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Reply to Anonymous Referee #2 1 
 2 
General 3 
The paper deals with an important topic of atmospheric research: The retrieval of CCN from 4 
multiwavelength backscatter and extinction lidar observations. New aspects are integrated (e.g., 5 
using the increase in backscatter and extinction coefficient with relative humidity, humidogram 6 
approach). This is an excellent idea! 7 
However, the paper has to my opinion almost no structure. Although one gets an idea how the 8 
method may work, a well-elaborated and well-structured description of the methodology is 9 
completely missing. A huge amount of information on microphysical and chemical particle particle 10 
properties, simulated related optical effects, dependence of optical effects from increasing humidity 11 
(growth factors), etc. and respective experimental data from field observations in the North China 12 
Plain (NCP) are just accumulated in different sections, but the reader must already be an expert in 13 
this field to get an idea how all this may fit together. 14 
So, the manuscript is far from being acceptable. To be short: to my opinion it cannot be published 15 
in the present version and must be rejected. In the following, I will give more detail so that the 16 
authors may get an idea how to change the structure of the manuscript and then resubmit it. 17 
A manuscript with clear goals, clear structure, an easy-to-follow methodology, plus uncertainty 18 
analysis, and also some convincing but simple case studies are required. 19 
Response: 20 
Thanks for your suggestions. The structure of the paper has been rearranged and some additional 21 
explanations have been added according to your valuable suggestions. The retrieval algorithm is 22 
now presented at the beginning of Sect. 3 step by step. We also give explanations to the data we 23 
used in this study before we introduce the data. All of the comments and concerns raised by the 24 
referee have been explicitly replied point by point and incorporated into the revision. 25 
 26 
An important issue is also: Please do not consider NCP aerosol only. It would be nice to have a 27 
general methodology that can be applied to anthropogenic haze and smoke, to dust aerosol, and may 28 
be to aerosols dominated by marine sea salt. All the required kappa values and growths factors are 29 
available in the literature. You do not need to focus on NCP aerosol! 30 
Response: 31 
Thanks for the valuable suggestions. We hope to propose a complete methodology as well. This 32 
paper is a very preliminary job. The main goal of our paper is introducing the idea of using 33 
backscatter and extinction humidograms to retrieve CCN and showing the significance of the 34 
information contained in the humidogram parameters. In this paper, we only use dataset measured 35 
in the NCP as an example to theoretically evaluate the feasibility of the method, because one of the 36 
biggest challenges to consider other types of aerosols is the acquisition of the size-resolved 37 
hygroscopicity data. Hygroscopicity (specially referred to here as κ) cannot be regarded as a size-38 
independent parameter in most cases. The backscatter and extinction humidogram are influenced 39 
by hygroscopicity of all particles but the calculation of CCN number concentration is only 40 
controlled by hygroscopicity of small particles. Optical-equivalent bulk κ is different from critical 41 
activation κ, and the relationship between them is found to be complex (Tao et al., 2018). Besides, 42 
the mixing state of particles is also an important parameter in simulating particle optical properties. 43 
The purpose of using these data is to make the simulation closer to real situation in the atmosphere. 44 
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So we only focus on the aerosol in the NCP, and we believe that researchers who concern about 45 
other types of aerosols can repeat theoretical simulations with their own datasets. Also, we are trying 46 
to complete the algorithm as much as possible in future work. 47 
 48 
Details 49 
P3, L8-9: . . . The new method to retrieve CCN . . . is proposed based on kappa Koehler theory. . ... 50 
There are many examples of such ‘isolated’ phrases, not further explained. So, often the reader is 51 
confronted with a lot of information and then with the question: What do they want to say? How 52 
will that be used? Only experts know what the message behind probably is. 53 
Response: 54 
Thanks for pointing the problem out. We revised the sentence: 55 
‘In this paper, a new method to retrieve CCN number concentrations for 3β+2α MWRL systems is 56 
proposed. Theoretical simulations are carried out to seek the relationship between CCN number 57 
concentrations and lidar-derived optical properties. The simulation implement κ-Köhler theory 58 
(Petters and Kreidenweis, 2007) to describe particle hygroscopic growth and activation process. 59 
Mie theory (Bohren and Huffman, 2007) is utilized to calculate particle backscatter and extinction 60 
coefficients from in situ measured aerosol microphysical and chemical properties.’ 61 
 62 
Section 2: As a motivation it is mentioned: Section 2 introduces the measured and simulated data 63 
sets. Ok. But why do you introduce these data, why do you need these data, what is the goal, do you 64 
need them as input? All this is not explained. Nothing is clear. As a reader one wants to know the 65 
motivation for every section, before the content of the section is presented. 66 
Response: 67 
An introduction of the motivation for Sect. 2 has been added to the beginning of the section: 68 
‘Since it is not easy to accumulate large datasets of simultaneous measurements of lidars and 69 
aircrafts, ground-measured aerosol microphysical and chemical data are used to simulate lidar-70 
derived backscatter and extinction coefficients and corresponding CCN number concentrations. 71 
The simulations are based on κ-Köhler theory and Mie theory. The required datasets include: 72 
particle number size distribution (PNSD), black carbon (BC) mass concentrations (𝑚"#), mixing 73 
state of BC containing particles, and size-resolved hygroscopicity. The simulation results are used 74 
to establish and validate the new retrieval method.’ 75 
 76 
And after reading of section 2 and all the subsequent sections it becomes more or less clear: This 77 
method obviously only holds for North China Plain (NCP) pollution aerosol. But is that then a useful 78 
method, for all the lidar scientists around the globe? 79 
As a reader I expect a well elaborated algorithm applicable to all relevant aerosol types: What about 80 
pure marine conditions, what a about desert dust scenarios, what about forest fire smoke in the free 81 
troposphere? How does the method work in these cases? All this is not considered in this paper. 82 
Only NCP aerosol. 83 
Response: 84 
We agree that other aerosol types should be considered if the algorithm need to be applied globally. 85 
However, the main purpose of our paper is to introduce the idea of using humidograms to estimate 86 
CCN to lidar and other related researchers. Elaborating an algorithm is a long process and needs the 87 
contribution of the whole community. We sincerely hope to share the idea with an example of NCP 88 
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to other researchers through the paper and improve the algorithm together in the future. 89 
 90 
The BC mixing state is introduced. . . . size resolved chemical composition all come from campaign 91 
C2. . .. . . and after transforming the ambient wet aerodynamic diameters into dry volume-equivalent 92 
diameters, size resolved kappa distribution were derived from measured size resolved chemical 93 
composition. Twenty five typical size-resolved kappa distributions in the NCP are computed and 94 
later used. . ... in the simulations. Who can follow? Why do you present all this? The methodlogy is 95 
still not presented yet! The paper is to more than 50% just an acccumulation of information, like in 96 
a laboratory book . . .. Section 2.2. 97 
Response: 98 
The derivation of the parameter of BC mixing state and size-resolved κ distributions are detailed 99 
described in the papers of Ma et al. (2012) and Liu et al. (2014) respectively. The use of these data 100 
can improve the simulation. The mixing state of BC influence particle optical properties, and the κ 101 
distribution, as is addressed in the previous response, is needed in the simulations of humidogram 102 
and CCN activation. These valuable parameters are important in the method. All the data used in 103 
this paper will be put in a repository and available to everyone if the paper is published. 104 
 105 
P4, Eq3 is introduced, taken from another paper, D is introduced as particle/droplet radius (but it is 106 
obviously the droplet radius). The equation contains: RH = 1 + SS with SS in %, so what is the unit 107 
of RH? 108 
Response: 109 
Thanks for your suggestion. We have changed ‘particle/droplet’ to ‘particle or droplet’. As for the 110 
doubt about the unit of RH, we check the equation carefully and believe there is no problem about 111 
the equation. Besides, there is no indication that the unit of SS is ‘%’ in the manuscript. 112 
 113 
P4, L29: Then Mie theory is used with all the parameters introduced before including the confusing 114 
25 kappa distributions. It is impossible to check the simulations in detail. We are forced to read 115 
another paper (Zhao et al, 2017). So, as a reader I am totally confused by the accumulation of all 116 
the information from field campaigns, simulations, partly explained in another paper. All particles 117 
are spherical which may make sense for North China pollution close to cloud base but what about 118 
aerosol mixtures with a lot of mineral dust, practically 75% of the aerosol in China) probably 119 
contains dust, what do we do in these cases? 120 
Response: 121 
The simulations are now introduced in detail in the Supplement (Please see Sect. S3 of the 122 
Supplement). Assumptions, equations, and values of key parameters are presented. 123 
We agree that mineral dust is an important component of aerosols in China. NCP is also influenced 124 
by dust transported from North East China, especially in spring. However, limited by the knowledge 125 
and data, dust is not considered in the current algorithm. When dust is the dominant component 126 
(easily identified from polarization measurement), the algorithm is not applicable at present. 127 
Considering the mixture of anthropogenic aerosols and mineral dust is a challenge, especially for 128 
dust coated by anthropogenic components (e.g. sulfate or organic compounds). The optical 129 
properties, hygroscopicity, and size-resolved number fraction of dust aerosols coated by 130 
anthropogenic components still have lots of uncertainties. More measurements are needed to deal 131 
with these cases. 132 
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 133 
P5, In Section 3, among the discussion of another set of new aspects (useful or not) the authors 134 
‘jump’ to a new topic: Size-resolved enhancement contributions of backscatter and extinction are 135 
calculated to discuss hygroscopicity sensitive size of optical enhancement factor measurement. 136 
Ok!?! . . .strong oscillations are found in size enhancement contributions of backscatter coefficients. 137 
OK! But what is the message behind all this? Where is the methodological concept? Where is all 138 
the mentioned information used? 139 
Response: 140 
In this part, we want to discuss the number and hygroscopic information of particles that can be 141 
gained from lidar measurements. Lidar can be used to retrieve CCN number concentration only if 142 
we can get particle number and hygroscopic information of CCN-related sizes. Size-resolved 143 
enhancement contributions of backscatter and extinction are discussed because we want to know 144 
hygroscopicity information of which size we can get from the humidograms of backscatter and 145 
extinction. The result shows that the humidograms of different parameters are sensitive to the 146 
hygroscopicity of different sizes. The oscillation in backscatter means the hygroscopic information 147 
in backscatter enhancement is complex and different from that in extinction enhancement. That 148 
explains why we use humidogram parameters ( 𝜅% ) of all the 3β+2α to indicate particle 149 
hygroscopicity. Size-dependent hygroscopicity is important to estimate CCN rather than a bulk 150 
hygroscopicity information, especially for different supersaturation conditions. One humidogram 151 
may indicate the bulk hygroscopicity, but it is the hygroscopicity of small particles that influences 152 
CCN number concentrations most. Spectrally dependent 𝜅%  can provide some information about 153 
the hygroscopicity of small particles. We have removed the ‘oscillation’ sentence and add the 154 
explanation: 155 
‘Figure 3b also shows that different 𝜅%  is sensitive to the hygroscopicity of different size. Size-156 
dependent hygroscopicity is important to estimate CCN rather than a bulk hygroscopicity 157 
information, especially for different supersaturation conditions. One humidogram may indicate the 158 
bulk hygroscopicity, but it is the hygroscopicity of small particles that influences CCN number 159 
concentrations most. Using 𝜅%  of all the 3β+2α can provide some information about the 160 
hygroscopicity of small particles.’ 161 
This part has been moved to Discussion (Section 4.1) with some extra explanation in the revised 162 
version. 163 
 164 
P6: Now equations describing light scattering enhancement factors are introduced, no word about 165 
aerosol types and related differences in the enhancement factors. So, here it became finally clear to 166 
me the authors only develop their method for North China Plain pollution aerosol. 167 
In conclusion, the authors accumulate and accumulate information . . . from field campaigns, from 168 
papers, from own simulations, but leave the reader alone. . . with the question: Why do you present 169 
all this? Where is the flow chart with all input parameters needed to compute CCN from backscatter 170 
and extinction coefficients at several wavelengths, including uncertainty bars? We are already at the 171 
end of page 6, and no methodological concept is presented yet. Section 5 (Summary) comes close 172 
(given on page 11). 173 
Response: 174 
Thanks for your suggestion to change the structure. The algorithm is now presented at the beginning 175 
of Sect. 3 and is described step by step as you suggested. We not only want to show the algorithm 176 
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to researchers but also hope to introduce how we develop the algorithm and the scientific support 177 
behind the method. 178 
 179 
Now the methodology section starts, Sect. 3.3. 180 
P7 L6: The equation provides the basic relationship between lidar information (backscatter and 181 
extinction coefficient) and N-CCN. 182 
P7 L4: you write backscatter/extinction coefficient, but I believe you want to write backscatter and 183 
extinction ...., and not to use the ratio (backscatter/extinction). All this is confusing! 184 
Response: 185 
Thanks for the suggestion. We now use ‘backscatter and extinction’ or ‘backscatter or extinction’ 186 
according to the meaning in the manuscript. 187 
 188 
P7, Eq.7 and Eq.8, again new parameters are introduced, new discussion and uncertainty sources, 189 
but no clear flow chart what to do with all this information in detail (step byr step). 190 
P8, L4-6: Here the entire method is summarized within three lines! We need to study Figure 3 that 191 
shows a flow chart. This is a SKTECH! . . . and helps to understand the method. But a clear set of 192 
equations with all input parameters needed in the first step and all the output parameters, which are 193 
again input for the next step and so on, is missing. All this is needed for five optical properties (3 194 
beta and 2 ext). All this is not presented. What about uncertainties in the retrieval? How can we get 195 
a convincing opinion on the potential (and especially the limits) if we have only Fig 3 and then the 196 
correlation plots in Figure 4. Figures 6 and Figure 7 are useful. But we need to see the overall 197 
concept (equations, including uncertainty computation approaches.) And we need it for other 198 
aerosol types (dust, haze, marine..), not only for NCP aerosol which is of course an important aerosol 199 
mixture. 200 
Response: 201 
Thank you for your advice. We have already expressed the retrieval step more clearly according to 202 
your suggestion. 203 
P8, L4-6 describes the last step of the algorithm, and we have added a word ‘Finally’ to avoid 204 
misunderstandings. 205 
We have tried to make a flow chart to contain all the details, but it would make the figure really 206 
complicated. So we remain the flow chart unchanged, because it is concise and easy for the readers 207 
to understand. For more detailed information, the algorithm is now described step by step in Sect. 208 
3.1, and we believe it is now clear to the readers. The idea of our method is more valuable than the 209 
details in the algorithm, and all the steps is adjustable if others want to use the idea to retrieve CCN 210 
from lidars. 211 
The uncertainties of the retrieval shown in Fig. 4 indicate the uncertainties from the concept of 212 
method. It shows whether humidogram parameters, Ångström exponent, and lidar ratios can 213 
describe the variation of the defined optical-related activation ratio. Uncertainties can also arise 214 
from the assumption of the aerosol model, the κ-Köhler theory, and the Mie theory. All the 215 
assumptions and theories are not exactly what the real world is. These uncertainties are evaluated 216 
by lots of closure studies. In practical application, uncertainties also come from lidar and other 217 
corresponding measurements. These uncertainties could be analyzed by Monte-Carlo method if the 218 
uncertainties of all the measured value is known. 219 
As for the limitations, we have already addressed in the summary in the public version of the 220 



