
We thank the reviewers for their thoughtful comments, which we have addressed below. All page and line 
numbers refer to those in the revised manuscript.  Reviewer comments are in italics, our response is in 
plain text, and text in the revised manuscript is in blue. 
 
 
Response to Comments from Anonymous Referee #1 
 
1. In section 4.1, one discusses the results presented in Figure 3. Although one can “see” the plume in the 
retrieved images (center and right) for the homogeneous scene when one knows it is there, I am not 
convinced that an uneducated guest would detect the plume without a significant number of false 
detection. It seems rather clear that, if the source was 100 kg/h (and not 500 and 900 kg/h) as in the 
simulated images, the signal would be hardly distinguishable for the noise. Thus, the claim that one 
would be able to detect and quantify plumes from 100 kg/h source is definitely not founded. 
 
We thank the reviewer for this helpful comment. We derive emission rates for each EeteS plume and 
describe the results in a new table, Table 2. We move the discussion of IME/emission rate derivation to 
Section 3, and give it its own section, Section 3.3. 
 
We add the following analysis in the text: 
 
Page 10, Line 343: “We examined the ability of the retrievals to quantify methane point source rates on 
the basis of the detected plumes, by applying the IME algorithm of Section 3.3 to the same ensemble of 5 
WRF-LES plume realizations for each of the three different surfaces and for true source rates 100, 500, 
and 900 kg h-1. Results are summarized in Table 2.  We find that it is possible to quantify source rates as 
low as 100 kg h-1 for the Bright scene, and as low as 500 kg h-1 for the Grass scene, though the true source 
rates are underestimated by up to a factor of 2. There could be several factors behind this underestimate 
including (1) error correlation with surface reflectivity in the EnMAP retrieval that would cause some loss 
of the plume, and (2) use of the Varon et al. (2018a) Ueff -U10 relationship in equation (10) without 
customization for the EnMAP conditions. As pointed out by Varon et al. (2018a), the Ueff-U10 relationship 
should be customized to the plume mask definition and to the instrument pixel resolution and precision. 
This would require an ensemble of WRF-LES simulations specific to the EnMAP conditions and to the 
plume mask used here. The inability to quantify the 100 kg h-1 plume over the Grass scene is properly 
diagnosed in our retrieval by the failure of the plume mask to detect a plume. However, the surface 
artifacts in the Urban scene lead to spurious retrievals of source rates as the surface features are 
mistakenly attributed to plumes. This is due to the error correlation between XCH4 and surface reflectivity 
(explained in greater detail in Section 4.2) and can be diagnosed by inspection of the off-diagonal terms 
of 𝐒"	(Equation 7).” 
 
 
2. Lines 229-230, it is said that the “8% precision […] should enable EnMAP to successfully quantify 500 
kg/h point sources in a single pass.” There is no attempt at estimating sources in this section, so that 
there is no ground for this claim 
 
See response to comment #1. 
 
 
3. Line 235, it is said that, for a 900 kg/h source, the plume is “well defined against the background” 
which is an overstatement. 
 
We soften the language: 
 



Page 9, Line 319: “The 900 kg h-1 plume is better captured over both surfaces, though major retrieval 
artifacts remain in the Urban scene.” 
 
 
4. Line 284 “but a source rate can still be estimated successfully with EnMAP”. There is 
no ground in the paper for that statement. 
 
See response to comment #1. 
 
 
5. Line 323 : “Nevertheless, the results do confirm that EnMAP should be able to detect plumes and 
quantify source rates down to ~ 100 kg /h”. The analysis of the airborne data show overestimates by a 
factor up to 3 (mean 2). How can one see that as a confirmation that the source can be quantified? 
 
We clarify that the underestimate was confirmed by both assessments: 
 
Page 12, Line 435: “The EnMAP underestimate is consistent with the results in Table 2 and may reflect 
the same sources of bias, in part correctable through an improved U10-Ueff relationship. The results 
confirm that EnMAP should be able to detect plumes and estimate source rates down to ~100 kg h-1 when 
the scene is sufficiently bright.” 
 
 
6. In the conclusion it is said that the space measurements can be used to “detect and quantify plumes of 
magnitude ~100 kg/h over relatively bright surfaces”. Yet, the simulations have been performed with 
larger sources (factor 5 to 9). In addition, it is rather ambiguous whether the objective is to quantify the 
plume (and what that really means) or to quantify the source that generate it. This should be clarified. 
 
Thank the reviewer for this point and clarify in the text. 
 
Page 13, Line 474: “We showed that these EnMAP-like images are able to detect actual plumes of 
magnitude ~100 kg h-1 over relatively bright surfaces. Source rates inferred from the plumes with a 
generic Integrated Mass Enhancement (IME) method are a factor of 1.2 to 3 lower for EnMAP than for 
AVIRIS-NG, which could be due in part to unaccounted dependence of the IME method on instrument 
pixel size and precision. This should be improved in further work by customizing the IME method to the 
EnMAP specifications.” 
 
 
7. In addition, one major source of uncertainty for instrument with a “low” spectral resolution is the 
knowledge of the instrument response function. I understand that the authors have assumed that this 
response function is perfectly known. It would be nice to add a sensitivity test to analyze the impact of 
some uncertainty on this important parameter. To the very least, they should mention and discuss the 
potential impact. 
 
We clarify the importance of spectral calibration and include spectral shift in the retrieval: 
 
Page 6, Line 182: “We also correct for uncertainty in the instrument’s wavelength calibration with a 
spectral shift parameter (Thorpe et al., 2017; Frankenberg et al., 2005). 
 
We give more information about EnMAP’s spectral calibration: 
 
Page 6, Line 230: “EnMAP has strict requirements of 1 nm spectral calibration accuracy and 0.5 nm 



spectral stability in the SWIR. Pre-flight calibration campaigns as well as onboard calibration means will 
be used to ensure the compliance with those requirements (Guanter et al., 2015).” 
 
 
8. Also, the paper uses a method for plume mask through “median and Gaussian filters” which is not 
described. Some sentences do describe the principle of the method would be useful. 
 
We clarify the purpose of the filters in the text: 
 
Page 8, Line 289: “These filters help to remove spurious signals surrounding a plume and determine the 
spatial extent of the plume, which is needed for subsequent calculations” 
 
 
9. The reviewer included many annotated comments directly on the manuscript. We update accordingly: 
 
“livestock operations may not be point sources” “livestock operations may not be point sources” 
 
Page 2, Line 42: “Anthropogenic emissions originate from a very large number of point sources (coal 
mine vents, oil/gas facilities, confined livestock operations, landfills, wastewater treatment plants) that are 
individually small, spatially clustered, temporally variable, and difficult to quantify (Allen et al., 2013; 
Frankenberg et al., 2016)” 
 
“I assume "true" point sources, so that not like land fills for instance” 
 
Page 5, Line 168. “This range is typical of large (but not unusually large) individual point sources (Jacob 
et al., 2016).” 
 
“Not clear to me [reference to Page 5, Line 135 in original manuscript” 
 
Page 5, Line 180. “We do not add noise or aerosol effects to the plume transmission spectra because the 
EeteS scene already accounts for those in the computation of back-scattered radiances, so that multiplying 
by the additional plume transmission already factors in the corresponding noise.” 
 
“The retrieval procedure assumes that the instrument spectral response is perfectly known ?  Please state 
so and discuss the resulting uncertainty” 
 
See response to comment #7. 
 
