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24  Abstract

25 Smoke from laboratory chamber burning of peat fuels from Russia, Siberia, U.S.A. (Alaska
26  and Florida), and Malaysia representing boreal, temperate, subtropical, and tropical regions was
27  sampled before and after passing through a potential acrosol mass-oxidation flow reactor (PAM-
28  OFR) to simulate ~2- and 7-day atmospheric aging. Species abundances in PM; s between aged
29  and fresh profiles varied by >5 orders of magnitude with two distinguishable clusters: around

30  0.1% for reactive and ionic species and mostly >10 % for carbon.

31 Organic carbon (OC) accounted for 58—85 % of PMa.s mass in fresh profiles with low EC
32  abundance (0.674.4 %). After a 7-day aging time, degradation was 20-33 % for OC, with
33 apparent reductions (4—12 %) in low temperature OC1 and OC2 (thermally evolved at 140 and
34 280 °C), implying evaporation of higher vapor pressure semi-volatile organic compounds
35 (SVOCs). Additional losses of OC from 2- to 7-days aging is somewhat offset by the formation
36  of oxygenated organic compounds, as evidenced by the 12—-19 % increase in organic mass (OM)
37 to OC ratios. However, the reduction of OM abundances in PM>s by 3-18 % after 7 days,
38  reconfirms that volatilization is the main loss mechanism of SVOCs. Although the ammonia
39  (NH3) to PMas ratio rapidly diminished with a 2-day aging time, it represents an intermediate
40  profile —not sufficient for completed OC evaporation, levoglucosan degradation, organic acid

41  oxidation, or secondary inorganic aerosol formation.

42 Week-long aging resulted in an increase to ~7—-8 % of NH4" and NOs™ abundances, but with
43  enhanced degradation of NH3, low temperature OC, and levoglucosan for Siberia, Alaska, and
44  Everglasdes (FL) peats. Elevated levoglucosan was found for Russian peats, accounting for 35—
45 39 % and 20-25 % of PMa.s mass for fresh and aged profiles, respectively. Abundances of water-
46  soluble organic carbon (WSOC) in PM; s was >2-fold higher in fresh Russian (37.0 £ 2.7 %) than
47  Malaysian (14.6 = 0.9 %) peats. While Russian peat OC emissions are largely water-soluble,
48  Malaysian peat emissions are mostly water-insoluble, with WSOC/OC ratios of 0.59-0.71 and
49  0.18-0.40, respectively.

50 Source profiles can change with aging during transport from source to receptor. This study
51  shows significant differences between fresh and aged peat combustion profiles among the four
52 biomes that can be used to establish speciated emission inventories for atmospheric modeling and

53 receptor model source apportionment. A sufficient aging time (~one week) is needed to allow gas-
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54 to-particle partitioning of semi-volatilized species, gas-phase oxidation, and particle volatilization

55  to achieve representative source profiles for regional-scale source apportionment.
56

57  Keywords: fresh and aged source profiles, atmospheric aging, organic mass, organic carbon,

58  levoglucosan, oxidation flow reactor (OFR)
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59 1 Introduction
60 Receptor-oriented source-apportionment models have played a major role in establishing

61 the weight of evidence (U.S.EPA, 2007) for pollution control decisions. These models,
62  particularly the different solutions (Watson et al., 2016) to the Chemical Mass Balance (CMB)
63  equations (Hidy and Friedlander, 1971), rely on patterns of chemical abundances in different
64  source types that can be separated from each other when superimposed in ambient samples of
65  volatile organic compounds (VOC) and suspended particulate matter (PM). These patterns, termed
66  “source profiles,” have been measured in diluted exhaust emissions and resuspended mineral dusts
67  for a variety of representative emitters. Many of these source profiles are compiled in country-
68  specific source profile data bases (CARB, 2018; Liu et al., 2017; Mo et al., 2016; Pernigotti et al.,
69  2016; U.S.EPA, 2016) and have been widely used for source apportionment and speciated

70  emission inventories.

71 Chemical profiles measured at the source have been sufficient to identify and quantify
72 nearby, and reasonably fresh, source contributions. These source types include gasoline- and
73  diesel-engine exhaust, biomass burning, cooking, industrial processes, and fugitive dust. Ambient
74  VOC and PM concentrations have been reduced as a result of control measures applied to these
75  sources, and additional reductions have been implemented for toxic materials such as lead, nickel,
76  vanadium, arsenic, diesel particulate matter, and several organic compounds. As these fresh
77  emission contributions in neighborhood- and urban-scale environments (Chow et al., 2002)
78  decrease, regional-scale contributions that may have aged for 2- to 7-days prior to arrival at a
79  receptor gain in importance. These profiles experience augmentation and depletion of chemical
80 abundances owing to photochemical reactions among their gases and particles, as well as

81  interactions upon mixing with other source emissions.

82 Changes in source profiles have been demonstrated in large smog chambers (Pratap et al.,
83  2019), wherein gas/particle mixtures are illuminated with ultraviolet (UV) light for several hours
84  and their end products are measured. Such chambers are specially constructed and limited to
85 laboratory testing. A more recent method for simulating such aging is the oxidation flow reactor
86 (OFR), based on the early studies of Kang et al. (2007), revised and perfected by several
87  researchers (e.g., Jimenez, 2018; Lambe et al., 2011), and commercially available from Aerodyne
88  (2019a, b). Cao et al. (2019) evaluated the OFR (Aerodyne Research, Inc., Billerica, MA, USA)

89  for potential source emission certification in China, finding that further study and development is
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required for this purpose. However, Cao et al. (2019) concluded that the OFR could be suitable
for source profile aging experiments in support of regional-scale source apportionment, and this is

further investigated in this paper for peat combustion.

Peatland fires produce long-lasting thick smoke that leads to adverse atmospheric, climate,
ecological, and health impacts. Smoke from Indonesian and Malaysian peatlands is a major
concern in the countries of southeast Asia (Wiggins et al., 2018) and elsewhere where it is
transported over long distances. Aged peat smoke profiles are likely to differ from fresh emissions,

as well as among the different types of peat in other parts of the world.

Several ground-based, aircraft, shipboard, and laboratory peat combustion experiments
have been carried out to better represent global peat fire emissions and estimate their
environmental impacts (e.g., Akagi et al., 2011; linuma et al., 2007; Nara et al., 2017; Stockwell
et al., 2014; 2016). Most peat fire studies report emission factors (EFs) for pyrogenic gases (e.g.,
methane, carbon monoxide, and carbon dioxide) and fine particle (PMas, particles with
aerodynamic diameter <2.5 microns) mass, with a few studies reporting EFs for organic and
elemental carbon (OC and EC) (Hu et al., 2018); no information on PM2 s speciated source profiles

including elements, ions, and carbon is available.