 6 

manuscript (the second last paragraph): 221 
‘It should be noted that the theoretical analyses in this paper are based on datasets of continental 222 
aerosols, and the implement of Mie theory also limits the scope of the results. The results can be 223 
applied in the North China Plain but are not fit for sea salts and mineral dust. Studies with datasets 224 
of other aerosol types should be carried out in the future. Although the applicability of this new 225 
method is limited by large uncertainties in RH profiles, comparison between real measured MWRL 226 
data and airborne in situ measurement should also be conducted.’ 227 
 228 
Reference 229 
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Abstract. Determination of cloud condensation nuclei (CCN) number concentrations at cloud base is important to constrain 

aerosol-cloud interactions. A new method to retrieve CCN number concentrations using backscatter and extinction profiles 

from multiwavelength Raman lidars is proposed. The method implements hygroscopic enhancements of 

backscatter/extinctionbackscatter and extinction with relative humidity to derive dry backscatter/extinctionbackscatter and 

extinction and humidogram parameters. Humidogram parameters, Ångström exponents, and lidar extinction-to-backscatter 15 

ratios are then linked to the ratio of CCN number concentration to dry backscatter/extinctionbackscatter and extinction 

coefficient (AR#). This linkage is established based on the datasets simulated by Mie theory and κ-Köhler theory with in situ 

measured particle size distributions and chemical compositions. CCN number concentration can thus be calculated with AR# 

and dry backscatter/extinctionbackscatter and extinction. An independent theoretical simulated datasets is used to validate this 

new method and results show that the retrieved CCN number concentrations at supersaturations of 0.07%, 0.10%, and 0.20% 20 

are in good agreement with theoretical calculated values. Sensitivity tests indicate that retrieval error in CCN arise mostly from 

uncertainties in extinction coefficients and RH profiles. The proposed method improves CCN retrieval from lidar 

measurements and has great potential in deriving scarce long-term CCN data at cloud base which benefits aerosol-cloud 

interaction studies. 

1 Introduction 25 

Anthropogenic activities have caused a hugean increase in atmospheric aerosols, and some of the aerosol particles affect the 

climate by serving as cloud condensation nuclei (CCN). CCN in clouds can modify cloud forming processes and cloud 

microphysical properties (Rosenfeld et al., 2014). Although numerous impacts of aerosol-cloud interactions on radiative 

forcing (McCoy et al., 2017;Zhou et al., 2017), precipitation (Xu et al., 2017;Fan et al., 2018), cloud electrification (Wang et 

al., 2018), and severe weathers or hazards (Fu et al., 2017) have been discovered, constraining the relationships between 30 
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aerosols and clouds is still a big challenge (Seinfeld et al., 2016). Lacking the knowledge of aerosol-cloud interactions limits 

our ability to estimate climate forcing caused by aerosols (Boucher et al., 2013). 

Aerosol CCN supersaturation activation spectrum is one of the most critical parameters to quantify aerosol-cloud interactions 

(Schmale et al., 2018). Despite that a large amount of CCN number concentrations near ground have been measured worldwide 

(Tao et al., 2017), ground-measured CCN may not represent CCN at cloud base that alter clouds directly. Obtaining CCN near 5 

cloud base becomes a crucial issue. Cloud base CCN can be measured in situ on aircraft platforms, but airborne measurements 

have the limitations of huge costs and discontinuity. Satellites are difficult to observe CCN at cloud base, because clouds 

alwayscan obscure aerosol signals beneath them. Rosenfeld et al. (2016) have proposed an alternative approach for satellites 

to retrieve CCN concentrations using clouds as CCN chambers, however, employing CCN concentrations derived with this 

strategy limits our exploration of the relationship between CCN concentrations and cloud droplet concentrations in the natural 10 

environment. So far, CCN concentrations at cloud base are scarce for aerosol-cloud interaction studies. 

Ground-based lidars can continuously provide optical properties of aerosol particles from ground up to cloud base (Mattis et 

al., 2016;Barreto et al., 2019), showingsuggesting great potential in deriving CCN concentrations near cloud base. Ghan and 

Collins (2004) propose a simple method to infer CCN profiles with the combination of surface in situ CCN and aerosol optical 

measurements. The method is only applicable when boundary layer is well mixed from surface to cloud base (Ghan et al., 15 

2006). Multiwavelength Raman lidars (MWRLs) are increasingly used to detect aerosol vertical distributions in recent years. 

The principle of MWRLs allows independent retrieval of particle backscatter (β) and extinction coefficients (α), which 

provides more information about particle microphysical properties (Müller et al., 2016). The 3β+2α MWRL systems 

(backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm) have been widely 

recommended to derive particle microphysical properties (Burton et al., 2016). Existing approaches to retrieve CCN using 20 

MWRLs isare based on microphysical inversion techniques (Mamouri and Ansmann, 2016). Retrieved optical-equivalent 

particle size distributions together with assumed activation critical diameters are utilized to calculate CCN concentrations (Lv 

et al., 2018). 

There are three major challenges in CCN concentration retrieval with lidars. The first is the conversion of lidar-derived optical 

properties into particle number concentrations. High uncertainties of retrieved particle number concentrations could be an 25 

important source of CCN retrieval error. The second one is the determination of particle hygroscopicity in order to evaluate 

the ability of particles to participate as CCN. Particle hygroscopicity, which is highly related to chemical composition and 

aging/coating effect, is found to cause nonnegligible variations in cloud droplet activation (Hudson, 2007;Zhang et al., 2017). 

The last is the influence of high relative humidity (RH) near clouds. Aerosol particles are likely to be humidified in the ambient 

environment, and the consequent changes in optical properties make CCN retrieval more complicatedchallenging. Most studies 30 

working on CCN retrieval with MWRLs mainly focus on deriving particle number concentrations, but seldom commence to 

solve the issue of hygroscopicity. 

In recent years, several aerosol hygroscopic studies based on lidar measurements have been carried out (Fernández et al., 

2017;Lv et al., 2017;Bedoya-Velásquez et al., 2018). Backscatter and extinction enhancement factors can be derived with lidar 
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measurements and RH profiles. The enhancement factor, which is associated with both particle size and hygroscopicity (Kuang 

et al., 2017), is defined as: 

𝑓#(RH, 𝜆) =
#(+,,-)

#(+,./0,-)
 , (1) 

where 𝑓# is the enhancement factor of the optical property 𝜉 (backscatter or extinction) at a specific light wavelength 𝜆 and 

RH, and RH234 is the reference RH value. Many studies manifest that lidar-derived enhancement factors are in good agreement 5 

with in situ measurements (Wulfmeyer and Feingold, 2000;Pahlow et al., 2006;Fernández et al., 2015;Rosati et al., 2016). 

Feingold and Morley (2003) demonstrate that the extent of backscatter and extinction enhancements hints at the ability of 

particles to serve as CCN. Tao et al. (2018) use in situ measured light scattering enhancement factors to predict NCCN at 0.07% 

supersaturation, and the result shows strong consistency with CCN counter. 

In this paper, a new method to retrieve CCN number concentrations for 3β+2α MWRL systems (backscatter coefficients at 10 

355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm) is proposed based on κ-Köhler theory (Petters and 

Kreidenweis, 2007) and Mie theory (Bohren and Huffman, 2007). Enhancements of backscatter and extinction with RH are 

first implemented in CCN retrieval using MWRLs. In this paper, a new method to retrieve CCN number concentrations for 

3β+2α MWRL systems is proposed. Theoretical simulations are carried out to seek the relationship between CCN number 

concentrations and lidar-derived optical properties. The simulation implements κ-Köhler theory (Petters and Kreidenweis, 15 

2007) to describe particle hygroscopic growth and activation process. Mie theory (Bohren and Huffman, 2007) is utilized to 

calculate particle backscatter and extinction coefficients from in situ measured aerosol microphysical and chemical properties. 

The paper is structured as follows. Section 2 introduces the measured and simulated datasets used in this paper. Section 3 

presents the methodology. Firstly, suitable supersaturation conditions for lidar retrieval are discussed in Sect 3.1. Performances 

of two parameterization scheme for backscatter and extinction humidogram are evaluated in Sect 3.2. In Sect. 3.3, theThe new 20 

CCN retrieval method for MWRLs and the sensitivity tests are respectively described in detail Sect. 3.1 and Sect. 3.2. 

Sensitivity tests are carried out in Sect. 3.43.2. Results and summary discussions are given in Sect. 4 and Sect. 5, respectively. 

Section 5 summarizes the paper. 

2 Data 

Since it is not easy to accumulate large datasets of simultaneous measurements of lidars and aircrafts, ground-measured aerosol 25 

microphysical and chemical data are used to simulate lidar-derived backscatter and extinction coefficients and corresponding 

CCN number concentrations. The simulations are based on κ-Köhler theory and Mie theory. The required datasets include: 

particle number size distribution (PNSD), black carbon (BC) mass concentrations (𝑚67), mixing state of BC containing 

particles, and size-resolved hygroscopicity. The simulation results are used to establish and validate the new retrieval method. 
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2.1 Datasets of aerosol microphysical and chemical properties 

In situ measured aerosol properties were collected from five field campaigns at three different measurement sites in the North 

China Plain (NCP). The measurement sites are located at Wuqing (39°23′ N, 117°01′ E, 7.4 m a.s.l) in Tianjin, Xianghe (39°45′ 

N, 116°58′ E, 36 m a.s.l) and Wangdu (38°40′ N, 115°08′ E, 51 m a.s.l) in Hebei province. The specific locations, topographical 

information, and pollution status of these measurements sites are shown in Fig. S1 in the Supplement. These three sites all lie 5 

inside the polluted NCP region and are highly representative of the polluted background (Xu et al., 2011;Bian et al., 2018;Sun 

et al., 2018). Time periods, measured parameters, and corresponding instruments of individual campaign are listed in Table 1. 

During these field campaigns, except measurement for size-resolved chemical compositions, ambient particles were drawn in 

through a PM10 inlet (16.67 L/min), passed through a silica gel diffusion drier, and then were split into different instruments. 

All instruments were operated at RH less than 30%. 10 

The particle number size distributions (PNSDs) were measured with the combination of a twin differential mobility particle 

sizer (TDMPS, IfT, Leipzig, Germany) or a scanning mobility particle size spectrometer (SMPS) and an aerodynamic particle 

sizer (APS, TSI, Inc., Shoreview, MN USA, Model 3320 or Model 3321). The statistical information about the measured 

PNSDs is shown in Fig. 1a. The peaks of the PNSDs are at about 100 nm (diameter in log-scale), which shows strong 

characteristics of continental aerosols. 15 

The black carbon (BC) mass concentrations (𝑚67) were measured by a multi-angle absorption photometer (MAAP, Thermo, 

Inc., Waltham, MA USA, Model 5012). As for mixing states of BC, BC and other non-absorbing compositions were found to 

be both externally mixed and core-shell mixed during the campaigns (Ma et al., 2012). The mass fraction of externally-mixed 

BC (𝑟39:) is defined to quantify the mixing states of BC: 

𝑟39: =
;/<=_?@
;?@

 , (2) 20 

where 𝑚39:_67 is the mass concentration of externally mixed BC. According to Ma et al. (2012), 𝑟39: can be retrieved from 

hemispheric backscattering fractions (HBFs) measured by an integrating nephelometer (TSI, Inc., Shoreview, MN USA, 

Model 3563). 

Size-resolved chemical compositions all come from campaign C2. The size-resolved aerosol sampling was carried out with a 

ten-stage Berner low pressure impactor (BLPI). Chemical species including inorganic ions (NH4+, Na+, K+, Mg2+, Ca2+, NO3-, 25 

SO42-, Cl-), elemental carbon, organic carbon, water-soluble organic carbon and some other species such as dicarboxylic acids 

were analyzed from sample substrates. After transforming the ambient wet aerodynamic diameters into dry volume-equivalent 

diameters, size-resolved κ distributions were derived from measured size-resolved chemical compositions. The chemical 

compositions are found to be size dependent during the campaign C2, especially the mass fraction of organic matter (Liu et 

al., 2014). Twenty-five typical size-resolved κ distributions in the NCP are given in Fig. 1b. The measured size-resolved κ 30 

distributions vary a lot and cover a wide range of aerosol hygroscopicity (Kuang et al., 2018). More details about the 

measurements can be found in Liu et al. (2014). 
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2.2 Datasets of CCN number concentrations and lidar-derived optical properties 

In situ measured aerosol properties mentioned above are utilized to calculate CCN number concentrations and particle 

backscatter and extinction coefficients base on κ-Köhler theory and Mie theory. For each simultaneously measured PNSD, 

𝑚67, and 𝑟39: (16183 sets of data), simulations are carried out with every one of the twenty-five size-resolved κ distributions. 

