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Abstract. Cloud radars are unique instruments for observing cloud processes, but uncertainties in radar calibration have fre-

quently limited data quality. Thus far, no single, robust method exists for assessing the calibration of past cloud radar data sets.

Here, we investigate whether observations of microphysical processes in liquid clouds such as the transition of cloud droplets to

drizzle drops can be used to calibrate cloud radars. Specifically, we study the relationships between the radar reflectivity factor

and three variables not affected by absolute radar calibration: the skewness of the radar Doppler spectrum (γ), the radar mean5

Doppler velocity (W ), and the liquid water path (LWP). For each relation, we evaluate the potential for radar calibration. For

γ and W , we use box model simulations to determine typical radar reflectivity values for reference points. We apply the new

methods to observations at the Atmospheric Radiation Measurement (ARM) sites North Slope of Alaska (NSA) and Oliktok

Point (OLI) in 2016 using two 35 GHz Ka-band ARM Zenith Radars (KAZR). For periods with a sufficient number of liquid

cloud observations, we find that liquid cloud processes are robust enough for cloud radar calibration, with the LWP-based10

method performing best. We estimate that in 2016, the radar reflectivity at NSA was about 1±1 dB too low, but stable. For

OLI, we identify serious problems with maintaining an accurate calibration including a sudden decrease of 5 to 7 dB in June

2016.

1 Introduction

Due to their profiling capabilities, millimeter wavelength cloud radars are one of the most important tools for cloud remote15

sensing. Their measurements are used for process studies as well as for long term monitoring of hydrometeor properties.

Although maintaining an accurate radar calibration is absolutely crucial to avoid biases and false trends in observational data

sets, calibrating cloud radars accurately is a challenging and long-standing problem. In this study, we investigate the potential

for using observations of liquid cloud microphysical processes for radar calibration.

Radar calibration is quantified by the radar calibration constant. Despite the name constant, the constant can actually change20

due to the aging of components, temperature fluctuations, or hardware defects. Therefore, we have to determine not only the
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initial calibration constant of a system, but also monitor the calibration constant for changes. For example, waveguide-corrosion

of the MilliMeter wavelength Cloud Radar (MMCR) of the US Department Of Energy (DOE) Atmospheric Radiation Mea-

surement (ARM) program at the North Slope of Alaska (NSA) site in Utqiaġvik (Barrow), Alaska caused a 9.8 dB calibration

offset in 2008 (Protat et al., 2011). Also, a liquid film on the radome or radar antenna caused by precipitation can temporarily

lead to up to 4 dB additional two-way attenuation (Frech, 2009). From an engineering perspective, radar calibration is compli-5

cated by the fact that radar returns span several orders of magnitude in power and—particularly for pulsed radars—the span

between the transmitted and received power is even larger.

The community has multiple approaches to calibrate cloud radars, but none are applicable to all situations. Most commonly,

a budget calibration is done wherein all components are calibrated separately and the individual calibration constants are

summed (Chandrasekar et al., 2015). A budget calibration can also be combined with a receiver calibration by observing a10

reference target emitting microwave radiation. For example, Whiton et al. (1977) proposed pointing a scanning radar into the

sun and Küchler et al. (2017) used liquid nitrogen—similar to the standard calibration method of microwave radiometers.

Yet, the errors of the individual budget calibrations sum up, and there is a risk of overlooking error sources, e.g. due to an

interaction between radar components. Therefore, it is advantageous to calibrate the full radar system end-to-end. Atlas (2002)

provided an extensive overview of different end-to-end radar calibration techniques, most of them relying on observing objects15

with known radar cross-sections. These reference targets included corner reflectors and various metallic or metalized spherical

objects such as ping pong balls, ball projectiles from air guns, and Christmas ornaments. However, observations of reference

targets require dedicated field operations and cannot be used to calibrate past data sets. Also, the observation of a reference

target with radar can be challenging for a number of reasons. First, most reference targets do not move, and hence do not cause

a Doppler shift so that the target’s return cannot be distinguished from ground clutter unless the target is positioned far away20

from the surface. For lifting the target from the surface, past studies proposed using fiberglass poles (Kollias et al., 2016),

tethered balloons (Atlas and Mossop, 1960), or unmanned aerial vehicles (Küchler et al., 2017). Second, the exact location

of the target with respect to the radar needs to be known for calibration because reference targets are point targets. Instead,

atmospheric hydrometeors are volume distributed targets. Third, the antenna properties are not well defined unless the target

is in the antenna’s far-field, i.e., at least a couple of hundred meters away from the radar. Lastly, receiver saturation must be25

avoided, which requires the use of an attenuator or a sufficient distance between the calibration target and the radar. Because

of these reasons, calibration by reference targets is only feasible for scanning cloud radars, but not for vertically pointing cloud

radars, which are most commonly used. Several studies have suggested calibrating radars by comparing their measurements of

rainfall with integrated drop size distributions from ground-based disdrometers (Joss et al., 1968; Ulbrich and Lee, 1999; Frech

et al., 2017). Tridon et al. (2017) proposed to use self-consistency checks of retrievals from simultaneous radar observations at30

multiple frequencies to identify calibration problems. However, disdrometers and regular liquid precipitation are required for

monitoring calibration continuously and the challenge of radome or antenna attenuation during precipitation events needs to

be considered, particularly for vertically pointing systems.

If multiple radars are available, it is easier to achieve a relative calibration by cross-calibration. Cross-calibration also works

when the radars have different frequencies, as long as the hydrometeors are small enough to assume Rayleigh scattering and35
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differential attenuation is accounted for (Hogan et al., 2000; Kneifel et al., 2015; Ewald et al., 2018). If the radars are not

collocated, the cross-calibration can also be done statistically by comparing long-term data sets. But such comparisons can

be biased by different radar sensitivities and it is important to degrade both radars to the same sensitivity. Protat et al. (2011)

compared observations statistically from the CloudSat satellite W-band radar with ground-based observations for relative cal-

ibration. Because CloudSat’s calibration is well established (Tanelli et al., 2008), Protat et al. (2011) and Louf et al. (2019)5

proposed to use CloudSat as a reference for absolute calibration of ground-based radars. However, long time series of at least

several months are required (Kollias et al., 2019) and the method cannot be used to monitor radar calibration at higher temporal

resolutions. Merker et al. (2015) proposed another method for absolute radar calibration of radars by inter-comparisons but

their method requires a very specific setup with three small radars.

We can also avoid the problem of absolute radar calibration by using variables not affected by absolute calibration such as10

the higher moments of the radar Doppler spectrum (Maahn et al., 2015), attenuation (Matrosov, 2005) and some polarimetric

variables such as depolarization ratio (Matrosov et al., 2017), differential reflectivity, and differential phase shift (Oue et al.,

2018). Yet, excluding variables reduces the information content of the observations significantly (Maahn and Löhnert, 2017),

depending on the application.

In summary, no method for obtaining an absolute calibration is available that works in all situations. Either dedicated field15

campaigns or in-situ observations of drop size distributions are required. Budget calibrations are not end-to-end, and relative

calibrations require trusting the calibration of a reference radar. To close this gap, we investigate whether liquid cloud micro-

physical processes can be used for radar calibration. Luke and Kollias (2016) proposed to use the unique relationship between

the equivalent radar reflectivity factor (here reflectivity or Ze, in dBz, Smith, 2010) and the skewness of the radar Doppler spec-

trum (γ, unitless) during drizzle-onset—commonly defined as drops exceeding the critical diameter for starting autoconversion20

(20 to 40 µm)—for calibration. Several studies have suggested that γ is helpful for studying drizzle formation (Kollias et al.,

2011a, b; Luke and Kollias, 2013; Acquistapace et al., 2019). Further, Luke and Kollias (2016) suggested that the relationship

between the liquid water path (LWP, in kg m−2) and the maximum reflectivity in the column max(Ze) contains information

that can be used for radar calibration. LWP and max(Ze) are correlated because larger LWP values permit drops to grow larger

by condensation and enhance the probability of drizzle formation leading to higher Ze values (see Fig. 1 of Acquistapace et al.,25

2019). In this study, we evaluate whether the Ze - γ and LWP - max(Ze) relationships can be used for calibrating vertically

pointing cloud radars. In addition to these two relationships proposed by Luke and Kollias (2016), we also investigate the

relationship between Ze and the mean vertical Doppler-velocity (W , in m s−1), because W has been successfully used for

drizzle detection (e.g., Shupe, 2007) due to the larger fall-velocity of drizzle drops.