Laboratory peat combustion EFs for gaseous carbon and nitrogen species corresponding
with the profiles described here, as well as PM» s mass and major chemical species (e.g., carbon
and ions), are reported by Watson et al. (2019). The PMx s speciated source profiles derive from
six peat fuels collected from Odintsovo, Russia; Pskov, Siberia; Northern Alaska and Florida,
U.S.A.; and Borneo, Malaysia, representing boreal, temperate, subtropical, and tropical climate
regions. Comparisons between fresh (diluted and unaged) and aged (i.e., 2- and 7-days simulated
oxidation with an OFR) PMas speciated profiles are made to highlight chemical abundance
changes with photochemical aging. Objectives are to: 1) evaluate similarities and differences
among the peat source profiles from four biomes; 2) examine the extent of gas-to-particle oxidation
and volatilization between 2- and 7-days of simulated atmospheric aging; and 3) characterize
carbon and nitrogen properties in peat combustion emissions.

2 Experiment

Peat smoke generated in a laboratory combustion chamber was diluted with clean air by

factors of three to five to allow for nucleation and condensation at ambient temperatures (Watson

etal., 2012). These diluted emissions were then passed through a potential aerosol mass (PAM)-
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OFR (Cao et al., 2019; Watson et al., 2019) in the OFR185 mode without ozone (Os) injection.
The OFR UV lamps were operated at 2 and 3.5 volts with a flow rate of 10 L min™', assuming an
average daily hydroxyl (OH) concentration of 1.5 x 10° molecules cm™ to translate OH exposures
(OHexp) of ~2.6 x 10'! and 8.8 x 10'! molecules-sec cm™ into ~2- and 7-days of photochemical
aging. Cao et al. (2019) summarize published ambient OH measurements that span a range around
this assumed daily average, indicating that the real-world aging times can differ by factors of two
or more. Nevertheless, the 1.5 x 10® molecules-sec cm™ estimate for OH concentration is a de

facto standard used for OFR aging estimation.

Forty smoldering-dominated peat combustion tests were conducted that included three to
six tests for each type of peat fuel. The following analysis uses time-integrated (~40—60 minutes)
gaseous and PMy;s filter pack samples collected upstream and downstream of the OFR,
representing fresh and aged peat combustion emissions, respectively. The sampling configuration
is documented in Supplemental Fig. S1 with detailed sampling parameters reported by Watson et
al. (2019).

2.1 PM:2s5 mass and chemical analyses

Measured chemical abundances included PMz s precursor gases (i.e., nitric acid [HNO3]
and ammonia [NH3]) as well as PM2s mass and major components (e.g., elements, ions, and
carbon). Water-soluble organic carbon (WSOC), carbohydrates, and organic acids that are
commonly used as markers in source apportionment for biomass burning were also quantified

(Chow and Watson, 2013; Watson et al., 2016).

The filter pack sampling configurations for the four upstream and two downstream
channels along with filter types and analytical instrument specifications are shown in Fig. 1.
Multiple sampling channels accommodate different filter substrates that allow for comprehensive
chemical speciation. The additional upstream Teflon-membrane and quartz-fiber filters were
taken for more specific nitrogen and organic compound analyses that are not reported here. The
limited flow through the OFR precludes additional downstream sampling.

Teflon-membrane filters (i.e., channels one and five in Fig. 1) were submitted for: 1)
gravimetric analysis by microbalance with +1 pg sensitivity before and after sampling to acquire
PM: 5 mass concentrations (Watson et al., 2017); 2) filter light reflectance and transmittance by
ultraviolet/visible (UV/Vis) spectrometer (200-900 nm) equipped with an integrating sphere that

measures transmitted/reflected light at 1 nm interval (Johnson, 2015); 3) 51 elements (i.e., Sodium
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152 [Na] to uranium [U]) by energy-dispersive x-ray fluorescence (XRF) analysis (Watson et al.,
153 1999); and 4) organic functional groups by Fourier Transform Infrared (FTIR) Spectrometry.
154  Results from UV/Vis and FTIR spectrometry will be reported elsewhere.

155 Half of the quartz-fiber filter (i.e., channels two and six) was analyzed for: 1) four anions
156  (i.e., chloride [CL], nitrite [NO>], nitrate [NO37], and sulfate [SO4]), three cations (i.e., water-
157  soluble sodium [Na'], potassium [K*], and ammonium [NH4"]), and nine organic acids (including
158  four mono- and five di-carboxylic acids) by ion chromatography (IC) with a conductivity detector
159  (CD) (Chow and Watson, 2017); 2) 17 carbohydrates including levoglucosan and its isomers by
160  IC with a pulsed amperometric detector (PAD); and 3) WSOC by combustion and non-dispersive
161  infrared (NDIR) detection. A portion (0.5 cm?) of the other quartz-fiber filter half was analyzed
162 for OC, EC, and brown carbon (BrC) by the IMPROVE A multiwavelength thermal/optical
163 reflectance/transmittance method (Chen et al., 2015; Chow et al., 2007; 2015b); the IMPROVE_A
164  protocol (Chow et al., 2007) reports eight operationally defined thermal fractions (i.e., OC1 to
165  OC4 evolved at 140, 280, 480, and 580 °C in helium atmosphere; EC1 to EC3 evolved at 580,
166 740, and 840 °C in helium/oxygen atmosphere; and pyrolyzed carbon [OP]) that further
167  characterize carbon properties under different combustion and aging conditions. Citric acid and
168  sodium chloride impregnated cellulose-fiber filters placed behind the Teflon-membrane and
169  quartz-fiber filters, respectively, acquired NH; as NHs" and HNOs; as volatilized nitrate,
170  respectively, with analysis by IC-CD.

171 Detailed chemical analyses along with quality assurance/quality control (QA/QC)
172 measures are documented in Chow and Watson (2013). For each analysis, a minimum of 10 % of
173 the samples were submitted for replicate analysis to estimate precisions. Precisions associated
174  with each concentration were calculated based on error propagation (Bevington, 1969) of the
175  analytical and sampling volume precisions (Watson et al., 2001).

176 2.2 PMas source profiles

177 Concentrations of two gases (i.e., NH3 and HNO3) and 125 chemical species acquired from
178  each sample pair (fresh vs. aged) were normalized by the PMa 5 gravimetric mass to obtain source
179  profiles with species-specific fractional abundances. The following analyses are based on the
180  average of 24 paired profiles (shown in Table 1), grouped by upstream (fresh) and downstream
181  (aged) samples for 2- and 7-day aging (i.e., denoted as Fresh 2 vs. Aged 2 and Fresh 7 vs. Aged 7)

182  for each of the six peats with 25 % fuel moisture. Composite profiles are calculated based on the
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average of individual abundances and the standard deviation of the average within each group
(Chow et al., 2002). Although the standard deviation is termed the source profile abundance
uncertainty, it is really an estimate of the profile variability for the same fuels and burning

conditions, which exceeds the propagated measurement precision.

