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Dear editor, 1 
We really appreciated the reviewers for their patience and nice suggestions. The manuscript is 2 
revised according to their suggestions. Please see the following responses. 3 
Yours, 4 
Authors 5 
 6 
Reply to Anonymous Referee #1 7 
 8 
I am satisfied by the authors' responses to my review and I recommend this paper be accepted for 9 
publication in AMT. 10 
I do have one additional minor correction regarding the caption in Fig. 4. In the last sentence please 11 
change "showed" to "shown". 12 
Response: 13 
Revised. 14 
 15 
Reply to Anonymous Referee #2 16 
 17 
The manuscript is greatly improved. However, it is still not easy to read and one has to be an expert 18 
in the field to understand the approach. All in all, it is a very complex and complicated paper. 19 
Some recommendations: 20 
One should discuss the two recently published CCN-lidar approaches (Lv et al., JGR 2018, 21 
Mamouri and Ansmann, ACP 2016) in more detail in the introduction. What is the idea in these two 22 
foregoing papers? How do the ideas presented here differ from the foregoing methods. 23 
The paper of Mamouri and Ansmann is based on single-wavelength polarization lidar (and not on 24 
multiwavelength lidar), and applicable to marine, dust, and pollution aerosol types. 25 
Response: 26 
Additional discussions about the two recent papers were added to the introduction (page 2, line 15-27 
23; page 2, line 29-34 for the marked-up version). 28 
Mamouri and Ansmann (2016) investigate the potential of single-wavelength polarization lidar to 29 
retrieval CCN for three aerosol types (desert, non-desert continental, and marine). The polarization 30 
lidar can separate desert and non-desert by means of the particle linear depolarization ratio. Based 31 
on datasets from multiyear Aerosol Robotic Network (AERONET) observations, valid relationships 32 
are found between particle extinction coefficients and number concentrations of particles with dry 33 
radius larger than 50 nm (for non-desert and marine) and 100 nm (for desert). CCN concentrations 34 
at different supersaturations are parameterized with the particle number concentration derived from 35 
extinction profiles according to aerosol types. The consideration of the hygroscopicity of ambient 36 
particles is empirical. Besides, single-wavelength lidar also lacks of sufficient information to 37 
quantify particle number concentration, which will bring large uncertainty on CCN retrieval. 38 
Lv et al. (2018) build a look-up table based on AERONET datasets to retrieve particle number size 39 
distributions from backscatter and extinction profiles. Then assumed activation critical diameters 40 
according to aerosol type classification together with the retrieved optical-equivalent particle size 41 
distributions are utilized to calculate CCN concentrations. It is worth noting that most of the 42 
foregoing methods implement crude particle type classification to determent particle hygroscopicity. 43 
The statement of the difference of our method is also added (page 3, line 21-28 for the marked-up 44 



 2 

version). 45 
Different from the foregoing approaches which use AERONET datasets, we use in situ measured 46 
microphysical and chemical data in this study. Theoretical simulations based on in situ 47 
measurements are carried out to seek the relationship between CCN number concentrations and 48 
lidar-derived optical properties. The simulation implements κ-Köhler theory (Petters and 49 
Kreidenweis, 2007) to describe particle hygroscopic growth and activation process. Mie theory 50 
(Bohren and Huffman, 2007) is utilized to calculate particle backscatter and extinction coefficients 51 
from in situ measured aerosol microphysical and chemical properties. The enhancements of 52 
backscatter and extinction with RH are implemented to quantify particle hygroscopicity instead of 53 
using empirical estimation according to aerosol type classification. 54 
 55 
One should also clearly state …. right in the beginning and thus in the introduction: The new method 56 
is only applicable to well mixed aerosol layers with large changes in the relative humidity, and thus 57 
only in the case of the planetary boundary layer. Furthermore, the method works only in the absence 58 
of dust (non spherical particles). 59 
Response: 60 
The statement was added to the introduction. The method is not limited to the cases with large 61 
changes in RH, because the RH range is flexible. For different cases with different RH ranges, 62 
researchers only need to change the input data (parameters fitted from different RH ranges) for the 63 
random forest model. The RH range in the paper is just an example. Also, well-mixed layers are 64 
commonly found in the planetary boundary layer (PBL), but they can appear in the free troposphere, 65 
especially for cumulus above the PBL. The following statement was added (page 3, line 28-31 for 66 
the marked-up version): 67 
The new method is applicable to well-mixed aerosol layers. We take datasets in the North China 68 
Plain (NCP) as an example of this method. The NCP is influenced by heavy and complex pollution 69 
which shows strong characteristics of continental aerosols. Mineral dust and marine particles are 70 
not considered in this study. 71 
 72 
You could compare your AR values with published ones in Mamouri and Ansmann 2016 and  73 
Shinozuka, Y., et al. : The relationship between cloud condensation nuclei (CCN) concentration and 74 
light extinction of dried particles: indications of underlying aerosol processes and implications for 75 
satellite-based CCN estimates, Atmos. Chem. Phys., 15, 7585-7604, https://doi.org/10.5194/acp-76 
15-7585-2015, 2015. 77 
Response: 78 
Mamouri and Ansmann (2016) describe the relationship between extinction coefficient at 532 nm 79 
and number concentrations of particle with radius larger than 60 (n60) and 100 nm (n100) (see Figure 80 
R1). The extinction and number concentrations are all in ambient condition. According to Mamouri 81 
and Ansmann (2016), n60 represents n50 at dry condition and n100 is for desert dust which do not take 82 
up water. From Fig. 3(a) in our paper, n60 can be compared with CCN concentrations at 83 
supersaturation of 0.20%, and n100 can be compared with CCN concentrations at supersaturation of 84 
0.10%. Shinozuka et al. (2015) describe the relationship between dry extinction coefficient at 532 85 
nm and CCN number concentrations at supersaturation of 0.40% (see Figure R2). Figure R3 gives 86 
the results using our simulated data. As there are so many data points, 1000 pairs of data are selected 87 
randomly to plot in Fig. R2. The result agrees well with their results in magnitude. 88 
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 89 

Figure R1. Figure 4(a) (left) and Figure 5(a) (right) in the paper of Mamouri and Ansmann (2016). 90 
 91 

 92 
Figure R2. Figure 1 in the paper of Shinozuka et al. (2015) 93 
 94 

 95 
Figure R3. Relationship between dry extinction coefficient at 532 nm and CCN number 96 
concentrations at supersaturations of 0.10% (red), 0.20% (green), and 0.40% (grey). 97 
 98 
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If your RH is retrieved by using microwave radiometer (no water vapour Raman lidar) then relative 99 
uncertainties in the range of 10-20% are much more realistic as your 5% (in all your simulations). 100 
Response: 101 
We added additional two tests of random error considering RH uncertainty of 10% and 20%. Table 102 
6 (Table R1) and Figure 8 (Figure R4) are accordingly updated. Description and discussion in the 103 
manuscript are also renewed. 104 
Table R1. Mean and one standard deviation (std) values (mean ± std) of relative errors in retrieved 105 
CCN number concentrations at different supersaturations with different random error conditions. 106 
The uncertainty of backscatter and extinction coefficients of all the tests is 10%, and the 107 
uncertainties of relative humidity are 5%, 10%, and 20%, respectively. 108 

Supersaturation 

ratio 

 Random error 

(10% for backscatter and extinction) 