We run box model simulations of drizzle-onset to develop the details of the method, characterize its uncertainties, and apply30

it to radar observations of the North Slope of Alaska (NSA) and Oliktok Point (OLI) ARM sites from 2016. The instruments,

data sets, box model, and radar simulator used in this study are detailed in section 2. The calibration methods used in this

study are presented in section 3. Besides the three new methods based on liquid cloud microphysical processes, we use a

reference method to calibrate the two cloud radars relative to one another. For this, we modify the relative calibration method

which Protat et al. (2011) proposed for calibrating ground-based cloud radars with CloudSat. In section 4, we apply the various35
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Table 1. Technical specifications of the radars in Oliktok Point and Utqiaġvik (Barrow)

Oliktok Point Utqiaġvik (Barrow)

Abbreviation OLI NSA

Radar KAZR2 KAZR

Frequency [GHz] 34.83 34.83

Mode general (ge) general (ge)

FFT points [-] 512 (256)∗ 256

Pulse repetition frequency [Hz] 2771.31 2771.31

Spectral averages [-] 9 (18) 20

Dwell time [s] 1.69 1.85

Nyquist velocity [m s−1] 5.977 5.963

Sensitivity at 1 km [dBz] −37.3 (−39.0) −32.7

* Specifications in parenthesis correspond to the configuration before 2016-06-16

calibration methods to data from NSA and OLI and assess the temporal evolution of the calibration quality at both sites. Finally,

concluding remarks are given in section 5.

2 Data sets and models

2.1 Sites

In this study, we use ground-based remote sensing observations from two observatories operated by the DOE ARM Program5

located in northern Alaska: Utqiaġvik (ARM’s North Slope of Alaska (NSA) site, formerly known as Barrow, 71.323°N,

156.616°W) and Oliktok Point (OLI, 70.495°N, 149.886°W). While the former was established in 1996, the latter did not

become fully operational until late 2015. Both sites are located on the coast of the Beaufort Sea and lie only 250 km apart. The

synoptic-scale forcing is very similar, resulting in high correlations between both sites for sea level pressure and near-surface

air temperature, humidity, and wind (Maahn et al., 2017).10

2.2 Instruments and observations

Both sites are equipped with a 35 GHz Ka-band ARM Zenith Radar (KAZR). While the radar at NSA is a first generation

KAZR, the one at OLI is a second generation KAZR2 with improved sensitivity (Table 1). The spectral resolution of the OLI

KAZR2 was increased from 256 to 512 Doppler spectral bins on 2016-06-16. For the radar moments Ze, γ, and W , we use

the radar product presented in Williams et al. (2018), which, unlike the standard ARM general mode (GE) moment products,15

includes advanced clutter removal and higher moments such as γ (Williams, 2018). Because turbulence can mask microphysical

signals in γ, observations with high temporal resolution are usually required for minimizing broadening effects of the Doppler
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spectrum (Acquistapace et al., 2017). Instead, Williams et al. (2018) use a shift-then-average method to reduce the impact of

turbulence on the radar moments allowing the use of coarser temporal resolution (15 s). For temperature and humidity profiles,

we use the standard ARM interpolated radiosonde product (ARM user facility, 1999, updated daily) based on three (two) daily

launches at NSA (OLI). Further, both sites are equipped with ceilometers for cloud base estimation (Vaisala CL31, ARM user

facility, 1996, updated daily) and microwave radiometers (MWR) to retrieve LWP and integrated water vapor (IWV) using5

the MicroWave Radiometer RETrieval (MWRRET, Turner et al., 2007) and the Monochromatic Radiative Transfer Model

MonoRTM (Clough et al., 2005). To minimize MWR retrieval biases, we applied monthly offset corrections to the observed

brightness temperatures using MonoRTM to forward model clear-sky radiosonde observations. At NSA, we estimate LWP

from a combination of the 90 GHz channel of an RPG-150-90 radiometer (ARM user facility, 2006, updated daily, the 150

GHZ channel was not operational in 2016) and the 23.8 GHz and 31.4 GHz channels of a Radiometrics WVR-1100 radiometer10

(ARM user facility, 1993, updated daily). At OLI we retrieve LWP from a three channel (23.834, 30, and 89 GHz) Radiometrics

PR2289 radiometer (ARM user facility, 2011, updated daily). For identifying cloud phase, we use the phase classification by

Shupe (2007), which depends on a combination of KAZR, MWR, radiosondes and micropulse lidar (MPL, ARM user facility,

1990, updated daily) measurements.

The site at OLI was also equipped with a Ka-band Scanning ARM Cloud Radar (KaSACR) from March 2016 to September15

2017. However, the KaSACR was pointing vertically for only 10 minutes per hour. Combined with its reduced sensitivity, this

leads to too few observations of liquid clouds and we decided not to include KaSACR observations in this study.

Unless stated otherwise, Ze is corrected for gaseous attenuation (Rosenkranz, 1998) using the radiosonde profiles scaled

by the MWR’s IWV. Two-way integrated gaseous attenuation is typically less than 0.4 dB for the whole vertical column at

Ka-band. Attenuation by liquid water is neglected. W is adjusted to sea level air density following Zawadzki et al. (2005).20

We analyze observations of the full year 2016 obtained at both sites. The time period was selected because the KAZR at OLI

became fully operational only in fall 2015 and suffered from a malfunction of a phase lock oscillator resulting in resonance

peaks in the Doppler spectrum for most of 2017.

2.3 Box model

To simulate the transition from cloud droplets to drizzle drops in an idealized way, we use a zero-dimensional box model25

of the droplet collection process (Hoffmann et al., 2017). The box model results will allow us to determine the potential of

using drizzle onset for radar calibration. The box model is based on the superdroplet approach, in which several hundred

computational particles are simulated, each superdroplet representing an ensemble of real, identical droplets. We apply the so-

called all-or-nothing approach to calculate collections among the superdroplets, which has been shown to accurately represent

collision-coalescence in the superdroplet framework (Unterstrasser et al., 2017). The model is initialized using the so-called30

singleSIP method (Unterstrasser et al., 2017). In this method, the underlying droplet size distribution is divided into logarith-

mically spaced bins. Each bin is represented by one superdroplet, which diameter and weighting factor (the number of real

droplets represented by that superdroplet) is determined by integrating the droplet size distribution across the bin. Here, we use

500 bins, i.e., 500 superdroplets to represent the droplet size distribution.
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While we also use measured droplet size distributions, we primarily use an idealized lognormal drop size distribution (Fein-

gold and Levin, 1986) to evaluate the sensitivity of our calibration methods by varying the distribution’s parameters systemat-

ically:

N(D) =
Ntot√

2π ln(σg)D
exp

[
− ln2(D/dg)

2 ln2(σg)

]
, (1)

with D the droplet diameter, Ntot, the total number of droplets, dg the geometric mean diameter, and σg the geometric5

standard deviation.

Collision-coalescence is steered by the collection kernel, in which the droplet velocity difference is calculated using terminal

velocities by Beard (1976), the collision efficiencies are taken from Hall (1980), coalescence efficiency is assumed as unity, and

turbulent enhancement is described as in Ayala et al. (2008) and Wang and Grabowski (2009). Turbulence enhancement of the

collision process is controlled by a prescribed energy-dissipation-rate (see Riechelmann et al., 2012). The simulation time has10

been restricted to 3h. Note that no other microphysical processes besides collision-coalescence are considered, and droplets

are not allowed to sediment from the box, i.e. the liquid water content (LWC) remains constant (Hoffmann et al., 2017).

2.4 Radar simulator

To convert the drop size distributions (DSDs) of the box model into radar observables, we use the spectral radar simulator of the

second generation Passive and Active Microwave radiative TRAnsfer model (PAMTRA2; https://github.com/maahn/pamtra2).15

Its physical basics are the same as for the first generation PAMTRA (Maahn et al., 2015; Maahn and Löhnert, 2017), but it

is designed in a more modular way. Because the drop size in the box model does not exceed 1/10th of the radar wavelength

(8.6 mm) for Ze < 10 dBz, we can use the Rayleigh scattering assumption for estimating the radar backscattering cross section

of the drops. From the backscattering cross-section, the radar Doppler spectrum is estimated using the same fall-velocity-size

relationship as in the box model (Beard, 1976). Unlike for Ze and W , broadening by the Doppler spectrum due to turbulence20

imposing random motion on the droplets needs to be accounted for when estimating γ. For this, we convolve a Gaussian

velocity distribution with the idealized radar spectrum. The standard deviation of the Gaussian distribution depends mostly on

the degree of turbulence and the contribution of the horizontal wind field to the radial velocity due to the finite radar-beamwidth

following (Shupe et al., 2008). The former is estimated from the energy-dissipation-rate ε, which is varied as discussed below,

and a constant horizontal wind of 10 m s−1 is assumed for the latter. Noise is added to the spectrum in correspondence25

with KAZR2 specifications after June 2016 (Table 1). From the simulated radar Doppler spectrum, we estimate its moments

including radar reflectivity Ze, mean Doppler-velocity W , and skewness γ following Maahn and Löhnert (2017).