“I do not see this parameter in the equations.  Unit ? [in reference to Page 8, Line 203 in original draft]” 
 
Since it the variance in a scaling factor, it is unitless. We clarify how it enters Equation 6: 
 
Page 7, Line 277: 𝐒𝐀[1,1] = 𝜎+,-.

/ = 5 (unitless) 
 
“I would say these are rather optimistic comments with respect to the impression given by the figure. [in 
reference to Page 8, Line 217 in original draft]” 
 
See response to comment #1 
 
“???  There is realy no ground for this statement.  One has no idea when "successfully quantify" means 
here. [in reference to Page 9, Line 229]” 



 
See response to comment #1 
 
 
“Rather optimistic to me [in reference to Page 9, Line 235]” 
 
See response to comment #3. 
 
“Not clear what the procedure is [in reference to Page 10, Line 279]” 
 
See response to comment #8. 
 
“how do I know that ? [in reference to Page 10, Line 284]” 
 
See response to comment #1 
 
“One finds source that are up to 3 times larger than the truth, and this is a confirmation that one can 
quantify source rates ?” 
 
See response to comment #5 
 
 
Response to Comments from Gerrit Kuhlmann 
 
 
1. The authors use the (relative) root mean square error (RMSE) for evaluating the precision of the 
methane retrieval. However, the RMSE is the sum of accuracy (mean bias) and precision (variance) 
RMSE = sqrt( MB^2 + Variance) and thus the analysis of the precision is potentially biased by the mean 
bias the retrieval. The mean bias might be caused by the strong dependency surface reflectance as 
discussed by the authors that apparently results in increased XCH4 as seen in Figure 3. Consequently, 
the author should not use the term "precision" as synonym for the RMSE as done in the text and in Figs. 4 
and 5. The authors also need to check how much the computed RMSE is affected by a mean bias and 
variance and revise their results, discussions and conclusions accordingly. Using the variance will make 
the results better comparable with the a posteriori retrieval noise (second method), even if the latter is of 
course not affected by other (random) error terms in the retrieval. 
 
We thank the reviewer for this insightful comment. We switch to using just the relative residual standard 
deviation for precision estimates instead of RRMSE and theoretical precision. 
 
Figures 4 & 5 updated 
 
Page 9, Line 323. “Here we characterize the EnMAP instrument precision as the relative residual standard 
deviation (RRSD) between the true and retrieved column methane concentrations for individual 30 ´ 30 
m2 pixels in the scenes of Figure 2 including the WRF-LES plumes. Figure 4 summarizes the results for 
the four scenes of Figure 2.  We find precisions of 3.5 ± 0.07% for Grass, 7.2 ± 0.1% for Urban, and 2.6 ± 
0.08% for Bright scenes.” 
 
We address how bias is not as important with a proper background definition: 
 
Page 2, Line 57. “Bias may not be an issue if the plume enhancement is referenced to the local 
background.” 



 
 
2. The authors consider SNR of the instruments and other errors included in the EeteS simulator, but 
assume precise knowledge of wavelength positions. However, inaccurate spectral calibration is a 
potentially large error source not considered in the study. A further potential error source for the CH4 
retrieval are radiometric calibration errors that can result in (systematic) high-frequency patterns in the 
spectra. The latter could in particular be a problem for instruments where the main application is not 
influenced by such high-frequency patterns. The authors should therefore discuss these limitations in 
their study and mention possible recommendation for the instrument developers, e.g. characterization in 
the lab, to make their instrument more suitable for measuring methane. 
 
See response to comment #7 from Anonymous Reviewer #1.  
 
 
3. P3, L61 and P10, L266: Please provide (rough) numbers of "most" and "majority of anthropogenic 
point sources". 
 
See response to comment #9 from Anonymous Reviewer #1. 
 
 
4. P6, L146f: Please specify what you did here. Applying a Gaussian filter with 10.0nm FWHM to 
AVIRIS-NG spectra with 5.0 nm FWHM would result in a spectral resolution of 11.2 nm FWM. 
 
We thank the reviewer for this point and clarify confusion in our workflow: 
 
Page 6, Line 199: “…and further convolved these spectra with the appropriate Gaussian filter to match 
EnMAP spectral resolution and wavelength positions.” 
 
 
5. P7, L183ff: Since this seems to be the first time that Legendre polynomials have 
been used in a DOAS analysis, it is probably worthwhile to provide some additional 
information here. 
 
Page 7, Line 249: “Orthogonal polynomials can potentially constrain surface reflectance with fewer 
terms, leading to better conditioning of the inverse solution” 
 
 
6. P7, L190f: Please explain why you are testing separated convolutions <*>. I assume this is due to the 
following inequality: <I0 * exp(-tau) > \ne  <I0>*<exp(-tau)> (Frankenberg et al. 2005, Eq. 16).  
 
We add motivation for this analysis: 
 
Page 7, Line 256: “Since the convolution operator is not linear (Frankenberg et al., 2005), …” 
 
 
7. P8, L223f: Please add parenthesizes, e.g.: (8.2 ±0.7) 
 
We keep as is because the reported numbers are objects of the preposition in the sentence. 
 
 
8. P11 L312: Varon et al., 2018 -> Varon et al., 2018a 



 
Fixed 
 
 
 
9. Table 1: It might be better to use the term "undefined" (or something else) instead 
of "TBD" which is quite ambiguous. 
 
We change the entry in Table 1 to read “Undefined” 
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Abstract 15 

We examine the potential for global detection of methane plumes from individual point sources with the new 16 

generation of spaceborne imaging spectrometers (EnMAP, PRISMA, EMIT, SBG, CHIME) scheduled for launch in 17 

2019-2025. These instruments are designed to map the Earth’s surface at high spatial resolution (30 × 30 m2), and have 18 

spectral resolution of 7-10 nm in the 2200-2400 nm band that should also allow useful detection of atmospheric methane. 19 

We simulate scenes viewed by EnMAP (10 nm spectral resolution, 180 signal-to-noise ratio) using the EnMAP End-to-20 

End Simulation Tool with superimposed methane plumes generated by large-eddy simulations. We retrieve atmospheric 21 

methane and surface reflectivity for these scenes using the IMAP-DOAS optimal estimation algorithm. We find an 22 

EnMAP precision of 3-7% for atmospheric methane depending on surface type. This allows effective single-pass 23 

detection of methane point sources as small as 100 kg h-1 depending on surface brightness, surface homogeneity, and 24 

wind speed. Successful retrievals over very heterogeneous surfaces such as an urban mosaic require finer spectral 25 

resolution. We tested the EnMAP capability with actual plume observations over oil/gas fields in California from the 26 

airborne AVIRIS-NG sensor (3 ´ 3 m2 pixel resolution, 5 nm spectral resolution, SNR 200-400), by spectrally and 27 

spatially downsampling the AVIRIS-NG data to match EnMAP instrument specifications.  Results confirm that EnMAP 28 

can successfully detect point sources of ~100 kg h-1 over bright surfaces. Source rates inferred with a generic Integrated 29 

Mass Enhancement (IME) algorithm were lower for EnMAP than for AVIRIS-NG. Better agreement may be achieved 30 



 2 

with a more customized IME algorithm. Our results suggest that imaging spectrometers in space could play an important 31 

role in the future for quantifying methane emissions from point sources worldwide.  32 