CCN number concentrations can be calculated with PNSD and size-resolved κ distributions based on κ-Köhler equation. Petters 5 

and Kreidenweis (2007) introduce the κ-Köhler equation to describe the relationship between particle/dropletparticle or droplet 

diameter D and critical supersaturation ratio (SS) or RH with a single hygroscopic parameter κ: 

RH(𝐷) = 1 + SS(𝐷) =
EFGEH.I

F

EFGEH.I
F (JGK)

exp O
PQR/TUV
WXYVE

Z , (3) 

where 𝐷[2\ is particle dry diameter, 𝜎^/_ is the surface tension of the solution/airsolution-air interface, 𝑀a is the molecular 

weight of water, R is the universal gas constant, T is temperature, and 𝜌a is the density of water. For a specific supersaturation, 10 

critical activation diameter can be derived with κ-Köhler equation using size-resolved κ distributions. CCN number 

concentrations thereby can be calculated by integrating number concentrations of particles larger than the critical diameter. 

Given PNSD at dry condition, SRKD, and 𝑟39:, κ-Köhler equation can be used to estimate CCN number concentrations by 

calculating critical diameter. CCN number concentrations at the supersaturations of 0.07%, 0.10%, 0.20%, 0.40%, and 0.80% 

are accordingly simulated. The selected supersaturation ratios are widely used in CCN measurements. 15 

Particle backscatter and extinction can be calculated with PNSD, 𝑚67, and 𝑟39: using Mie models. Mie theory can solve light 

scattering problems of homogeneous and coated spherical particles. Without the consideration of mineral dust, using Mie 

model is quite reasonable because particles are likely to be spherical near clouds where the RH cloud could be relatively high. 

When simulating particle backscatter and coefficients, PNSD, 𝑚67, 𝑟39:, and complex refractive index are essentialneeded. 

PNSD at different RH can be calculated with κ-Köhler equation as well. The refractive indices of BC, non-absorbing 20 

component, and pure water are set to be 1.8+0.54i (Ma et al., 2012), 1.53+10-7i (Wex et al., 2002), and 1.33+10-7i respectively. 

More detail about calculations of lidar-derived optical properties can be found in (Zhao et al., 2017). Backscatter coefficients 

(355, 532, and 1064 nm) and extinction coefficients (355 and 532 nm) at dry condition and RH from 60-90% are simulated 

with an interval of 1%. 

The simulations are introduced in detail in Sect. S3 in the Supplement. The new method and all the analyses in this paper are 25 

based on the Mie model simulated datasets, and all the simulations mentioned above are implemented. 

3 Methodology 

3.1 Supersaturations for lidar CCN retrieval 

CCN number concentrations are related with supersaturations. Critical diameters of each supersaturations calculated with 

twenty-five size-resolved κ distributions are shown in Fig. 2a. Most of the critical diameters at supersaturation of 0.07% are 30 
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larger than 200 nm, while critical diameters at supersaturation of 0.80% are around 50 nm. Suitable supersaturations for lidar 

CCN retrieval depend on the ability of lidar optical properties to provide information about number and hygroscopicity of 

CCN-related sizes. 

Size cumulative contributions of particle number of all measured particle size distribution and corresponding calculated 

backscatter and extinction at dry condition are also displayed in Fig. 2a. As the cumulative contributions of particle number 5 

suggest, particles with diameter less than 100 nm dominate particle number concentrations (over 65%). However, most 

backscatter and extinction come from particles larger than 200 nm (around 90%) and almost 100% come from particles larger 

than 100 nm. If critical diameter is small, dry backscatter and extinction are insensitive to particles diameters that contribute 

to most CCN concentrations. 

Size-resolved enhancement contributions of backscatter and extinction are calculated to discuss hygroscopicity sensitive size 10 

of optical enhancement factor measurement. The enhancement contribution is defined as the difference between optical cross-

sections of RH at 90% and 60%, and represents the proportion of each size to the enhancement in backscatter or extinction. 

As is shown in Fig. 2b, the contributions of the extinction enhancements are concentrated in the diameters within 200 nm to 

700 nm, and extinction enhancement at 355 nm is related to smaller particles than that at 532 nm. Strong oscillations are found 

in size enhancement contributions of backscatter coefficients. Similar to particle number, particles with diameters smaller than 15 

100nm contributes little to the enhancements of both backscatter and extinction. 

Comparing sensitive size of optical properties and critical diameters at different supersaturations. 3β+2α MWRL systems have 

potential to retrieve CCN number concentrations at supersaturations smaller than 0.20%. It is not recommended to estimate 

CCN concentrations using lidar data at superstations larger than 0.40%. 

3.2 Humidogram parameterization for backscatter and extinction enhancements 20 

Humidogram parameterization is needed to find a representative parameter for the relationship between enhancement factor 

and RH. Unlike in situ controlled-RH measurements, there is no such a generic reference RH as dry condition for lidar 

measurements to derive enhancement factor. Inferring backscatter and extinction coefficients at dry condition (𝜉[2\) is also an 

important issue in CCN retrieval. Therefore, humidogram parameterization of lidar-derived optical properties should combine 

𝜉[2\ and 𝑓#(RH, 𝜆) together. 25 

Many equations to parameterize enhancement factors have been proposed by previous studies (Titos et al., 2016). Two one-

parameter equations are selected to test their performance on estimating 𝜉[2\ and representing particle hygroscopic growth 

characteristics. The first equation is the most commonly used one initially introduced by Kasten (1969): 

𝜉(RH, 𝜆) = 𝜉[2\(𝜆) ⋅ 𝑓#(RH, 𝜆) = 𝜉[2\(𝜆) ⋅ (1 − RH)Gef
(-) , (4) 

where the exponent 𝛾# is the fitting parameter and describes the hygroscopic behavior of the particles; the other equation is 30 

proposed based on physical understanding by Brock et al. (2016), which has been reported to have better performance in 

describing light scattering enhancement factor than Eq. (4) (Shin et al., 2018): 
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𝜉(RH, 𝜆) = 𝜉[2\(𝜆) ⋅ 𝑓#(RH, 𝜆) = 𝜉[2\(𝜆) ⋅ h1 + 𝜅#(𝜆)
+,
JG+,

j , (5) 

where 𝜅# is the fitting parameter and shows significant correlation with bulk hygroscopic parameter κ (Kuang et al., 2017). 

Here, Eq. (4) and Eq. (5) are denoted as γ-equation and κ-equation respectively. With given backscatter and extinction at 

different RH, 𝜉[2\ and 𝛾# or 𝜅# can be fitted simultaneously by means of least squares. 

Comparisons between the performances of γ-equation and κ-equation on inferring backscatter and extinction at dry condition 5 

are carried out to select a better parameterization. Four RH ranges (60%-90%, 60%-70%, 70%-80%, and 80%-90%) are 

selected. The fitted 𝜉[2\ are compared with the 𝜉[2\ calculated by Mie model. The slopes of linear regressions, determination 

coefficients (R2), and relative errors are listed in Table 2. Apparently, κ-equation has a better performance than γ-equation for 

all RH ranges. Inferring 𝜉[2\ with γ-equation will underestimate about 10%-30%. It is consistent with the finding of Haarig et 

al. (2017) that γ-equation does not hold for RH lower than 40%. The bias of backscatter is found to be larger than the bias of 10 

extinction. 

The RH range of humidogram equations also influences the fitting results. Table 2 shows the fitted 𝜉[2\ have larger bias when 

the value of RH increase. The fitted humidogram parameters 𝛾# and 𝜅# from different RH ranges are compared to each other, 

and the results are displayed in Table 3. Parameterization equations are not always perfect for the whole RH ranges, so 

humidogram parameters fitted with various RH ranges can be different. If 𝛾# and 𝜅# are used to represent hygroscopic behavior 15 

of particles, more careful attention should be paid to the RH ranges. 

Based on the comparisons above, Eq. (5) (κ-equation) is selected as our humidogram equation to derive 𝜉[2\ and 𝜅#. The RH 

range for parameter fitting used is fixed to 60%-90% in the following method. 

3.33.1 Method to retrieve CCN number concentrations using MWRL 

3.3.13.1.1 Overview 20 

An optical-related CCN activation ratio, AR# , is introduced to bridge the gap between CCN and lidar-derived optical 

properties.	AR# is the ratio between CCN number concentration and backscatter/extinctionbackscatter or extinction coefficient, 

which can be expressed as: 

AR#(SS, 𝜆) =
l@@m(nn)
#H.I(-)

= l@@m(nn)
lT/.oRop

∙ lT/.oRop
#H.I(-)

 , (446) 

where 𝑁77s is the CCN number concentration, and 𝑁_32t^tu is the total number concentration of aerosol particles. AR# can be 25 

divided into two parts: one is the ratio of CCN to the total particles, which is the origin definition of CCN activation ratio; the 

other is the ratio of total number concentration to backscatter or extinction at dry condition. Bulk CCN activation ratio is 

related with particle size distribution and hygroscopicity, and the relationship between particle number concentration and 

optical properties is mainly controlled by size distribution. Therefore, AR# could be quantified with size and hygroscopicity 

information. The key point of our method is to seek parameters that can indicate size and hygroscopicity of particles from lidar 30 
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measurement and use these parameters to estimate AR# . Besides, deriving backscatter and extinction coefficients at dry 

condition is also important. 

TheA schematic diagram of the whole algorithmmethod to retrieve CCN number concentration is shown in Fig. 32. 

Firstly, enhancement of backscatter and extinction coefficients with RH (also called humidogram) is derived from lidar 

measurements and additional ancillary data (i.e. pressure, temperature, RH profiles). Humidogram parameter which can 5 

indicate particle hygroscopicity can be fitted from humidograms with parameterization equation. Particle dry backscatter and 

extinction can also be inferred from the humidograms. This step is applied to all the 3β+2α parameters. The approaches to 

select appropriate hygroscopic layers and fit humidogram parameters, dry backscatter, and dry extinction are described in Sect. 

3.1.2. 

With the method in Sect. 3.2, 𝜉[2\ and 𝜅# can be derived with backscatter and extinction enhancements. Optical humidogram 10 

parameters 𝜅# can be regarded as parameters indicating hygroscopicity. Then, Ångström exponent (å) and lidar extinction-to-

backscatter ratio (lidar ratio, 𝑠w) are calculated from inferred dry backscatter and extinction coefficients. Extinction-related 

Ångström exponent (åx) is the most commonly used parameter to reveal information about the predominant size of aerosols. 

Generally speaking, a smaller åx represents there are more large particles. Similarly, backscatter-related Ångström exponent 

(åy) are often employed in lidar analysis (Fernández et al., 2015), and particle backscatter coefficients of different wavelengths 15 

also have been proved to have a valid Ångström exponent relationship (Komppula et al., 2012). Ångström exponent of dry 

backscatter and extinction coefficients (å#) between two wavelengths can be derived using Eq. (57): 

å#(𝜆J, 𝜆z) = − ut{(#| #}⁄ )
ut{(-| -}⁄ ) , (557) 

where the subscript 1 and 2 represents different wavelengths. Another widely used parameter to express aerosol characteristics 

in lidar studies is the particle lidar extinction-to-backscatter ratio (lidar ratio, 𝑠w), which is defined as the ratio of extinction 20 

coefficient to backscatter coefficient at a specific light wavelength: 

𝑠w(𝜆) =
x(-)
y(-)

= P�
�(�)⋅�

 . (668) 

As is shown in Eq. (76), lidar ratio is determined by the scattering phase function at 180° 𝑃(𝜋) and the single scattering albedo 

ω. 𝑃(𝜋) is mainly influenced by particle size and ω indicates the content and mixing state of light absorbing components. 

Lidar ratio is often utilized in aerosol type classification and is proved to be very sensitive to particle sizes (Zhao et al., 2017). 25 

Particle type information can also be regard as an alternative representative of hygroscopicity.The lidar ratio can provide 

information on particle type and also serve as a proxy for particle hygroscopicity. Therefore, lidar ratio of dry particles could 

be a reliable parameter to estimate AR#.  

Next, å# , 𝑠w , and humidogram parameters are utilized to estimate AR# . AR#  of all the 3β+2α parameters is calculated. 

Statistical relationship among humidogram parameters,  å# , 𝑠w , 𝜅# , and AR#  are used in our new method. Based on the 30 

statistical relationship, AR# can be estimated by å#, 𝑠w, and 𝜅#.The estimation of AR# is introduced in Sect. 3.1.3 in detail. The 

implement of å#  and 𝑠w  is quite similar to the microphysical inversion process for particle size distribution retrieval. 
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Microphysical inversion is a physics-based approach but will bring hugelarge uncertainties in retrieving particle number 

concentrations. Constraining AR# directly with statistical relationship is a much more simple and straightforward way. 

Finally, Afterafter AR# of backscatter and extinction at different wavelengths are derived, CCN number concentration can be 

calculated by multiplying AR# by the corresponding 𝜉[2\. The average value of CCN concentrations calculated by different 

𝜉[2\ is the final retrieval result.  5 

The schematic diagram of the whole algorithm is shown in Fig. 3. 