6
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3 Calibration methods

3.1 Skewness and mean Doppler velocity-based methods

We hypothesize that there are reference points during drizzle-onset that have a typical Ze value, which can be constrained by

γ or W . To determine these reference points we use and analyze the results of the box model-radar simulator combination

introduced above for simulating drizzle-onset. Focusing on the formation of drizzle drops from cloud droplets—referred to5

as autoconversion—we assume that collision-coalescence is the dominating cloud process during drizzle-onset and that other

cloud processes can be neglected for this purpose. To assess the model’s sensitivity to the microphysical properties of a given

cloud, we first vary the initial DSDs (Sect. 3.1.1). Based on these results, we determine the best reference points for radar

calibration (Sect. 3.1.2) and discuss how to apply these reference points to observations (Sect. 3.1.3).

3.1.1 Sensitivity study10

Here, we show how Ze , γ and W change with time during drizzle onset and how this is affected by the DSD and turbulence.

For a reference run, we chose a set of parameters featuring a slow cloud-to-drizzle transition in agreement with observations

of DSDs (Geoffroy et al., 2010) and turbulence (Shupe et al., 2012; Maahn et al., 2015): Ntot = 108 m−3 as the initial drop

number, σg = 1.34 as the standard geometric deviation, dg = 1.6× 10−5 m as the geometric mean diameter to describe the

initial lognormal distribution (eq. 1), and ε= 10−4 m2 s−3 as the turbulent energy-dissipation-rate. This DSD corresponds15

to 0.26 g m−3 LWC. The results of the reference run show (orange lines Fig. 1) that Ze increases monotonically with time

and that γ reflects the typical competition of cloud droplets and drizzle drops in the radar Doppler spectrum (Kollias et al.,

2011b). In the absence of drizzle, only backscattering by cloud droplets contributes to the radar Doppler spectrum. For this

stage, the Doppler spectrum has a Gaussian shape (i.e., γ ≈ 0), the variability of droplet fall velocities is small, and turbulence

regulates the width of the Doppler spectrum. The critical droplet diameter required to start autoconversion varies between 1420

and 80 ×10−6 m depending on the DSD (Liu et al., 2004). As soon as the first drizzle drops are created by autoconversion

after 45 min, the γ values become positive (motion towards the radar is defined as positive in this study), because the drizzle

drops extend the tail of the Doppler spectrum towards faster, more positive velocities. The maximum γ value of approximately

0.7 is reached at -20.2 dBz (Zmax(γ)
e ). When drizzle and cloud droplets contribute approximately equally to Ze, the shape

of the spectrum is again more symmetric resulting in γ ≈ 0. This stage is referred to as the cloud-drizzle balance point in25

the following and is reached after another 45 min at −16.5 dBz (Zγ=0
e ). Finally, γ becomes negative when the spectrum is

dominated by drizzle drops and the remaining cloud droplets extend the tail of the spectrum to the opposite, smaller-droplet

side. However, simulated values significantly larger than Zγ=0
e have to be treated with care because drizzle removal from the

cloud by sedimentation is not accounted for by the box model.

To assess the sensitivity of the Ze-γ relationship to microphysics, the initial parameters of the box model were perturbed.30

We chose the perturbations such that a realistic range is covered, but made sure that drizzle is created neither instantly nor

too slowly (i.e., no drizzle after 3 h runtime). To evaluate the sensitivity with respect to Ntot, we divided and multiplied Ntot

by a factor of two (Fig. 1.a). When cloud droplets dominate the radar signal, Ntot scales linearly with Ze in linear units and
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the offset between the model runs is close to 3 dB (corresponding to a factor of 2 as expected from the modification of Ntot).

Consequently, the Ze values for maximum γ (referred to as Zmax(γ)
e in the following) are approximately 3 dB apart (-23.5,

-20.2, and -17.6 dBz). However, autoconversion is more efficient for greater number concentrations (with constant droplet

size) so that γ decreases faster as a function of both Ze and time than for the other runs. Due to these compensating effects, Ze

values for the cloud-drizzle balance point with γ = 0 (Zγ=0
e ) are closer together (-16.5 and -15.4 dBz) than for the maximum5

of γ. Interestingly, this is not the case if we reduce Ntot by 50%. Then, the Ze-γ line is shifted to the lower left and Zγ=0
e is

−21.1 dBz and 4.7 dB smaller than for the reference run. For this run, autoconversion is so slow that after 2 h cloud droplets

still dominate the spectrum and a reflectivity value of only -15 dBz is reached at the end of the 3 h simulation. For the run with

doubled Ntot, the time required until the drizzle dominates the radar Doppler spectrum (i.e., γ < 0) is less than 1 hour.

For estimating the sensitivity to the width of the size distribution, we perturb σg by ±0.05 (Fig. 1.b). If we perturbed the10

initial DSD width by larger values, the box model would create drizzle too slowly or too quickly for our purposes. While the

Z
max(γ)
e values for both perturbations are about 2 dB apart, the difference between the Zγ=0

e values are 2.9 and 0.2 dB for the

reduction and increase of σg , respectively. Similar to the doubledNtot run, autoconversion is more efficient and faster when we

increase σg . At the same time, a narrower distribution leads to a larger absolute γ value due to the reduced Doppler spectrum

width of the cloud peak. Note that the reference run and the run with increased σg are almost identical for Ze >−18 dBz, but15

the run with reduced σg remains different. This highlights that the presence of larger droplets in the initial spectrum (due to a

larger standard deviation) is important for drizzle-onset, but the effect saturates when drizzle drops become more numerous.

This is similar for the runs where dg has been increased and reduced by ±1µm (Fig. 1.c): Zγ=0
e changes little when increasing

dg (-16.3 dBz), but is reduced for a smaller dg (-19.4 dBz).

To assess the impact of turbulence on drizzle-onset, ε is perturbed by one order of magnitude (Fig. 1.d) in agreement20

with observations of Arctic clouds (Shupe et al., 2012). Enhanced turbulence leads to turbulent broadening, which reduces

the γ magnitude by making the spectrum more symmetrical (Acquistapace et al., 2017). This is particularly visible for low

reflectivities, which are dominated by cloud droplets. Turbulence has only a small impact on autoconversion, which can be

seen by the slightly faster drizzle formation and the small change in Zγ=0
e of 0.2 dB. Similar results have been found in other

simulations by Hoffmann et al. (2017), in which turbulence did not significantly change the timing of drizzle, but rather the25

amount of cloud water transformed to drizzle.

In reality, a change in Ntot alone is not very realistic, because when Ntot is e.g., increased, the available liquid is typically

distributed on a larger number of smaller sized droplets. In other words, an increase in Ntot for fixed LWC, which would shift

the Ze - γ relationship towards larger Ze values, is compensated by a reduction of dg , which would shift the relationship to

the opposite direction. To investigate this, we repeated the Ntot variation for fixed LWC by changing dg accordingly (Fig. 1.e).30

Note that the required change in dg is larger (18.9 and 11.9 µm) than investigated above. As expected, autoconversion is more

efficient in the low Ntot|LWC case, but there is apparently an upper threshold for Zγ=0
e , which increases only by 1 dB. For the

highNtot|LWC case, Zγ=0
e is reduced strongly from -16.5 to -22.9 dBz. Unlike for the other runs, drizzle formation is very slow

and droplets still dominate after 2 hours of model run time. Interestingly, the steeper slope of the Ze− γ relationship for the
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high Ntot|LWC case agrees with the results of Kollias et al. (2011a) who compared maritime and continental (implying higher

Ntot values) datasets.

Collision-coalescence including autoconversion is a stochastic process so a random number generator is used in the box

model for emulation. To make sure the runs are comparable, we previously seeded the random number generator with the

same number for the sensitivity study. Here, we use five different seeds for the reference initial DSD to quantify the role of5

chance. Figure 1.f shows that Zγ=0
e (Zmax(γ)

e ) varies significantly between −16.5 and −18.9 dBz (−20.0 and −21.6 dBz).

We conclude from this that the stochastic nature of collision-coalescence reduces the impact of the clouds’ initial DSD on

the Ze− γ relationship. However, the impact of stochasticity is likely overestimated in the box model because of the limited

number of simulated superdroplets (Dziekan and Pawlowska, 2017).

For comparison, we also evaluate the results of the sensitivity study with respect to the Ze - W relationship (Fig. 2). Gen-10

erally, W increases with increasing drizzle concentration, because the drop fall-velocity depends strongly on size. On the one

hand, W is more prone to biases than γ, e.g., due to radar miss-pointing or vertical air motions. While we assume that the

latter cancels for longer time series, consistent lifting related to orography could bias W even for long-term data sets. On

the other hand, W can be found in radar datasets more frequently than γ and observing W does not require a high temporal

resolution (Acquistapace et al., 2017). The dependence on the initial DSD is similar to the Ze - γ relationship. The fact that15

drizzle develops more efficiently for DSDs with larger Ntot, σg , or dg can be seen from the slower W for the same Ze. This

is because W (proportional to the first DSD moment for drizzle) increases more slowly with size than Ze (proportional to the

sixth DSD moment). W does not depend on ε, therefore the runs with different ε are practically identical. Unlike for Zγ=0
e ,

there are apparently no saturation effects limiting the variability of the Ze−W relationship.