 33 

1 Introduction 34 

Methane is a powerful greenhouse gas, but the quantification of sources is highly uncertain. Better quantification 35 

is critical for developing strategies to reduce atmospheric methane levels. Anthropogenic emissions originate from a very 36 

large number of point sources (coal mine vents, oil/gas facilities, confined livestock operations, landfills, wastewater 37 

treatment plants) that are individually small, spatially clustered, temporally variable, and difficult to quantify (Allen et 38 

al., 2013; Frankenberg et al., 2016). Here we investigate the potential of new-generation satellite instruments designed 39 

to map the Earth’s surface at high spatial resolution (imaging spectrometers) to also detect individual methane plumes in 40 

the shortwave infrared (SWIR) and from there to quantify the corresponding methane point sources.  41 

There has been considerable interest in using SWIR satellite observations of atmospheric methane columns by 42 

solar backscatter to detect methane sources and test emission inventories (Jacob et al., 2016). These observations are 43 

traditionally made by atmospheric sensors with high spectral resolution (<1 nm) to capture the fine structure of methane 44 

rovibrational absorption features (Table 1). The requirement of high spectral resolution has generally forced a coarse 45 

pixel resolution (>1 km) to achieve satisfactory signal-to-noise ratios (SNR), but this limits the ability to identify, locate, 46 

and quantify individual point sources.  Inverse analyses of observations from the SCIAMACHY instrument with 60 km 47 

pixel resolution, and from the GOSAT instrument with sparse sampling at 10 km pixel resolution, have quantified 48 

emissions over regional scales (Bergamaschi et al., 2009; Kort et al., 2014; Turner et al., 2015). The recently launched 49 

TROPOMI instrument with global daily coverage at 7 km nadir pixel resolution (Hu et al., 2018) will refine the regional 50 

characterization but still cannot resolve point sources (Sheng et al., 2018). Planned instruments with ~1 km pixel 51 

resolution (MethaneSat, CEOS, 2018; Geo-FTS, Xi et al., 2016) should be able to detect large point sources after 52 

inversion of several days of observations (Cusworth et al., 2018; Turner et al., 2018) but would not resolve densely 53 

clustered or temporally variable sources.  54 

Space-based methane sensors have previously focused on achieving high precision (<1%) and low relative bias 55 

(<0.3%) for measurements of the dry air column methane mixing ratio (XCH4), as is appropriate for regional 56 

characterization of sources (Buchwitz et al., 2015). However, these requirements can be relaxed if the focus is to observe 57 

individual plumes. Precision can be traded for pixel resolution because methane plumes are generally sub-kilometer in 58 

scale (Frankenberg et al., 2016), so that plume enhancements are larger when the pixel resolution is finer (Jacob et al., 59 

Moved down [7]:  Anthropogenic emissions include a large 60 
number of point sources (coal mine vents, oil/gas facilities, confined 61 
livestock operations, landfills, wastewater treatment plants) that are 62 
individually small, spatially clustered, temporally variable, and 63 
difficult to quantify (Allen et al., 2013; Frankenberg et al., 2016)64 
Moved (insertion) [7]
Deleted: include65 
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2016). Bias may not be an issue if the plume enhancement is referenced to the local background. Two commercial 66 

instruments, GHGSat and Bluefield Technologies, have recently been developed to observe individual methane plumes 67 

(CEOS, 2018). The GHGSat instrument samples selected 12×12 km2 scenes with 50×50 m2 effective pixel resolution 68 

(McKeever et al., 2017).  A demonstration GHGSat instrument (GHGSat-D) launched in 2016, with an estimated 69 

precision of about 13%, has proven able to detect large point sources in excess of 1000 kg h-1 (Varon et al., 2018b).   70 

Here we examine the potential of a different class of satellite instruments, imaging spectrometers, to detect and 71 

quantify individual methane point sources. These instruments are designed for global land surface measurements, but 72 

they may be repurposed for non-optimal methane remote sensing. They have fine pixel resolution (<100 m), with much 73 

coarser spectral resolution than atmospheric sensors because surface reflectance spectra are relatively smooth.  Some 74 

current imagers such as Landsat (Roy et al., 2014) and WorldView-3 (http://worldview3.digitalglobe.com) have 75 

observing bands in the SWIR to retrieve soil moisture, mineral composition, and vegetation traits (Cleemput et al., 2018). 76 

However, the SWIR spectral resolutions for Landsat (100 nm) and WorldView-3 (40-50 nm) are too coarse to usefully 77 

resolve methane absorption features.  The Hyperion instrument onboard NASA Earth Observing-1 had 10 nm spectral 78 

resolution in the SWIR but a low signal to noise ratio (SNR) of 20 (Folkman et al., 2001). Hyperion was able to detect 79 

the massive Aliso Canyon methane blowout (Thompson et al., 2016), but its SNR is too low for detection of smaller 80 

point sources. 81 

A new generation of imaging spectrometers set for launch over the next decade (EnMAP, PRISMA, EMIT, and 82 

the anticipated SBG and CHIME investigations) will achieve ~10 nm or better spectral resolution in the SWIR with pixel 83 

resolution in the range 30-60 m and SNR of 180-400 or beyond (Table 1). Experience with airborne imaging 84 

spectrometers of comparable specifications suggests that these satellite instruments should be able to observe methane 85 

plumes from moderate to large sources. The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-C), with a 10 nm 86 

spectral resolution and SNR of 70 (Green et al., 1998), was able together with Hyperion to detect the massive Aliso 87 

Canyon methane leak in California (Thompson et al., 2016). The next generation AVIRIS instrument (AVIRIS-NG), 88 

with a finer spectral resolution of 5 nm and SNR of 200 (Thorpe et al., 2014), was able to detect a range of methane 89 

plumes over the Four Corners region of New Mexico including from gas processing facilities, storage tanks, pipeline 90 

leaks, well pads, and coal mine venting shafts (Frankenberg et al., 2016). AVIRIS-NG has since been flown over 272000 91 

potential methane emitting point sources in California between 2016 and 2018 (CARB, 2017; Duren et al., 2019).  92 

 93 

2 Imaging spectrometer spectra including methane plumes  94 
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 Table 1 presents the next generation of spaceborne imaging spectrometers. These include the Italian Space 95 

Agency’s PRecursore IperSpettrale della Missione Applicativa (PRISMA; Loizzo et al., 2018), launched March 2019; 96 

the German Space Agency’s Environmental Mapping and Analysis Program (EnMAP; Guanter et al., 2015), scheduled 97 

for launch in 2020; NASA’s Earth Surface Mineral Dust Source Investigation (EMIT; Green et al., 2018), scheduled for 98 

launch to the International Space Station in 2022; as well as NASA’s Surface Biology and Geology (SBG; Hochberg et 99 

al., 2015) and the European Space Agency’s Copernicus Hyperspectral Imaging Mission For The Environment (CHIME; 100 

Nieke and Rast, 2018), both of which target launch readiness in the mid-2020s.  We will focus our baseline analysis on 101 

EnMAP, for which detailed documentation is available (Guanter et al., 2015), and examine other instruments through 102 

sensitivity analyses. EnMAP is a push-broom style instrument with 10 nm resolution in the SWIR and an expected 180 103 