To assess changes with fuel moisture content, tests of three sets of Putnam (FL) peats at 60
% fuel moisture were conducted with resulting profiles shown in Supplemental Table S1. A few
samples were voided due to filter damage or sampling abnormality, which produced five unpaired
(either fresh or aged) individual profiles (Table S2). These profiles are reported as they might be
useful for future source apportionment studies.
2.3 Equivalence measures

The Student #-test is commonly used to estimate the statistical significance of differences
between chemical abundances. Two additional measures are used to determine the similarities
and differences between profiles: 1) the correlation coefficient (r) between the source profile
abundances (Fj;, the fraction of species i in peat j) divided by the source profile variabilities (o)
that quantifies the strength of association between profiles; and 2) the distribution of weighted
differences (residual [R]/uncertainty [U] = [Fi — Fo)/[c?n + 0?2]*Y) for< 1o, 1620, 20-3 0, and
>30. The percent distribution of R/U ratios is used to understand how many of the chemical
species differ by multiples of the uncertainty of the difference. These measures are also used in
the effective variance-chemical mass balance (EV-CMB) receptor model solution that uses the
variance (%) and the R/U ratio to quantify agreement between measured receptor concentrations
and those produced by the source profiles and source contribution estimates (Watson et al., 1998).
3 Results and discussion

3.1 Similarities and differences among peat profiles
The first comparison is made between two Florida samples from locations separated by

~485 km (i.e., Putnam County Lakebed and Everglades National Park), representing different
geological areas. Table S3 shows that the two profiles have high correlations (» >0.994), but are
statistically different (P <0.002). Over 93 % of the chemical abundance differences fall within
+30. Statistical differences are not found when combining both fresh Florida profiles (e.g., all
Fresh 2 vs. all Fresh 7), resulting in high correlations (» >0.997) with over 98 % of abundance

differences within = 1o and P >0.5. However, paired comparisons of other combined profiles
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show statistical differences with low P-values (P <0.002). These two subtropical profiles should

not be combined to compare with other biomes.

Similarities and differences in peat profiles by biome are summarized in Table 2.
Comparisons are made for: 1) paired fresh vs. aged profiles (i.e., All Fresh vs. All Aged; Fresh 2
vs. Aged 2; Fresh 7 vs. Aged 7); 2) different experimental tests (i.e., Fresh 2 vs. Fresh 7); and 3)
two aging times (i.e., Aged 2 vs. Aged 7). Equivalence measures show that most of these profiles
are statistically different (P <0.05) but highly correlated (» >0.97, mostly >0.99). However,
statistical differences are not found between the Fresh 2 vs. Aged 2 Malaysian profiles, which may
be due to the low number of samples (n=2) in the comparison. Similar to the findings of combining
both Florida profiles, fresh Alaskan and Malaysian profiles do not show statistical differences (P
>0.1).

Compositing profiles by averaging each of the measured abundances may disguise some
useful information. For receptor model source apportionment, region-specific profiles are most

accurate for estimating source contributions.

Student #-tests for the gravimetric PMa s mass concentrations (ug/m?) measured upstream
and downstream of the OFR (Table S4) show statistically significant differences (P <0.05)
between fresh vs. aged PM2 s (i.e., Fresh 2 vs Aged 2 and Fresh 7 vs Aged 7). Fresh 2 and Fresh
7 PM2.s mass concentrations are similar, as expected from replicate tests for the same conditions.
Increases in some species abundances offset decreased on other abundances, resulting in similar

PM2: s levels for some of the fresh vs. aged comparisons.

3.2  Sum of species to PM2.5 mass ratios
The sum of the major PM chemical abundances should be less than unity since oxygen,

hydrogen, and liquid water content are not measured (Chow et al., 1994; 1996). As shown in Table
S5, the sums of elements, ions, and carbon explain averages of ~70-90 % of PM>.s mass for fresh
profiles except for Russian peat (62—64 %). The sum of species decreased by an average of 6 %
and 11 % after 2- and 7-days, respectively. These differences can be attributed to loss of semi-
volatile organic compounds (SVOCs), although they are offset by formation of oxygenated
compounds during aging. This is true for all but Putnam (FL) peat, for which the sum of species

explains nearly the same fraction of PM2.s for the fresh and aged profiles.
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3.3 Comparison between fresh and aged profiles
Fresh and aged chemical abundances are compared in Fig. 2. Species abundances vary by

over 5 orders of magnitude but exhibit two distinguishable clusters: around 0.1 % for reactive and
secondary ionic species (e.g., NH4", NOs~, and SO47) and >1 % (mostly >10 %) for carbon
compounds (e.g., OC fractions and WSOC). While most gaseous NH3/PM> 5 ratios exceed 10 %,
HNO3/PMa s ratios are well below 1 %. Reactive/ionic species and carbon components are mostly
above and below the 1:1 line, respectively, implying particle formation and evaporation after
atmospheric aging. Large variabilities are found for individual species as noted by the standard

deviations associated with each average.

Figure 3 shows the ratio of averages between aged and fresh profiles with increasing ratios
from 2- to 7-day aging. Atmospheric aging increased oxalate, NO3", NH4", and SO4~ abundances
(likely due to conversion of nitrogen and sulfur gases [e.g., NO, NO», and SO;] to particles), but
decreased NH3, levoglucosan, and low temperature OC1 and OC2 in most cases. Large variations
are found among measured species as ratios (left panels in Fig. 3) range over 7 orders of magnitude
for mineral and ionic species. Consistent with Fig. 2 where most carbon compounds are close to
but below the 1:1 line, the right panels in Fig. 3 show the reduction of carbonaceous abundances

with ratios between 0.1 and 1 with lower ratios after 7-day aging.

Atmospheric aging should not change the abundances of mineral species (e.g., Al, Si, Ca,
Ti, and Fe), except to the extent that the PM2.s mass (to which all species are normalized) increases
or decreases with aging. Large standard deviations associated with the ratio of averages for
mineral species in the left panels of Fig. 3 illustrate variabilities among different combustion tests
for the less abundant species.
3.4 Carbon abundances

3.4.1 Organic carbon and thermally-evolved carbon fractions
Total carbon (TC, sum of OC and EC) constitutes the largest fraction of PM2s (Table 1),

accounting for 59-87 % and 43-77 % of the PMzs mass for the fresh and aged profiles,
respectively. Organic carbon dominates TC with low EC abundance (0.67-4.4 %), as commonly
found in smoldering-dominated biomass combustion (Chakrabarty et al., 2006; Chen et al., 2007).
The largest OC fractions are high temperature OC3 (15-30 % of PM2s), consistent with past

studies for biomass burning emissions (Chen et al., 2007; Chow et al., 2004).