Error of relative humidity 

5% 10% 20% 

0.07% -4.1% ± 21.8% 0.2% ± 23.4% 0.7% ± 22.6% 

0.10% -1.5% ± 23.4% -2.8% ±24.0% -2.5% ±21.2% 

0.20% -1.2% ± 27.8% -9.1% ± 26.3% -5.2% ± 18.0% 

 109 

 110 
Figure R4. Relative errors in fitted and calculated parameters with 10% random errors for 111 
backscatter and extinction and 5% (blue), 10% (orange), and 20%(green) random error for relative 112 
humidity. The dots are the median values, and the error bars denote the 5th and 95th percentiles. 113 
The dashed red line marks the position of zero. 114 
 115 
Figure4: very confusing y-axis and x-axis parameters: 116 
For ‘model-predicted extinction-related CCN activation ratio…’ 117 
may be simply use ‘AR applied in the retrieval’ or simply ‘retrieval AR’ 118 
and for  119 
‘theoretical calculated extinction-related CCN activation ratio…’ 120 
take ‘true AR’ or ‘modelled AR’ 121 
Response: 122 
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Revised (see Figure R5). 123 

 124 
Figure R5. Comparison of the theoretical calculated extinction-related CCN activation ratio at 532 125 
nm (true AR) and the model predicted extinction-related CCN activation ratios at 532 nm (retrieved 126 
AR) at supersaturations of (a) 0.07%, (c) 0.10%, and (e) 0.20%, and of the theoretical calculated 127 
CCN number concentrations (true CCN number concentration) and the retrieved CCN number 128 
concentrations at supersaturations of (b) 0.07%, (d) 0.10%, and (f) 0.20%. A total of 80575 pairs of 129 
data calculated from campaign C5 are used. The solid line is 1:1 line, and the dashed lines are 20% 130 
relative difference lines. Colors represent the relative density of the data points normalized by the 131 
maximum data density of each panel. The relative error shown in the figure is mean value ± one 132 
standard deviation. 133 
 134 
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Abstract. Determination of cloud condensation nuclei (CCN) number concentrations at cloud base is important to constrain 

aerosol-cloud interactions. A new method to retrieve CCN number concentrations using backscatter and extinction profiles 

from multiwavelength Raman lidars is proposed. The method implements hygroscopic enhancements of backscatter and 

extinction with relative humidity to derive dry backscatter and extinction and humidogram parameters. Humidogram 

parameters, Ångström exponents, and lidar extinction-to-backscatter ratios are then linked to the ratio of CCN number 15 

concentration to dry backscatter and extinction coefficient (AR#). This linkage is established based on the datasets simulated 

by Mie theory and κ-Köhler theory with in situ measured particle size distributions and chemical compositions. CCN number 

concentration can thus be calculated with AR# and dry backscatter and extinction. An independent theoretical simulated dataset 

is used to validate this new method and results show that the retrieved CCN number concentrations at supersaturations of 

0.07%, 0.10%, and 0.20% are in good agreement with theoretical calculated values. Sensitivity tests indicate that retrieval 20 

error in CCN arise mostly from uncertainties in extinction coefficients and RH profiles. The proposed method improves CCN 

retrieval from lidar measurements and has great potential in deriving scarce long-term CCN data at cloud base which benefits 

aerosol-cloud interaction studies. 

1 Introduction 

Anthropogenic activities have caused an increase in atmospheric aerosols, and some of the aerosol particles affect the climate 25 

by serving as cloud condensation nuclei (CCN). CCN in clouds can modify cloud forming processes and cloud microphysical 

properties (Rosenfeld et al., 2014). Although numerous impacts of aerosol-cloud interactions on radiative forcing (McCoy et 

al., 2017;Zhou et al., 2017), precipitation (Xu et al., 2017;Fan et al., 2018), cloud electrification (Wang et al., 2018), and severe 

weathers or hazards (Fu et al., 2017) have been discovered, constraining the relationships between aerosols and clouds is still 
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a big challenge (Seinfeld et al., 2016). Lacking the knowledge of aerosol-cloud interactions limits our ability to estimate 

climate forcing caused by aerosols (Boucher et al., 2013). 

Aerosol CCN supersaturation activation spectrum is one of the most critical parameters to quantify aerosol-cloud interactions 

(Schmale et al., 2018). Despite that a large amount of CCN number concentrations near ground have been measured worldwide 

(Tao et al., 2017), ground-measured CCN may not represent CCN at cloud base that alter clouds directly. Obtaining CCN near 5 

cloud base becomes a crucial issue. Cloud base CCN can be measured in situ on aircraft platforms, but airborne measurements 

have the limitations of huge costs and discontinuity. Satellites are difficult to observe CCN at cloud base, because clouds can 

obscure aerosol signals beneath them. Rosenfeld et al. (2016) have proposed an alternative approach for satellites to retrieve 

CCN concentrations using clouds as CCN chambers, however, employing CCN concentrations derived with this strategy limits 

our exploration of the relationship between CCN concentrations and cloud droplet concentrations in the natural environment. 10 

So far, CCN concentrations at cloud base are scarce for aerosol-cloud interaction studies. 

Ground-based lidars can continuously provide optical properties of aerosol particles from ground up to cloud base (Mattis et 

al., 2016;Li et al., 2019), suggesting great potential in deriving CCN concentrations near cloud base. Ghan and Collins (2004) 

propose a simple method to infer CCN profiles with the combination of surface in situ CCN and aerosol optical measurements. 

The method is only applicable when boundary layer is well mixed from surface to cloud base (Ghan et al., 2006). Mamouri 15 

and Ansmann (2016) investigate the potential of single-wavelength polarization lidar to retrieval CCN for three aerosol types 

(desert, non-desert continental, and marine). The polarization lidar can separate desert and non-desert by means of the particle 

linear depolarization ratio. Based on datasets from multiyear Aerosol Robotic Network (AERONET) observations, valid 

relationships are found between particle extinction coefficients and number concentrations of particles with dry radius larger 

than 50 nm (for non-desert and marine) and 100 nm (for desert). CCN concentrations at different supersaturations are 20 

parameterized with the particle number concentration derived from extinction profiles according to aerosol types. The 

consideration of the hygroscopicity of ambient particles is empirical. Besides, single-wavelength lidar also lacks of sufficient 

information to quantify particle number concentration, which will bring large uncertainty on CCN retrieval. 

Multiwavelength Raman lidars (MWRLs) are increasingly used to detect aerosol vertical distributions in recent years. The 

principle of MWRLs allows independent retrieval of particle backscatter (β) and extinction coefficients (α), which provides 25 

more information about particle microphysical properties (Müller et al., 2016). The 3β+2α MWRL systems (backscatter 

coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm) have been widely recommended to derive 

particle microphysical properties (Burton et al., 2016). Existing approaches to retrieve CCN using MWRLs are based on 

microphysical inversion techniques Mamouri and Ansmann (2016). Lv et al. (2018) build a look-up table based on AERONET 

datasets to retrieve particle number size distributions from backscatter and extinction profiles. Then assumed activation critical 30 

diameters according to aerosol type classification together with the Retrieved retrieved optical-equivalent particle size 

distributions together with assumed activation critical diameters are utilized to calculate CCN concentrations Lv et al. (2018). 

It is worth noting that most of the foregoing methods implement crude particle type classification to determent particle 

hygroscopicity. 
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There are three major challenges in CCN concentration retrieval with lidars. The first is the conversion of lidar-derived optical 

properties into particle number concentrations. High uncertainties of retrieved particle number concentrations could be an 

important source of CCN retrieval error. The second one is the determination of particle hygroscopicity in order to evaluate 

the ability of particles to participate as CCN. Particle hygroscopicity, which is highly related to chemical composition and 

aging/coating effect, is found to cause nonnegligible variations in cloud droplet activation (Hudson, 2007;Zhang et al., 2017). 5 

The last is the influence of high relative humidity (RH) near clouds. Aerosol particles are likely to be humidified in the ambient 

environment, and the consequent changes in optical properties make CCN retrieval more challenging. Most studies working 

on CCN retrieval with MWRLs mainly focus on deriving particle number concentrations, but seldom commence to solve the 

issue of hygroscopicity. 