SNR at 2300 nm. PRISMA has very similar instrument specifications as EnMAP (Loizzo et al., 2018). The EMIT 104 

instrument is slated to have a 7-10 nm spectral resolution and 60 m pixel resolution (Green et al., 2018). Other 105 

investigations, such as SBG, are called for in the NASA Earth Science and Applications Decadal Survey (National 106 

Academies, 2018). The Airbone Methane Plume Spectrometer (AMPS) instrument concept would be tailored specifically 107 

for methane detection and have 1 nm SWIR spectral resolution with 30 m pixel resolution (Thorpe et al., 2016). 108 

Figure 1 shows simulated transmission spectra in the weak (~1650 nm) and strong (~2300 nm) SWIR methane 109 

absorption bands at the spectral resolutions of TROPOMI (0.25 nm full width at half maximum (FWHM)), AVIRIS-NG 110 

(5 nm), and EnMAP (10 nm). EnMAP spectra are sampled following the precise wavelength positions given in Guanter 111 

et al. (2015). The 1650 nm methane band has the advantage of being near a CO2 band, so that joint retrievals of methane 112 

and CO2 can be combined with independent knowledge of the CO2 column mixing ratio to remove joint errors in surface 113 

reflectivity and atmospheric scattering (the so-called “CO2 proxy” method; Frankenberg et al. 2005a). However, the 1650 114 

nm band is much weaker than the 2300 nm band and only the 2n Q-branch can be detected at the EnMAP spectral 115 

resolution. Sampling the transmission spectra at the EnMAP spectral resolution yields only 8 data points in the 1650 nm 116 

band as compared to 25 in the 2300 nm band. The 2300 nm band also exhibits more resolved structure. Our early attempts 117 

to use the CO2 proxy method in the 1650 nm band with EnMAP synthetic spectra were unsuccessful. In what follows we 118 

focus on the 2300 nm band as sampled in the useful 2210 - 2410 nm range. 119 

We examined the sensitivity of EnMAP to atmospheric methane by generating synthetic top of atmosphere 120 

(TOA) EnMAP scenes with added methane plumes over a variety of surface types. We used for this purpose the EnMAP 121 

End-to-End Simulation Tool (EeteS; Segl, 2012), developed to generate EnMAP TOA solar backscattered spectra with 122 

expected instrument error included. EeteS takes surface information from another imaging instrument (e.g., SPOT-5), 123 
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and passes the image through spatial, atmospheric, spectral, and radiometric modules to generate EnMAP spectra. The 124 

atmospheric module is based on the MODTRAN5 radiative transfer code (Berk et al., 2006). It assumes a horizontally 125 

invariant 1800 ppb XCH4 and here we add methane plumes simulated with the Weather and Research Forecasting Model 126 

Large Eddy Simulation (WRF-LES) at 30 ´ 30 m2 resolution (Varon et al., 2018a). 127 

Figure 2 shows a simulated red-blue-green (RGB) EeteS image over Berlin. We consider four scenes within this 128 

domain to add WRF-LES methane plumes and perform subsequent retrievals. The scenes are labelled as Grass, Dark 129 

(water), Bright, and Urban. They have mean SWIR surface reflectances of 0.09, 0.02, 0.30, and 0.13, respectively. The 130 

urban scene is highly heterogeneous. The WRF-LES simulation is conducted with 30 ´ 30 m2 resolution (the EnMAP 131 

pixel resolution), 100 W m-2 sensible heat flux (moderately unstable meteorological conditions), and a mean wind speed 132 

of 3.5 m s-1. We generate an ensemble of 15 instantaneous plumes by sampling the WRF-LES simulation at five time 133 

slices and for three source rates of 100, 500, and 900 kg h-1. This range is typical of large (but not unusually large) 134 

individual point sources (Jacob et al., 2016).  135 

We compute the optical depth of the methane plume τ(λ) at wavelength λ by multiplying HITRAN absorption 136 

cross sections (sH; Kochanov et al., 2016) by the methane volume mixing ratio enhancement (ΔVMR) and vertical 137 

column density of dry air (VCD) in the 72-layered atmosphere of the MERRA-2 meteorological reanalysis (Gelaro et al., 138 

2017): 139 

τ(λ) = 	'ΔVMR,	VCD,	s/,,(λ).
23

,45

						(1) 140 

 141 

Following Beer’s law, the plume transmission T(λ) is the negative exponential of τ(λ) weighted by the geometric airmass 142 

factor A (AMF) for the backscattered solar radiation:  143 

 144 

𝑇(λ) = 	 exp{−𝐴τ(λ)	} .					(2) 145 

 146 

Each pixel’s EeteS radiance spectrum is multiplied by this additional plume transmission. We do not add noise or aerosol 147 

effects to the plume transmission spectra because the EeteS scene already accounts for those in the computation of back-148 

scattered radiances, so that multiplying by the additional plume transmission already factors in the corresponding noise. 149 

Figure 3 shows an example WRF-LES plume (500 kg h-1 source rate) superimposed over the Grass and Urban scenes.   150 

Moved down [8]: We do not add noise or aerosol effects to the 151 
plume transmission spectra because the EeteS scene already 152 
accounts for those in the computation of back-scattered radiances, so 153 
that multiplying by the additional plume transmission already factors 154 
in the corresponding noise. 155 
Moved (insertion) [8]
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We extended our analysis to other new-generation imaging spectrometers of Table 1 by adapting the EnMAP 156 

scenes to different spectral resolutions and SNRs.  For this purpose, we interpolated EeteS surface radiance spectra to the 157 

desired spectral resolution assuming no instrument noise. We then multiplied these radiance spectra by the transmission 158 

spectra from the U.S Standard Atmosphere (Kneizys et al., 1996) with WRF-LES methane plumes added.  The SNR 159 

values in Table 1 are for a specific reference solar zenith angle (30°) and reflectivity (0.3), but the EeteS radiometric 160 

module produces different noise estimates over different surfaces. Here we took the ratios of SNR values relative to 161 

EnMAP from Table 1 and applied these ratios to the EeteS noise fields.  162 

To test our EnMAP retrievals with actual observations, we also downsampled AVIRIS-NG images taken from 163 

aircraft over California (CARB, 2017) to match EnMAP spatial resolution, and further convolved these spectra with the 164 

appropriate Gaussian filter to match EnMAP spectral resolution and wavelength positions (Guanter et al., 2015). AVIRIS-165 

NG flew at 3-4 km above the ground, so we simulated additional extinction at higher altitudes based on the U.S Standard 166 

Atmosphere. We compared the retrieved methane from AVIRIS-NG and the synthetic EnMAP to determine the ability 167 

of EnMAP to detect and quantify the methane point sources identified by AVIRIS-NG. 168 

 169 

3 Methane retrieval 170 

We retrieved methane from the synthetic imaging spectrometer spectra by adapting the Iterative Maximum A 171 

Posteriori - Differential Optical Absorption Spectroscopy (IMAP-DOAS) algorithm developed for AVIRIS (Frankenberg 172 

et al., 2005b; Thorpe et al., 2017; Ayasse et al., 2018). DOAS retrievals isolate higher frequency features resulting from 173 

gas absorption from lower frequency features that include surface reflectance as well as Rayleigh and Mie scattering 174 

(Bovensmann et al., 2011). A polynomial term accounts for the low frequency features (Thorpe et al., 2017). 175 