10
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272 Abundances of OC decrease with aging time. Upstream (Fresh 2 and Fresh 7) OC
273  abundances ranged from 58—85 % and decreased by 412 % and 20-33 % after 2- and 7-day aging,
274  respectively. Part, but not all of this is due to increasing abundances of non-carbon components,
275  particularly nitrogen-containing species. The exception is for Putnam (FL) peat, where the OC
276  abundances (6772 %) were similar for fresh and aged profiles. OC abundance decreases after
277  aging may have contributed to the statistical differences found between fresh and aged PM» s mass
278  (Table S4). With the exception of Putnam (FL) peat, the additional 7-22% OC degradation from
279  2-to 7-days implies that much of the OC changes require about a week of aging time.

280 The Student #-test for fresh and aged profiles shows statistical differences (P <0.05) for
281 TC, OC, and low temperature OC1 and OC2, but similarities for OC3 and OC4. While the OC1
282  abundance is 9-18 % for fresh profiles, it decreases to 4-10 % after aging. A similar pattern is
283  found for OC2, with 12-25 % and 9-19 % abundances for the fresh and aged profiles. The
284  exception is Putnam (FL) peats that retained a ~20 % OC2 abundance after aging. High
285  temperature OC3 and OC4 contain more polar and/or high molecular-weight organic components
286  (Chen et al., 2007) that are less likely to photochemically degrade. Further reduction in OC
287  abundances (20-33 %) after 7-days is attributed to decreases of the OC1 and OC2 in the OFR as
288  shown in the fresh vs. aged ratios of average abundances (Fig. 3). Large fractions of pyrolized
289  carbon (OP of 7-13 %) are also found --indicative of higher molecular-weight compounds that are
290  likely to char (Chow et al., 2001; Chow et al., 2004; Chow et al., 2018).

291  3.4.2 Organic mass (OM) and OM/OC ratios

292 Reduction of the “sum of species” and OC abundances from fresh to aged profiles can be
293  offset by the formation of oxygenated organic compounds as the profiles age. Different
294  assumptions have been used to transform OC to organic mass (OM) to account for unmeasured H,
295 O, N, and S in organic compounds (Cao, 2018; Chow et al., 2015a; Riggio et al., 2018). As single
296  multipliers for OC cannot capture changes by oxidation in the OFR, OM is calculated by
297  subtracting mineral components (using the IMPROVE soil formula by Malm et al. (1994)), major
298  ions (i.e., NH4", NOs", and SO47), and EC from PMz s mass to account for unmeasured mass in
299  organic compounds (Chow et al., 2015a; Frank, 2006). This approach assumes that no major
300  chemical species are unmeasured and that the remaining mass consists of H, O, N, and S associated

301  with OC in forming OM.

11
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302 Table 3 shows that averaged OM/OC ratios are ~1.3 for fresh profiles and increases by 12—
303 19 % from 2- to 7-days aging. These fresh OM/OC ratios are consistent with those reported for
304  other types of biomass burning (Chen et al., 2007; Reid et al., 2005). The increased OM/OC ratios
305  with aging are likely due to an increase in oxygenated organics. The OM/OC ratio of 1.20 + 0.05
306 for fresh Borneo, Malaysian peat is consistent with the 1.26 + 0.04 ratio for fresh peat burning
307  aerosol in Central Kalimantan, Indonesia (Jayarathne et al., 2018), both located on the Island of

308 Borneo.

309 The highest OM/OC ratios are found for Russian peat, ranging 1.6—1.7 for fresh profiles
310  and increasing to 2.1-2.2 for aged profiles, consistent with formation of low vapor pressure
311  oxygenated compounds in the OFR. Watson et al. (2019) report that the Russian peat fuel contains
312 the lowest carbon (44.20 = 1.01 %) and highest oxygen (38.64 = 0.78 %) contents among the six
313  peats. The low carbon contents are consistent with the lowest “sum of species” found in Russian
314  peat, with 62—64 % and 50-52 % of PM2.s mass for the fresh and aged profiles, respectively. After
315  7-day aging for Siberian peat, the increasing OM/OC ratios from 1.2 + 0.14 to 1.5 + 0.18 are
316  similar to the increase from 1.22 to 1.42 reported by Bhattarai et al. (2018).

317 3.4.3 Water-soluble organic carbon (WSOC)
318 WSOC abundances in PM2 s was >2-fold higher in fresh Russian (37.0 + 2.7 % ) than

319  Malaysian (14.6 + 0.9 %) peat. The 15-17 % WSOC in PMz s for fresh Borneo, Malaysian peat
320  (Table 1) is consistent with the 16 = 11 % from Central Kalimantan, Indonesia peat (Jayarathne et
321  al, 2018).

322 The WSOC/OC ratios also vary (Table 3), ranging from 0.18-0.64 and 0.31-0.71 for fresh
323  and aged profiles, respectively. Russian peat OC emissions are largely water-soluble, whereas
324  Malaysian peat emissions are mostly water-insoluble, with WSOC/OC ratios of 0.59-0.71 and
325  0.18-0.40, respectively. Longer aging time results in higher WSOC/OC ratios with 2—13 % and
326  5-19 % increases for 2- and 7-day aging.

327 3.4.4 Carbohydrates

328 Bates et al. (1991) found that peat from Sumatra, Indonesia consists of 18—46 %
329  carbohydrate (mainly levoglucosan) relative to total carbon based on nuclear magnetic resonance
330  spectroscopy. Levoglucosan and its isomers (mannosan and galactosan) are saccharide derivatives
331 formed from incomplete combustion of cellulose and hemi-cellulose (Kuo et al., 2008;

332 Louchouarn et al., 2009) and have been used as markers for biomass burning in receptor model
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source apportionment (Bates et al., 1991; Watson et al., 2016). These carbohydrate-derived
pyrolysis products undergo heterogeneous oxidation when exposed to OH radicals in the OFR

(Hennigan et al., 2010; Kessler et al., 2010).