In recent years, several aerosol hygroscopic studies based on lidar measurements have been carried out (Fernández et al., 10 

2017;Lv et al., 2017;Bedoya-Velásquez et al., 2018). Backscatter and extinction enhancement factors can be derived with lidar 

measurements and RH profiles. The enhancement factor, which is associated with both particle size and hygroscopicity (Kuang 

et al., 2017), is defined as: 

𝑓#(RH, 𝜆) =
#(+,,-)

#(+,./0,-)
 , (1) 

where 𝑓# is the enhancement factor of the optical property 𝜉 (backscatter or extinction) at a specific light wavelength 𝜆 and 15 

RH, and RH234 is the reference RH value. Many studies manifest that lidar-derived enhancement factors are in good agreement 

with in situ measurements (Wulfmeyer and Feingold, 2000;Pahlow et al., 2006;Fernández et al., 2015;Rosati et al., 2016). 

Feingold and Morley (2003) demonstrate that the extent of backscatter and extinction enhancements hints at the ability of 

particles to serve as CCN. Tao et al. (2018) use in situ measured light scattering enhancement factors to predict NCCN at 0.07% 

supersaturation, and the result shows strong consistency with CCN counter. 20 

In this paper, a new method to retrieve CCN number concentrations for 3β+2α MWRL systems is proposed. Different from 

the foregoing approaches which use AERONET datasets, we use in situ measured microphysical and chemical data in this 

study. Theoretical simulations based on in situ measurements are carried out to seek the relationship between CCN number 

concentrations and lidar-derived optical properties. The simulation implements κ-Köhler theory (Petters and Kreidenweis, 

2007) to describe particle hygroscopic growth and activation process. Mie theory (Bohren and Huffman, 2007) is utilized to 25 

calculate particle backscatter and extinction coefficients from in situ measured aerosol microphysical and chemical properties. 

The enhancements of backscatter and extinction with RH are introduced to quantify particle hygroscopicity instead of using 

empirical estimation according to aerosol type classification. The new method is applicable to well-mixed aerosol layers. We 

take datasets in the North China Plain (NCP) as an example of this method. The NCP is influenced by heavy and complex 

pollution which shows strong characteristics of continental aerosols. Mineral dust and marine particles are not considered in 30 

this study. 
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The paper is structured as follows. The filed campaign and in situ measurements are introduced in Sect. 2.1. Section 2.2 briefly 

introduce the simulations to calculate CCN number concentrations, backscatter, and extinction coefficients from in situ 

measured microphysical and chemical data. Section 2 introduces the measured and simulated datasets used in this paper. The 

new CCN retrieval method for MWRLs is described in Sect. 3.1 in detail. Sensitivity of the method to the systematic and 

random errors of backscatter, extinction, and RH is tested in Sect. 3.2.and the sensitivity tests are respectively described in 5 

Sect. 3.1 and Sect. 3.2. Sensitivity tests are carried out in Sect. 3.2.  Results and discussions are given in Sect. 4. Section 5 

summarizes the paper. 

2 Data 

Since it is not easy to accumulate large datasets of simultaneous measurements of lidars and aircrafts, ground-measured aerosol 

microphysical and chemical data are used to simulate lidar-derived backscatter and extinction coefficients and corresponding 10 

CCN number concentrations. The simulations are based on κ-Köhler theory and Mie theory. The required datasets include: 

particle number size distribution (PNSD), black carbon (BC) mass concentrations (𝑚67), mixing state of BC containing 

particles, and size-resolved hygroscopicity. The simulation results are used to establish and validate the new retrieval method. 

2.1 Datasets of aerosol microphysical and chemical properties 

In situ measured aerosol properties were collected from five field campaigns at three different measurement sites in the North 15 

China Plain (NCP). The measurement sites are located at Wuqing (39°23′ N, 117°01′ E, 7.4 m a.s.l) in Tianjin, Xianghe (39°45′ 

N, 116°58′ E, 36 m a.s.l) and Wangdu (38°40′ N, 115°08′ E, 51 m a.s.l) in Hebei province. The specific locations, topographical 

information, and pollution status of these measurement sites are shown in Fig. S1 in the Supplement. These three sites all lie 

inside the polluted NCP region and are highly representative of the polluted background (Xu et al., 2011;Bian et al., 2018;Sun 

et al., 2018). Time periods, measured parameters, and corresponding instruments of individual campaign are listed in Table 1. 20 

During these field campaigns, except measurement for size-resolved chemical compositions, ambient particles were drawn in 

through a PM10 inlet (16.67 L/min), passed through a silica gel diffusion drier, and then were split into different instruments. 

All instruments were operated at RH less than 30%. 

The particle number size distributions (PNSDs) were measured with the combination of a twin differential mobility particle 

sizer (TDMPS, IfT, Leipzig, Germany) or a scanning mobility particle size spectrometer (SMPS) and an aerodynamic particle 25 

sizer (APS, TSI, Inc., Shoreview, MN USA, Model 3320 or Model 3321). The statistical information about the measured 

PNSDs is shown in Fig. 1a. The peaks of the PNSDs are at about 100 nm (diameter in log-scale), which shows strong 

characteristics of continental aerosols. 

The black carbon (BC) mass concentrations (𝑚67) were measured by a multi-angle absorption photometer (MAAP, Thermo, 

Inc., Waltham, MA USA, Model 5012). As for mixing states of BC, BC and other non-absorbing compositions were found to 30 
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be both externally mixed and core-shell mixed during the campaigns (Ma et al., 2012). The mass fraction of externally-mixed 

BC (𝑟39:) is defined to quantify the mixing states of BC: 

𝑟39: =
;/<=_?@
;?@

 , (2) 

where 𝑚39:_67 is the mass concentration of externally mixed BC. According to Ma et al. (2012), 𝑟39: can be retrieved from 

hemispheric backscattering fractions (HBFs) measured by an integrating nephelometer (TSI, Inc., Shoreview, MN USA, 5 

Model 3563). 

Size-resolved chemical compositions all come from campaign C2. The size-resolved aerosol sampling was carried out with a 

ten-stage Berner low pressure impactor (BLPI). Chemical species including inorganic ions (NH4+, Na+, K+, Mg2+, Ca2+, NO3-, 

SO42-, Cl-), elemental carbon, organic carbon, water-soluble organic carbon and some other species such as dicarboxylic acids 

were analyzed from sample substrates. After transforming the ambient wet aerodynamic diameters into dry volume-equivalent 10 

diameters, size-resolved κ distributions were derived from measured size-resolved chemical compositions. The chemical 

compositions are found to be size dependent during the campaign C2, especially the mass fraction of organic matter (Liu et 

al., 2014). Twenty-five typical size-resolved κ distributions in the NCP are given in Fig. 1b. The measured size-resolved κ 

distributions vary a lot and cover a wide range of aerosol hygroscopicity (Kuang et al., 2018). More details about the 

measurements can be found in Liu et al. (2014). 15 

2.2 Datasets of CCN number concentrations and lidar-derived optical properties 

In situ measured aerosol properties mentioned above are utilized to calculate CCN number concentrations and particle 

backscatter and extinction coefficients base on κ-Köhler theory and Mie theory. For each simultaneously measured PNSD, 

𝑚67, and 𝑟39: (16183 sets of data), simulations are carried out with every one of the twenty-five size-resolved κ distributions. 

CCN number concentrations can be calculated with PNSD and size-resolved κ distributions based on κ-Köhler equation. Petters 20 

and Kreidenweis (2007) introduce the κ-Köhler equation to describe the relationship between particle or droplet diameter D 

and critical supersaturation ratio (SS) or RH with a single hygroscopic parameter κ: 

RH(𝐷) = 1 + SS(𝐷) =
EFGEH.I

F

EFGEH.I
F (JGK)

exp O
PQR/TUV
WXYVE

Z , (3) 

where 𝐷[2\ is particle dry diameter, 𝜎^/_ is the surface tension of the solution-air interface, 𝑀a is the molecular weight of 

water, R is the universal gas constant, T is temperature, and 𝜌a is the density of water. For a specific supersaturation, critical 25 

activation diameter can be derived with κ-Köhler equation using size-resolved κ distributions. CCN number concentrations 

thereby can be calculated by integrating number concentrations of particles larger than the critical diameter. CCN number 

concentrations at the supersaturations of 0.07%, 0.10%, 0.20%, 0.40%, and 0.80% are accordingly simulated. The selected 

supersaturation ratios are widely used in CCN measurements. 