 176 

3.1 State vector 177 

 In addition to methane (CH4), the retrieval must account for variable absorption by water vapor (H2O) and 178 

nitrous oxide (N2O) over the 2210-2400 nm spectral region. We parameterize low frequency spectroscopic features as a 179 

sum of Legendre polynomials of order k = [0, K] with coefficients ak. The state vector (x) optimized through the retrieval 180 

is composed of the following elements: 181 

𝐱 = (𝑠B/C, 𝑠/3D, 𝑠E3D, 𝑎G, … , 𝑎I) 182 

where s is a scaling factor applied to the column mixing ratio of each gas from the U.S Standard Atmosphere. We also 183 

correct for uncertainty in the instrument’s wavelength calibration with a spectral shift parameter (Thorpe et al., 2017; 184 

Moved down [11]: To test our EnMAP retrievals with actual 185 
observations, we also downsampled AVIRIS-NG images taken from 186 
aircraft over California (CARB, 2017) to match EnMAP spatial 187 
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Gaussian filter to match EnMAP spectral resolution and wavelength 189 
positions (Guanter et al., 2015). 190 
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Frankenberg et al., 2005). EnMAP has strict requirements of 1 nm spectral calibration accuracy and 0.5 nm spectral 194 

stability in the SWIR. Pre-flight calibration campaigns as well as onboard calibration means will be used to ensure the 195 

compliance with those requirements (Guanter et al., 2015). We do not include aerosols in the retrieval as they play little 196 

role at the relevant spatial and spectral resolution (Ayasse et al., 2018). Methane point sources generally do not co-emit 197 

aerosols.  198 

 199 

3.2 Optimal estimation 200 

To retrieve the state vector from the EeteS TOA radiances, we use a forward model similar to previous IMAP-201 

DOAS algorithms (Thorpe et al., 2017, Ayasse et al., 2018), with a modification to the polynomial term for surface 202 

reflectance: 203 

𝐹K(𝐱) = 	 𝐼G(𝜆)	exp	 N−	𝐴'𝑠O'τO,P	
23

P45

Q

O45

R'𝑎S𝑃S(𝜆)
I

S4G

					(3) 204 

Here Fh is the high-resolution backscattered TOA radiance at wavelength l, I0 is the incident TOA solar intensity, τn,l is 205 

the default optical depth from the U.S Standard Atmosphere for trace gas element n = [1,3] of the state vector at vertical 206 

level l = [1,72], sn is the scaling factor to that default optical depth optimized in the retrieval, Pk is the kth Legendre 207 

polynomial, and the ak are coefficients optimized in the retrieval. The optical depth τn,l is computed in the same fashion 208 

as Equation 1, using information from the MERRA-2 reanalysis and HITRAN absorption cross sections. For satellite 209 

retrievals, the AMF is a scalar describing the optical path through the atmosphere. In Section 4.3, we apply the IMAP-210 

DOAS algorithm to airborne AVIRIS-NG scenes and use a vector-valued AMF that depends on the height of the aircraft. 211 

 Previous IMAP-DOAS algorithms used a simple polynomial approximation for the surface reflectance, but here 212 

we use Legendre polynomials to exploit their orthogonality. Orthogonal polynomials can potentially constrain surface 213 

reflectance with fewer terms, leading to better conditioning of the inverse solution. We find that K = 4 provides sufficient 214 

spectral resolution whereas previous applications using simple polynomials required K = 6 (Ayasse et al., 2018).  215 

 We compute the TOA backscattered radiances 𝐹K(𝐱)  over the 2210-2410 nm spectral range at 0.02 nm 216 

resolution, and assemble these in a vector Fh(x) representing the high-resolution spectrum as simulated by the forward 217 

model for a given x. We convolve this spectrum with the instrument FWHM and then sample at the known wavelength 218 

positions. For example, for EnMAP, we convolve 𝐅𝒉(𝐱) with a 10 nm FWHM and sample the resulting spectra at 219 

EnMAP’s 10 nm intervals to get the low-resolution F(x). Since the convolution operator is not linear (Frankenberg et al., 220 
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2005), we also explored performing separate convolutions on the high resolution transmission and polynomial terms in 228 

Equation 3, and then multiplying them together to get F(x). We found little difference in the results between methods.  229 

Observed backscattered TOA radiances (y) can be represented as  230 

𝐲 = 𝐅(𝐱) + 	𝛜					(4) 231 

where the observational error 𝛜 is the sum of instrument and forward model errors. As is commonly done for satellite 232 

retrievals, we assume that the forward model error is small compared to the instrument error characterized by the SNR. 233 

The forward model is non-linear so that the solution must be obtained iteratively. A Jacobian matrix is calculated for 234 

each iteration i of the state vector  235 

𝐊, = 	
𝜕𝐅
𝜕𝐱^𝐱4𝐱_

							(5) 236 

and we employ a Gauss-Newton iteration to solve iteratively for the optimal state vector (Rodgers, 2000): 237 

𝐱,a5 = 	𝐱𝐀 + (	𝐊,
𝑻𝐒𝐎f𝟏𝐊, +	𝐒𝐀f𝟏)f5𝐊,

𝑻𝐒𝐎f𝟏[𝑦 − 𝐅(𝐱,) +	𝐊𝒊(𝐱𝒊 −	𝐱𝐀)]						(6)	 238 

Here SO = [εεT] is the observation error covariance matrix defined by the instrument SNR, xA is the prior estimate of the 239 

state vector, and SA is the prior error covariance matrix. We set a weak prior error variance for methane, 𝐒𝐀[1,1] =240 

𝜎nopq
3 = 5 (unitless) 241 

𝐒r = 	 s𝐊,
𝐓𝐒𝐎f𝟏𝐊, +	𝐒𝐀f𝟏u

f5
									(7)	 242 

 243 

𝐒r	 gives information on the error correlation between retrieved methane and surface reflectivity, which is a major concern 244 

for methane retrievals (Butz et al., 2012).  245 

 246 

3.3 Inferring point source rates from methane plume observations 247 

The plume observations can be related to the corresponding source rates by computing the integrated mass 248 

enhancements (IME) within the plume mask (Frankenberg et al., 2016; Varon et al., 2018a). Following Varon et al. 249 

(2018a), we define the plume for the retrieved scenes with a plume mask that applies median and Gaussian filters to 250 

pixels above the 80th percentile of XCH4 within the scene. These filters help to remove spurious signals surrounding a 251 

plume and determine the spatial extent of the plume, which is needed for subsequent calculations. The IME is calculated 252 

as: 253 

IME = 	∑ ΔΩ,E
,45 Λ,		(8)  254 
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where ΔΩ, is the plume mass enhancement in pixel i relative to background (kg m-2),  Λ, is the corresponding area of the 264 

pixel, and the summation is over the N pixels within the plume mask. Here, we define the background as the median XCH4 265 

within the scene. The point source rate Q is then inferred from the IME as (Varon et al., 2018a) 266 

𝑄 =
𝑈���
𝐿 	IME		(9) 267 

where 𝐿 = 	�∑ ΛE
,45 , is a characteristic plume size and 𝑈���  is an effective wind speed describing the rate of turbulent 268 

dissipation of the plume (L/Ueff is the lifetime of the plume against turbulent dissipation to below the detection limit). 269 

Varon et al. (2018a) relate Ueff to the 10-m wind speed (U10) by fitting to WRF-LES simulations. Here we use their 270 

relationship derived for the GHGSat instrument with 50 m pixel resolution and 5% precision:  271 