Only five of the 17 carbohydrates (Table 1) were detected with noticeable variations (e.g.,
>2 orders of magnitude) in levoglucosan for boreal and temperate peats. Levoglucosan abundances
account for 35-39 % and 20-25 % of PM2.s mass for fresh and aged Russian profiles, respectively.
On a carbon basis, Table 3 shows that levoglucosan-carbon (with an OM/OC ratio of 2.25)
accounts for 4348 % and 30-35 % of WSOC and 27-28 % and 21-24 % of OC for fresh and
aged Russian profiles, respectively. These levels are less than the 96 + 3.8 % levoglucosan or
~42.7 % of levoglucosan-carbon in OC reported for German and Indonesian peats (linuma et al.,
2007). Elevated levoglucosan is also found for Siberian and Alaskan peats, ranging from 4-18 %
in PM2s. However, the levoglucosan abundances are reduced to 1-4 % for the subtropical and
tropical peats. The 7-day aging time resulted in an additional 1-4 % levoglucosan degradation

relative to 2 days with the exception of a 9 % reduction for Russian peat.

The extent of levoglucosan degradation depends on organic aerosol composition, OH
exposure in the OFR, and vapor-wall losses (Bertrand et al., 2018a; 2018b; Pratap et al., 2019).
Figure 4 shows the presence of 11 % and 7.6 % levoglucosan-carbon for the Russian and Alaskan
peats after 2-day aging, in line with a chemical lifetime longer than 2 days. This is consistent with
the estimated 1.2-3.9 days of levoglucosan lifetimes under different environments reported by Lai
et al. (2014). However, other studies (Hennigan et al., 2010; May et al., 2012; Pratap et al., 2019)
found that levoglucosan experiences rapid gas-phase oxidation, resulting in ~1-2 day lifetimes at

ambient temperatures.

Among the carbohydrates, Jayarathne et al. (2018) reported 4.6 + 4.0 % of levoglucosan in
OC for fresh Indonesia peat. Converting to levoglucosan-carbon in Jayarathne et al. (2018) yields

a fraction of 2 %, consistent with findings for Malaysian peat (1.4-2.4 %) in this study.

While the presence of levoglucosan in peat smoke is apparent, its isomer, galactosan was
not detectable. Mannosan is detectable in cold climate peats with 1-5 % in PM> s for the Russian
and Alaskan peats and up to 1.3 % for Siberian peat. Apparent degradations from 3.9 to 2.5 % and
from 5.0 to 2.1 % in mannosan abundances are found for Russian peat (Table 1) after 2- and 7-
days, respectively. A 2-to 3-fold reduction in mannosan is also shown after 7 days for the Siberian

and Alaskan peats. Similar observations apply to glycerol in Russian peat, ranging 1.9-3.5 % and

13



https://doi.org/10.5194/amt-2019-198 Atmospheric
Preprint. Discussion started: 29 May 2019 Measurement
(© Author(s) 2019. CC BY 4.0 License. Techniques

364
365
366
367
368
369
370
371

372
373
374
375
376
377

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

Discussions

1.3-1.7 % in PM2 5 for fresh and aged profiles, respectively. Other detectable carbohydrates are
galactose and mannitol, typically present at one hundredth of one percent of the levoglucosan

abundance.

3.4.5 Organic acids
Organic acids have been associated with a mixture of anthropogenic sources, including

engine exhaust, biomass burning, meat cooking, bioaerosol, and biogenic emissions. Past studies
show the presence of low molecular-weight dicarboxylic acids in biomass burning emissions (e.g.,

Cao et al., 2016; Falkovich et al., 2005; Veres et al., 2010).

Only four of the ten measured organic acids (Table 1) in their anion forms (i.e., proprionate,
oxalate, acetate, and formate) are detectable with variable abundances (<0.02-3.9 %). The largest
changes between fresh and aged profiles are found for oxalate, ranging from <0.02-0.43 % of
PM> s for fresh profiles, with ~10- to 20-fold increase after 2 days (0.6—1.3 %), and with 1 to 2
orders of magnitude increases after 7 days (1.1-3.9 %). With the exception of Putnam, FL peat
(1.1 £0.19 %), oxalate accounts for >2.9 % of PM> s mass after 7 days.

Acetate abundances are stable between fresh and aged profiles, mostly in the range of 0.2—
0.5 % except for a 6-fold increase from 0.23 +0.15 % (Fresh 7) to 1.5 £ 2.0 % (Aged 7) for Siberian
peat with large variability among the tests. Propionate and formate abundances are low (<0.02
and <0.5 %, respectively), but increase with aging. Extending the aging time from 2- to 7-days
resulted in a notable increase in organic acid abundances, consistent with the increases in
WSOC/OC ratios (Table 3). By biome, the highest abundances for organic acids in PM> s are
found for aged (Aged 7) Siberian peat, with 3.9 &+ 1.4 % oxalate, 1.5 + 2.0 % acetate, and 0.44 +
0.28 % formate (Table 1).

3.5 Nitrogen species, sulfate, and chloride abundances
Ammonia normalized to PM» 5 mass is high for fresh profiles, ranging 17-64 %, except for

the low NHj3 content in Russian peat (6—8 %). These abundances are reduced to 3—14 % and 1-7
% after 2- and 7-day aging, respectively. As shown in Fig. 5, most of the NH; rapidly diminished
after 2 days, with increasing particle-phase NH4" and NOs™ after 7 days. The highest NH3 to PM> s
ratios are found for fresh Everglades (FL) peat profiles (51-64 %), ~2—8 fold higher than other
peats. These high and low NH3/PMa s ratios are consistent with the nitrogen contents in peat fuel:

3.93 £ 0.08 % for Everglades and 1.50 = 0.52 % for Russian peats (Watson et al., 2019).
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394 Tonic abundances are typically <0.5 %, especially in fresh profiles. Abundances of NH4"
395  in PMas are low (0.0005-0.13 %) for fresh emissions, but increase to 0.05-1.0 % after 2 days and
396  3.4-6.7 % after 7 days, with the exception of Putnam (FL) peat (1.01 + 0.05 % NH4"). Extending
397  the aging time from 2- to 7-days results in an increase to ~1-7 % in NH4" abundances, in contrast

398  to NHj; that is largely depleted after 2 days.

399 Figure 5b shows increasing in NO3™ abundances with aging, 0.04-0.23 % for fresh profiles,
400  increasing to 0.74-2.64 % after 2 days, and to 2.0-8.2 % after 7 days with the exception of Putnam
401  (FL) peat (1.10 + 0.18 % NO3"). After 7 days, NH4" and NOs™ account for ~4-7 % and ~8 % of
402  PMazs mass, respectively, for Siberian, Alaskan, and Everglades (FL) peats. No specific trend is
403  evident for NOy", mostly <0.002 % with ~0.2 % for some fresh Siberian and Alaskan peats. The
404  ratio of gaseous HNOs3 to PMy 5 is low, in the range of 0.2—0.5 % without much changes between
405  fresh and aged profiles. HNO; created through photochemistry is largely neutralized by the
406  abundant NHj in the emissions, resulting in the increasing NH4" and NO3™ to PM. 5 in aged profiles.