3.3.23.1.2 Appropriate retrieval layersDerivation of humidogram parameters, dry backscatter, and dry extinction from 
lidar measurement 

A constraint needs to be satisfied when quantifying the enhancements of backscatter and extinction coefficients with lidar 

measurements. The selected vertical layers must be well-mixed, so we can guarantee that the variations of particle 10 

backscatter/extinctionbackscatter and extinction coefficients are caused by different RH and not by various aerosol types or 

loads. Atmospheric vertical homogeneity is fulfilled if the layer has little variability of virtual potential temperature profile 

and water vapor mixing ratio profile (Lv et al., 2017). Additional analyses can also be considered to evaluate vertical mixing 

of air masses, such as backward trajectory, horizontal wind velocities at different altitude, or the third moment of the frequency 

distribution of vertical wind velocities (Bedoya-Velásquez et al., 2018). 15 

Once vertical homogeneity is ensured, physical and chemical properties at dry condition can be assumed to be uniform in the 

selected layer, and the number concentrations are proportional to air molecule number density. Accordingly, the relative 

variations of particle backscatter/extinctionbackscatter and extinction coefficients against different RH can be achieved after 

normalizing the backscatter and extinction coefficients with air molecule number density. 

Humidogram parameterization is needed to find a representative parameter for the relationship between enhancement factor 20 

and RH. Unlike in situ controlled-RH measurements, there is no such a generic reference RH as dry condition for lidar 

measurements to derive enhancement factor. Inferring backscatter and extinction coefficients at dry condition (𝜉[2\) is also an 

important issue in CCN retrieval. Therefore, humidogram parameterization of lidar-derived optical properties should combine 

𝜉[2\ and 𝑓#(RH, 𝜆) together. 

Many equations to parameterize enhancement factors have been proposed by previous studies (Titos et al., 2016). Two one-25 

parameter equations are selected to test their performance on estimating 𝜉[2\ and representing particle hygroscopic growth 

characteristics. The first equation is the most commonly used one initially introduced by Kasten (1969): 

𝜉(RH, 𝜆) = 𝜉[2\(𝜆) ⋅ 𝑓#(RH, 𝜆) = 𝜉[2\(𝜆) ⋅ (1 − RH)Gef
(-) , (774) 

where the exponent 𝛾# is the fitting parameter and describes the hygroscopic behavior of the particles; the other equation is 

proposed based on physical understanding by Brock et al. (2016), which has been reported to have better performance in 30 

describing light scattering enhancement factor than Eq. (47) (Shin et al., 2018): 

𝜉(RH, 𝜆) = 𝜉[2\(𝜆) ⋅ 𝑓#(RH, 𝜆) = 𝜉[2\(𝜆) ⋅ h1 + 𝜅#(𝜆)
+,
JG+,

j , (885) 
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where 𝜅# is the fitting parameter and shows significant correlation with bulk hygroscopic parameter κ (Kuang et al., 2017). 

Here, Eq. (47) and Eq. (58) are denoted as γ-equation and κ-equation respectively. With given backscatter and extinction at 

different RH, 𝜉[2\ and 𝛾# or 𝜅# can be fitted simultaneously by means of least squares. 

Comparisons between the performances of γ-equation and κ-equation on inferring backscatter and extinction at dry condition 

are carried out to select a better parameterization. Four RH ranges (60%-90%, 60%-70%, 70%-80%, and 80%-90%) are 5 

selected. The fitted 𝜉[2\ are compared with the 𝜉[2\ calculated by Mie model. The slopes of linear regressions, determination 

coefficients (R2), and relative errors are listed in Table 2. Apparently, κ-equation has a better performance than γ-equation for 

all RH ranges. Inferring 𝜉[2\ with γ-equation will underestimate about 10%-30%. It is consistent with the finding of Haarig et 

al. (2017) that γ-equation does not hold for RH lower than 40%. The bias of backscatter is found to be larger than the bias of 

extinction. 10 

The RH range of humidogram equations also influences the fitting results. Table 2 shows the fitted 𝜉[2\ have larger bias when 

the value of RH increase. The fitted humidogram parameters 𝛾# and 𝜅# from different RH ranges are compared to each other, 

and the results are displayed in Table 3. Parameterization equations are not always perfect for the whole RH ranges, so 

humidogram parameters fitted with various RH ranges can be different. If 𝛾# and 𝜅# are used to represent hygroscopic behavior 

of particles, more careful attention should be paid to the RH ranges. 15 

Based on the comparisons above, Eq. (58) (κ-equation) is selected as our humidogram equation to derive 𝜉[2\ and 𝜅#. The RH 

range for parameter fitting used is fixed to 60%-90% in the following method. 

3.3.33.1.3 Estimation of 𝐀𝐑𝝃 

Ångström exponents, lidar ratios, and optical humidogram parameters 𝜅# are used to estimate optical-related activation ratio 

AR#. Concerning the Ångström exponents and lidar ratios are not independent to each other (any parameter can be calculated 20 

from other parameters), we reduce the number of parameters to a sufficient number to represent all the information. The 

selected nine parameters are listed in Table 4. There are no explicit expressions between these parameters and AR#, and the 

relationships between them are highly nonlinear. One possible way to seek the relationship between the nine parameters and 

AR#solve this problem is to build a lookup table, but too many input parameters would make the lookup table so large to build 

and operate. 25 

In the past few decades, machine learning has been a field that has developeds rapidly, which experiences a very wide range 

of applications (Grange et al., 2018). Compared to traditional statistical methods, many machine learning techniques are 

nonparametric and do not need to fulfill many assumptions required for statistical methods (Immitzer et al., 2012). Random 

forest (RF) is an ensemble decision tree machine learning method that can be used for regression. (Breiman, 2001;Tong et al., 

2003). Beside the free restraints on input parameters and assumptions, RF also has the advantage of being able to explain and 30 

investigate the learning process (Kotsiantis, 2013). The Python module RandomForestRegressor from the Python Scikit-Learn 



11 
 

library (http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html, last access: 18 

December 2018) are utilized as the RF model. The nine parameters in Table 4 are the input parameters for the RF model, and 

the AR# of the 3β+2α are the output parameters. 

Some tuning parameters required by RF model need to be specified by users. Experiments are made to determine the optimal 

values of the tuning parameters. Experiment results are showed in Fig. S3 S7 in the Supplement and the detailed settings of 5 

the RF model are listed in Table S1 S2 in the Supplement. In this case, the results are rather insensitive to the tuning parameters. 

Data simulated with datasets measured from campaign C1-C4 are utilized as the training data, and those from C5 are used as 

test data. 

3.43.2 Sensitivity test 

Both systematic and random errors exist in lidar-retrieved backscatter and extinction coefficients (Mattis et al., 2016). 10 

Systematic errors in backscatter and extinction can come from instrumentation setup, data processing method, and retrieval 

algorithm. Sensitivity test is carried out to test the impact of systematic errors of backscatter and extinction on CCN retrieval. 

Errors in backscatter or extinction influence the value of Ångström exponents and lidar ratios but have no impact on 𝜅#. The 

errors of individual backscatter or extinction are considered to be independent, though systematic errors of different parameters 

are related. The systematic errors are given in the range of -20% to 20% with an interval of 2%. In each test, the error is only 15 

applied to one parameter, and other parameters are error-free. 

RH is another crucial factor in this new method to retrieve CCN. Profiles of RH derived by remote sensing techniques are also 

influenced by errors. At present, RH profiles are usually obtained with the combination of temperature from microwave 

radiometer and water vapor mixing ratio from MWRL. Both measurements can cause systematic and random errors in RH 

(Bedoya-Velásquez et al., 2018). Errors in RH will influence the values of 𝜉[2\ and 𝜅#, which in turn influence all the nine 20 

input parameters. Systematic errors ranging from -10% to 10% in intervals of 1% are considered for RH. 

Random errors in observations can be reduced by temporal averaging but cannot be eliminated. The influence of random errors 

in backscatter, extinction, and RH on CCN retrieval are investigated with Monte Carlo method. Errors obeying Gaussian 

distribution are generated randomly with the mean value of zero. The standard deviation of Gaussian distribution is 10% for 

backscatter/extinctionbackscatter and extinction and 5% for RH. The procedure is repeated for 2000 times. All the 80575 sets 25 

of data from campaign C5 are used for sensitivity test. 

4 Results and discussions 

3.14.1 Supersaturations for lidar CCN retrieval 

CCN number concentrations are related with supersaturations.  Critical diameters of each supersaturations calculated with 

twenty-five size-resolved κ distributions are shown in Fig. 23a. Most of the critical diameters at supersaturation of 0.07% are 30 
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larger than 200 nm, while critical diameters at supersaturation of 0.80% are around 50 nm. Suitable supersaturations for lidar 

CCN retrieval depend on the ability of lidar optical properties to provide information about number and hygroscopicity of 

CCN-related sizes. 

Size cumulative contributions of particle number of all measured particle size distribution and corresponding calculated 

backscatter and extinction at dry condition are also displayed in Fig. 23a. As the cumulative contributions of particle number 5 

suggest, particles with diameter less than 100 nm dominate particle number concentrations (over 65%). However, most 

backscatter and extinction come from particles larger than 200 nm (around 90%) and almost 100% come from particles larger 

than 100 nm. If critical diameter is small, dry backscatter and extinction are insensitive to particles diameters that contribute 

to most CCN concentrations. 

Size-resolved enhancement contributions of backscatter and extinction are calculated to discuss hygroscopicity sensitive size 10 

of optical enhancement factor measurement. The enhancement contribution is defined as the difference between optical cross-

sections of RH at 90% and 60%, and represents the proportion of each size to the enhancement in backscatter or extinction. 

As is shown in Fig. 23b, the contributions of the extinction enhancements are concentrated in the diameters within 200 nm to 

700 nm, and extinction enhancement at 355 nm is related to smaller particles than that at 532 nm. Strong oscillations are found 

in size enhancement contributions of backscatter coefficients. Similar to particle number, particles with diameters smaller than 15 

100nm contributes little to the enhancements of both backscatter and extinction. 

Figure 3b also shows that different 𝜅# is sensitive to the hygroscopicity of different size. Size-dependent hygroscopicity is 

important to estimate CCN rather than a bulk hygroscopicity information, especially for different supersaturation conditions. 

One humidogram may indicate the bulk hygroscopicity, but it is the hygroscopicity of small particles that influences CCN 

number concentrations most. Using 𝜅#  of all the 3β+2α can provide some information about the hygroscopicity of small 20 

particles. 

Comparing sensitive size of optical properties and critical diameters at different supersaturations. 3β+2α MWRL systems have 

potential to retrieve CCN number concentrations at supersaturations smaller than 0.20%. It is not recommended to estimate 

CCN concentrations using lidar data at superstations larger than 0.40%. 

4.14.2 CCN number concentrations retrieved with error-free data 25 

With error-free data as input, the model predicted extinction-related activation ratio at 532 nm (ARx��z) and the retrieved CCN 

number concentrations at supersaturations of 0.07%, 0.10%, and 0.20% are compared to the theoretical calculated values. A 

total of 80575 pairs of data calculated from campaign C5 are used for verification. The retrieval results are displayed in Fig. 

4. The values ARx��z at a specific supersaturation are distributed in a wide range and can span over an order of magnitude, 

indicating that the relationship between CCN and optical parameters is very complex. According to Fig. 4, all data points are 30 

distributed almost evenly on both sides of the 1:1 line and the relative errors of most points are within 20%. The determination 

coefficients (R2) of CCN concentrations are all larger than 0.97, and the results do not show obvious systematic deviations. 
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The retrieval errors are found to grow with supersaturation. Retrieval results for higher supersaturations (i.e. 0.40% and 0.80%) 

is displayed in Fig. S4 S8 in the Supplement. There are larger errors for supersaturations of 0.40% and 0.80%. Only 47.76% 

of the retrieved CCN number concentration at supersaturation of 0.80% have relative errors less than 20%. The results are 

consistent with the previous analysis in Sect. 3.1, which meansdemonstrate again that lidars may not be sufficient enough to 

retrieve CCN number concentrations at supersaturations lager than 0.40%. 5 

4.24.3 Importance of size-related and hygroscopicity-related parameters 

RF models can evaluate the importance of features (input parameters) by calculating the mean decrease impurity (MDI) for 

each feature among all the trees in the forest. The MDIs and corresponding standard deviations of each parameter at different 

supersaturations are shown in Fig. 5. Importance of the nine input parameters varies with supersaturations. For 0.07% and 

0.10%, 𝜅x��� and 𝜅yJ��P are the two most important parameters, showing hugethe impact of hygroscopicity on the relationship 10 

between CCN and optical properties. For 0.20%, 	åx���&��z becomes much more important. Among the nine input parameters, 

𝜅# are denoted as hygroscopicity-related parameters, and å# are denoted as size-related parameters. Particularly, 𝑠w can be 

regarded as both size- and hygroscopicity-related parameter. As is shown in Fig. 5, hygroscopicity-related parameters, 

especially 𝜅x���, 𝜅yJ��P, and 𝑠w��z, play crucial roles in retrieving CCN. Size-related parameters have already been proved to 

be vital in retrieving CCN, however, humidogram parameters 𝜅#  have not been implemented in previous methods. CCN 15 

concentrations retrieved with and without 𝜅# are compared to show the importance of 𝜅#. When retrieving CCN without 𝜅#, 

the RF model is also trained with datasets from campaign C1-C4, but the input data only contains Ångström exponents and 

lidar ratios. The retrieved CCN concentrations are all compared with datasets from campaign C5, and the results are listed in 

Table 5. R2 of retrieved CCN decreases from 0.991 to 0.887 for supersaturations of 0.07%, from 0.992 to 0.857 for 0.10%, and 

from 0.973 to 0.785 for 0.20%. Retrieval errors also increase overwhelmingly, and there are significant positive systematic 20 

biases. Parameters which are derived from backscatter and extinction enhancements, 𝜅#, are indispensable parameters in CCN 

retrieval. 