𝑈��� = 1.1 log𝑈5G + 0.6	(10)	272 

where Ueff and U10 are in units of [m s-1]. The Ueff-U10 relationship should depend on the instrument pixel resolution and 273 

precision, and on the plume masking procedure, which would require customized WRF-LES simulations and fitting. 274 

Here we simply apply equation (10) to the AVIRIS-NG and EnMAP plumes without further modification. In Section 4.3, 275 

we do not a priori know the wind speed, and obtain U10 from the HRRR-Reanalysis at 3-km hourly resolution 276 

(https://rapidrefresh.noaa.gov/). 277 

 278 

 279 

4. Results and Discussion 280 

4.1 EnMAP plume retrievals over different surfaces 281 

Figure 3 shows examples of the IMAP-DOAS retrievals of 500 kg h-1 and 900 kg h-1 WRF-LES plumes over 282 

the Grass and Urban scenes. The 500 kg h-1 plume is clearly defined in the Grass scene near the emission source. It is 283 

also detectable in the Urban scene but obscured by retrieval artifacts, as some of the variability in surface reflectivity is 284 

erroneously retrieved as methane variability.  The 900 kg h-1 plume is better captured over both surfaces, though major 285 

retrieval artifacts remain in the Urban scene. 286 

Varon et al. (2018a) previously estimated the theoretical ability of a satellite instrument to quantify source rates 287 

from point sources as a function of instrument precision, assuming a uniform surface reflectance. They concluded that 288 

an instrument with 1-5% precision for XCH4 would be able to quantify point sources with an error of 70-170 kg h-1. Here 289 

we characterize the EnMAP instrument precision as the relative residual standard deviation (RRSD) between the true 290 

and retrieved column methane concentrations for individual 30 ´ 30 m2 pixels in the scenes of Figure 2 including the 291 
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WRF-LES plumes. Figure 4 summarizes the results for the four scenes of Figure 2.  We find precisions of 3.5 ± 0.07% 302 

for Grass, 7.2 ± 0.1% for Urban, and 2.6 ± 0.08% for Bright scenes. The standard deviations refer to the RRSDs computed 303 

for the 15 different realizations of the WRF-LES plumes and for the 3 source rates of 100, 500, and 900 kg h-1. The Dark 304 

scene was consistently unsuccessful, with error of at least 100% for each realization, and we do not discuss it further. 305 

The Bright scene performs the best because of the large backscattered photon flux. The Urban scene performs worse than 306 

the Grass scene, even though its average SWIR surface reflectance is larger, due to the larger variability in reflectance 307 

over the scene including dark pixels.  308 

We examined the ability of the retrievals to quantify methane point source rates on the basis of the detected 309 

plumes, by applying the IME algorithm of Section 3.3 to the same ensemble of 5 WRF-LES plume realizations for each 310 

of the three different surfaces and for true source rates 100, 500, and 900 kg h-1. Results are summarized in Table 2.  We 311 

find that it is possible to quantify source rates as low as 100 kg h-1 for the Bright scene, and as low as 500 kg h-1 for the 312 

Grass scene, though the true source rates are underestimated by up to a factor of 2. There could be several factors behind 313 

this underestimate including (1) error correlation with surface reflectivity in the EnMAP retrieval that would cause some 314 

loss of the plume, and (2) use of the Varon et al. (2018a) Ueff -U10 relationship in equation (10) without customization for 315 

the EnMAP conditions. As pointed out by Varon et al. (2018a), the Ueff-U10 relationship should be customized to the 316 

plume mask definition and to the instrument pixel resolution and precision. This would require an ensemble of WRF-317 

LES simulations specific to the EnMAP conditions and to the plume mask used here. The inability to quantify the 100 318 

kg h-1 plume over the Grass scene is properly diagnosed in our retrieval by the failure of the plume mask to detect a 319 

plume. However, the surface artifacts in the Urban scene lead to spurious retrievals of source rates as the surface features 320 

are mistakenly attributed to plumes. This is due to the error correlation between XCH4 and surface reflectivity (explained 321 

in greater detail in Section 4.2) and can be diagnosed by inspection of the off-diagonal terms of 𝐒r	(Equation 7).  322 

 323 

4.2 Sensitivity to instrument spectral resolution and SNR 324 

We examine the potential of future imaging spectrometers with improved spectral resolution and SNR relative 325 

to EnMAP (Table 1) to achieve improved retrievals of point sources. Figure 5 shows the change in the methane retrieval 326 

precision as we vary the spectral resolution from 10 to 1 nm and the mean scene-wide SNR from 100 to 500. 327 

Specifications of the instruments in Table 1 are identified on the plot.  Precision improves as spectral resolution and SNR 328 

increase, as expected. The dependencies are not linear, and the contours are concave, meaning that precision is more 329 

effectively improved by increasing spectral resolution by a certain factor than by increasing SNR by the same factor. 330 
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Increasing the spectral resolution improves precision through multiple independent factors: by increasing the number of 358 

independent measurements across the useful spectral window; by increasing the effective squared depth of the sharpest 359 

methane absorptions, for improved spectral contrast relative to the continuum; and by better resolution of the unique 360 

methane absorption shape, which improves discrimination against potential surface confusers.   361 

We saw in Figure 3 that the inability to decouple surface and methane features at low spectral resolution was a 362 

major source of error over inhomogeneous surfaces such as the Urban scene. This is manifested in the retrieval by an 363 

error correlation between state vector elements sCH4 (scaling factor for methane column mixing ratios) and ak (coefficients 364 

for the surface reflectivity described by Legendre polynomials). This error correlation is described by the posterior error 365 

covariance matrix 𝐒r obtained as part of the retrieval (Equation 7).  The bivariate probability density between retrieved 366 

XCH4 and the mean SWIR surface reflectivity can be obtained by summing the error covariances of the Legendre 367 

polynomial terms. We find in this manner that the error correlation between XCH4 and the mean SWIR surface reflectivity 368 

for the Urban scene decreases between EnMAP (r = -0.33) and AMPS (r = -0.19). This is driven by the increase in 369 

spectral resolution from 10 nm to 1 nm. We further find that simply increasing the SNR to 300 (as recommended for 370 

SBG) while keeping spectral resolution constant does not improve the error correlation.  371 

A related benefit of decoupling XCH4 from the surface reflectance in the retrieval is to improve the capability for 372 

plume pattern recognition, which is necessary to convert observed plume methane enhancements into source rates.  Figure 373 

6 illustrates this for the Grass and Urban scenes of Figure 3 including the plume from the 500 kg h-1 point source.  374 

Retrievals are performed with the specifications of the EnMAP instrument (10 nm spectral resolution, SNR 180), SBG 375 