407 The reaction of NH3 with HNOj to form ammonium nitrate (NH4NO3) is the main pathway
408  for inorganic aerosol formation, owing to low sulfur content in the peat fuels (Watson et al., 2019).
409  SO4 abundance is low in fresh profiles (0.13—1.4 %), but it increases by 2-3 fold after 2 days
410  except for the Alaskan (0.35-0.46 %) and Everglades (FL) (1.3—1.4 %) profiles. More apparent
411  changes are found for 7 days with the largest increase in SO4~ from 0.13 to 1.96 % for the
412  Malaysian peats —indicating formation of ammonium sulfate ((NH4]2SO4). The ion balance shows
413 more NH4" than needed to completely neutralize NO3™ and SO4~ (Chow et al., 1994). Some NH4"
414  may be present as ammonium chloride (NH4Cl), however, the abundance of chloride (CI’) is low
415  (<0.3 %). The large increase in NO3™ and SO4~ after 7 days implies that a 2-day aging time is not
416  sufficient to allow the full formation of secondary NH4NO3 and (NH4)2SOs.

417 3.6 Mass reconstruction
418 Mass reconstruction is applied to understand the changes in major chemical composition

419  Dbetween the fresh and aged profiles. As shown in Fig. 6, the largest component in PM2 5 is OM,
420  accounting for 94-99 % and 80-95 % of PM2s mass for fresh and aged profiles, respectively.
421  Although the 7-day aging time increased the OM to OC ratios (by 12—-19 %), the abundances of
422  OM in PM; s are reduced (3—18 %). This indicates that volatilization becomes a significant loss
423 mechanism for SVOCs (Smith et al., 2009). The reduction of OM abundance is also partially due
424 to increased ionic species (i.e., sum of NH4", NO3", and SO47), with low abundances (0.3-1.7 %)
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in fresh profiles, increasing to 3—16 % after aging. The sum of ionic species accounts for 11-16
% of PM2.s mass for the Siberian, Alaskan, Everglades (FL), and Malaysian peats after 7 days,

mainly due to the increase in NH4™ and NOj3™ as shown in Fig. 5.

Elemental abundances are low (<0.0001 %), mostly below the lower quantifiable limits.
Table 1 only lists 34 of the 51 elements (Na to U) detected by XRF. Using the IMPROVE soil
formula (assuming metal oxides of major mineral species) yielded 0.07-2.9 % of mineral

components.

This study indicates that an aging time of ~2 days represents the intermediate profile,
whereas 7 days represents the profile with adequate residence time to complete the atmospheric
process.

3.7 Changes in source profiles by fuel moisture content

The effect of fuel moisture content on source profiles is mostly unknown. The 25 % fuel
moisture content selected for this study intends to better simulate the conditions of moderate to
severe droughts where most peat fires occur. Increasing fuel moisture content from ~25 to 60 %

for the three Putnam (FL) peat fuels yielded 12 % higher EFs for CO2 (EFco,), but 12-20 % lower

EFs for CO, NO, NO, and PM> 5 mass (Watson et al., 2019). Tests of fuel-moisture content on
profile changes are available for only 2-day aging. Equivalence measures (Table S6) show
statistical differences (P <0.001) between 25 % and 60 % moisture profiles on either fresh or aged
profiles with over 93 % of species abundance fall within £3oand high correlations (» >0.997).
While OC abundances in PM2 s are comparable for the fresh and aged profiles (70-72 %) for 25
% fuel moisture, a reduction of 18 % OC in PM, s is found for 60 % fuel moisture (from 82 to 64
%) after aging (Table S1). The higher fuel moisture content also reduced WSOC by 6 % and
levoglucosan by 1.3 % with <1 % increases for NH4" and organic acids. After aging, the NH;3 to
PM3; 5 ratios reduced from 28 to 5 % and from 20 to 8 % for the 25 % and 60 % fuel moisture,
respectively. These results are not conclusive as most measurements are associated with high
variabilities.
4 Summary and conclusion

Fresh and aged peat fire emission profiles from laboratory combustion chamber and
potential aerosol mass-oxidation flow reactor (PAM-OFR) for six types of peats representing
boreal (Odintsovo, Russia and Pskov, Siberia), temperate (Northern Alaska, USA), subtropical
(Putnam County Lakebed and Everglades National Park, Florida, USA), and tropical (Borneo,
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Malaysia) biomes are compared. Analyses are focused on the average of 24 paired profiles
grouped by six peats and by fresh vs. aged profiles for 2- and 7-days of simulated atmospheric
aging.

Equivalence measures show that these profiles are highly correlated (» >0.97, mostly
>0.99) but statistically different (P <0.05) between different biomes, suggesting that these profiles
should be used independently for receptor model source apportionment studies in different climate
regions.

The sum of chemical species (i.e., elements, ions, and carbon) explains an average of ~70—
90 % of PM2.s mass for fresh profiles except for Russian peat (62—64 %), confirming that major
PM: 5 chemical species are measured. Aging times of 2- and 7-days resulted in an average mass
depletion of 6 % and 11 %, respectively. These differences are caused by: 1) loss of SVOCs with
aging, as indicated by lower abundances of OC1 and OC2 (evolved at 140 and 280 °C) in the aged
profiles; and 2) replacement of the lost OC mass with unmeasured oxygen associated within

secondary organic aerosol formation in the OFR.

Species abundances in PM2s between aged and fresh profiles varied by >5 orders of
magnitude but exhibited two distinguishable clusters, with reactive/ionic species (e.g., NH4*, SO4~,
oxalate, and HNO3) constituting 0.1-1 % and carbon compounds (e.g., organic carbon fractions
[OC1-0C4], WSOC, and OC) constituting >1 % (mostly >10 %) of PM2 s mass. Most NH3/PM2 s

ratios are >10 % whereas HNO3/PMa s ratios are <1 %.

Total carbon (TC, sum of OC and EC) is the largest component, accounting for 59—87 %
and 43-77 % of the PM2.s mass for the fresh and aged profiles, respectively. With predominant
smoldering combustion, the majority of the TC is in OC, with low EC abundances (0.67—4.4 %).
Further degradation in OC abundances (7-22 %) from 2- to 7-days implies the incomplete
volatilization with short aging time. Different thermal carbon fractions are used to characterize
combustion and aging conditions. While most of OC evolved at high temperatures (OC3 at 480
°C), losses of low temperature OC1 and OC2 are found, suggesting a shift of gas-particle
partitioning of SVOC to gas-phase, where particle volatilization, the loss mechanism, outweighed

gas-to-particle conversion.