Particle backscatter and extinction can be calculated with PNSD, 𝑚67, and 𝑟39: using Mie models. Mie theory can solve light 30 

scattering problems of homogeneous and coated spherical particles. Without the consideration of mineral dust, using Mie 
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model is quite reasonable because particles are likely to be spherical near clouds where the RH could be relatively high. When 

simulating particle backscatter and coefficients, PNSD, 𝑚67, 𝑟39:, and complex refractive index are needed. PNSD at different 

RH can be calculated with κ-Köhler equation as well. The refractive indices of BC, non-absorbing component, and pure water 

are set to be 1.8+0.54i (Ma et al., 2012), 1.53+10-7i (Wex et al., 2002), and 1.33+10-7i respectively. Backscatter coefficients 

(355, 532, and 1064 nm) and extinction coefficients (355 and 532 nm) at dry condition and RH from 60-90% are simulated 5 

with an interval of 1%. 

The simulations are introduced in detail in Sect. S3 in the Supplement. The new method and all the analyses in this paper are 

based on the Mie model simulated datasets, and all the simulations mentioned above are implemented. 

3 Methodology 

3.1 Method to retrieve CCN number concentrations using MWRL 10 

3.1.1 Overview 

An optical-related CCN activation ratio, AR# , is introduced to bridge the gap between CCN and lidar-derived optical 

properties.	AR#  is the ratio between CCN number concentration and backscatter or extinction coefficient, which can be 

expressed as: 

AR#(SS, 𝜆) =
d@@e(ff)
#H.I(-)

= d@@e(ff)
dT/.gRgh

∙ dT/.gRgh
#H.I(-)

 , (4) 15 

where 𝑁77k is the CCN number concentration, and 𝑁_32l^lm is the total number concentration of aerosol particles. AR# can be 

divided into two parts: one is the ratio of CCN to the total particles, which is the origin definition of CCN activation ratio; the 

other is the ratio of total number concentration to backscatter or extinction at dry condition. Bulk CCN activation ratio is 

related with particle size distribution and hygroscopicity, and the relationship between particle number concentration and 

optical properties is mainly controlled by size distribution. Therefore, AR# could be quantified with size and hygroscopicity 20 

information. The key point of our method is to seek parameters that can indicate size and hygroscopicity of particles from lidar 

measurement and use these parameters to estimate AR# . Besides, deriving backscatter and extinction coefficients at dry 

condition is also important. 

A schematic diagram of the method to retrieve CCN number concentration is shown in Fig. 2. 

Firstly, enhancement of backscatter and extinction coefficients with RH (also called humidogram) is derived from lidar 25 

measurements and additional ancillary data (i.e. pressure, temperature, RH profiles). Humidogram parameter which can 

indicate particle hygroscopicity can be fitted from humidograms with parameterization equation. Particle dry backscatter and 

extinction can also be inferred from the humidograms. This step is applied to all the 3β+2α parameters. The approaches to 

select appropriate hygroscopic layers and fit humidogram parameters, dry backscatter, and dry extinction are described in Sect. 

3.1.2. 30 
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Then, Ångström exponent (å) and lidar extinction-to-backscatter ratio (lidar ratio, 𝑠o ) are calculated from inferred dry 

backscatter and extinction coefficients. Extinction-related Ångström exponent (åp) is the most commonly used parameter to 

reveal information about the predominant size of aerosols. Generally speaking, a smaller åp represents there are more large 

particles. Similarly, backscatter-related Ångström exponent (åq) are often employed in lidar analysis (Fernández et al., 2015), 

and particle backscatter coefficients of different wavelengths also have been proved to have a valid Ångström exponent 5 

relationship (Komppula et al., 2012). Ångström exponent of dry backscatter and extinction coefficients (å#) between two 

wavelengths can be derived using Eq. (5): 

å#(𝜆J, 𝜆r) = − mlt(#u #v⁄ )
mlt(-u -v⁄ ) , (5) 

where the subscript 1 and 2 represents different wavelengths. Another widely used parameter to express aerosol characteristics 

in lidar studies is the particle lidar extinction-to-backscatter ratio (lidar ratio, 𝑠o), which is defined as the ratio of extinction 10 

coefficient to backscatter coefficient at a specific light wavelength: 

𝑠o(𝜆) =
p(-)
q(-)

= Px
y(x)⋅{

 . (6) 

As is shown in Eq. (6), lidar ratio is determined by the scattering phase function at 180° 𝑃(𝜋) and the single scattering albedo 

ω. 𝑃(𝜋) is mainly influenced by particle size and ω indicates the content and mixing state of light absorbing components. 

Lidar ratio is often utilized in aerosol type classification and is proved to be very sensitive to particle sizes (Zhao et al., 2017). 15 

The lidar ratio can provide information on particle type and also serve as a proxy for particle hygroscopicity. Therefore, lidar 

ratio of dry particles could be a reliable parameter to estimate AR#. 

Next, å# , 𝑠o , and humidogram parameters are utilized to estimate AR# . AR#  of all the 3β+2α parameters is calculated. 

Statistical relationship among humidogram parameters, å#, 𝑠o, and AR# are used in our new method. The estimation of AR# is 

introduced in Sect. 3.1.3 in detail. The implement of å# and 𝑠o is quite similar to the microphysical inversion process for 20 

particle size distribution retrieval. Microphysical inversion is a physics-based approach but will bring large uncertainties in 

retrieving particle number concentrations. Constraining AR# directly with statistical relationship is a much more simple and 

straightforward way. 

Finally, after AR#  of backscatter and extinction at different wavelengths are derived, CCN number concentration can be 

calculated by multiplying AR# by the corresponding 𝜉[2\. The average value of CCN concentrations calculated by different 25 

𝜉[2\ is the final retrieval result. 

3.1.2 Derivation of humidogram parameters, dry backscatter, and dry extinction from lidar measurement 

A constraint needs to be satisfied when quantifying the enhancements of backscatter and extinction coefficients with lidar 

measurements. The selected vertical layers must be well-mixed, so we can guarantee that the variations of particle backscatter 

and extinction coefficients are caused by different RH and not by various aerosol types or loads. Atmospheric vertical 30 

homogeneity is fulfilled if the layer has little variability of virtual potential temperature profile and water vapor mixing ratio 
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profile (Lv et al., 2017). Additional analyses can also be considered to evaluate vertical mixing of air masses, such as backward 

trajectory, horizontal wind velocities at different altitude, or the third moment of the frequency distribution of vertical wind 

velocities (Bedoya-Velásquez et al., 2018). 

Once vertical homogeneity is ensured, physical and chemical properties at dry condition can be assumed to be uniform in the 

selected layer, and the number concentrations are proportional to air molecule number density. Accordingly, the relative 5 

variations of particle backscatter and extinction coefficients against different RH can be achieved after normalizing the 

backscatter and extinction coefficients with air molecule number density. 

Humidogram parameterization is needed to find a representative parameter for the relationship between enhancement factor 

and RH. Unlike in situ controlled-RH measurements, there is no such a generic reference RH as dry condition for lidar 

measurements to derive enhancement factor. Inferring backscatter and extinction coefficients at dry condition (𝜉[2\) is also an 10 

important issue in CCN retrieval. Therefore, humidogram parameterization of lidar-derived optical properties should combine 

𝜉[2\ and 𝑓#(RH, 𝜆) together. 

