq. (A9), we can see that

σ2(y|x) =
m∑

i=1

w
y|x
i Σy|xi +

m∑

i=1

w
y|x
i

(
µ
y|x
i

)2

−
(

m∑

i=1

w
y|x
i µ

y|x
i

)2

. (C8)

By taking the derivative of Eq. (B6), the second derivative of the expected value of y conditioned on x becomes

E′′(y|x) =
m∑

i=1

w
y|x
i (µy|xi )′′+ 2

m∑

i=1

(µy|xi )′(wy|xi )′+
m∑

i=1

µ
y|x
i (wy|xi )′′ (C9)

= 2
m∑

i=1

ai(w
y|x
i )′+

m∑

i=1

(aix+ bi)(w
y|x
i )′′, (C10)20

since (µy|xi )′ = ai and (µy|xi )′′ = 0. From Eq. (B8), the first derivative of the weighting function in the conditional probability

is

(
w
y|x
i

)′
=

1
f2(x)

m∑

j=1

fj(x)fi(x)

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
. (C11)
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Let gi(x) be the summation term. The second derivative is then expressed as
(
w
y|x
i

)′′
=
g′i(x)f(x)− 2f ′(x)gi(x)

f3(x)
, where (C12)

gi(x) =
m∑

j=1

fj(x)fi(x)

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
. (C13)

According to the properties of Gaussian mixture, the first derivative of the marginal distribution of x is

f ′(x) =−
m∑

j=1

(
x−µj

Σj

)
fj(x). (C14)5

Similarly, the first derivative of g(x) if given as

g′i(x) =
m∑

j=1

[
−
x−µxj
Σxxj

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
fj(x)fi(x)− x−µxi

Σxxi

(
x−µxj
Σxxj

− x−µxi
Σxxi

)
fj(x)fi(x) +

(
1

Σxxj
− 1

Σxxi

)
fj(x)fi(x)

]

(C15)

=
m∑

j=1

[(
x−µxi
Σxxi

−
x−µxj
Σxxj

)(
x−µxi
Σxxi

+
x−µxj
Σxxj

)
fj(x)fi(x) +

(
1

Σxxj
− 1

Σxxi

)
fj(x)fi(x)

]
(C16)

=
m∑

j=1



(
x−µxi
Σxxi

)2

−
(
x−µxj
Σxxj

)2

fj(x)fi(x) +

(
1

Σxxj
− 1

Σxxi

)
fj(x)fi(x) (C17)

=
m∑

j=1

fj(x)fi(x)



(
x−µxi
Σxxi

)2

−
(
x−µxj
Σxxj

)2

+
1

Σxxj
− 1

Σxxi


 . # (C18)10
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Figure 1. Flowcharts of Kdp estimation algorithms used in the MZZU radar: (a) linear regression model, and (b) Gaussian mixture method.
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Figure 2. Flowchart of data masking.
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Figure 3. Examples of data masking: (a) a convective case (azimuth 252◦), and (b) a stratiform case (azimuth 1◦). The blue points and

ellipses represent the clutter data and clusters, respectively, while the red color corresponds to the weather echoes.
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Figure 4. Examples of φdp density estimation: (a) a φdp unfolding case, and (b) a δco case. The blue points are the processed φdp data, the

green curve represents the φdp profile obtained by the linear regression model (LR), and the red curve indicates the φdp profile produced

by the Gaussian mixture method (GMM). The error bars are the standard deviations, resampled at a frequency of 0.2 Hz, while the colored

ellipses show the components of the Gaussian mixture.
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Figure 5. Examples of Kdp estimation: (a) φdp, and (b) Kdp. The blue curves are the φdp and Kdp estimates obtained by the Gaussian

mixture method (GMM), the green curves represent the estimates derived from the linear regression model (LR), and the red curves indicate

the reconstructed φdp and smoothed Kdp profiles (FIR). The error bars are the standard deviations, resampled at a frequency of 0.2 Hz.
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Figure 6. Responses of finite impulse filter: (a) Impulse response, and (b) step response.
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Figure 7. A case study for GMM: (a) raw ZH at the development stage (03:04 UTC), (b) raw ZH at the mature stage (03:39 UTC), and

(c) rawZH at the dissipation stage (04:41 UTC). (d), (e) and (f) are the same as (a), (b) and (c), respectively, but for Kdp. The data were

collected at a elevation of 0.85◦ by the MZZU radar between 0304 and 0441 UTC on 24 March 2016.
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Figure 8. Kdp estimation for the mature stage: (a) raw φdp, (b) LR-based Kdp, (c) GMM-based Kdp, and (d) GMM-based σ(Kpd). The

data were collected at 0339 UTC on 24 March 2016.
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Figure 9. Comparison between hourly radar and gauge data derived from GMM Kdp. (a) Bradford, (b) Sanborn, (c) Auxvasse and (d)

Williamsburg. The data were collected between 1 April 2016 and 2 June 2018.
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Table 1. Characteristics of hourly rain gauge data at Bradford, Sanborn, Auxvasse, and Williamsburg between April 2016 and June 2018.

Mean: mean values, Std: standard deviation, Max: maximum values, Total: sums of rain amounts, and Duration: sum of rainfall time.

Sites Mean (mm) Std (mm) Max (mm) Total (mm) Duration (h)

Bradford 2.1 3.5 38.1 2224.9 1080

Sanborn 2.0 3.3 43.7 2181.4 1082

Auxvasse 2.0 3.3 38.4 2284.3 1144

Williamsburg 2.1 3.7 40.1 2495.9 1191
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Table 2. Statistics for the comparison between radar and gauge. RMSE: root mean squared error, NB: normalized bias, ρRG: Pearson

correlation coefficient; LR: linear regression model, GMM: Gaussian mixture method.

Algorithm Sites RMSE (mm) NB (mm) ρRG

LR Bradford 2.87 -0.28 0.84

Sanborn 1.97 -0.08 0.89

Auxvasse 3.25 0.21 0.67

Williamsburg 3.55 0.20 0.70

GMM Bradford 2.71 -0.31 0.84

Sanborn 2.06 -0.13 0.88

Auxvasse 3.14 0.04 0.69

Williamsburg 3.20 0.14 0.76
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