3.1.2 Determining reference values20

The sensitivity study evaluated only single microphysical condition which is not realistic for observations. Therefore, we

investigate how stable the relations are for longer data sets with varying microphysical conditions and assess whether the Ze

- γ and Ze - W relations have the potential to be used for radar calibration. For this, we used the box model and combined

all perturbations of Ntot, σg , dg , and ε with each other to cover the parameter space of initial conditions better than for the

sensitivity study. Every run was repeated five times with different assigned seeds (i.e. 5×34 = 405 runs). To make sure the full25

cloud droplet to drizzle transition is included in the data set, only runs without drizzle at model initialization are considered.

Also, runs without any drizzle production within 3 h are omitted, which leaves 340 runs.

The results show considerable spread for σ and W (Fig. 3) so that we obtained a median relationship. For this, we bin the

data by Ze (bin width 1 dB) and estimate the median values of γ and W for every bin. We smooth the resulting curve using

the Savitzky-Golay filter (window length 7, polynomial order 2, Savitzky and Golay, 1964). That is particularly important30

when applying the method to observations (see below) because it makes the method more robust by increasing the number

of observations contributing to a particular point on the curve. Typically, the smoothing changes Zγ=0
e by less than 1 dB.

The resulting median relationships show the typical partly sinusoidal-shaped Ze - γ relationship and an increase in W for

Ze >−20 dBz. We maintain that this median curve is much better suited for calibration because the mean reflectivity would
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Figure 1. Sensitivity of the reflectivity Ze - skewness γ transition for drizzle-onset to (a) total number concentration Ntot, (b) the unitless

standard deviation of the log-normal distribution σg , (c) the geometric mean diameter dg , and (d) the turbulent energy-dissipation-rate ε.

We also (e) modified Ntot while keeping liquid water content (LWC) constant (i.e. increasing dg) and (f) used different seeds for the box

model. All lines are smoothed. The light gray points show all data points of the reference run, the lines denote smoothed model results. The

triangles, squares, and hexagonal shapes indicate model simulation times of 1 h, 1.5 h, and 2 h, respectively. Note that the orange lines are

identical for all panels.

be more sensitive to outliers. It is important to consider the whole Ze-γ relationship instead of determining a mean value for

all Ze with γ = 0. This is because a certain σ value is not unambiguous and, e.g., a value of γ = 0 can also refer to a spectrum

consisting only of cloud droplets.

To determine which point of the Ze-γ and Ze-W relations is most stable and best suited for calibration, we estimate the

uncertainties of several Ze reference values for γ (maximum, 0,−0.1) and W (0.25,0.5,0.75 m s−1) for comparison. The5

choice of the reference values is somewhat arbitrary but the variability increases strongly outside the investigated range of

reference values, which enclose the onset of drizzle. While the determination of max(γ) is straightforward, we estimate the
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Figure 2. As Fig. 1, but for mean Doppler-velocity W .

other values by linear interpolation from the neighboring Ze bins. In case a reference point is crossed more than once by the

median relationship (e.g., γ of cloud droplets is also close to zero), we choose the crossing associated with a larger Ze value.

The use of the Savitzky-Golay filter ensures that adjacent Ze bins impact the reference values, which makes the method more

stable. Unlike other Ze calibration studies (e.g., Protat et al., 2011), we do not need to account for radar sensitivity differences,

because the range of relevant Ze values is strictly limited and well above the sensitivity limit. To assess the stability of the5

reference values, we use a bootstrapping approach: We select 5% of the 340 runs randomly 100 times and determine the

resulting reference values for each subset. We estimate the final reference values and their uncertainties from the means and

standard deviations, respectively (see uncertainty bars in Fig. 3). For γ, the comparison reveals that the variability of Ze is less

for reference γ values 0 and −0.1 (± 0.7 and 0.8 dB, Table 2) than for the maximum of γ (± 1.6). For W , the variability is

generally larger (± 0.8 to 1.9 dB).10

Even though we chose the initial conditions to be representative of liquid stratiform clouds at high latitudes, it is possible

that our choice of initial conditions is biased. Therefore, we repeated the box model experiment with initial conditions based on

11



aircraft in situ observations from the same region as the cloud radars expecting that measured DSDs include all microphysical

processes including advection and sedimentation (Fig. 4). For this, we use data of the 5th ARM Airborne Carbon Measurements

(ACME-V) aircraft campaign. This campaign took place from June to September 2015 and included cloud probe observations

near the North Slope of Alaska (ARM user facility, 2016). Here, we use liquid-only cloud observations in the vicinity of OLI

and NSA. We use every 10th profile of the data shown in the Figs. 4.a and 4.b of Maahn et al. (2017). Except for the initial5

DSDs, the setup is identical to the idealized runs introduced above. ε was not measured during ACME-V and we apply the

same ε values as for the sensitivity study to each measured profile (ε= 10−3, 10−4, and 10−5 m2 s−3). Every run was repeated

5 times with different seeds; runs that do not produce drizzle or that include drizzle in the initial DSD are not considered. By

doing so, we avoid the impact of potential sampling problems of large, rare drizzle drops by the in situ probes. This leaves 237

runs and the bootstrapping method is used to determine the uncertainties of the reference points. Even though the estimated10

Ze - γ and Ze - W relationships are more uneven, the general shape between -20 and -10 dBz is very similar to the runs using

lognormal DSDs (Table 2).

The minimum required Ze for drizzle formation is different for ACME-V data than for the idealized DSDs, because Figs. 3

and 4 contain only box model runs where drizzle eventually formed. While for the idealized DSDs, drizzle is formed only when

Ze of the initial DSD is at least -27 dBz, drizzle can form at less than -30 dBz for the ACME-V DSDs. We relate this to the15

non-idealized nature of the initial ACME-V DSDs and the fact that a single, larger cloud droplet can trigger drizzle formation

if included in the observed DSD. As a side effect, the drizzle formation at lower Ze values leads to enhanced γ values below

−20 dBz. This is most likely only a spin-up effect of the box model, which can be seen from the excellent agreement of the

median curves for larger Ze. Note that also at −21 dBz, γ is around zero due to competition between runs with higher and

lower γ values. But this does not bias the method because we only use the crossing with the largest Ze value.20

For both initial DSDs, the variability determined from bootstrapping is minimal for γ = 0.0 and W = 0.25 m s−1 and we

conclude that Zγ=0
e and ZW=.25

e are the best reference values for assessing radar calibration. Initializing the simulations with

the lognormal and ACME-V DSDs, Zγ=0
e is −17.3± 0.7 and −17.8± 1.2, respectively (Table 2) . ZW=.25

e is estimated as

−16.3±0.8 and −16.9±1.5 dBz, respectively. Combining both set ups, we obtain Zγ=0
e =−17.6 dBz and ZW=.25

e =−16.6
dBz. These values are very close to the value of −17 dBz proposed by Frisch et al. (1995) for distinguishing between drizzle-25

free and drizzle containing clouds. Given the idealized set up, we likely underestimated the uncertainties of Zγ=0
e and ZW=.25

e

and estimate the uncertainty to be at least 3 dB.

While it is true that we found a much larger variability of Zγ=0
e and ZW=.25

e for the sensitivity study (Sect. 3.1.1), we

are confident that the reference values can still be determined with sufficient accuracy. We base this claim on the assumption

that observations with reflectivities corresponding to drizzle-onset (Ze −20 to −15 dBz) are likely dominated by clouds that30

produce drizzle slowly. Clouds with faster drizzle production reach larger reflectivities quickly, likely have a shorter lifetime,

and do not contribute to the data set quantitatively. Clouds without or with extremely slow autoconversion rates will likely not

reach Ze values larger than −20 dBz before the end of their lifetime. Together with the significant role of random effects, this

indicates that the variability of the Ze - γ and Ze - W relationships for larger datasets is lower than estimated in the sensitivity

study. By binning the box model results by Ze and determining the median γ and W values, we ensure that slow drizzle35
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generating clouds also dominate our box model estimates, because, similar to observations, clouds forming drizzle quickly in

the box model also have quickly increasing Ze values. Therefore, these clouds contribute little to observations of reflectivities

between −20 to −15 dBz.

This does not mean that Zγ=0
e and ZW=.25

e can be used to identify individual profiles with or without drizzle. As shown in

the sensitivity study above and in Acquistapace et al. (2019), the variability from profile to profile can be substantial and Ze,5

γ, and W are not suited to identify the presence of drizzle for individual profiles.