Many equations to parameterize enhancement factors have been proposed by previous studies (Titos et al., 2016). Two one-

parameter equations are selected to test their performance on estimating 𝜉[2\ and representing particle hygroscopic growth 

characteristics. The first equation is the most commonly used one initially introduced by Kasten (1969): 15 

𝜉(RH, 𝜆) = 𝜉[2\(𝜆) ⋅ 𝑓#(RH, 𝜆) = 𝜉[2\(𝜆) ⋅ (1 − RH)G~�
(-) , (7) 

where the exponent 𝛾# is the fitting parameter and describes the hygroscopic behavior of the particles; the other equation is 

proposed based on physical understanding by Brock et al. (2016), which has been reported to have better performance in 

describing light scattering enhancement factor than Eq. (7) (Shin et al., 2018): 

𝜉(RH, 𝜆) = 𝜉[2\(𝜆) ⋅ 𝑓#(RH, 𝜆) = 𝜉[2\(𝜆) ⋅ �1 + 𝜅#(𝜆)
+,
JG+,

� , (8) 20 

where 𝜅# is the fitting parameter and shows significant correlation with bulk hygroscopic parameter κ (Kuang et al., 2017). 

Here, Eq. (7) and Eq. (8) are denoted as γ-equation and κ-equation respectively. With given backscatter and extinction at 

different RH, 𝜉[2\ and 𝛾# or 𝜅# can be fitted simultaneously by means of least squares. 

Comparisons between the performances of γ-equation and κ-equation on inferring backscatter and extinction at dry condition 

are carried out to select a better parameterization. Four RH ranges (60%-90%, 60%-70%, 70%-80%, and 80%-90%) are 25 

selected. The fitted 𝜉[2\ are compared with the 𝜉[2\ calculated by Mie model. The slopes of linear regressions, determination 

coefficients (R2), and relative errors are listed in Table 2. Apparently, κ-equation has a better performance than γ-equation for 

all RH ranges. Inferring 𝜉[2\ with γ-equation will underestimate about 10%-30%. It is consistent with the finding of Haarig et 

al. (2017) that γ-equation does not hold for RH lower than 40%. The bias of backscatter is found to be larger than the bias of 

extinction. 30 

The RH range of humidogram equations also influences the fitting results. Table 2 shows the fitted 𝜉[2\ have larger bias when 

the value of RH increase. The fitted humidogram parameters 𝛾# and 𝜅# from different RH ranges are compared to each other, 
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and the results are displayed in Table 3. Parameterization equations are not always perfect for the whole RH ranges, so 

humidogram parameters fitted with various RH ranges can be different. If 𝛾# and 𝜅# are used to represent hygroscopic behavior 

of particles, more careful attention should be paid to the RH ranges. 

Based on the comparisons above, Eq. (8) (κ-equation) is selected as our humidogram equation to derive 𝜉[2\ and 𝜅#. The RH 

range for parameter fitting used is fixed to 60%-90% in the following method. 5 

3.1.3 Estimation of 𝐀𝐑𝝃 

Ångström exponents, lidar ratios, and optical humidogram parameters 𝜅# are used to estimate optical-related activation ratio 

AR#. Concerning the Ångström exponents and lidar ratios are not independent to each other (any parameter can be calculated 

from other parameters), we reduce the number of parameters to a sufficient number to represent all the information. The 

selected nine parameters are listed in Table 4. One possible way to seek the relationship between the nine parameters and AR# 10 

is to build a lookup table, but too many input parameters would make the lookup table so large to build and operate. 

In the past few decades, machine learning has been a field that has developed rapidly, which experiences a very wide range of 

applications (Grange et al., 2018). Compared to traditional statistical methods, many machine learning techniques are 

nonparametric and do not need to fulfill many assumptions required for statistical methods (Immitzer et al., 2012). Random 

forest (RF) is an ensemble decision tree machine learning method that can be used for regression. (Breiman, 2001;Tong et al., 15 

2003). Beside the free restraints on input parameters and assumptions, RF also has the advantage of being able to explain and 

investigate the learning process (Kotsiantis, 2013). The Python module RandomForestRegressor from the Python Scikit-Learn 

library (http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html, last access: 18 

December 2018) are utilized as the RF model. The nine parameters in Table 4 are the input parameters for the RF model, and 

the AR# of the 3β+2α are the output parameters. 20 

Some tuning parameters required by RF model need to be specified by users. Experiments are made to determine the optimal 

values of the tuning parameters. Experiment results are showed in Fig. S7 in the Supplement and the detailed settings of the 

RF model are listed in Table S2 in the Supplement. In this case, the results are rather insensitive to the tuning parameters. Data 

simulated with datasets measured from campaign C1-C4 are utilized as the training data, and those from C5 are used as test 

data. 25 

3.2 Sensitivity test 

Both systematic and random errors exist in lidar-retrieved backscatter and extinction coefficients (Mattis et al., 2016). 

Systematic errors in backscatter and extinction can come from instrumentation setup, data processing method, and retrieval 

algorithm. Sensitivity test is carried out to test the impact of systematic errors of backscatter and extinction on CCN retrieval. 

Errors in backscatter or extinction influence the value of Ångström exponents and lidar ratios. The errors of individual 30 

backscatter or extinction are considered to be independent, though systematic errors of different parameters are related. The 
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systematic errors are given in the range of -20% to 20% with an interval of 2%. In each test, the error is only applied to one 

parameter, and other parameters are error-free. 

RH is another crucial factor in this new method to retrieve CCN. Profiles of RH derived by remote sensing techniques are also 

influenced by errors. At present, RH profiles are usually obtained with the combination of temperature from microwave 

radiometer and water vapor mixing ratio from MWRL. Both measurements can cause systematic and random errors in RH 5 

(Bedoya-Velásquez et al., 2018). Errors in RH will influence the values of 𝜉[2\ and 𝜅#, which in turn influence all the nine 

input parameters. Systematic errors ranging from -10% to 10% in intervals of 1% are considered for RH. 

Random errors in observations can be reduced by temporal averaging but cannot be eliminated. The influence of random errors 

in backscatter, extinction, and RH on CCN retrieval are investigated with Monte Carlo method. Three sets of sensitivity tests 

for random errors are conducted. Errors obeying Gaussian distribution are generated randomly with the mean value of zero. 10 

The standard deviation of Gaussian distribution is fixed at 10% for backscatter and extinction, and the standard deviation of 

RH is set to be 5%, 10%, and 20% for RHeach test. The procedure is repeated for 2000 times. All the 80575 sets of data from 

campaign C5 are used for sensitivity test. 

4 Results and discussions 

4.1 Supersaturations for lidar CCN retrieval 15 

CCN number concentrations are related with supersaturations. Critical diameters of each supersaturations calculated with 

twenty-five size-resolved κ distributions are shown in Fig. 3a. Most of the critical diameters at supersaturation of 0.07% are 

larger than 200 nm, while critical diameters at supersaturation of 0.80% are around 50 nm. Suitable supersaturations for lidar 

CCN retrieval depend on the ability of lidar optical properties to provide information about number and hygroscopicity of 

CCN-related sizes. 20 

Size cumulative contributions of particle number of all measured particle size distribution and corresponding calculated 

backscatter and extinction at dry condition are also displayed in Fig. 3a. As the cumulative contributions of particle number 

suggest, particles with diameter less than 100 nm dominate particle number concentrations (over 65%). However, most 

backscatter and extinction come from particles larger than 200 nm (around 90%) and almost 100% come from particles larger 

than 100 nm. If critical diameter is small, dry backscatter and extinction are insensitive to particles diameters that contribute 25 

to most CCN concentrations. 

Size-resolved enhancement contributions of backscatter and extinction are calculated to discuss hygroscopicity sensitive size 

of optical enhancement factor measurement. The enhancement contribution is defined as the difference between optical cross-

sections of RH at 90% and 60%, and represents the proportion of each size to the enhancement in backscatter or extinction. 