4.34.4 Impact of systematic and random error on CCN retrieval 

Figure 6 shows the relative errors of CCN retrieved with systematic errors in backscatter and extinction. Errors of retrieved 

CCN increase as errors of backscatter and extinction increase, and higher supersaturations are more affected by errors of optical 25 

parameters. Errors in extinction coefficients at 355 nm (𝛼���) influence the retrieval results most. In On average, a positive 

relative error of 20% in 𝛼��� will cause about 20% overestimate in CCN number concentrations for supersaturation of 0.07%, 

about 40% overestimate for 0.10%, and about 60% overestimate for 0.20%. A negative error of 20% in 𝛼��� will underestimate 

CCN concentrations, and the degree of impact is slightly smaller than positive error. Errors in extinction coefficient at 532 nm 

(𝛼��z) and at 355nm have opposite effect on retrieval error. Bigger 𝛼��� means more small particles and higher number 30 

concentrations, and bigger 𝛼��z means more large particles. Errors in 𝛼��z do not show significant impact at supersaturations 
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of 0.07% and 0.10%, but an overwhelming effect is found at supersaturations of 0.20%. It is interesting to note that the errors 

in backscatter coefficients do not affect the results much. However, in practical applications of MWRLs, the errors in extinction 

are always much larger than the errors of backscatter. If the error of retrieved CCN concentrations needs to be limited to 20% 

at supersaturation of 0.20%, the errors of retrieved extinction coefficients should to be controlled within 5%. 

The test result of systematic error in RH is shown in Fig. 7. When RH has a negative systematic error, CCN concentrations 5 

are overestimated, and the extent of overestimation increases as the error increase. A negative error of 10% in RH will 

overestimate CCN at supersaturations at 0.20% by about 60% in average, and the standard deviation is over 60%. Effects of 

positive errors in RH is much smaller than negative errors but more complicatedcomplex. The standard deviations of retrieval 

relative error increase with RH error, and the extreme value of the mean retrieval error appears at the RH error of 5%. 

Underestimating RH will causes much more errors than overestimation. Great care should be paid to RH profiles if 10 

enhancements of backscatter and extinction with RH are utilized. 

The relative error of retrieved CCN with random errors are presented in Table 6. The mean values of relative error isare -2.8%, 

-1.3%, and 1.3% for CCN at supersaturations of 0.07%, 0.10%, and 0.20%, respectively, and the corresponding standard 

deviations are 29.7%, 31.5%, and 42.9%. The impact of random errors on the nine input parameters is also evaluated and is 

shown in Fig. 8. Random errors (10% for backscatter and extinction, and 5% RH) underestimate 𝜅# by 30%-35% in average, 15 

and the standard deviations are about 40% or more. 𝑠w��� , 𝑠w��z, and åy��z&J��P are overestimated by 5%-10%. 

5 Summary 

CCN number concentration at cloud base is a crucial and scarce parameter to constrain the relationship between aerosols and 

clouds. A new method to retrieve CCN number concentrations using backscatter and extinction coefficients from MWRL 

measurements is proposed. Enhancements of backscatter and extinction coefficients with RH are implemented to derive dry 20 

backscatter/extinctionbackscatter and extinction 𝜉[2\ and humidogram parameter 𝜅#. The ratio of CCN number concentration 

to dry backscatter or extinction coefficient AR#, which is estimated by 𝜅#, Ångström exponents, and lidar ratios, is introduced 

to retrieve CCN number concentrations. 

The method is established and verified by theoretical simulations using Mie theory and κ-Köhler theory with in situ measured 

particle size distributions, mixing states, and chemical compositions. The values of AR# are found to have large variations due 25 

to different size distributions and hygroscopicity. Theoretical analyses show that optical properties provided by current 3β+2α 

MWRL systems basically contains size distribution and hygroscopicity information of particles with diameters larger than 100 

nm, which only fits the critical diameters for supersaturations lower than 0.20%. Accordingly, CCN number concentrations at 

supersaturations of 0.07%, 0.10%, and 0.20% are retrieved. The performance of the new method is evaluated with error-free 

data, and CCN number concentrations at all three supersaturations are in good agreements with theoretical calculated values. 30 

Sensitivity tests are carried out to show the influence of systematic and random errors of lidar-derived optical properties and 

auxiliary RH profiles on CCN retrieval. Systematic errors in extinction coefficients and RH are found to have large impact on 
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error in retrieved CCN. Parameters fitted from backscatter and extinction enhancements (i.e. 𝜉[2\ and 𝜅#) is significantly 

influenced by RH. The uncertainty of RH profiles derived by remote sensing techniques is a major problem in CCN retrieval. 

Optical properties near cloud base from lidar measurements always influenced by high RH. Thus, transforming backscatter 

and extinction coefficients at ambient RH to dry conditions is a must for CCN retrieval, and accurate RH profiles are highly 

demanded. 5 

The importance of humidogram parameters 𝜅# is demonstrated by comparing the error of CCN concentration retrieved with 

and without 𝜅#. Neglecting hygroscopicity information contained in backscatter and extinction enhancements will bring huge 

errors to CCN retrieval by lidars. The performance of two parameterization schemes for backscatter and extinction 

humidograms are evaluated. The κ-equation shows better performance on inferring dry backscatter and extinction than γ-

equation. The κ-equation, therefore, is recommended to describe the hygroscopic behaviors of the backscatter and extinction 10 

coefficients from lidar measurements. The fitted hygroscopic parameter are found to be sensitive to fitting RH range when the 

RH range is limited and relatively high (between 60%-90%). This is an extreme essential problem for current research for 

aerosol hygroscopicity with lidar measurements. Great care should be paid to the RH range when evaluating the hygroscopic 

growth of the lidar-related optical properties. 

It should be noted that the theoretical analyses in this paper are based on datasets of continental aerosols, and the implement 15 

of Mie theory also limits the scope of the results. The results can be applied in the North China Plain but are not fit for sea 

salts and mineral dust. Studies with datasets of other aerosol types should be carried out in the future. Although the applicability 

of this new method is limited by large uncertainties in RH profiles, comparison between real measured MWRL data and 

airborne in situ measurement should also be conducted. 

This work furthers our understanding of the relationship between CCN and aerosol optical properties and providing an optional 20 

way to retrieve CCN number concentration profiles from lidar measurements. The newly proposed method has potential to 

provide long-term CCN at cloud base for aerosol-cloud-interaction studies. 

 

Author contribution. C. Zhao and C. Li determined the main goal of this study. W. Tan and G. Zhao designed the methods. W. 

Tan carried them out and prepared the manuscript with contributions from all co-authors. 25 

 

Competing interests. The authors declare that they have no conflict of interest. 

 

Acknowledgements. The study is supported by the National Key R&D Program of China (2016YFC0202000: Task 4) and the 

National Natural Science Foundation of China (41375008, 41590872, 9154400001, 41527807). 30 



16 
 

References 

Barreto, A., Román, R., Cuevas, E., Pérez-Ramírez, D., Berjón, A. J., Kouremeti, N., Kazadzis, S., Gröbner, J., Mazzola, M., 

Toledano, C., Benavent-Oltra, J. A., Doppler, L., Juryšek, J., Almansa, A. F., Victori, S., Maupin, F., Guirado-Fuentes, C., 

González, R., Vitale, V., Goloub, P., Blarel, L., Alados-Arboledas, L., Woolliams, E., Taylor, S., Antuña, J. C., and Yela, M.: 

Evaluation of night-time aerosols measurements and lunar irradiance models in the frame of the first multi-instrument 5 

nocturnal intercomparison campaign, Atmos. Environ., 10.1016/j.atmosenv.2019.01.006, 2019. 

Bedoya-Velásquez, A. E., Navas-Guzmán, F., Granados-Muñoz, M. J., Titos, G., Román, R., Casquero-Vera, J. A., Ortiz-

Amezcua, P., Benavent-Oltra, J. A., de Arruda Moreira, G., Montilla-Rosero, E., Hoyos, C. D., Artiñano, B., Coz, E., Olmo-

Reyes, F. J., Alados-Arboledas, L., and Guerrero-Rascado, J. L.: Hygroscopic growth study in the framework of EARLINET 

during the SLOPE I campaign: synergy of remote sensing and in situ instrumentation, Atmos. Chem. Phys., 18, 7001-7017, 10 

10.5194/acp-18-7001-2018, 2018. 

Bian, Y., Zhao, C., Xu, W., Kuang, Y., Tao, J., Wei, W., Ma, N., Zhao, G., Lian, S., Tan, W., and Barnes, J. E.: A novel 

method to retrieve the nocturnal boundary layer structure based on CCD laser aerosol detection system measurements, Remote 

Sens. Environ., 211, 38--47, 10.1016/j.rse.2018.04.007, 2018. 

Bohren, C. F., and Huffman, D. R.: Absorption and Scattering by an Arbitrary Particle, in: Absorption and Scattering of Light 15 

by Small Particles, Wiley-VCH Verlag GmbH, 57-81, 2007. 

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, 

U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate Change 2013: 

The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel 

on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, 20 

Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 571–

658, 2013. 

Breiman, L.: Random Forests, Mach. Learn., 45, 5-32, 10.1023/a:1010933404324, 2001. 

Brock, C. A., Wagner, N. L., Anderson, B. E., Attwood, A. R., Beyersdorf, A., Campuzano-Jost, P., Carlton, A. G., Day, D. 

A., Diskin, G. S., Gordon, T. D., Jimenez, J. L., Lack, D. A., Liao, J., Markovic, M. Z., Middlebrook, A. M., Ng, N. L., Perring, 25 

A. E., Richardson, M. S., Schwarz, J. P., Washenfelder, R. A., Welti, A., Xu, L., Ziemba, L. D., and Murphy, D. M.: Aerosol 

optical properties in the southeastern United States in summer &ndash; Part 1: Hygroscopic growth, Atmos. Chem. Phys., 16, 

4987-5007, 10.5194/acp-16-4987-2016, 2016. 

Burton, S. P., Chemyakin, E., Liu, X., Knobelspiesse, K., Stamnes, S., Sawamura, P., Moore, R. H., Hostetler, C. A., and 

Ferrare, R. A.: Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals, 30 

Atmos. Meas. Tech., 9, 5555-5574, 10.5194/amt-9-5555-2016, 2016. 

Fan, J., Rosenfeld, D., Zhang, Y., Giangrande, S. E., Li, Z., Machado, L. A. T., Martin, S. T., Yang, Y., Wang, J., Artaxo, P., 

Barbosa, H. M. J., Braga, R. C., Comstock, J. M., Feng, Z., Gao, W., Gomes, H. B., Mei, F., Pöhlker, C., Pöhlker, M. L., 



17 
 

Pöschl, U., and de Souza, R. A. F.: Substantial convection and precipitation enhancements by ultrafine aerosol particles, 

Science, 359, 411-418, 10.1126/science.aan8461, 2018. 

Feingold, G., and Morley, B.: Aerosol hygroscopic properties as measured by lidar and comparison with in situ measurements, 

J. Geophys. Res. Atmos., 108, n/a-n/a, 10.1029/2002JD002842, 2003. 

Fernández, A. J., Apituley, A., Veselovskii, I., Suvorina, A., Henzing, J., Pujadas, M., and Artíñano, B.: Study of aerosol 5 

hygroscopic events over the Cabauw experimental site for atmospheric research (CESAR) using the multi-wavelength Raman 

lidar Caeli, Atmos. Environ., 120, 484-498, http://dx.doi.org/10.1016/j.atmosenv.2015.08.079, 2015. 

Fernández, A. J., Molero, F., Becerril-Valle, M., Coz, E., Salvador, P., Artíñano, B., and Pujadas, M.: Application of remote 

sensing techniques to study aerosol water vapour uptake in a real atmosphere, Atmos. Res., 

https://doi.org/10.1016/j.atmosres.2017.11.020, 2017. 10 

Fu, S., Deng, X., Li, Z., and Xue, H.: Radiative effect of black carbon aerosol on a squall line case in North China, Atmos. 

Res., 197, 407-414, 10.1016/j.atmosres.2017.07.026, 2017. 

Ghan, S. J., and Collins, D. R.: Use of In Situ Data to Test a Raman Lidar–Based Cloud Condensation Nuclei Remote Sensing 

Method, J. Atmos. Ocean. Tech., 21, 387-394, 10.1175/1520-0426(2004)021<0387:uoisdt>2.0.co;2, 2004. 

Ghan, S. J., Rissman, T. A., Elleman, R., Ferrare, R. A., Turner, D., Flynn, C., Wang, J., Ogren, J., Hudson, J., Jonsson, H. H., 15 

VanReken, T., Flagan, R. C., and Seinfeld, J. H.: Use of in situ cloud condensation nuclei, extinction, and aerosol size 

distribution measurements to test a method for retrieving cloud condensation nuclei profiles from surface measurements, J. 

Geophys. Res. Atmos., 111, 10.1029/2004jd005752, 2006. 

Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., and Hueglin, C.: Random forest meteorological normalisation models 

for Swiss PM10 trend analysis, Atmos. Chem. Phys., 18, 6223-6239, 10.5194/acp-18-6223-2018, 2018. 20 

Haarig, M., Ansmann, A., Gasteiger, J., Kandler, K., Althausen, D., Baars, H., Radenz, M., and Farrell, D. A.: Dry versus wet 

marine particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength 

lidar measurements during SALTRACE, Atmos. Chem. Phys., 17, 14199-14217, 10.5194/acp-17-14199-2017, 2017. 