(10 nm, 300), and AMPS (1 nm, 400). For the Grass scene we find that all three instruments can discern the plume pattern 376 

near the emission source and separate it from surface features. SBG and AMPS capture larger plume domains because 377 

of their higher precisions (Figure 5), which would improve the inference of the source rates. For the Urban scene, EnMAP 378 

plume detection is swamped by surface artifacts. Simply increasing the SNR as in the SBG instrument does not improve 379 

the situation. Increasing the spectral resolution to 1 nm as in the AMPS instrument enables detection of the plume though 380 

quantification is still compromised by surface artifacts. 381 

 382 

4.3 Evaluation with AVIRIS-NG observations 383 

 To test the EnMAP retrieval capability with actual observations, we downsampled AVIRIS-NG airborne spectra 384 

taken over California methane emitting facilities (CARB, 2017). We chose three scenes observed by AVIRIS-NG on 385 

different days over oil and gas facilities. Figure 7 shows the RGB images, the AVIRIS-NG plume retrievals performed 386 
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by applying the method of Section 3 with a variable AMF, and the downsampled EnMAP retrievals.  Plume masks were 387 

applied as described in Section 3.3 and shown in Figure 6. At the altitudes used for the California survey, AVIRIS-NG 388 

has 3´3 m2 pixel resolution and hence features much sharper methane enhancements than EnMAP (note the different 389 

scales for the middle and right panels).  Nevertheless, we see from Figure 7 that EnMAP is able to detect the same plumes 390 

as AVIRIS-NG (two plumes in the bottom panels). This is facilitated by the brightness of the surfaces. The surface 391 

reflectivities retrieved simultaneously with the methane enhancements in our IMAP-DOAS algorithm are 0.39-0.49, 392 

brighter than the Bright EeteS scene in Section 4.1.  393 

Figure 7 shows the source rates inferred from the AVIRIS-NG and EnMAP retrievals for each point source. The 394 

AVIRIS-NG source rates are a factor of 1.2-3.0 greater (average 1.9) than the EnMAP source rates. The EnMAP 395 

underestimate is consistent with the results in Table 2 and may reflect the same sources of bias, in part correctable through 396 

an improved U10-Ueff relationship. The results confirm that EnMAP should be able to detect plumes and estimate source 397 

rates down to ~100 kg h-1 when the scene is sufficiently bright. 398 

 399 

5 Conclusions 400 

We examined the potential of next-generation spaceborne imaging spectrometers (EnMAP, PRISMA, EMIT, 401 

SBG, CHIME) for observing atmospheric methane plumes from point sources and inferring the corresponding source 402 

rates.  These instruments have launch dates of 2019-2025 and focus on observing the Earth surface with fine pixel 403 

resolution (30 ´ 30 m2), including observing channels at 2200-2400 nm with 7-10 nm spectral resolution that could also 404 

be used to retrieve methane plumes. This would achieve much finer spatial resolution than the standard satellite 405 

instruments designed to measure atmospheric methane and would provide a unique resource for global mapping of 406 

individual methane point sources. 407 

We focused our baseline analysis on EnMAP (spectral resolution 10 nm, SNR 180, 2020 launch date) as its 408 

specifications are well documented (Guanter et al, 2015). We created synthetic spectra using the EnMAP End-to-End 409 

Simulation Tool (EeteS) to simulate various surface scenes (Grass, Urban, Bright) with instrument errors and with 410 

superimposed methane plumes generated by a WRF Large Eddy Simulation (LES). We then retrieved these scenes for 411 

atmospheric methane together with surface reflectivities (fitted with Legendre polynomials) using the Iterative Maximum 412 

A Posteriori - Differential Optical Absorption Spectroscopy (IMAP-DOAS) approach. The resulting precisions for 413 

methane are 3.5% for the Grass scene, 7.2% for Urban, and 2.6% for Bright. A 500 kg h-1 methane plume (typical of very 414 
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large point sources) is readily detected over the relatively homogeneous Grass surface. The highly heterogeneous Urban 421 

surface is much more challenging because of retrieval artifacts. 422 

The limitation of EnMAP in detecting methane plumes over heterogeneous surfaces is caused by error 423 

correlation between methane and surface reflectivity in the retrieval. We examined how precision and error correlation 424 

could be improved by increasing spectral resolution and SNR.  We find that increasing spectral resolution reduces the 425 

error correlation more efficiently than increasing SNR by enabling separation of fine spectral structure (methane) from 426 

coarse spectral structure (surface). The Atmospheric Methane Plume Spectrometer (AMPS) instrument concept, which 427 

bridges the gap between imaging spectrometers and spaceborne methane sensors (1 nm spectral resolution, SNR 400), 428 

can greatly decrease surface artifacts and detect a 500 kg h-1 plume even over the heterogeneous Urban surface. 429 

Alternative retrieval parameterizations might also improve separation of methane and surface reflectivity features. 430 

(Thompson et al., 2018; Ong et al., 2019).  431 

We tested the EnMAP capability with actual observations by downsampling AVIRIS-NG images taken from 432 

aircraft (3 ´ 3 m2 pixels, 5 nm spectral resolution, SNR 200) over California methane emitting facilities (CARB, 2017).  433 

We showed that these EnMAP-like images are able to detect actual plumes of magnitude ~100 kg h-1 over relatively 434 

bright surfaces. Source rates inferred from the plumes with a generic Integrated Mass Enhancement (IME) method are a 435 

factor of 1.2 to 3 lower for EnMAP than for AVIRIS-NG, which could be due in part to unaccounted dependence of the 436 

IME method on instrument pixel size and precision. This should be improved in further work by customizing the IME 437 

method to the EnMAP specifications. 438 

In summary, our analysis shows that future spaceborne imaging spectrometers designed to map land surfaces in 439 

the SWIR also have potential for detecting methane plumes from point sources and quantifying source rates. The 440 

detection capability of 100-500 kg h-1 over relatively bright and homogeneous land surfaces would allow accounting for 441 

a wide range of point sources. The fine spatial resolution of these instruments should make them a unique resource to 442 

contribute to tiered observing systems for greenhouse gases (Duren and Miller, 2012).  443 
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Table 1. Shortwave infrared (SWIR) remote sensors for observing methane point sources 

 

Instrument 
Pixel size 

(km2) 

SWIR spectral range 

(nm)a 

Spectral 

resolution 

(nm)b 

Signal-to-

noise ratio 

(SNR)c 

Observing 

record 

Aircraft 

       AVIRIS-NGd 0.003 ´ 0.003 

 

1600-1700; 2200–2510 5.0 200-400e Campaigns 

Satellite 

  Atmospheric sensors 
     

       SCIAMACHYf 30 ´ 60 1630–1670 1.4 1500 2002-2012 

       GOSATg 10 ´ 10 1630–1700 0.06 300 2009- 

       GHGSath 0.05 ´ 0.05 1600–1700 0.3–0.7i N/Aj 2016- 

       TROPOMIk 7 ´ 7 2305–2385 0.25 100 2017- 

       AMPSl 0.03 ´ 0.03 1990–2420 1.0 200-400 Concept 

 Imaging spectrometers 

       PRISMAm 0.03 ´ 0.03 1600-1700; 2200–2500 10 180 2019- 

       EnMAPn 0.03 ´ 0.03 1600-1700; 2200–2450 10 180 2020- 

       EMITo 0.06 ´ 0.06 1600-1700; 2200–2510 7–10 200-300 2022- 

       SBGp 0.03 ´ 0.03 1600-1700; 2200–2510 7–10 200-300 2025- 

       CHIMEq 0.03 ´ 0.03 1600-1700; 2200–2510 <10 
In 

preparation 
2025- 

aMethane has absorption bands around 1650 and 2300 nm (Figure 1). 
bSpectral resolution is represented by the full-width at half-maximum (FWHM). 5 
cFor SCIAMACHY and GOSAT, SNR is for the CO2 band used in the CO2-proxy method retrieval. For other instruments, 