As is shown in Fig. 3b, the contributions of the extinction enhancements are concentrated in the diameters within 200 nm to 30 

700 nm, and extinction enhancement at 355 nm is related to smaller particles than that at 532 nm. Similar to particle number, 

particles with diameters smaller than 100nm contributes little to the enhancements of both backscatter and extinction. 
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Figure 3b also shows that different 𝜅# is sensitive to the hygroscopicity of different size. Size-dependent hygroscopicity is 

important to estimate CCN rather than a bulk hygroscopicity information, especially for different supersaturation conditions. 

One humidogram may indicate the bulk hygroscopicity, but it is the hygroscopicity of small particles that influences CCN 

number concentrations most. Using 𝜅#  of all the 3β+2α can provide some information about the hygroscopicity of small 

particles. 5 

Comparing sensitive size of optical properties and critical diameters at different supersaturations. 3β+2α MWRL systems have 

potential to retrieve CCN number concentrations at supersaturations smaller than 0.20%. It is not recommended to estimate 

CCN concentrations using lidar data at superstations larger than 0.40%. 

4.2 CCN number concentrations retrieved with error-free data 

With error-free data as input, the model predicted extinction-related activation ratio at 532 nm (ARp��r) and the retrieved CCN 10 

number concentrations at supersaturations of 0.07%, 0.10%, and 0.20% are compared to the theoretical calculated values. A 

total of 80575 pairs of data calculated from campaign C5 are used for verification. The retrieval results are displayed in Fig. 

4. The values ARp��r at a specific supersaturation are distributed in a wide range and can span over an order of magnitude, 

indicating that the relationship between CCN and optical parameters is very complex. According to Fig. 4, all data points are 

distributed almost evenly on both sides of the 1:1 line and the relative errors of most points are within 20%. The determination 15 

coefficients (R2) of CCN concentrations are all larger than 0.97, and the results do not show obvious systematic deviations. 

The retrieval errors are found to grow with supersaturation. Retrieval results for higher supersaturations (i.e. 0.40% and 0.80%) 

is displayed in Fig. S8 in the Supplement. There are larger errors for supersaturations of 0.40% and 0.80%. Only 47.76% of 

the retrieved CCN number concentration at supersaturation of 0.80% have relative errors less than 20%. The results 

demonstrate again that lidars may not be sufficient enough to retrieve CCN number concentrations at supersaturations lager 20 

than 0.40%. 

4.3 Importance of size-related and hygroscopicity-related parameters 

RF models can evaluate the importance of features (input parameters) by calculating the mean decrease impurity (MDI) for 

each feature among all the trees in the forest. The MDIs and corresponding standard deviations of each parameter at different 

supersaturations are shown in Fig. 5. Importance of the nine input parameters varies with supersaturations. For 0.07% and 25 

0.10%, 𝜅p��� and 𝜅qJ��P are the two most important parameters, showing the impact of hygroscopicity on the relationship 

between CCN and optical properties. For 0.20%, åp���&��r becomes much more important. Among the nine input parameters, 

𝜅# are denoted as hygroscopicity-related parameters, and å# are denoted as size-related parameters. Particularly, 𝑠o can be 

regarded as both size- and hygroscopicity-related parameter. As is shown in Fig. 5, hygroscopicity-related parameters, 

especially 𝜅p���, 𝜅qJ��P, and 𝑠o��r, play crucial roles in retrieving CCN. Size-related parameters have already been proved to 30 

be vital in retrieving CCN, however, humidogram parameters 𝜅#  have not been implemented in previous methods. CCN 
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concentrations retrieved with and without 𝜅# are compared to show the importance of 𝜅#. When retrieving CCN without 𝜅#, 

the RF model is also trained with datasets from campaign C1-C4, but the input data only contains Ångström exponents and 

lidar ratios. The retrieved CCN concentrations are all compared with datasets from campaign C5, and the results are listed in 

Table 5. R2 of retrieved CCN decreases from 0.991 to 0.887 for supersaturations of 0.07%, from 0.992 to 0.857 for 0.10%, and 

from 0.973 to 0.785 for 0.20%. Retrieval errors also increase overwhelmingly, and there are significant positive systematic 5 

biases. Parameters which are derived from backscatter and extinction enhancements, 𝜅#, are indispensable parameters in CCN 

retrieval. 

4.4 Impact of systematic and random error on CCN retrieval 

Figure 6 shows the relative errors of CCN retrieved with systematic errors in backscatter and extinction. Errors of retrieved 

CCN increase as errors of backscatter and extinction increase, and higher supersaturations are more affected by errors of optical 10 

parameters. Errors in extinction coefficients at 355 nm (𝛼���) influence the retrieval results most. On average, a positive 

relative error of 20% in 𝛼��� will cause about 20% overestimate in CCN number concentrations for supersaturation of 0.07%, 

about 40% overestimate for 0.10%, and about 60% overestimate for 0.20%. A negative error of 20% in 𝛼��� will underestimate 

CCN concentrations, and the degree of impact is slightly smaller than positive error. Errors in extinction coefficient at 532 nm 

(𝛼��r) and at 355nm have opposite effect on retrieval error. Errors in 𝛼��r do not show significant impact at supersaturations 15 

of 0.07% and 0.10%, but an overwhelming effect is found at supersaturations of 0.20%. It is interesting to note that the errors 

in backscatter coefficients do not affect the results much. However, in practical applications of MWRLs, the errors in extinction 

are always much larger than the errors of backscatter. If the error of retrieved CCN concentrations needs to be limited to 20% 

at supersaturation of 0.20%, the errors of retrieved extinction coefficients should to be controlled within 5%. 

The test result of systematic error in RH is shown in Fig. 7. When RH has a negative systematic error, CCN concentrations 20 

are overestimated, and the extent of overestimation increases as the error increase. A negative error of 10% in RH will 

overestimate CCN at supersaturations at 0.20% by about 60% in average, and the standard deviation is over 60%. Effects of 

positive errors in RH is much smaller than negative errors but more complex. The standard deviations of retrieval relative error 

increase with RH error, and the extreme value of the mean retrieval error appears at the RH error of 5%. Underestimating RH 

will cause much more errors than overestimation. Great care should be paid to RH profiles if enhancements of backscatter and 25 

extinction with RH are utilized. 

The relative error of retrieved CCN with random errors are presented in Table 6. The retrieval error does not change 

significantly as the random error of RH increases. For all the conditions that are tested, the mean values of relative error are 

below or near zero, and the standard deviations are within 18%-28%.  The mean values of relative error are -2.8%, -1.3%, and 

1.3% for CCN at supersaturations of 0.07%, 0.10%, and 0.20%, respectively, and the corresponding standard deviations are 30 

29.7%, 31.5%, and 42.9%. The impact of random errors on the nine input parameters is also evaluated and is shown in Fig. 8. 

Random errors will (10% for backscatter and extinction, and 5% RH) underestimate 𝜅# by 30%-35% in average for 5% RH 
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error, 80-85% for 10% RH error, and 90-95% for 20% RH error., and the standard deviations are about 40% or more. 𝑠o��� , 

𝑠o��r, and åq��r&J��P are likely to be overestimated by 5%-10%. As the random error of RH grows, the absolute relative error 

of input parameters will become larger. 