Formation of oxygenated compounds is pronounced after aging, with organic mass (OM)

to OC ratios increasing by 12—-19 % from 2- to 7-days aging. The WSOC abundance in PM2 s
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varies from 14.6 + 0.9 % to 51 & 32 % for fresh Malaysian and Siberian peats, respectively. While
levoglucosan accounts for ~1—4 % of PM2 s mass for fresh subtropical and tropical peats, elevated
levels (~10 %) are found for boreal and temperate peats. Increasing the atmospheric aging time
from 2- to 7-days results in additional formation of ionic species (e.g., oxalate, NO3", NH4", and

SO4"), but enhanced losses of NH3, levoglucosan, and low temperature OC1 and OC2.

Among the four climate regions, Russian peat with the lowest carbon (44 %) and highest
oxygen (39 %) content, resulted in ~59-71 % of WSOC in OC along with the highest levoglucosan
(20-39 % of PM3 5) and lowest NH3/PM3 5 ratios (3—8 %). It also yielded the highest oxygenated
compounds after aging with OM/OC ratios of 2.1-2.2. This contrasts with Malaysian peats that
are mostly water-insoluble (WSOC/OC of 0.18-0.4) with low oxygenated compounds after aging
(OM/OC ratios of 1.3—1.5). Large increases are found for oxalate abundances from fresh (<0.02—
0.43 %) to 7-day aging (1-4%).

With the exception of Russian peats, fresh profiles contain high NH3/PMa s ratios (17-64
%) with low abundances after aging (3—14 % for Aged 2 and 1-7 % for Aged 7). Extending the
aging time from 2- to 7-days results in an increase to ~7-8 % NH4" and NO; abundances.
Although the week-long aging time increased the OM/OC ratios, abundances of OM in PM» 5 were
reduced by 3—18 % with more degradation after 7 days.

Source profiles can change with aging during transport from source to receptor. This study
shows significant differences between fresh and aged peat combustion profiles between the four
biomes that can be used to establish speciated emission inventories for air quality modeling. A
sufficient aging time (~one week) is needed to allow gas-to-particle partitioning of semi-
volatilized species, gas-phase oxidation, and volatilization to achieve representative source
profiles for receptor-oriented source apportionment.
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Table 2. Equivalence measures® for comparison of PMs 5 peat source profiles. Highlighted P-values <0.05 indicate significant
differences at the 95% confidence level.

All Fresh (Profile #1) vs. All Aged (Profile #2) by Biome (group comparison of fresh and aged samples)

Percent Distribution Correlation
Peat region® Peats Included nl¢ | n2¢ <lo 1-2¢ 2-3¢ >30 Coefficient P-value!
Boreal Russia + Siberia 12 12 93.60% 5.60% 0.80% 0.00% 0.995 0.00012
Boreal + Temperate Russia + Siberia + Alaska 17 17 95.20% 4.80% 0.00% 0.00% 0.996 0.00010
Temperate Alaska 5 5 96.00% 4.00% 0.00% 0.00% 0.997 0.00008
Subtropical Florida 11 11 92.86% 7.14% 0.00% 0.00% 0.985 0.00007
Subtropical + Temperate Alaska + Florida 16 16 94.44% 5.56% 0.00% 0.00% 0.992 0.00004
Tropical Malaysia 4 4 78.57% 18.25% 1.59% 1.59% 0.994 0.00195
Subtropical + Tropical Florida + Malaysia 15 15 93.65% 6.35% 0.00% 0.00% 0.990 0.00009
Fresh 2 vs. Aged 2 by Biome (paired comparison for 2-day aging)

Percent Distribution Correlation
Peat region” Peats Included nl® | n2¢ <lo 1-2¢0 2-3¢ >30 Coefficient P-value?
Boreal Russia + Siberia 6 6 94.40% 3.20% 2.40% 0.00% 0.997 0.00088
Boreal + Temperate Russia + Siberia + Alaska 9 9 95.20% 4.00% 0.80% 0.00% 0.997 0.00237
Temperate Alaska 3 3 86.40% 11.20% 0.80% 1.60% 0.997 0.02474
Subtropical Florida 6 6 92.86% 6.35% 0.79% 0.00% 0.992 0.00001
Subtropical + Temperate Alaska + Florida 9 9 96.83% 2.38% 0.00% 0.79% 0.996 0.00006
Tropical Malaysia 2 2 80.00% 5.33% 5.33% 9.33% 0.996 0.95960
Subtropical + Tropical Florida + Malaysia 8 8 96.83% 2.38% 0.79% 0.00% 0.995 0.00007
Fresh 7 vs. Aged 7 by Biome (paired comparison for 7-day aging)

Percent Distribution Correlation
Peat region® Peats Included nl¢ | n2¢ <lo 1-2¢ 2-3¢ >30 Coefficient P-value!
Boreal Russia + Siberia 6 6 76.00% 20.80% 1.60% 1.60% 0.992 0.00007
Boreal + Temperate Russia + Siberia + Alaska 8 8 76.80% 20.00% 0.80% 2.40% 0.993 0.00003
Temperate Alaska 2 2 64.86% 25.68% 2.70% 6.76% 0.993 0.00000
Subtropical Florida 5 5 73.02% 23.81% 2.38% 0.79% 0.974 0.00023
Subtropical + Temperate Alaska + Florida 7 7 75.40% 23.02% 1.59% 0.00% 0.984 0.00004
Tropical Malaysia 2 2 41.33% 21.33% | 24.00% 13.33% 0.989 0.00017
Subtropical + Tropical Florida + Malaysia 7 7 75.40% 21.43% 2.38% 0.79% 0.983 0.00012
Fresh 2 vs. Fresh 7 by Biome (comparison between different experimentsfor unaged fresh profiles)

Percent Distribution Correlation
Peat region® Peats Included nl® | n2¢ <lo 1-2¢ 2-3¢ >3c Coefficient P-value!
Boreal Russia + Siberia 6 6 97.62% 2.38% 0.00% 0.00% 0.999 0.00004
Boreal + Temperate Russia + Siberia + Alaska 9 8 100.00% 0.00% 0.00% 0.00% 0.999 0.00148
Temperate Alaska 3 2 91.27% 6.35% 0.79% 1.59% 0.996 0.12876
Subtropical Florida 6 5 98.41% 1.59% 0.00% 0.00% 0.997 0.52344
Subtropical + Temperate Alaska + Florida 9 7 100.00% 0.00% 0.00% 0.00% 0.998 0.93350
Tropical Malaysia 2 2 81.10% 10.24% 3.15% 5.51% 0.999 0.00006
Subtropical + Tropical Florida + Malaysia 8 7 100.00% 0.00% 0.00% 0.00% 0.999 0.11445
Aged 2 vs. Aged 7 by Biome (comparison between different experiments for the 2- and 7-day aging times)