1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

sk
ew

ne
ss

 
 [-

]

(a)

30 25 20 15 10 5 0
radar reflectivity Ze [dBz]

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75

m
ea

n 
Do

pp
le

r v
el

. W
 [m

 s
1 ] (b)

0.5

1.0

1.5

2.0

2.5

3.0

bo
xm

od
el

 ru
nt

im
e 

[h
]

Figure 3. (a) reflectivity Ze skewness γ and (b) reflectivity Ze mean Doppler-velocity W relationships for the individual model runs using

synthetic initial model conditions. The black lines denote the medians as a function of Ze, the error bars are estimated using bootstrapping

for selected γ and W values (see Table 2). Color is for model run time.

3.1.3 Application to observations

In the following, we determine Zγ=0
e and ZW=.25

e from observations at NSA and OLI. Comparison with the theoretical values

derived above will allow evaluating the radars’ calibration. We only use clouds identified by the Shupe (2007) method as

purely liquid throughout the column. We expect that drizzle-onset can be observed best in stratiform clouds due to their lower10

turbulence and we limit our analysis to observations with cloud base lower than 1000 m and cloud thickness less than 1000 m.
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Table 2. Mean Ze values at various reference points for γ and W

Reference Value idealized Ze [dBz] ACME-V Ze [dBz]

max(γ) −21.3± 1.6 −26.6± 2.0

γ = 0.0 −17.3± 0.7 −17.8± 1.2

γ =−0.1 −16.1± 0.8 −16.4± 1.4

W = 0.25 m s−1 −16.3± 0.8 −16.9± 1.5

W = 0.50 m s−1 −12.6± 1.3 −14.3± 2.1

W = 0.75 m s−1 −8.2± 1.9 −11.4± 3.3
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Figure 4. As Fig. 3, but using ACME-V observations as initial conditions.

Even though the Doppler spectrum peak identification algorithm provided by Williams et al. (2018) can identify atmospheric

signals with a signal to noise ratio (SNR) as small as -15 dB, we only use data with SNR > -5 dB because γ is a particularly

noisy variable. We use the same method to estimate Zγ=0
e and ZW=.25

e from the observations as from the box model (see

Appendix A for step-by-step instructions): The liquid cloud observations are binned by Ze (1 dB bin width), the median γ
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and W values are estimated for each bin, and the resulting curve is smoothed using the Savitzky-Golay filter. Bins with less

than 100 observations are omitted from the analysis. To obtain Zγ=0
e and ZW=.25

e , the median relationships are interpolated

linearly.

3.2 Liquid water path-based method

Here, we investigate the potential of the relation between LWP and Ze for calibration. While the relationships between γ or5

W and Ze are shaped by the drizzle-onset process, the correlation between LWP and Ze is based on the fact that the likelihood

of drizzle formation (i.e., increased Ze values) increases with increasing LWP. But there is also a correlation between LWP

and Ze for non-drizzling clouds: cloud droplets can grow larger in deeper clouds with greater LWP values. Frisch et al. (1998)

showed that for non-drizzling, adiabatic clouds with constant Ntot, LWP is proportional to
∑
i z

1/2
i with zi = 10Ze,i/10 for

range gate i. While this relationship could be exploited for radar calibration assuming a fixed Ntot value, we were not able10

to apply the method to our data set successfully. This is likely due to challenges identifying a sufficient number of clouds

fulfilling the conditions of the method (i.e. non-drizzling, adiabatic clouds with constant Ntot). Instead, we decided to use the

maximum Ze value in the column (max(Ze)) to combine the one dimensional LWP with the two dimensional, range-resolved

Ze measurements. Not relying on the relationship found by Frisch et al. (1998) allows us to not distinguish between non-

drizzling and drizzling clouds and use the very same data set as for the γ and W methods. Even though max(Ze) is likely15

noisier than, e.g., the mean of Ze in the column, max(Ze) has the major advantage that the maximum is less likely impacted

by radar sensitivity than the mean because a truncation of a distribution’s lower end does not impact its maximum.

3.2.1 Determining a reference relation

Similar to the Ze-γ and Ze-W relationships and as shown for cloud-integrated reflectivity by Frisch et al. (1998), the LWP-

max(Ze) relationship likely also depends on microphysical (e.g., initial Ntot) and dynamical (e.g., turbulence, entrainment20

and mixing) conditions. With respect to the LWP-max(Ze) relationship, we expect that higher Ntot values lead to reduced

Ze values for the same LWP due to suppression of drizzle formation. But unlike the γ and W -based methods, which focus

on a very specific moment during drizzle-onset, the LWP method is impacted by the full set of processes of droplet growth

and drizzle formation, and is potentially impacted by multiple feedback processes between clouds and their environment. For

example, the impact of Ntot on the LWP-max(Ze) relationship would be even larger assuming drizzle suppression due to25

enhanced Ntot leads to larger LWP values (Albrecht, 1989). However, the question of whether and how feedback processes

compensate for a LWP increase is still debated (Stevens and Feingold, 2009). Focusing only on drizzle-onset has allowed us

to use a simple box model to determine the reference points for the Ze-γ and W relationships, but addressing the question

of how Ntot (and the related cloud condensation nuclei concentration) changes LWP cannot be answered with a box model

and is beyond the scope of this study. Therefore, we decided not to use a model for determining a reference LWP-max(Ze)30

relationship. Instead, we will use the LWP-max(Ze) relationship of one site as a reference and determine the calibration offset

of a second site from this. In other words, the LWP-max(Ze) relationship is used in a relative way unless we can trust the

calibration of one of the radars, which would make it an absolute calibration similar to Protat et al. (2011). Similar to the
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γ and W -based methods, this assumes that the LWP-max(Ze) relationship is sufficiently stable with respect to changes in

microphysical and dynamical conditions. Because we have no box model to identify the LWP value with the lowest variability

of max(Ze), we do not use a reference point but a reference relationship and minimize the mean weighted difference between

reference and observed relationship.

3.2.2 Application to observations5

To apply the LWP method to observations, we use the same liquid-only data set as for the γ and W -based methods, but restrict

the observations to cases when the wind direction at cloud level is from the sea. By this, we reduce the potential impact of

local pollution at OLI (Maahn et al., 2017; Creamean et al., 2018) which could alter the LWP-max(Ze) relationship at OLI

due to varying Ntot. To determine a LWP-max(Ze) relation for a certain period, we determine mean max(Ze) values for LWP

intervals of 0.01 kg m−2 from 0.01 kg m−2 to 0.120 kg m−2 (see Appendix B for step-by-step instructions). For larger LWP10

values, the number of liquid-only cloud observations drops quickly for the Arctic data set used in this study. When using LWP

for radar calibration, it is crucial that the MWR LWP retrievals are offset corrected as discussed in Sect. 2.2.

3.3 High altitude clouds method

To evaluate the new methods independently, we apply the relative calibration method based on high altitude clouds proposed by

Protat et al. (2011). They estimated a relative calibration offset between CloudSat and ground-based cloud radars by comparing15

mean reflectivity values of high altitude ice clouds. Here, we adapt this technique to the KAZR dataset of NSA and OLI

assuming that high altitude ice cloud statistics are similar for both sites and have the same mean(Ze). This will provide only

a relative calibration instead of an absolute one. Comparing mean(Ze) of two radars requires that both are limited to the same

sensitivity level, therefore we limit the OLI sensitivity to that for NSA. However, changing the relative calibration also changes

the difference in sensitivity. To account for this, we implemented the iterative procedure proposed by Protat et al. (2011): after20

the calibration offset is estimated, the sensitivity limit of the radar at NSA is applied to the OLI radar and the relative calibration

offset is estimated again. This procedure is repeated until the relative calibration offset converges.

For the comparison, we use all data with—according to radiosondes—an ambient temperature below 0°C above a certain

cut-off altitude. To avoid precipitation attenuation, profiles containing Ze values exceeding 10 dBz are discarded. Gaseous

attenuation is not accounted for, because both sites are expected to be on average equally affected. The cut-off altitude has to25

be high enough to avoid local impacts (e.g., due to pollution Maahn et al., 2017) and biases due to individual frontal systems,

but low enough to get a sufficient number of observations. For the latter, we have to consider the low height of the Arctic

tropopause in winter. To identify the best cut-off height for every three month period, we apply different cut-off altitudes from

3000 m to 7000 m to the data set and compare two quality control measures. First, we compare the vertical profiles of mean(Ze)

for OLI and NSA before and after relative calibration. Second, we estimate cloud top altitude statistics, which depend strongly30

on radar sensitivity (Protat et al., 2011), using 500 m bins before and after calibration. We choose the cut-off height whose root

mean square differences after calibration are best based on both methods.
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4 Results and discussion

In the following, we apply the three new calibration methods introduced above and the high altitude reference method to the

data sets of NSA (Fig. 5) and OLI (Fig. 6) in 2016. We quantify the calibration quality using the calibration offset O defined

as

Z truth
e = Zmeasured

e +O. (2)5

To investigate temporal trends, we group the data monthly and estimate the calibration offset for every month separately. We

chose monthly intervals as a compromise between the ability to resolve rapid calibration changes and the need for a sufficient

number of liquid cloud observations with varying microphysical properties. The only exception is June 2016 because the radar

configuration was changed at OLI on June 16th, 2016 (see Table 1) potentially affecting radar calibration. Therefore the June

data set contains only observations from the first half of June and the remaining observations are combined with the July10

observations. Due to instrument issues in the second half of June, this affects only a few observations.