SNR is at 2300 nm. SNR estimates are for a reference 30° solar zenith angle and 0.3 surface reflectivity with clear sky.  
dAirborne Visible/Infrared Imaging Spectrometer – Next Generation (Thorpe et al., 2017). AVIRIS-NG provides roughly a 

ground sampling distance (GSD) of 1 m per km altitude. The Frankenberg et al. (2016) and Duren et al. (2019) campaigns 

operated at 3-4 km altitude. 10 
eAlong-track oversampling increases SNR by √𝑁 where N = number of along-track frames. AVIRIS-NG typically has  N > 4 

so AVIRIS-NG effective SNR at 2300 nm can be as much as 400. 
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fSCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (Frankenberg et al., 2006) 

gTANSO-FTS instrument aboard the Greenhouse gases Observing SATellite (Kuze et al., 2016). Pixels are circles of 10 km 

diameter separated by about 250 km along track and cross-track. 
hGreenHouse Gases Satellite (McKeever et al., 2017).  
iGHGSat SNR is not comparable to other missions due to difference in instrument concept. 5 
jSpectral resolution differs on the demonstration instrument GHGSat-D vs. upcoming missions GHGSat-C1,C2. 
kTROPOspheric Monitoring Instrument (Hu et al., 2018) 
lAirborne Methane Plume Spectrometer (Thorpe et al., 2016) 
mPRecursore IperSpettrale della Missione Applicativa (http://prisma-i.it) 
nEnvironmental Mapping and Analysis Program (Guanter et al., 2015) 10 
oEarth Surface Mineral Dust Source Investigation (Green et al., 2018) 
pSurface Biology and Geology, previously called HyspIRI (Hochberg et al., 2015) 
qCopernicus Hyperspectral Imaging Mission For The Environment (Nieke and Rast, 2018) 
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Table 2. True and retrieved point source rates from EnMAP scene simulations with WRF-LES methane plumes. 

Surface 
typea 

True source rate 
(kg h-1)b 

Retrieved source rate 
(kg h-1)c, 

Grass 100 No plume detected 
Grass 500 279 ± 101 
Grass 900 542 ±  38 
Urban 100 1080 ± 216 
Urban 500 964 ± 198 
Urban 900 1060 ± 134 
Bright 100 93.5 ± 18.3 
Bright 500 338 ± 83.1 
Bright 900 577 ± 115 

aSurface reflectances determined using the End-to-End Simulation Tool (EeteS; Figure 2) 
bPrescribed in the WRF-LES methane plume simulations (Section 2) 
cMean and standard deviation of retrieved source rates for five WRF-LES plume realizations. 5 
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Figure 1. Simulated top of the atmosphere (TOA) transmission spectra for different spectral resolutions (FWHM = full-width 

at half-maximum) in the 1650 nm (left panel) and 2300 nm (right panel) shortwave infrared (SWIR) bands. High-resolution 

spectra were simulated for the U.S. Standard Atmosphere with 1800 ppb total column methane using the HITRAN 

spectroscopic database and the HITRAN Application Programming Interface (HAPI) tool (Kochanov et al., 2016), and were 10 

then sampled with spectral resolutions of 0.25 nm (TROPOMI), 5 nm (AVIRIS-NG), and 10 nm (EnMAP) at the appropriate 

wavelength positions.  
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Figure 2. RGB image of a synthetic EnMAP scene simulated using the EnMAP End-to-End Simulation Tool (EetsS) over 5 

Berlin. Four scenes with 30´30 m2 pixel resolution are shown (Grass, Dark, Bright, Urban) with average surface reflectances 

in the SWIR (2210-2410 nm) given in parentheses. These different scenes are used in Section 3 to evaluate the ability of 

EnMAP to retrieve atmospheric methane plumes.   

 

  10 
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Figure 3. Retrieval of a methane plume over grass (top) and urban (bottom) EnMAP scenes. The plume was generated by 

WRF-LES at 30x30 m2 resolution with a source rate of either 500 kg h-1 or 900 kg h-1. The left panels show the dry air column 

mixing ratio (XCH4) enhancements relative to the 1800 ppb background for a 500 kg h-1 methane plume superimposed on the 5 

RGB images of Figure 2. The middle panels show the retrieval of those enhancements using the IMAP-DOAS retrieval 

algorithm applied to the EnMAP instrument specifications. The right panels show the retrieval of the 900 kg h-1 plume. The 

XCH4 enhancements in the right panels are scaled by 5/9 to be comparable with the other panels. Negative enhancements are 

reset to equal the background. 

 10 
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Figure 4. Precision of atmospheric methane retrievals from the EnMAP instrument (Table 1) over the Grass, Urban, and Bright 

surfaces of Figure 2. Precision is defined as the relative residual standard deviation (RRSD) between the “true” methane 

columns in synthetic scenes and values obtained from the IMAP-DOAS retrieval applied to the EnMAP top-of-atmosphere 

(TOA) backscattered radiances. The error bars represent the standard deviation over 15 WRF-LES plume realizations and 3 5 

source magnitudes for the plume (100, 500, 900 kg h-1). Precision over the Dark surface in Figure 2 is worse than 100%. 
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Figure 5. Precision of methane retrievals for spaceborne imaging spectrometers observing in the SWIR (2210-2400 nm), as a 

function of instrument signal-to-noise (SNR) and full-width half-maximum (FWHM) spectral resolution. The SNR values are 

for a reference 30° solar zenith angle and 0.3 surface reflectivity with clear sky, same as in Table 1. Actual SNR for individual 5 

pixels may vary, depending in particular on surface reflectivity. Precision is expressed as the relative residual standard 

deviation (RRSD) of the difference between retrieved and true methane columns over three synthetic scenes of Figure 2 (Grass, 

Urban, Bright) including point sources of 100-900 kg h-1 and for 15 different WRF-LES plume realizations. Black dots show 

different instrument specifications from Table 1. Specifications for the SBG and AMPS instruments are still at the design stage 

and values shown here are for the ranges under consideration.  Results given for AVIRIS-NG are for a satellite instrument 10 

with 30´30 m2 pixel resolution but other specifications (spectral resolution, SNR) same as the airborne instrument. 
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Figure 6. Plume pattern recognition algorithm applied to a point source of 500 kg h-1 over Grass and Urban scenes as shown 

in Figure 3. The plume pattern is defined by applying median and Gaussian filters to pixels above the 80th percentile of XCH4 

in the scene. Areas excluded by the mask are shown in gray. The panels show retrievals from the EnMAP, SBG, and AMPS 5 

instruments.  
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Figure 7. Retrieval of atmospheric methane plumes from facilities in the San Joaquin Valley of California imaged by the 

AVIRIS-NG instrument at 3-4 km altitude (CARB, 2017). The left panels show the RBG images mapped by AVIRIS-NG with 

the oil/gas facilities of interest circled. Inset in the bottom left corner is the mean retrieved SWIR surface reflectivity for the 

scene. The middle panels show the IMAP-DOAS retrieval applied to the AVIRIS-NG images with 3´3 m2 pixel resolution 5 

and 5 nm spectral resolution. The right panels show the IMAP-DOAS retrieval applied to spectra that were spatially and 
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spectrally downsampled to match EnMAP instrument specifications (30´30 m2 pixels, 10 nm spectral resolution). Note the 

difference in color scale for the methane enhancements in the AVIRIS-NG and EnMAP retrievals, reflecting the coarser pixel 

resolution of EnMAP. The plume mask described in the text is overlaid on each. The source rates for each plume obtained 

from the IME method are inset.  
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