5 Summary 

CCN number concentration at cloud base is a crucial and scarce parameter to constrain the relationship between aerosols and 5 

clouds. A new method to retrieve CCN number concentrations using backscatter and extinction coefficients from MWRL 

measurements is proposed. Enhancements of backscatter and extinction coefficients with RH are implemented to derive dry 

backscatter and extinction 𝜉[2\ and humidogram parameter 𝜅#. The ratio of CCN number concentration to dry backscatter or 

extinction coefficient AR#, which is estimated by 𝜅#, Ångström exponents, and lidar ratios, is introduced to retrieve CCN 

number concentrations. 10 

The method is established and verified by theoretical simulations using Mie theory and κ-Köhler theory with in situ measured 

particle size distributions, mixing states, and chemical compositions. The values of AR# are found to have large variations due 

to different size distributions and hygroscopicity. Theoretical analyses show that optical properties provided by current 3β+2α 

MWRL systems basically contains size distribution and hygroscopicity information of particles with diameters larger than 100 

nm, which only fits the critical diameters for supersaturations lower than 0.20%. Accordingly, CCN number concentrations at 15 

supersaturations of 0.07%, 0.10%, and 0.20% are retrieved. The performance of the new method is evaluated with error-free 

data, and CCN number concentrations at all three supersaturations are in good agreements with theoretical calculated values. 

Sensitivity tests are carried out to show the influence of systematic and random errors of lidar-derived optical properties and 

auxiliary RH profiles on CCN retrieval. Systematic errors in extinction coefficients and RH are found to have large impact on 

error in retrieved CCN. Parameters fitted from backscatter and extinction enhancements (i.e. 𝜉[2\ and 𝜅#) is significantly 20 

influenced by RH. The uncertainty of RH profiles derived by remote sensing techniques is a major problem in CCN retrieval. 

Optical properties near cloud base from lidar measurements always influenced by high RH. Thus, transforming backscatter 

and extinction coefficients at ambient RH to dry conditions is a must for CCN retrieval, and accurate RH profiles are highly 

demanded. 

The importance of humidogram parameters 𝜅# is demonstrated by comparing the error of CCN concentration retrieved with 25 

and without 𝜅#. Neglecting hygroscopicity information contained in backscatter and extinction enhancements will bring huge 

errors to CCN retrieval by lidars. The performance of two parameterization schemes for backscatter and extinction 

humidograms are evaluated. The κ-equation shows better performance on inferring dry backscatter and extinction than γ-

equation. The κ-equation, therefore, is recommended to describe the hygroscopic behaviors of the backscatter and extinction 

coefficients from lidar measurements. The fitted hygroscopic parameter are found to be sensitive to fitting RH range when the 30 

RH range is limited and relatively high (between 60%-90%). This is an extreme essential problem for current research for 
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aerosol hygroscopicity with lidar measurements. Great care should be paid to the RH range when evaluating the hygroscopic 

growth of the lidar-related optical properties. 

It should be noted that the theoretical analyses in this paper are based on datasets of continental aerosols, and the implement 

of Mie theory also limits the scope of the results. The results can be applied in the North China Plain but are not fit for sea 

salts and mineral dust. Studies with datasets of other aerosol types should be carried out in the future. Although the applicability 5 

of this new method is limited by large uncertainties in RH profiles, comparison between real measured MWRL data and 

airborne in situ measurement should also be conducted. 

This work furthers our understanding of the relationship between CCN and aerosol optical properties and providing an optional 

way to retrieve CCN number concentration profiles from lidar measurements. The newly proposed method has potential to 

provide long-term CCN at cloud base for aerosol-cloud-interaction studies. 10 
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Table 1. Locations, time periods, parameters, and instruments of five field campaigns 

Location Wuqing Wuqing Xianghe Xianghe Wangdu 

Campaign name C1 C2 C3 C4 C5 

Time period 
7 March to 4 

April, 2009 

12 July to 14 

August, 2009 

22 July to 30 

August, 2012 

9 July to 30 

August, 2013 

4 June to 14 

July, 2014 

PNSD TSMPS+APS TSMPS+APS SMPS+APS TSMPS+APS TSMPS+APS 

𝒎𝐁𝐂 MAAP MAAP MAAP MAAP MAAP 

HBF TSI 3563 TSI 3563 TSI 3563 TSI 3563 TSI 3563 

Size-resolved chemical 

composition 
– 

Substrates 

sampled by 

BLPI 

– – – 
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Table 2. Slopes of linear regressions, determination coefficients (R2), and relative errors (RE) between Mie model simulated 

particle dry backscatter or extinction coefficients and those inferred from humidogram functions. 404575 pairs of the 

simulations from in situ dataset are used. The RE are given in the form of mean value ± one standard deviation (std). 

RH 
(%) 

ξ 
γ-equation κ-equation 

slope R2 RE(%) slope R2 RE(%) 

60-90 

𝜶𝟑𝟓𝟓,𝐝𝐫𝐲 0.850 0.998 -16.2 ± 2.1 1.045 0.998 3.4 ± 2.4 
𝜶𝟓𝟑𝟐,𝐝𝐫𝐲 0.820 0.998 -19.2 ± 2.0 1.017 0.999 0.5 ± 1.8 
𝜷𝟑𝟓𝟓,𝐝𝐫𝐲 0.784 0.960 -20.8 ± 7.2 0.817 0.971 -9.6 ± 7.5 
𝜷𝟓𝟑𝟐,𝐝𝐫𝐲 0.812 0.972 -22.7 ± 7.6 0.874 0.988 -11.7 ± 5.6 
𝜷𝟏𝟎𝟔𝟒,𝐝𝐫𝐲 0.878 0.986 -12.9 ± 5.7 0.935 0.994 -5.4 ± 4.4 

60-70 

𝜶𝟑𝟓𝟓,𝐝𝐫𝐲 0.913 1.000 -9.2 ± 1.1 1.016 1.000 1.1 ± 0.9 
𝜶𝟓𝟑𝟐,𝐝𝐫𝐲 0.900 0.999 -10.4 ± 1.3 1.005 1.000 0.0 ± 0.7 
𝜷𝟑𝟓𝟓,𝐝𝐫𝐲 0.939 0.989 -9.1 ± 6.0 0.906 0.991 -5.6 ± 4.9 
𝜷𝟓𝟑𝟐,𝐝𝐫𝐲 0.939 0.990 -9.9 ± 5.6 0.939 0.996 -6.4 ± 3.9 
𝜷𝟏𝟎𝟔𝟒,𝐝𝐫𝐲 0.966 0.997 -3.9 ± 2.9 0.974 0.999 -1.9 ± 2.0 

70-80 

𝜶𝟑𝟓𝟓,𝐝𝐫𝐲 0.852 0.999 -15.8 ± 1.9 1.037 0.999 2.7 ± 2.1 
𝜶𝟓𝟑𝟐,𝐝𝐫𝐲 0.827 0.998 -18.3 ± 1.9 1.012 0.999 0.3 ± 1.5 
𝜷𝟑𝟓𝟓,𝐝𝐫𝐲 0.799 0.950 -20.5 ± 8.9 0.818 0.968 -10.5 ± 8.1 
𝜷𝟓𝟑𝟐,𝐝𝐫𝐲 0.833 0.966 -21.4 ± 9.0 0.880 0.986 -11.7 ± 6.6 
𝜷𝟏𝟎𝟔𝟒,𝐝𝐫𝐲 0.898 0.987 -10.8 ± 5.7 0.942 0.995 -4.6 ± 4.1 

80-90 

𝜶𝟑𝟓𝟓,𝐝𝐫𝐲 0.756 0.922 -26.5 ± 3.8 1.110 0.991 8.5 ± 5.5 
𝜶𝟓𝟑𝟐,𝐝𝐫𝐲 0.702 0.994 -31.9 ± 3.1 1.047 0.995 1.9 ± 4.2 
𝜷𝟑𝟓𝟓,𝐝𝐫𝐲 0.547 0.848 -37.0 ± 11.1 0.695 0.892 -13.4 ± 14.1 
𝜷𝟓𝟑𝟐,𝐝𝐫𝐲 0.593 0.925 -42.1 ± 8.7 0.775 0.961 -19.2 ± 8.7 
𝜷𝟏𝟎𝟔𝟒,𝐝𝐫𝐲 0.702 0.934 -30.4 ± 10.3 0.867 0.971 -11.5 ± 8.8 
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Table 3. Slopes of linear regressions and determination coefficients (R2) between 𝛾# or 𝜅# fitted from RH range 60%-90% and 

those fitted from limited RH ranges (60%-70%, 70%-80%, and 80%-90%). 