4.1 Calibration of North Slope of Alaska (NSA) data

For NSA, the monthly Ze - γ relationships follow a sinusoidal-type curve similar to the box model (Fig. 5.a) indicating that

the phase classification is correctly identifying liquid clouds. This is also supported by the fact that all but one month (April

2016) feature W < 0.2 m s−1 for Ze <−25 dBz as expected for liquid clouds without ice (Fig. 5.e). Also, most monthly15

LWP-max(Ze) relationships have a similar shape and align within a couple of dB. For the Ze - γ relationship, most monthly

relationships have Zγ=0
e values between −20 to −17 dBz but there are a couple of outliers. The monthly Ze - γ relationships

that are shifted towards smaller (e.g., December 2016) or larger values (e.g., July 2016) show a similar shift for the Ze - W

relationship indicating that both methods are consistent. The shift in the corresponding LWP-max(Ze) relationships is smaller,

but the December and July relationships are still below and above, respectively, the mean relationship (Fig. 5.i). As discussed20

above, this, could be related not only to a change in radar calibration, but also to a change in the dominating microphysical

conditions. We estimate the calibration offsets Oγ=0 and OW=.25 from Zγ=0
e and ZW=.25

e , respectively, following the defini-

tion in Eq. 2 (Fig. 7.a, Table 3). Over the course of the year, Oγ=0 varies between−2.8 dB and 7.2 dB with a mean of 1.8±2.5

dB. OW=.25 is between −2.8 and 3.7 dB and has a mean of 0.1±2.0 dB. Even though there are a couple of outliers enhancing

the variability, the standard deviations of 2.5 and 2.0 dB of Oγ=0 and OW=.25, respectively, are consistent with the assumed25

uncertainty of the methods of at least 3 dB. Comparing Oγ=0 and OW=.25 reveals that the differences are smallest in summer

when the number of observations is largest (corresponding to the number of reflectivity observations in the two bins adjacent

to Zγ=0
e and ZW=.25

e , Fig. 7.c). Because the method requires a sufficient number of drizzling liquid clouds, we expect that the

accuracy of the calibration estimate is reduced in winter. The sensitivity study (Sect. 3.1.1) revealed that higher Ntot concen-

trations for fixed LWC could lead to higher Zγ=0
e and ZW=.25

e values. Assuming that Arctic haze—pollution transported to the30

Arctic from mid-latitudes—peaks in spring (Shaw, 1995) and leads to enhanced Ntot values, the increased Oγ=0 and OW=.25

could be related to a change in Ntot values. Besides this potentially seasonal impact we cannot identify any trends for NSA.
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Figure 5. Observed reflectivityZe - skewness γ (a),Ze - mean Doppler-velocityW (e), and liquid water path LWP-max(Ze) (i) relationships

for the North Slope of Alaska (NSA). The data has been calibration corrected using the γ method (second column), the W method (third

column), and the LWP method (fourth column). The colored lines indicate the various calibration periods of 2016. The black stars (rows 1

to 2) show the reference point used for calibration; the dotted black line (row 3) is the reference LWP-max(Ze) relationship obtained from

the mean of the monthly relationships weighted by the number of observations.

The yearly mean values of 1.8 and 0.1 dB for Oγ=0 and OW=.25, respectively, indicate a slight positive calibration offset for

NSA. Given the uncertainties, this agrees with Kollias et al. (2019) who estimated KAZR’s O to be around 3 dB at NSA by

using CloudSat observations.

We did not estimate a reference LWP-max(Ze) relationship from a model, but given that the KAZR’s calibration at NSA

is—according to the γ andW methods—stable and accurate within 2 dB, we can use the LWP-max(Ze) relationship at NSA as5

a reference. We obtain the reference by taking the mean of the monthly LWP-max(Ze) relationships weighted by the number of

observations. Based on the average of the yearly mean Oγ=0 and OW=.25 values (1.8 and 0.1 dB, respectively), we apply an O

value of 1 dB (see Table 4). This allows us to estimate monthly OLWP values from the mean difference between the reference

and the corresponding monthly relationship (Fig. 7.a, Table 3). We decided to weight the mean difference by the number of
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Figure 6. As Figure 5, but for Oliktok Point (OLI).

observations in each LWP bin, because the seasonality of the LWP distribution is high and there are only few observations for

higher LWP values in winter. Bins with less than 100 observations are skipped. Obviously, this is of limited use for determining

an absolute calibration at NSA, but it allows us to compare the variability of OLWP with Oγ=0 and OW=.25. OLWP varies

between−1.6 and 1.9 dB with a standard deviation of 1.1 dB, which is a∼50% reduction in comparison to Oγ=0 (2.5 dB) and

OW=.25 (2.0 dB). Because it is highly unlikely that a variation in the real O would compensate for the variability of OLWP ,5

but not the variability of Oγ=0 and OW=.25, we conclude that the LWP-max(Ze) method is the most stable method. The

uncertainty of the LWP method is probably half of the two drizzle onset methods (i.e., 1.5 dB).

Another way to compare the accuracy is to compare the Ze-based relationships after correcting using the various calibration

methods. Of course, the variability of Zγ=0
e is zero when applying Oγ=0 (Fig. 5.b) and the same applies to W (Fig. 5.g) and

LWP (Fig. 5.l). Also, OW=.25 leads to a reduction of the variability of Zγ=0
e relationship and vice versa (Fig. 5.c, f). This10

shows the consistency of both methods, but is also related to the fact that the Zγ=0
e and ZW=.25

e reference values are close so

that both methods use similar sub data sets. When applying, e.g., OLWP to the Ze-γ relationship (Fig. 5.d), the variability of

Zγ=0
e is not reduced; the inverse operation (applying Zγ=0

e to to LWP-max(Ze) relation) even enhances the variability (Fig.
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Table 3. Estimated offsets for NSA and OLI using the three calibration techniques for NSA and OLI. Our best estimate is to use a constant

offset of 1 dB for NSA, and to use OLWP for OLI. A positive O value means the Ze value reported by the radar is too low (Eq. 2).

NSA OLI

Time Oγ=0 [dB] OW=.25 [dB] OLWP [dB] Oγ=0 [dB] OW=.25 [dB] OLWP [dB]

2016-01-01 - 2016-01-31 2.3 -1.4 0.8 9.6 7.9 7.9

2016-02-01 - 2016-02-29 0.2 -0.9 0.4 9.5 7.4 3.7

2016-03-01 - 2016-03-31 0.2 -0.8 -0.5 11.7 11.1 6.3

2016-04-01 - 2016-04-30 4.5 3.7 0.6 9.7 6.0 2.7

2016-05-01 - 2016-05-31 2.2 -1.0 1.5 4.3 3.4 2.7

2016-06-01 - 2016-06-15 1.1 -1.4 -0.5 7.1 0.9 1.1

2016-06-16 - 2016-07-31 -2.8 -2.8 0.3 -5.4 -7.2 -4.4

2016-08-01 - 2016-08-31 1.0 1.4 0.9 -3.5 -3.1 -2.1

2016-09-01 - 2016-09-30 0.8 1.4 3.0 -4.3 -4.6 -2.3

2016-10-01 - 2016-10-31 2.8 0.5 1.4 -0.1 -1.6 1.1

2016-11-01 - 2016-11-30 2.5 -1.0 -1.2 1.3 1.5 -2.0

2016-12-01 - 2016-12-31 7.2 3.4 1.6 4.3 -3.4 1.9

estimated uncertainty ±3 ±3 ±1.5 ±3 ±3 ±1.5

5.j). This indicates that the variability of Oγ=0, OW=.25 and OLWP is dominated by their intrinsic variability and not by real

changes in O. This is another indication that O at NSA was very stable in 2016.

4.2 Calibration of Oliktok Point (OLI) data

For OLI, the relationships align less well than for NSA: even though most Ze - γ relationships show a quasi-sinusoidal shape,

Zγ=0
e varies between approximately -28 dBz and -12 dBz (Fig. 6.a). This is confirmed by the spread of ZW=.25

e (Fig. 6.e)5

and the LWP-max(Ze) relationships (Fig. 6.i) which vary consistently to the Ze - γ relationships. The corresponding Oγ=0,

OW=.25 and OLWP (estimated using NSA as a reference, Table 4) values vary between −6.9 and 11.0 dB (dotted lines Fig.