Percent Distribution Correlation
Peat region® Peats Included nl¢ | n2¢ <lo 1-2¢ 2-3¢ >30 Coefficient P-value?
Boreal Russia + Siberia 6 6 95.20% 3.20% 1.60% 0.00% 0.997 0.00018
Boreal + Temperate Russia + Siberia + Alaska 9 8 94.40% 3.20% 1.60% 0.80% 0.998 0.00002
Temperate Alaska 3 2 66.22% 27.03% 5.41% 1.35% 0.996 0.00000
Subtropical Florida 6 5 93.65% 6.35% 0.00% 0.00% 0.998 0.00194
Subtropical + Temperate Alaska + Florida 9 7 98.41% 1.59% 0.00% 0.00% 0.998 0.00002
Tropical Malaysia 2 2 81.33% 13.33% 1.33% 4.00% 0.997 0.00002
Subtropical + Tropical Florida + Malaysia 8 7 96.03% 3.97% 0.00% 0.00% 0.998 0.00026

“For the #-test, a cutoff probability level of 5% is selected; if P <0.05, there is a 95% probability that the two profiles are different. For correlations, » >0.8 suggests similar profiles,
0.5 <r<0.8 indicates a moderate similarity, and r <0.5 denotes little or no similarity. The R/U ratio indicates the percentage of the >93 reported chemical abundances differ by more
than an expected number of uncertainty intervals. The normal probability density function of 68%, 95.5%, and 99.7% for +10;, +20, and +3 5, respectively, is used to evaluate the R/U
ratios. The two profiles are considered to be similar, within the uncertainties of the chemical abundances when 80% of the R/U ratios are within +3 o, with  >0.8 and P >0.05.
Species with R/U ratios >3 o are further examined as these may be markers that further allow source contributions to be distinguishes by receptor measurements. They may also
reflect the sampling and analysis artifacts that are not representative of the larger population of source profiles.
®Unless otherwise noted, Boreal represents Russia and Siberia regions, Temperate represents northern Alaska region, Subtropical represents north and south Florida regions, and
Tropical represents Island of Borneo, Malaysia region.

nl and n2 denote number of samples in comparison

dStudent #-test P-values
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aThe filter types are: 1) Teflon-membrane filter (Teflo®, 2 um pore size, R2PJ047, Pall Life Sciences, Port Washington, NY,
USA); 2) quartz-fiber filters (Tissuquartz, 2500 QAT-UP, Pall Life Sciences); and 3) citric acid and sodium chloride impregnated
cellulose-fiber filters (31ET, Whatman Labware Products, St. Louis, MO, USA).

®Analyses include: 1) mass by gravimetry (Model XP6 microbalance, Mettler-Toledo, Columbus, OH, USA); 2) light
reflectance/transmittance by UV/Vis spectrometry (Lambda35, Perkin Elmer, Waltham, MA, USA); 3) multiple elements by
energy-dispersive x-ray fluorescence (XRF) (Epsilon 5 PANalytical, Westborough, MA, USA); 4) four anions (chloride [CI],
nitrite [NO27], nitrate [NOs7], and sulfate [SO47]); three cations (water-soluble sodium [Na*], potassium [K*], and ammonium
[NHa4"]); and ten organic acids (i.e., formic acid/formate, acetic acid/acetate, lactic acid/lactate, methanesulfonic
acid/methanesulfanate, oxalic acid/oxalate, propionate, succinic acid/succinate, maleic acid/maleate, malonic acid/malonate, and
glutaric acid/glutarate) by ion chromatography (IC) with conductivity detector (Dionex Model ICS-5000+, Thermo Scientific,
Waltham, MA, USA); 5) 17 carbohydrates (i.e., levoglucosan, mannosan, galactosan, glycerol, 2-methylerythritol, arabitol,
mannitol, xylitol, erythritol, adonitol, inositol, glucose, galactose, arabinose, fructose, sucrose, and trehalose) by IC with pulsed
amperometric detector (Dionex Model ICS3000, Thermo Scientific, Waltham, MA, USA); 6) water-soluble organic carbon
(WSOC) by total organic carbon analyzer with non-dispersive infrared (NDIR) detector (Shimadzu Corporation, Kyoto, Japan);
7) organic functional groups by Fourier-Transform Infrared (FTIR) spectroscopy (VERTEX 70, Bruker, Billerica, MA, USA);
and 8) organic, elemental, and brown carbon (OC, EC, and BrC) by multiwavelength thermal/optical carbon analyzer (DRI
Model 2015, Magee Scientific, Berkeley, CA, USA).

‘Teflon-membrane filter samples from Channel 3 are to be analyzed for additional organic nitrogen speciation using Fourier
transform-ion cyclotron resonance mass spectrometry (FT-ICR-MS) at the Michigan Technological University. Quartz-fiber filter
samples from Channel 4 are to be analyzed for polar and non-polar organics at the Hong Kong Premium Services and Research
Laboratory.

Figure 1. Filter pack sampling configurations for upstream and downstream channels of the
oxidation flow reactor.
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752 Figure 2. Comparison between fresh and aged profile chemical abundances for each of the six
753 types of peat with 2- and 7-day aging times. Standard deviations associated with averages in x and

754  y axes are also shown.
755
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759  Figure 3. Ratios of average Aged (A) to Fresh (F) chemical species for 2-days (A2/F2) and 7-days
760  (A7/F7) of atmospheric aging of six types of peats. Vertical bars represent the standard deviations
761  associated with each ratio. Note that different scales were used in the two Y axes, with 0.001 to
762 10,000 on the left axis and 0.1 to 100 on the right axis (species abbreviations are shown in Fig. 1;

763  OM is organic mass).
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766  Figure 4. Abundances of fresh and aged carbon-containing components in PM> s (levoglucosan
767  [CeHi100s] is divided by 2.25 and oxalate [CoH2047] is divided by 3.75 to obtain the carbon content.
768  These levels are subtracted from the water-soluble organic carbon [WSOC] to obtain the
769  remainder, and WSOC is subtracted from organic carbon [OC] to obtain non-soluble carbon.
770  Elemental carbon [EC] is unaltered).
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772 Figure 5. Comparison of nitrogen species for: a) NH; and NH4"; and b) HNO3, NO,, and NOs~

773  between fresh and aged profiles for six types of peats.
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Figure 6. Reconstruction of PM2 5 mass with organic matter (OM, see Table 3 for OM/OC ratios),
elemental carbon (EC), major ions (i.e., sum of NH4", NO3", and SO47), and mineral component

(=22 A1 +2.49 Si+ 1.63 Ca+ 1.94 Ti + 2.42 Fe) for six types of peat between fresh and aged
profiles.
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