Hudson, J. G.: Variability of the relationship between particle size and cloud-nucleating ability, Geophys. Res. Lett., 34, n/a-

n/a, 10.1029/2006GL028850, 2007. 25 

Immitzer, M., Atzberger, C., and Koukal, T.: Tree Species Classification with Random Forest Using Very High Spatial 

Resolution 8-Band WorldView-2 Satellite Data, Remote Sens., 4, 2661, 2012. 

Kasten, F.: Visibility forecast in the phase of pre-condensation, Tellus, 21, 631-635, 10.3402/tellusa.v21i5.10112, 1969. 

Komppula, M., Mielonen, T., Arola, A., Korhonen, K., Lihavainen, H., Hyvärinen, A. P., Baars, H., Engelmann, R., Althausen, 

D., Ansmann, A., Müller, D., Panwar, T. S., Hooda, R. K., Sharma, V. P., Kerminen, V. M., Lehtinen, K. E. J., and Viisanen, 30 

Y.: Technical Note: One year of Raman-lidar measurements in Gual Pahari EUCAARI site close to New Delhi in India – 

Seasonal characteristics of the aerosol vertical structure, Atmos. Chem. Phys., 12, 4513-4524, 10.5194/acp-12-4513-2012, 

2012. 

Kotsiantis, S. B.: Decision trees: a recent overview, Artif. Intell. Rev., 39, 261-283, 10.1007/s10462-011-9272-4, 2013. 

http://dx.doi.org/10.1016/j.atmosenv.2015.08.079
http://dx.doi.org/10.1016/j.atmosenv.2015.08.079
https://doi.org/10.1016/j.atmosres.2017.11.020
https://doi.org/10.1016/j.atmosres.2017.11.020


18 
 

Kuang, Y., Zhao, C., Tao, J., Bian, Y., Ma, N., and Zhao, G.: A novel method for deriving the aerosol hygroscopicity parameter 

based only on measurements from a humidified nephelometer system, Atmos. Chem. Phys., 17, 6651-6662, 10.5194/acp-17-

6651-2017, 2017. 

Kuang, Y., Zhao, C. S., Zhao, G., Tao, J. C., Xu, W., Ma, N., and Bian, Y. X.: A novel method for calculating ambient aerosol 

liquid water content based on measurements of a humidified nephelometer system, Atmos. Meas. Tech., 11, 2967-2982, 5 

10.5194/amt-11-2967-2018, 2018. 

Liu, H. J., Zhao, C. S., Nekat, B., Ma, N., Wiedensohler, A., van Pinxteren, D., Spindler, G., Müller, K., and Herrmann, H.: 

Aerosol hygroscopicity derived from size-segregated chemical composition and its parameterization in the North China Plain, 

Atmos. Chem. Phys., 14, 2525-2539, 10.5194/acp-14-2525-2014, 2014. 

Lv, M., Liu, D., Li, Z., Mao, J., Sun, Y., Wang, Z., Wang, Y., and Xie, C.: Hygroscopic growth of atmospheric aerosol particles 10 

based on lidar, radiosonde, and in situ measurements: Case studies from the Xinzhou field campaign, J. Quant. Spectrosc. Ra., 

188, 60-70, 10.1016/j.jqsrt.2015.12.029, 2017. 

Lv, M., Wang, Z., Li, Z., Luo, T., Ferrare, R., Liu, D., Wu, D., Mao, J., Wan, B., Zhang, F., and Wang, Y.: Retrieval of Cloud 

Condensation Nuclei Number Concentration Profiles From Lidar Extinction and Backscatter Data, J. Geophys. Res. Atmos., 

123, 6082-6098, 10.1029/2017jd028102, 2018. 15 

Ma, N., Zhao, C. S., Müller, T., Cheng, Y. F., Liu, P. F., Deng, Z. Z., Xu, W. Y., Ran, L., Nekat, B., van Pinxteren, D., Gnauk, 

T., Müller, K., Herrmann, H., Yan, P., Zhou, X. J., and Wiedensohler, A.: A new method to determine the mixing state of light 

absorbing carbonaceous using the measured aerosol optical properties and number size distributions, Atmos. Chem. Phys., 12, 

2381-2397, 10.5194/acp-12-2381-2012, 2012. 

Mamouri, R.-E., and Ansmann, A.: Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol 20 

parameters, Atmos. Chem. Phys., 16, 5905-5931, 10.5194/acp-16-5905-2016, 2016. 

Mattis, I., apos, Amico, G., Baars, H., Amodeo, A., Madonna, F., and Iarlori, M.: EARLINET Single Calculus Chain – 

technical – Part 2: Calculation of optical products, Atmos. Meas. Tech., 9, 3009-3029, 10.5194/amt-9-3009-2016, 2016. 

McCoy, D. T., Bender, F. A. M., Mohrmann, J. K. C., Hartmann, D. L., Wood, R., and Grosvenor, D. P.: The global aerosol-

cloud first indirect effect estimated using MODIS, MERRA, and AeroCom, J. Geophys. Res. Atmos., 122, 1779-1796, 25 

10.1002/2016JD026141, 2017. 

Müller, D., Böckmann, C., Kolgotin, A., Schneidenbach, L., Chemyakin, E., Rosemann, J., Znak, P., and Romanov, A.: 

Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET, Atmos. Meas. 

Tech., 9, 5007-5035, 10.5194/amt-9-5007-2016, 2016. 

Pahlow, M., Feingold, G., Jefferson, A., Andrews, E., Ogren, J. A., Wang, J., Lee, Y. N., Ferrare, R. A., and Turner, D. D.: 30 

Comparison between lidar and nephelometer measurements of aerosol hygroscopicity at the Southern Great Plains 

Atmospheric Radiation Measurement site, J. Geophys. Res. Atmos., 111, n/a-n/a, 10.1029/2004JD005646, 2006. 

Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth and cloud condensation 

nucleus activity, Atmos. Chem. Phys., 7, 1961-1971, 10.5194/acp-7-1961-2007, 2007. 



19 
 

Rosati, B., Herrmann, E., Bucci, S., Fierli, F., Cairo, F., Gysel, M., Tillmann, R., Größ, J., Gobbi, G. P., Di Liberto, L., 

Di Donfrancesco, G., Wiedensohler, A., Weingartner, E., Virtanen, A., Mentel, T. F., and Baltensperger, U.: Studying the 

vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar, Atmos. Chem. Phys., 16, 

4539-4554, 10.5194/acp-16-4539-2016, 2016. 

Rosenfeld, D., Andreae, M. O., Asmi, A., Chin, M., de Leeuw, G., Donovan, D. P., Kahn, R., Kinne, S., Kivekäs, N., Kulmala, 5 

M., Lau, W., Schmidt, K. S., Suni, T., Wagner, T., Wild, M., and Quaas, J.: Global observations of aerosol-cloud-precipitation-

climate interactions, Rev. Geophys., 52, 750-808, 10.1002/2013RG000441, 2014. 

Rosenfeld, D., Zheng, Y., Hashimshoni, E., Pohlker, M. L., Jefferson, A., Pohlker, C., Yu, X., Zhu, Y., Liu, G., Yue, Z., 

Fischman, B., Li, Z., Giguzin, D., Goren, T., Artaxo, P., Barbosa, H. M., Poschl, U., and Andreae, M. O.: Satellite retrieval of 

cloud condensation nuclei concentrations by using clouds as CCN chambers, P. Natl. Acad. Sci. USA, 113, 5828-5834, 10 

10.1073/pnas.1514044113, 2016. 

Schmale, J., Henning, S., Decesari, S., Henzing, B., Keskinen, H., Sellegri, K., Ovadnevaite, J., Pöhlker, M. L., Brito, J., 

Bougiatioti, A., Kristensson, A., Kalivitis, N., Stavroulas, I., Carbone, S., Jefferson, A., Park, M., Schlag, P., Iwamoto, Y., 

Aalto, P., Äijälä, M., Bukowiecki, N., Ehn, M., Frank, G., Fröhlich, R., Frumau, A., Herrmann, E., Herrmann, H., Holzinger, 

R., Kos, G., Kulmala, M., Mihalopoulos, N., Nenes, A., amp, apos, Dowd, C., Petäjä, T., Picard, D., Pöhlker, C., Pöschl, U., 15 

Poulain, L., Prévôt, A. S. H., Swietlicki, E., Andreae, M. O., Artaxo, P., Wiedensohler, A., Ogren, J., Matsuki, A., Yum, S. S., 

Stratmann, F., Baltensperger, U., and Gysel, M.: Long-term cloud condensation nuclei number concentration, particle number 

size distribution and chemical composition measurements at regionally representative observatories, Atmos. Chem. Phys., 18, 

2853-2881, 10.5194/acp-18-2853-2018, 2018. 

Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., 20 

Kahn, R., Kraucunas, I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K. A., Ramanathan, V., 

Ramaswamy, V., Rasch, P. J., Ravishankara, A. R., Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental 

understanding of the role of aerosol−cloud interactions in the climate system, P. Natl. Acad. Sci. USA, 113, 5781-5790, 

10.1073/pnas.1514043113, 2016. 

Shin, S.-K., Tesche, M., Kim, K., Kezoudi, M., Tatarov, B., Müller, D., and Noh, Y.: On the spectral depolarisation and lidar 25 

ratio of mineral dust provided in the AERONET version 3 inversion product, Atmos. Chem. Phys., 18, 12735-12746, 

10.5194/acp-18-12735-2018, 2018. 

Sun, T., Che, H., Qi, B., Wang, Y., Dong, Y., Xia, X., Wang, H., Gui, K., Zheng, Y., Zhao, H., Ma, Q., Du, R., and Zhang, X.: 

Aerosol optical characteristics and their vertical distributions under enhanced haze pollution events: effect of the regional 

transport of different aerosol types over eastern China, Atmos. Chem. Phys., 18, 2949-2971, 10.5194/acp-18-2949-2018, 2018. 30 

Tao, J., Zhao, C., Ma, N., and Kuang, Y.: Consistency and applicability of parameterization schemes for the size-resolved 

aerosol activation ratio based on field measurements in the North China Plain, Atmos. Environ., 

https://doi.org/10.1016/j.atmosenv.2017.11.021, 2017. 

https://doi.org/10.1016/j.atmosenv.2017.11.021


20 
 

Tao, J., Zhao, C., Kuang, Y., Zhao, G., Shen, C., Yu, Y., Bian, Y., and Xu, W.: A new method for calculating number 

concentrations of cloud condensation nuclei based on measurements of a three-wavelength humidified nephelometer system, 

Atmos. Meas. Tech., 11, 895-906, 10.5194/amt-11-895-2018, 2018. 

Titos, G., Cazorla, A., Zieger, P., Andrews, E., Lyamani, H., Granados-Muñoz, M. J., Olmo, F. J., and Alados-Arboledas, L.: 

Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error 5 

sources, Atmos. Environ., 141, 494-507, 10.1016/j.atmosenv.2016.07.021, 2016. 

Tong, W., Hong, H., Fang, H., Xie, Q., and Perkins, R.: Decision Forest:  Combining the Predictions of Multiple Independent 

Decision Tree Models, J. Chem. Inf. Comp. Sci., 43, 525-531, 10.1021/ci020058s, 2003. 

Wang, Q., Li, Z., Guo, J., Zhao, C., and Cribb, M.: The climate impact of aerosols on the lightning flash rate: is it detectable 

from long-term measurements?, Atmos. Chem. Phys., 18, 12797-12816, 10.5194/acp-18-12797-2018, 2018. 10 

Wex, H., Neusüß, C., Wendisch, M., Stratmann, F., Koziar, C., Keil, A., Wiedensohler, A., and Ebert, M.: Particle scattering, 

backscattering, and absorption coefficients: An in situ closure and sensitivity study, J. Geophys. Res. Atmos., 107, LAC 4-1-

LAC 4-18, 10.1029/2000JD000234, 2002. 

Wulfmeyer, V., and Feingold, G.: On the relationship between relative humidity and particle backscattering coefficient in the 

marine boundary layer determined with differential absorption lidar, J. Geophys. Res. Atmos., 105, 4729-4741, 15 

10.1029/1999JD901030, 2000. 

Xu, W. Y., Zhao, C. S., Ran, L., Deng, Z. Z., Liu, P. F., Ma, N., Lin, W. L., Xu, X. B., Yan, P., He, X., Yu, J., Liang, W. D., 

and Chen, L. L.: Characteristics of pollutants and their correlation to meteorological conditions at a suburban site in the North 

China Plain, Atmos. Chem. Phys., 11, 4353-4369, 10.5194/acp-11-4353-2011, 2011. 

Xu, X., Guo, X., Zhao, T., An, X., Zhao, Y., Quan, J., Mao, F., Gao, Y., Cheng, X., Zhu, W., and Wang, Y.: Are precipitation 20 

anomalies associated with aerosol variations over eastern China?, Atmos. Chem. Phys., 17, 8011-8019, 10.5194/acp-17-8011-

2017, 2017. 

Zhang, F., Wang, Y., Peng, J., Ren, J., Collins, D., Zhang, R., Sun, Y., Yang, X., and Li, Z.: Uncertainty in Predicting CCN 

Activity of Aged and Primary Aerosols, J. Geophys. Res. Atmos., 10.1002/2017jd027058, 2017. 

Zhao, G., Zhao, C., Kuang, Y., Tao, J., Tan, W., Bian, Y., Li, J., and Li, C.: Impact of aerosol hygroscopic growth on retrieving 25 

aerosol extinction coefficient profiles from elastic-backscatter lidar signals, Atmos. Chem. Phys., 17, 12133-12143, 

10.5194/acp-17-12133-2017, 2017. 