RH 
(%) 

ξ 
𝜸𝝃 𝜿𝝃 

slope R2 slope R2 

60-70 

𝜶𝟑𝟓𝟓 0.992 0.958 1.113 0.955 
𝜶𝟓𝟑𝟐 0.969 0.978 1.007 0.977 
𝜷𝟑𝟓𝟓 1.019 0.814 1.213 0.819 
𝜷𝟓𝟑𝟐 0.790 0.797 0.891 0.799 
𝜷𝟏𝟎𝟔𝟒 0.806 0.834 1.011 0.812 

70-80 

𝜶𝟑𝟓𝟓 1.021 0.996 1.045 0.995 
𝜶𝟓𝟑𝟐 1.015 0.997 1.014 0.997 
𝜷𝟑𝟓𝟓 1.115 0.968 1.195 0.958 
𝜷𝟓𝟑𝟐 1.078 0.973 1.128 0.969 
𝜷𝟏𝟎𝟔𝟒 0.999 0.979 1.034 0.972 

80-90 

𝜶𝟑𝟓𝟓 0.941 0.939 0.847 0.934 
𝜶𝟓𝟑𝟐 0.957 0.969 0.969 0.967 
𝜷𝟑𝟓𝟓 0.741 0.679 0.684 0.626 
𝜷𝟓𝟑𝟐 0.970 0.851 1.002 0.827 
𝜷𝟏𝟎𝟔𝟒 1.090 0.816 1.036 0.818 
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Table 4. Lidar derived parameters for predicting optical-related CCN activation ratio AR# 

Parameter Description 

𝜅p��� Fitted parameter of extinction humidogram at 355 nm in κ-equation form 

𝜅p��r Fitted parameter of extinction humidogram at 532 nm in κ-equation form 

𝜅q��� Fitted parameter of backscatter humidogram at 355 nm in κ-equation form 

𝜅q��r Fitted parameter of backscatter humidogram at 532 nm in κ-equation form 

𝜅qJ��P Fitted parameter of backscatter humidogram at 1064 nm in κ-equation form 

𝑠o��� Particle dry lidar extinction-to-backscatter ratio at 355 nm 

𝑠o��r Particle dry lidar extinction-to-backscatter ratio at 532 nm 

åp���&��r Ångström exponent of particle dry extinction coefficients between 355 and 532 nm 

åq��r&J��P Ångström exponent of particle dry backscatter coefficients between 532 and 1064 nm 
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Table 5. Slopes of linear regressions, determination coefficients (R2), and relative errors (RE) between theoretical calculated 

CCN number concentrations and CCN number concentrations retrieved with/without 𝜅# as input parameter. The relative errors 

are given in the form of mean value ± one standard deviation (std). 

Supersaturation 
Ratioratio 

With 𝜿𝝃 Without 𝜿𝝃 
slope R2 RE(%) slope R2 RE(%) 

0.07% 0.991 0.991 -0.8 ± 6.0 0.877 0.866 4.6 ± 26.1 
0.10% 0.992 0.989 0.1 ± 6.3 0.857 0.837 5.9 ± 26.7 
0.20% 1.005 0.973 3.9 ± 9.0 0.860 0.785 11.9 ± 28.1 
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Table 6. Mean and one standard deviation (std) values (mean ± std) of relative errors in retrieved CCN number concentrations 

at different supersaturations with error-free and different random error (10% for backscatter and extinction and 5% for relative 

humidity) conditions. The uncertainty of backscatter and extinction coefficients of all the tests is 10%, and the uncertainties of 

relative humidity are 5%, 10%, and 20%, respectively. 

Supersaturation 
ratio 

 Random error 
(10% for backscatter and extinction) 

Error of relative humidity 
5% 10% 20% 

0.07% -4.1% ± 21.8% 0.2% ± 23.4% 0.7% ± 22.6% 

0.10% -1.5% ± 23.4% -2.8% ±24.0% -2.5% ±21.2% 

0.20% -1.2% ± 27.8% -9.1% ± 26.3% -5.2% ± 18.0% 
  5 
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Figure 1. (a) Boxplot of particle number size distributions (PNSDs) in the datasets from five field campaigns. Each PNSD is 

normalized by its maximum value at the peak diameter. Green markers “+” represent the mean value of each diameter. The 

boxes extend from the lower to upper quartile values, with orange lines at the median. The whiskers extend from the box to 5 

the minimum/maximum values or extend from the box by 1.5 times of interquartile range. The flyers are not shown in the plot. 

(b) Twenty-five typical size-resolved κ distributions. Each dotted line with color represents one size-resolved κ distribution. 

The solid black line represents the mean value of the size-resolved κ distributions.   
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Figure 2. Schematic diagram of newly proposed method to retrieve cloud condensation nuclei number concentrations using 

multiwavelength Raman lidar.  
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Figure 3. (a) Cumulative contributions (accumulate from large particle size to small particle size) of particle number 

concentrations (measured), dry particle backscatter coefficients (simulated), and dry particle extinction coefficients (simulated). 

The solid and dashed lines represent the median values of five field campaigns, and the shadows cover from the lower to upper 

quartile values. The box plots in brown contain statistical information about critical diameter of each supersaturation condition 5 

(right y-axis). The boxes extend from the lower to upper quartile values, with lines at the median. The whiskers extend from 

the box to the minimum/maximum values or extend from the box by 1.5 times of interquartile range. The markers “o” are the 

flyers. (b) Normalized size-resolved enhancement contributions when relative humidity increases from 60% to 90%, which 

are theoretically calculated by the mean particle number size distribution, the mean black carbon mass concentration (4.717 

μg m-3), the mean mass ratio of externally mixed black carbon (0.664%), and the mean size-resolved κ distribution.  10 
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Figure 4. Comparison of the theoretical calculated extinction-related CCN activation ratio at 532 nm (true AR) and the model 

predicted extinction-related CCN activation ratios at 532 nm (retrieved AR) at supersaturations of (a) 0.07%, (c) 0.10%, and 

(e) 0.20%, and of the theoretical calculated CCN number concentrations (true CCN number concentration) and the retrieved 
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CCN number concentrations at supersaturations of (b) 0.07%, (d) 0.10%, and (f) 0.20%. A total of 80575 pairs of data 

calculated from campaign C5 are used. The solid line is 1:1 line, and the dashed lines are 20% relative difference lines. Colors 

represent the relative density of the data points normalized by the maximum data density of each panel. The relative error 

showed shown in the figure is mean value ± one standard deviation.  
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Figure 5. Importance of each feature (input parameter) output by the Random Forest model for predicting optical-related CCN 

activation ratios at supersaturations of (a) 0.07%, (b) 0.10%, and (c) 0.20%. The values of feature importance indicate the 

decrease in impurity for each feature. The length of the bar represents the mean values among all trees and the error bars give 

the standard deviations.  5 
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Figure 6. Relative errors in retrieved CCN number concentrations at supersaturations of (a) 0.07%, (b) 0.10%, and (c) 0.20% 

as a function of systematic errors in backscatter or extinction. The markers are the mean values, and the error bars denote the 

standard deviations.  
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Figure 7. Relative errors in retrieved CCN number concentrations at supersaturations of 0.07%, 0.10%, and 0.20% as a 

function of systematic errors in relative humidity. The markers are the mean values, and the error bars denote the standard 

deviations.  
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Figure 8. Relative errors in fitted and calculated parameters with 10% random errors for backscatter and extinction and 5% 

(blue), 10% (orange), and 20%(green) random error for relative humidity. The dots are the meanmedian values, and the error 

bars denote the 5th and 95th percentiles standard deviations. The dashed red line marks the position of zero. 5 
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