7.b). There is no reason why the intrinsic variability of the relationships at OLI should be that much higher than at NSA. We

conclude that the KAZR at OLI was not properly calibrated, with O likely strongly changing with time. We note that some

monthly relationships look different even after applyingOγ=0,OW=.25 andOLWP (estimated using NSA as a reference, Table10

4): even after applying a calibration correction (Fig. 6.b, g, l), the spread of the relationships is larger than for NSA. Some

months have a drastically reduced amplitude of the Ze-γ relationship. Further, many months feature W > 0.25 m s−1 also for

Ze <−20 dBz. Lastly, the LWP-max(Ze) relationship is for some months much more curved than the reference relationship.

This indicates that the phase classification was not working properly and the data set contains also non-liquid clouds. The phase

classification by Shupe (2007) depends on absolute Ze values, e.g., by assuming that—under certain conditions—clouds are15
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Table 4. Reference LWP-max(Ze) relationship obtained at NSA using the mean of monthly LWP-max(Ze) relationships weighted by

the number of observations. Note that the mean O was likely around 1±1 dB for NSA and the reported values in this table are corrected

accordingly.

LWP interval [kg m−2] <max(Ze)> [dBz]

[20, 30[ -23.35

[30, 40[ -22.19

[40, 50[ -21.13

[50, 60[ -20.60

[60, 70[ -19.76

[70, 80[ -19.49

[80, 90[ -19.35

[90, 100[ -19.00

[100, 110[ -18.66

[110, 120[ -18.40

mixed-phase for Ze >−17 dBz. Consequently, a large positive calibration offset O might result in mixed-phase and ice clouds

being falsely classified as liquid clouds because their Ze value is underestimated. Mixed-phase and ice clouds, however, have

different and probably more variable Ze - γ, Ze -W , and LWP-max(Ze) relationships. A simple solution would be to constrain

the data set to cases with temperature larger than 0°C but this is not feasible for Arctic sites because few observations would

remain. Instead, we run the classification by Shupe (2007) assuming different calibration offsets Ophaseclass from -6 to +10 dBz5

(with 2 dB steps) and estimate the relationships for every assumed offset. Note that Ophaseclass impacts only which data points

are selected based on the phase classification and we do not modify the Ze values themselves for obtaining Zγ=0
e , ZW=.25

e

and the reference LWP-max(Ze) relationship. To obtain a phase classification consistent with the calibration offset, we choose

the run with the smallest difference between Ophaseclass and Oγ=0 (or OW=.25, OLWP ). Typically, the smallest difference is

less than the 2 dB step size of Ophaseclass. After accounting for Ophaseclass, the magnitudes of the Ze-γ relationships are more10

similar (Fig. 8.b), the W for small Ze values is reduced (Fig. 8.g), and the LWP-max(Ze) relationships are less curved (Fig.

8.l). With respect to the used number of observations (Fig. 7.d), application of Ophaseclass reduces the number of observations

by approximately half, and makes them more similar to NSA. This indicates that non-liquid clouds have been successfully

removed from the data set by accounting for Ophaseclass. Interestingly, the differences between O with and without accounting

for Ophaseclass are often smaller than 2 dB (Fig. 7.b). This suggests that the methods are more robust than expected and can15

provide meaningful calibration estimates even if the liquid cloud data sets are contaminated by non-liquid clouds.

When analyzing O values for OLI, the decrease from June to July 2016 stands out. Even though the decrease magnitude

varies between −5.6 and −12.5 dB, all methods show this decrease (Fig. 7.b, Table 3), and a similar change was reported by

Kollias et al. (2019). Based on discussions with the DOE ARM program, the decrease coincides with a change in the KAZR
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radar configuration (including the calibration constant) on June 16th, 2016, though the details of the change are unclear. To

find out more about this decrease, we also analyze collocated KaSACR measurements. Even though the KaSACR data set

size was not sufficient to apply the new calibration methods, we can compare KaSACR and KAZR Ze measurements directly

for the two weeks before and after the step on 2016-06-16. This comparison shows a decrease in the difference between both

radars of 7.5 dB (not shown). Because we have no indication for a simultaneous change in the KaSACR’s configuration or5

calibration, we attribute this change to the KAZR confirming the step identified by the liquid cloud methods. The fact that the

relative difference between KAZR and KaSACR was almost zero after 2016-06-16 indicates that the change of the KAZR’s

configuration was made on purpose to make the measurements of both radars match. After June, all liquid cloud methods show

a gradual increase of O with time. Except for December 2016, where less than 1000 observations are available, the agreement

of the various methods is high, which indicates that the gradual trend is likely related to the radar and not to the intrinsic10

variability of the liquid cloud methods. The gradual trend could indicate hardware problems or a dependence of O on the

ambient temperature. The latter could also explain the gradual decrease of O before June 2016. Even though all methods agree

about the sign of the trend in spring, O is higher for the γ and W -based methods than for the LWP method, which is similar

to our results for NSA. Therefore, the higher Oγ=0 and OW=.25 values could be related to Arctic haze, which has apparently

larger impact on Zγ=0
e and ZW=.25

e than the LWP-max(Ze) relationship. Based on this and on the reduced variability for15

NSA, we conclude that OLWP is likely suited best for performing an absolute calibration at Arctic sites.

The median difference between Oγ=0 and OW=.25 is very similar for OLI and NSA (1.6 and 1.7 dB, respectively) which

could indicate a systematic bias between our box model-based estimations of Zγ=0
e and ZW=.25

e . The fact that the mean Oγ=0

value of 1.8 dB for NSA for 2016 is closest to the 3 dB estimate of Kollias et al. (2019) might suggest that Zγ=0
e is closer to

reality than ZW=.25
e .20

4.3 Relative calibration of North Slope of Alaska (NSA) and Oliktok Point (OLI) data

The high-altitude calibration method allows only a relative calibration which we analyze in Fig. 9 for NSA and OLI. We

found that individual events can bias the statistics when applying the high-altitude calibration method to monthly periods,

therefore we applied the methods to intervals of three months with the bin threshold of 2016-07-01 shifted to 2016-06-16. The

standard deviation between the different cut-off heights varies between 0.9 and 2.3 dB, which is probably a good estimate for25

the uncertainty of the high-altitude calibration method. Assuming that the NSA calibration was stable, the relative comparison

reveals the decrease of O at OLI on 2016-06-16. When using the best cut-off altitudes, the decrease is estimated to be -5.9

dB which is—given the different time intervals used for estimating O—in good agreement with the estimate based on the

KaSACR-KAZR comparison (-7.5 dB) and the LWP-based method (-5.6 dB).

A comparison of relative calibration with the high altitude cloud method and the new methods (Sects. 3.1, 3.2) is presented30

in Fig. 10. This requires deriving a relative calibration from Oγ=0, OW=.25, and OLWP by subtracting OLI from NSA and

averaging the monthlyO estimates to three-monthly values. While the combination of both calibrations generally combines the

uncertainties of both estimates, some potential error sources cancel out. This is particularly true for any constant or seasonal

biases of estimating Zγ=0
e , ZW=.25

e , or the reference LWP-max(Ze) relationship. Given the uncertainties, there is excellent
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Figure 7. Calibration offsets O (a, b) and number of used observations (c, d) for NSA (a, c) and OLI (b, d). For OLI, the dotted lines show

the preliminary results without modifying the phase classification with Ophaseclass.

agreement (difference < 3 dB) between the high altitude and liquid cloud methods for April to December 2016 showing the

general feasibility of the liquid cloud methods. For the winter period (Jan - Mar), the agreement is worse, which is likely

related to the less robust statistics due to the reduced number of liquid clouds. Moreover, the data sets used for the high altitude

method and the liquid cloud methods are not necessarily obtained at the same time even though averaged to the same intervals.

This would require the high altitude ice clouds and the liquid clouds to occur always at the same time, which is not the case.5

In particular when O is shifting quickly, such a temporal mismatch can contribute to the observed differences between the

methods. Even though the difference between the LWP-based method and the high altitude clouds method can be up to 2.7 dB

in late 2016, the mean difference is lower (0.9 dB) than for the γ-based (2.0 dB) and W -based (1.6 dB) methods. This confirms

our previous conclusion that the LWP-based method has the smallest intrinsic variability and likely works best for estimating

O in the Arctic.10
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Figure 8. As Figure 6, but considering a calibration offset for the phase classification.

5 Summary and conclusions

In this study, we investigate the potential for using the imprint of liquid cloud processes on DSDs for radar calibration. Specif-

ically, we investigate the relationships of radar reflectively Ze to the skewness of the radar Doppler spectrum γ and to the

mean Doppler-velocity W . Moreover, we use the relationship between the maximum Ze value in the column (max(Ze)) and

the liquid water path LWP measured by a microwave radiometer (MWR). These methods close an important gap in our ability5

to monitor and assess radar calibration.