Zhou, X., Ackerman, A. S., Fridlind, A. M., Wood, R., and Kollias, P.: Impacts of solar-absorbing aerosol layers on the 

transition of stratocumulus to trade cumulus clouds, Atmos. Chem. Phys., 17, 12725-12742, 10.5194/acp-17-12725-2017, 

2017. 30 

  

https://doi.org/10.1016/j.atmosenv.2017.11.021


21 
 

Table 1. Locations, time periods, parameters, and instruments of five field campaigns 

Location Wuqing Wuqing Xianghe Xianghe Wangdu 

Campaign name C1 C2 C3 C4 C5 

Time period 
7 March to 4 

April, 2009 

12 July to 14 

August, 2009 

22 July to 30 

August, 2012 

9 July to 30 

August, 2013 

4 June to 14 

July, 2014 

PNSD TSMPS+APS TSMPS+APS SMPS+APS TSMPS+APS TSMPS+APS 

𝒎𝐁𝐂 MAAP 

HBF TSI 3563 nephelometer 

Size-resolved chemical 

composition 
– 

Substrates 

sampled by 

BLPI 

– 

Location Wuqing Wuqing Xianghe Xianghe Wangdu 

Campaign name C1 C2 C3 C4 C5 

Time period 
7 March to 4 

April, 2009 

12 July to 14 

August, 2009 

22 July to 30 

August, 2012 

9 July to 30 

August, 2013 

4 June to 14 

July, 2014 

PNSD TSMPS+APS TSMPS+APS SMPS+APS TSMPS+APS TSMPS+APS 

𝒎𝐁𝐂 MAAP MAAP MAAP MAAP MAAP 

HBF TSI 3563 TSI 3563 TSI 3563 TSI 3563 TSI 3563 

Size-resolved chemical 

composition 
– 

Substrates 

sampled by 

BLPI 

– – – 
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Table 2. Slopes of linear regressions, determination coefficients (R2), and relative errors (RE) between Mie model simulated 

particle dry backscatter/extinctionbackscatter or extinction coefficients and those inferred from humidogram functions. 404575 

pairs of the simulations from in situ dataset is are used. The RE are given in the form of mean value ± one standard deviation 

(std). 

RH 
(%) 

ξ 
γ-equation κ-equation 

slope R2 RE(%) slope R2 RE(%) 

60-90 

𝜶𝟑𝟓𝟓,𝐝𝐫𝐲 0.850 0.998 -16.2 ± 2.1 1.045 0.998 3.4 ± 2.4 
𝜶𝟓𝟑𝟐,𝐝𝐫𝐲 0.820 0.998 -19.2 ± 2.0 1.017 0.999 0.5 ± 1.8 
𝜷𝟑𝟓𝟓,𝐝𝐫𝐲 0.784 0.960 -20.8 ± 7.2 0.817 0.971 -9.6 ± 7.5 
𝜷𝟓𝟑𝟐,𝐝𝐫𝐲 0.812 0.972 -22.7 ± 7.6 0.874 0.988 -11.7 ± 5.6 
𝜷𝟏𝟎𝟔𝟒,𝐝𝐫𝐲 0.878 0.986 -12.9 ± 5.7 0.935 0.994 -5.4 ± 4.4 

60-70 

𝜶𝟑𝟓𝟓,𝐝𝐫𝐲 0.913 1.000 -9.2 ± 1.1 1.016 1.000 1.1 ± 0.9 
𝜶𝟓𝟑𝟐,𝐝𝐫𝐲 0.900 0.999 -10.4 ± 1.3 1.005 1.000 0.0 ± 0.7 
𝜷𝟑𝟓𝟓,𝐝𝐫𝐲 0.939 0.989 -9.1 ± 6.0 0.906 0.991 -5.6 ± 4.9 
𝜷𝟓𝟑𝟐,𝐝𝐫𝐲 0.939 0.990 -9.9 ± 5.6 0.939 0.996 -6.4 ± 3.9 
𝜷𝟏𝟎𝟔𝟒,𝐝𝐫𝐲 0.966 0.997 -3.9 ± 2.9 0.974 0.999 -1.9 ± 2.0 

70-80 

𝜶𝟑𝟓𝟓,𝐝𝐫𝐲 0.852 0.999 -15.8 ± 1.9 1.037 0.999 2.7 ± 2.1 
𝜶𝟓𝟑𝟐,𝐝𝐫𝐲 0.827 0.998 -18.3 ± 1.9 1.012 0.999 0.3 ± 1.5 
𝜷𝟑𝟓𝟓,𝐝𝐫𝐲 0.799 0.950 -20.5 ± 8.9 0.818 0.968 -10.5 ± 8.1 
𝜷𝟓𝟑𝟐,𝐝𝐫𝐲 0.833 0.966 -21.4 ± 9.0 0.880 0.986 -11.7 ± 6.6 
𝜷𝟏𝟎𝟔𝟒,𝐝𝐫𝐲 0.898 0.987 -10.8 ± 5.7 0.942 0.995 -4.6 ± 4.1 

80-90 

𝜶𝟑𝟓𝟓,𝐝𝐫𝐲 0.756 0.922 -26.5 ± 3.8 1.110 0.991 8.5 ± 5.5 
𝜶𝟓𝟑𝟐,𝐝𝐫𝐲 0.702 0.994 -31.9 ± 3.1 1.047 0.995 1.9 ± 4.2 
𝜷𝟑𝟓𝟓,𝐝𝐫𝐲 0.547 0.848 -37.0 ± 11.1 0.695 0.892 -13.4 ± 14.1 
𝜷𝟓𝟑𝟐,𝐝𝐫𝐲 0.593 0.925 -42.1 ± 8.7 0.775 0.961 -19.2 ± 8.7 
𝜷𝟏𝟎𝟔𝟒,𝐝𝐫𝐲 0.702 0.934 -30.4 ± 10.3 0.867 0.971 -11.5 ± 8.8 

  5 
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Table 3. Slopes of linear regressions and determination coefficients (R2) between  𝛾# or 𝜅# fitted from RH range 60%-90% 

and those fitted from limited RH ranges (60%-70%, 70%-80%, and 80%-90%). 

RH 
(%) 

ξ 
𝜸𝝃 𝜿𝝃 

slope R2 slope R2 

60-70 

𝜶𝟑𝟓𝟓 0.992 0.958 1.113 0.955 
𝜶𝟓𝟑𝟐 0.969 0.978 1.007 0.977 
𝜷𝟑𝟓𝟓 1.019 0.814 1.213 0.819 
𝜷𝟓𝟑𝟐 0.790 0.797 0.891 0.799 
𝜷𝟏𝟎𝟔𝟒 0.806 0.834 1.011 0.812 

70-80 

𝜶𝟑𝟓𝟓 1.021 0.996 1.045 0.995 
𝜶𝟓𝟑𝟐 1.015 0.997 1.014 0.997 
𝜷𝟑𝟓𝟓 1.115 0.968 1.195 0.958 
𝜷𝟓𝟑𝟐 1.078 0.973 1.128 0.969 
𝜷𝟏𝟎𝟔𝟒 0.999 0.979 1.034 0.972 

80-90 

𝜶𝟑𝟓𝟓 0.941 0.939 0.847 0.934 
𝜶𝟓𝟑𝟐 0.957 0.969 0.969 0.967 
𝜷𝟑𝟓𝟓 0.741 0.679 0.684 0.626 
𝜷𝟓𝟑𝟐 0.970 0.851 1.002 0.827 
𝜷𝟏𝟎𝟔𝟒 1.090 0.816 1.036 0.818 
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Table 4. Lidar derived parameters for predicting optical-related CCN activation ratio ARξAR# 

Parameter Description 

𝜅x��� Fitted parameter of extinction humidogram at 355 nm in κ-equation form 

𝜅x��z Fitted parameter of extinction humidogram at 532 nm in κ-equation form 

𝜅y��� Fitted parameter of backscatter humidogram at 355 nm in κ-equation form 

𝜅y��z Fitted parameter of backscatter humidogram at 532 nm in κ-equation form 

𝜅yJ��P Fitted parameter of backscatter humidogram at 1064 nm in κ-equation form 

𝑠w��� Particle dry lidar extinction-to-backscatter ratio at 355 nm 

𝑠w��z Particle dry lidar extinction-to-backscatter ratio at 532 nm 

åx���&��z Ångström exponent of particle dry extinction coefficients between 355 and 532 nm 

åy��z&J��P Ångström exponent of particle dry backscatter coefficients between 532 and 1064 nm 
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Table 5. Slopes of linear regressions, determination coefficients (R2), and relative errors (RE) between theoretical calculated 

CCN number concentrations and CCN number concentrations retrieved with/without 𝜅# as input parameter. The relative errors 

are given in the form of mean value ± one standard deviation (std). 

Supersaturation 
Ratio 

With 𝜿𝝃 Without 𝜿𝝃 
slope R2 RE(%) slope R2 RE(%) 

0.07% 0.991 0.991 -0.8 ± 6.0 0.877 0.866 4.6 ± 26.1 
0.10% 0.992 0.989 0.1 ± 6.3 0.857 0.837 5.9 ± 26.7 
0.20% 1.005 0.973 3.9 ± 9.0 0.860 0.785 11.9 ± 28.1 
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Table 6. Mean and one standard deviation (std) values of relative errors in retrieved CCN number concentrations at different 

supersaturations with error-free and random error (10% for backscatter/extinctionbackscatter and extinction and 5% for relative 

humidity) conditions.  

Supersaturation 
Ratio 

Error-free 
(mean ± std) 

Random Error 
(mean ± std) 

0.07% -0.8% ± 6.0% -2.8% ± 29.7% 

0.10% 0.1% ± 6.3% -1.3% ± 31.5% 

0.20% 3.9% ± 9.0% 1.3% ± 42.9% 
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Figure 1. (a) Boxplot of particle number size distributions (PNSDs) in the datasets from five field campaigns. Each PNSD is 

normalized by its number concentration of total particlesmaximum value at the peak diameter. Green markers “+” represent 

the mean value of each diameter. The boxes extend from the lower to upper quartile values, with orange lines at the median. 5 

The whiskers extend from the box to the minimum/maximum values or extend from the box by 1.5 times of interquartile range. 

The flyers are not shown in the plot. (b) Twenty-five typical size-resolved κ distributions. Each dotted line with color represents 

one size-resolved κ distribution. The solid black line represents the mean value of the size-resolved κ distributions.   
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Figure 2. (a) Cumulative contributions (accumulate from large particle size to small particle size) of particle number 

concentrations (measured), dry particle backscatter coefficients (simulated), and dry particle extinction coefficients (simulated). 

The solid and dashed lines represent the median values of five field campaigns, and the shadows cover from the lower to upper 

quartile values. The box plots in brown contain statistical information about critical diameter of each supersaturation condition 5 

(right y-axis). The boxes extend from the lower to upper quartile values, with lines at the median. The whiskers extend from 

the box to the minimum/maximum values or extend from the box by 1.5 times of interquartile range. The markers “o” are the 

flyers. (b) Normalized size-resolved enhancement contributions when relative humidity increase from 60% to 90%, which are 

theoretically calculated by the mean particle number size distribution, the mean black carbon mass concentration (4.717 μg m-

3), the mean mass ratio of externally mixed black carbon (0.664%), and the mean size-resolved κ distribution.  10 
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Figure 223. Schematic diagram of newly proposed method to retrieve cloud condensation nuclei number concentrations using 

multiwavelength Raman lidar.  
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Figure 332. (a) Cumulative contributions (accumulate from large particle size to small particle size) of particle number 

concentrations (measured), dry particle backscatter coefficients (simulated), and dry particle extinction coefficients (simulated). 

The solid and dashed lines represent the median values of five field campaigns, and the shadows cover from the lower to upper 

quartile values. The box plots in brown contain statistical information about critical diameter of each supersaturation condition 5 

(right y-axis). The boxes extend from the lower to upper quartile values, with lines at the median. The whiskers extend from 

the box to the minimum/maximum values or extend from the box by 1.5 times of interquartile range. The markers “o” are the 

flyers. (b) Normalized size-resolved enhancement contributions when relative humidity increases from 60% to 90%, which 

are theoretically calculated by the mean particle number size distribution, the mean black carbon mass concentration (4.717 

μg m-3), the mean mass ratio of externally mixed black carbon (0.664%), and the mean size-resolved κ distribution.  10 
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Figure 4. Comparison of the theoretical calculated extinction-related CCN activation ratio at 532 nm and the model predicted 

extinction-related CCN activation ratios at 532 nm at supersaturations of (a) 0.07%, (c) 0.10%, and (e) 0.20%, and of the 

theoretical calculated CCN number concentrations and the retrieved CCN number concentrations at supersaturations of (b) 
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0.07%, (d) 0.10%, and (f) 0.20%. A total of 80575 pairs of data calculated from campaign C5 are used. The solid line is 1:1 

line, and the dashed lines are 20% relative difference lines. Colors represent the relative density of the data points normalized 

by the maximum data density of each panel. The relative error showed in the figure is mean value ± one standard deviation.  
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Figure 5. Importance of each feature (input parameter) output by the Random Forest model for predicting optical-related CCN 

activation ratios at supersaturations of (a) 0.07%, (b) 0.10%, and (c) 0.20%. The values of feature importance indicate the 

decrease in impurity for each feature. The length of the bars represents the mean values among all trees and the error bars give 

the standard deviations.  5 
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Figure 6. Relative errors in retrieved CCN number concentrations at supersaturations of  (a) 0.07%, (b) 0.10%, and (c) 0.20% 

as a function of systematic errors in backscatter or extinction. The markers are the mean values, and the error bars denote the 

standard deviations.  
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Figure 7. Relative errors in retrieved CCN number concentrations at supersaturations of 0.07%, 0.10%, and 0.20% as a 

function of systematic errors in relative humidity. The markers are the mean values, and the error bars denote the standard 

deviations.  
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Figure 8. Relative errors in fitted and calculated parameters with 10% random errors for backscatter/extinctionbackscatter and 

extinction and 5% random error for relative humidity. The dots are the mean values, and the error bars denote the standard 

deviations. 
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S1 Site information 

 
Figure S1. Site locations of Wuqing (39°23′N, 117°01′E, 7.4 m a.s.l), Xianghe (39°45′N, 116°58′E, 36 m a.s.l), and Wangdu 

(38°40′N, 115°08′E, 51 m a.s.l). Filled colors represents (a) elevation and (b) averaged aerosol optical depth (AOD). The AOD 

data is from reanalysis datasets of the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-5 

2, Global Modeling and Assimilation Office (GMAO) (2015), MERRA-2 instM_2d_gas_Nx: 2d,Monthly 

mean,Instantaneous,Single-Level,Assimilation,Aerosol Optical Depth Analysis V5.12.4, Greenbelt, MD, USA, Goddard Earth 

Sciences Data and Information Services Center (GES DISC), Accessed: [11 September 2018], 10.5067/XOGNBQEPLUC5). 