The fact that we focus only on drizzle-onset for the Ze−γ and Ze−W relationships allows us to use a box model (Hoffmann

et al., 2017) coupled to the PAMTRA2 radar simulator (Maahn et al., 2015) to determine the dependency of the relationship

on the initial DSD and random effects. Depending on initial cloud microphysical conditions and, to a lesser extent, random

effects, we determine typical relationships for γ and W as a function of Ze. We find that compensating and saturation effects10

reduce the variability of the Ze−γ and Ze−W relations, which allows us to identify reference values of γ andW with minimal

variability during drizzle-onset. For γ, we find that Ze variability is smallest for Zγ=0
e =−17.6± 3 dBz when cloud droplets
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and drizzle contribute to reflectivity equally, i.e., γ = 0. For W , we identify the smallest variability for W = 0.25 m s−1 and

ZW=.25
e =−16.6± 3 dBz. Because we cannot quantify the impact of feedback effects of clouds and their environment on the

LWP-max(Ze) relationship with a box model, we do not use a model to obtain a reference relationship. Instead, we use the

approach for relative calibration between two radars.

Applying the methods to radar observations of low-level Arctic liquid clouds at the ARM North Slope of Alaska (NSA) and5

Oliktok Point (OLI) sites, we identify median Ze− γ, Ze−W , and LWP-max(Ze) relationships. We applied the methods to

monthly intervals to identify rapid changes but obtain a sufficient number of liquid cloud observations (for 15 s temporal

resolution, at least 1000 data points). For NSA, the observed relationships are in general agreement with the box model

simulations and we successfully identify the reference Ze values for γ = 0 (−17.3±3 dBz) and W = 0.25 (−16.3±3 dBz).

We use the difference between measured and modeled Ze reference values for assessing the calibration offset O on a monthly10

basis. Considering the 3 dB uncertainties of Zγ=0
e and ZW=.25

e , the calibration at NSA is relatively stable and O is on average

around 1 dB (Fig. 7.a). The good calibration of the NSA KAZR motivated us to use the LWP-max(Ze) relationship at NSA as a

reference for absolute calibration. The variability of the estimated OLWP is smaller than for Oγ=0 and OW=.25 indicating that

the LWP-based method has an uncertainty of about 1.5 dB and is less impacted by microphysical and dynamical conditions.

The difference between the methods is largest for the winter months (Fig. 7.a) indicating that the lower number of liquid15

clouds might limit the quality of the O estimation. Also, the phase classification algorithm employed might struggle in winter

to remove all mixed-phase clouds from the data set as required.

For OLI, we identify serious problems with maintaining an accurate radar calibration. Most remarkably, we find that O

decreased 5 to 7 dB in June 2016 (Fig. 7.b), which was likely related to a change in radar configuration even though the details

cannot be reconstructed. Further, we identify a slowly decreasing and increasing trend of O in spring and fall, respectively,20

of 2016. Similar to NSA, the agreement between the liquid-cloud-based methods is reduced during winter indicating that a

sufficient number of liquid cloud samples is required for the method to work properly. Despite this, the Ze− γ, Ze−W , and

LWP-max(Ze) relationships for OLI are consistent after application of a calibration correction (Figs. 6.b,g,l). This indicates

the ability of the methods to correct also for larger O values as long as the calibration offset is considered during the phase

classification (Shupe, 2007) for identifying liquid clouds. The LWP-based method matches the high altitude cloud reference25

method best. Considering the error margins, our results are in excellent agreement with Kollias et al. (2019). By applying the

CloudSat method by Protat et al. (2011), they found a similar drop for OLI and a 3 dB offset for NSA.

In summary, we find that liquid cloud microphysical processes can be used for radar calibration in the Arctic. The Ze− γ,

Ze−W , and LWP-max(Ze) relationships contain valuable information that can be used to determine the cloud radar calibration

offset O. Due to the effect of turbulence on radar observations, the γ based method likely works best for stratiform clouds,30

which are typically not that turbulent. In comparison to other calibration methods for cloud radars, the new methods have

several advantages. Most importantly, no dedicated field campaigns are required and the methods can be easily applied to

past data sets. In comparison to the method by Protat et al. (2011), the liquid cloud microphysical processes methods can be

applied to shorter time intervals, which better enables the detection of sudden changes. Also, our methods do not depend on

CloudSat, which is likely close to the end of its lifetime. Further, the method can be—with limited accuracy in winter—applied35
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to year-round observations even at high latitudes because liquid clouds occur throughout the year. The γ- andW -based methods

require supporting instrumentation (microwave radiometer, lidar, radiosonde observations) only for the identification of liquid

clouds. If the presence of ice and mixed-phase clouds can be ruled out by other means (e.g., at sub-tropical or tropical sites),

application of the method is possible without any additional instrumentation. The LWP-based method requires a collocated

MWR that has to be calibrated carefully using an offset correction during clear-sky periods. While we found the LWP-based5

method to work best, the question of whether Zγ=0
e or ZW=.25

e is the second best method for calibration is still open. The box

model indicates a larger stability for Zγ=0
e , but the variability of observed ZW=.25

e is lower at NSA. Assuming the NSA KAZR

calibration was stable, this would indicate that ZW=.25
e is slightly better suited. Yet, ZW=.25

e is more easily affected by biases,

e.g., due to persistent vertical air motions related to orography. These biases could be an explanation for the small 1.6 to 1.7

dB offset between the Zγ=0
e and ZW=.25

e -based calibration estimates. Instead, γ is less affected by biases, but observations10

are noisier, require a high temporal resolution, and most standard radar products do not include γ. Likely, it is best to apply

all three methods and use the agreement between the methods as an indicator for the quality of the calibration offset estimate.

With respect to the calibration offset O for OLI and NSA in 2016, we recommend using the results of the LWP-max(Ze)

method for OLI (Fig. 7.b, Table 3) and using an offset of +1 dB for NSA.

Further research is needed to reduce the uncertainty of the methods and to assess the dependence of the reference Ze values15

on climatological and environmental conditions like the availability of cloud condensation nuclei. The reference Ze values

and relationships need to be carefully reevaluated when applying the method to radar observations from other regions. This

applies also to the LWP-max(Ze) relationship where we used the relationship obtained at NSA as a reference. However, it is

not clear whether this relationship is applicable to other sites or whether it is valid only at the North Slope of Alaska. Sites with

a radar with stable calibration offsets could be used to assess the seasonality of the used reference relationships over multiple20

years. Further, an extension of the method to mixed-phase and ice clouds would be desirable, but the greater variability of

ice particles shapes, fall velocities, and radar backscattering cross-sections makes this even more challenging than for liquid

clouds. Even though the method has been developed for Ka-band cloud radars, it should be generally applicable to zenith

pointing radars using other frequencies. For W-band radars, we expect that the Rayleigh approximation is also mostly valid

because—according to the box model—drizzle drops are small enough to assume Rayleigh scattering for Ze values smaller25

than -13 dBz. However, one has to correct for attenuation by atmospheric gases and liquid water, which are stronger at W-band.

6 Data availability

All ARM data products used in the current study are available at the ARM archive www.arm.gov/data. Please refer to the

references for the data stream names and DOIs.
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Appendix A: How to apply the γ andW methods to observations

To apply the γ and W methods (Sect. 3.1) to a different data set, apply the following steps:

1. Prepare monthly data sets of radar, ceilometer, and MWR observations.

2. Correct Ze for gaseous attenuation and adjust W to sea level air density.

3. Apply phase classification (Shupe, 2007) to identify all liquid data points (corresponding to the phase classes liquid,10

drizzle, liquid+drizzle, and rain).

4. Remove data points with SNR < -5 dB, below cloud base, and corresponding to clouds with cloud base > 1000 m or

cloud thickness > 1000 m.

5. Bin γ and W data using Ze (1 dB spacing) and determine median γ and W values for each Ze bin.

6. Apply Savitzky-Golay filter (window length 7, polynomial order 2, Savitzky and Golay, 1964) to γ-Ze and W -Ze15

relations.

7. Interpolate reference values Zγ=0
e and ZW=.25

e by interpolating relations from adjacent Ze bins. Make sure adjacent bins

include at least 1000 observations.

8. Determine Oγ=0 and OW=.25 from difference of Zγ=0
e and ZW=.25

e to reference values -17.3±3 dBz and -16.3±3 dBz,

respectively1.20

Appendix B: How to apply the LWP method to observations

To apply the LWP method (Sect. 3.2), follow Appendix A until step 4. Then follow these steps:

1. Only for this study: Limit data to marine winds using radiosondes.

2. Estimate Zmax(γ)
e for each vertical profile.

3. Make sure monthly data sets include at least 1000 observations.25

1For radars with large calibration offsets (> 4 dB), the phase classification needs to be estimated for several calibration offsets Ophaseclass (2 dB spacing).

The Ophaseclass is chosen which matches the derived Oγ=0 and OW=.25 best.
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4. Bin Zmax(γ)
e using LWP (0.01 kg m−2 spacing) and determine mean Zmax(γ)

e for each bin with at least 100 data points.

5. Minimize difference of LWP - Zmax(γ)
e relation to reference relation (In this study, table 4) to estimate OLWP .
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