The averaged AOD is calculated from monthly mean values of all months during the five field campaigns shown in Table 1. 
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S2 Time series of the normalized particle number size distribution (PNSD) 

 

Figure S2. Time series of the normalized particle number size distribution from the five field campiangs. (a)-(e) represents 

campaign C1-C5, respectively. 
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S2 S3 Black carbon size distribution used in tTheoretical simulations of CCN, lidar backscatter, and extinction 

S3.1 Aerosol model assumptions 

We assume the aerosol particles act as follows: 

(1) Aerosol particles are spherical, which means the simulation results are not appropriate for mineral dust. 

(2) Particles are partially externally mixed and partially core-shell mixed. Only two kinds of aerosols are contained: pure black 5 

carbon (BC) and BC coated by non-light-absorbing components. Note that if 𝑟"#$ = 1, there exists pure BC and pure non-light-

absorbing particles. 𝑟"#$ is defined with Eq. (2) in the paper. 

(3) The shape of BC mass size distribution (BCMSD) remains unchanged and the amount is related to the total BC mass 

concentration (𝑚&'). The fixed distribution comes from the average BCMSD obtained from Berner impactor measurements 

(Ma et al., 2012) and is shown in Fig. S3. 10 

 
Figure S32. Normalized size distribution of black carbon (BC) mass/volume concentration. The distribution is the average 

black carbon mass concentration obtained from Berner impactor measurements (Ma et al., 2012) and is normalized by the 

maximum value of the distribution. 

 15 

(4)	𝑟"#$ is uniform among different particle sizes. Accordingly, number concentrations of externally mixed BC (𝑁"#$) can easily 

be calculated from BCMSD and 𝑟"#$: 

𝑁"#$(𝐷) =
./01⋅345(6)
7
86

9⋅:45
 , (S1) 

where D is diameter of the particle, 𝜌&' is the density of BC. In this study, 𝜌&' is assumed to be 1.5 g/cm3, which is also the 

density when retrieving 𝑟"#$. 20 

(5) For each particle size, the diameters of BC cores (𝐷<=>") are the same and can be derived using the following equation: 

𝐷<=>"(𝐷) = ? @(AB./01)⋅345(6)
C:45⋅[E(6)BE/01(6)]

9  , (S2) 

where 𝑁(𝐷) represents particle number size distribution (PNSD). 
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(6) The size-resolved κ distributions represent the bulk hygroscopicity of core-shell mixed particles, and externally mixed BC 

particles do not take up water. 

All these assumptions above are strong and, to some extent, inconsistent with the reality, but are certified to be reasonable for 

calculating aerosol optical properties. Plenty of works on aerosol optical closure studies (Ma et al., 2011;Ma et al., 2012) and 

aerosol optical simulations (Kuang et al., 2017;Kuang et al., 2018;Zhao et al., 2018) have been carried out with these aerosol 5 

model assumptions. In particular, Zhao et al. (2017) use the aerosol model to simulate lidar backscatter and extinction under 

different relative humidity (RH) conditions. 

S3.2 Calculations of CCN number concentrations using κ-Köhler theroy 

According to κ-Köhler theory, CCN number concentrations at a specific supersaturation level can be calculated by PNSD and 

size-resolved κ distribution. Based on Eq. (3), the critical supersaturation ratio required to activate a particle is decided by 10 

corresponding κ and 𝐷G>H. In other word, we can get a critical activation dry diameter 𝐷I with a given supersaturation ratio 

and size-resolved κ distribution. Then CCN number concentration 𝑁''J(𝑆𝑆) thereby can be calculated with Eq. (S3): 

𝑁''J(𝑆𝑆) = ∫ [𝑁(𝐷) − 𝑁"#$(𝐷)] 𝑑𝐷
6OP0
6Q(RR)

 , (S3) 

where 𝐷ST# correspond to the upper bounds of the measured PNSD. Note that we regard externally mixed pure BC as non-

hygroscopic particles, so 𝑟"#$ and 𝑚&' should also be involved to calculate 𝑁"#$, which needs to be subtracted. Otherwise, 15 

NCCN will be overestimated. 

S3.3 Calculations of particle backscatter and extinction coefficients at different RH using κ-Köhler theroy and Mie 
theory 

We use a modified BHMIE Fortran code and a modified BHCOAT Fortran code to calculate optical properties of homogeneous 

spherical particles and coated spherical particles, respectively. For a homogeneous spherical particle (i.e. externally mixed BC 20 

in this study), BHMIE can calculate particle scattering and extinction efficiency (𝑄V<T and 𝑄"#$) and scattering phase function 

with given light wavelength, particle diameter, and complex refractive index. For a coated spherical particle (i.e. core-shell 

mixed particle), diameters and complex refractive indices of both core and shell are needed in BHCOAT. The particle 

backscatter and extinction coefficients we need are derived from 𝑄V<T, 𝑄"#$, and scattering phase function at 180° 𝑃(𝜋): 

𝛼 = ∑ [∫ A
\
𝐷]𝑄"#$

6OP0
6O^_

(𝐷, 𝑖)𝑁(𝐷, 𝑖) 𝑑𝐷bc  , (S4) 25 

𝛽 = ∑ [∫ A
A@
𝐷]𝑄V<T

6OP0
6O^_

(𝐷, 𝑖)𝑃(𝜋, 𝐷, 𝑖)𝑁(𝐷, 𝑖) 𝑑𝐷bc  , (S5) 

where 𝐷Sef and 𝐷ST# correspond respectively to the lower and upper bounds of the measured PNSD, and the index i indicates 

the mixing state of particles, i.e. external or core-shell in this paper. Polarization of lidar emitted laser is neglected. 

Complex refractive indices are essential for Mie scattering calculation. Aerosol complex refractive indices are related to 

chemical components, morphology, and wavelengths of light (Cotterell et al., 2017). Both real part and imaginary part of 30 

refractive indices vary a lot in real ambient environment (Shettle and Fenn, 1979). Wavelength dependency of refractive indices 
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at wavelengths of 355 nm, 532 nm, and 1064 nm are not significant except for brown carbon (Shettle and Fenn, 1979;Bond et 

al., 2013). Neglecting the effect of brown carbon in this study, we simply assume that complex refractive indices of 

corresponding components do not change with wavelengths. The refractive indices of BC and non-light-absorbing component 

(shell) are set to be 1.8+0.54i (Ma et al., 2012) and 1.53+10-7i (Wex et al., 2002), respectively. 

Concerning aerosol hygroscopicity for core-shell mixed particles, diameters of BC cores 𝐷<=>" remain unchanged, and particle 5 

diameters D at different RH can be calculated with Eq. (3). The refractive index of the swelling shell (𝑚gVh"ii) is calculated 

following the volume mixing law (Hanel, 1968): 

𝑚gVh"ii = 𝑓V=ik$" ⋅ 𝑚gV=ik$" + (1 − 𝑓V=ik$") ⋅ 𝑚gnT$"> , (S6) 

where mg solute is the refractive index of solute (i.e. 1.53+10-7i in this study), mgwater is the refractive index of pure water (1.33+10-

7i), and 𝑓V=ik$" is the solute volume fraction of the in solution (shell), which is determined by Eq. (S7): 10 

𝑓V=ik$" =
6opq
9 B6rsp/9

69B6rsp/9  . (S7) 
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S4 Performance of fitting humidogram functions with parameterization equations 

 

Figure S4. Example of humidogram fitting using different functions. The example is calculated with one set of PNSD, BC, 

𝑟"#$, and size-resolved κ distribution. The dots represent Mie model simulations, and the dots in red (within RH range of 60-

90%) are used to fit parameterization lines. The blue line is the result of γ-equation, and the green line represents the result of 5 

κ-equation. 
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Figure S5. Comparison between Mie model calculated dry particle backscatter or extinction and those fitted from 

humidograms. 
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S5 Relationship between the nine input parameters in Table 4 

 

Figure S6. Relationship between 𝜅uvww and other 8 parameters. 

 

Table S1. Determine coefficients (R2) between the 9 input parameters in Table 4. 5 

R2 𝜅uvww 𝜅uwv] 𝜅xvww 𝜅xwv] 𝜅xAy@\ 𝑠{vww 𝑠{wv] åuvww&wv] 

𝜅uvww – – – – – – – – 

𝜅uwv] 0.880 – – – – – – – 

𝜅xvww 0.411 0.321 – – – – – – 

𝜅xwv] 0.508 0.644 0.450 – – – – – 

𝜅xAy@\ 0.126 0.222 0.016 0.056 – – – – 

𝑠{vww 0.085 0.073 0.680 0.292 0.019 – – – 

𝑠{wv] 0.026 0.070 0.117 0.423 0.070 0.360 – – 

åuvww&wv] 0.149 0.135 0.505 0.267 0.027 0.627 0.089 – 

åxwv]&Ay@\ 0.062 0.023 0.550 0.169 0.464 0.409 0.023 0.317 
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S3 S6 Determine the tuning parameters for Random Forest model 

In this study, we use the Python module RandomForestRegressor from the Python Scikit-Learn library (http://scikit-

learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html, last access: 18 December 2018) as the 

Random Forest (RF) model tool. The tuning parameters of the model are listed in Table S1S2. More detailed meanings about 

the setting values please refer to the user guide provided by the website. 5 

The most import tuning parameter in the model is the number of trees in the forest (n_estimators). The influence of 

n_estimators on the accuracy of retrieved CCN number concentrations is tested. Here we use the same test method as 

introduced in Section 4.2 in the paper. The determination coefficients (R2) and the mean absolute relative error (MARE) 

between theoretical calculated and retrieved CCN number concentrations with different n_estimators are shown in FigureFig. 

S37. The accuracy of the predictions increases as n_estimators grows bigger and are insensitive when n_estimators is bigger 10 

than 60. Considering computational and time cost, we finally set n_estimators to 100. 

Table S21. Tuning parameters and their setting values of the Python module RandomForestRegressor.  

Parameter Description Values 

n_estimators The number of trees in the forest 100 

criterion The function to measure the quality of a split “mse” 

max_features The number of features to consider when looking for the best split “auto” 

max_depth The maximum depth of the tree None 

min_samples_split The minimum number of samples required to split an internal node 2 

min_samples_leaf The minimum number of samples required to be at a leaf node 1 

min_weight_fraction_leaf 
The minimum weighted fraction of the sum total of weights (of all the input 

samples) required to be at a leaf node 
0 

max_leaf_nodes Grow trees with max_leaf_nodes in best-first fashion None 

min_impurity_decrease 
A node will be split if this split induces a decrease of the impurity greater 

than or equal to this value 
0 
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Figure S73. Influence of the number of trees in RF model on retrieving CCN number concentrations. Dependencies of tree 

numbers on (a) R2 and (b) MARE between theoretical calculated CCN number concentrations and retrieved CCN number 

concentrations under different supersaturations. 
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S4 S7 Retrieving CCN number concentrations at high supersaturations 

 
Figure S84. Comparison of the theoretical calculated extinction-related CCN activation ratio at 532 nm and the model 

predicted extinction-related CCN activation ratios at 532 nm at supersaturations of (a) 0.20%, (c) 0.40%, and (e) 0.80%, and 

of the theoretical calculated CCN number concentrations and the retrieved CCN number concentrations at supersaturations of 5 

(b) 0.20%, (d) 0.40%, and (f) 0.80%. A total of 80575 pairs of data calculated from campaign C5 are used. The solid line is 

1:1 line, and the dashed lines are 20% relative difference lines. Colors represent the relative density of the data points 

normalized by the maximum data density of each panel. The relative error showed in the figure is mean value ± one standard 

deviation. 
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S5 S8 Retrieving CCN number concentrations without hygroscopicity information 

 
Figure S95. Comparison of the theoretical calculated extinction-related CCN activation ratio at 532 nm and the model 

predicted extinction-related CCN activation ratios at 532 nm at supersaturations of (a) 0.07%, (c) 0.10%, and (e) 0.20%, and 

of the theoretical calculated CCN number concentrations and the retrieved CCN number concentrations at supersaturations of 5 

(b) 0.07%, (d) 0.10%, and (f) 0.20%. A total of 80575 pairs of data calculated from campaign C5 are used. The solid line is 

1:1 line, and the dashed lines are 20% relative difference lines. Colors represent the relative density of the data points 

normalized by the maximum data density of each panel. The relative error showed in the figure is mean value ± one standard 

deviation. 
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