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Reply	 to	 Referee	 1.	We	 indicate	 a	 referee	 comment	 with	 “Referee”	 and	 our	 response	 with	
“Authors”.	
	
Referee:	 I	 have	 a	multitude	 of	 concerns	with	 this	work,	 and	 believe	 that	 the	 paper	 should	 not	 be	
published	in	its	current	form.	My	primary	one	is	that	the	“new”	CLARRA	algorithm	is	almost	exactly	
the	same	as	 the	so-called	“MIXCRA”	algorithm	of	Turner	(J	Appl	Meteor,	2005).	 In	 fact,	 it	 is	almost	
like	the	authors	were	trying	to	disguise	this	as	there	is	not	a	single	reference	to	the	MIXCRA	paper	in	
sections	1,	2,	3.1,	or	3.2;	yet	it	is	clear	the	authors	know	about	MIXCRA	because	it	is	referenced	at	the	
top	of	section	3.3.	It	is	not	clear	what	makes	CLARRA	different	from	MIXCRA.	
	
Authors:	Our	main	purpose	is	to	inform	instrument	development	by	quantifying	the	effect	of	
instrument	 resolution	 on	 cloud	 property	 retrievals,	 which	 to	 our	 knowledge	 is	 novel	 and	
within	the	scope	of	AMT. Furthermore,	aspects	of	CLARRA	are	novel,	 including	formulations	
for	matching	instrument	resolution	for	the	cloud	property	retrievals,	as	described	in	Section	
3.1.	Other novel aspects of this work include testing retrievals on a wide set of simulations that are 
meant to be characteristic of the annual cycle of Arctic clouds and atmosphere (based on previous 
work by the authors; including different ice habits and vertically-varying clouds; Section 2) and 
quantifying the effect on the retrieval of a range of errors in the instrument and atmospheric state 
(Section 4). We have modified the paper throughout to make the purpose clearer. 
 
Given	our	main	purpose,	we	do	not	see	similarities	between	CLARRA	and	published	work	as	a	
source	 of	 concern.	 The	 optimal	 nonlinear	 inverse	method	 in	 CLARRA	 is	 similar	 to	MIXCRA	
(Turner	2005)	and	to	other	work,	as	cited	in	the	submitted	manuscript:	“The inverse method is 
similar to the method of Turner (2005) which has been used to retrieve cloud properties from AERI 
instruments in the Arctic (Turner 2005; Cox et al 2014). Similar inverse methods have also been used 
from satellite instruments (L’Ecuyer et al 2006; Wang et al 2006).” To make this clearer, we have 
combined these sentences and added references to Poulsen	et	al.,	2012	(and	L’Ecuyer	et	al,	2019,	
in	response	to	reviewer	2). Also, it should be noted that polar cloud property retrievals in general 
build	on	a	large	body	of	published	work,	including	work	by	the	authors	(Mahesh	et	al	2001;	
Rathke	et	al	2002a,b). 
	
We	do	not	 see	 the	relevance	of	 the	MIXCRA	paper	 to	Section	2,	which	 is	based	on	Cox	et	al,	
2016,	or	to	Sections	3.1	or	3.2,	which	we	believe	are	largely	novel	to	our	work	(note	that	the	
revised	manuscript	 is	 restructured	 somewhat	 following	 Reveiewer	 2).	 However,	we	 realize	
that	our	results	and	discussion	section	would	benefit	from	comparison	to	published	work	by	
Turner	2005	and	others.	Therefore	we	will	add	text	such	as	the	following	to	Section	5.1:	
	
“We	 find	 that	 the	 retrievals	 lose	 sensitivity	 to	 COD	 between	 about	 4	 and	 10	 (see	 Sect.	 5.2	
below);	 in	 previous	 work	 retrieving	 cloud	 properties	 from	 downwelling	 IR	 radiances	 in	 a	
similar	wavenumber	range,	cut-offs	of	4	to	6	were	used	(Mahesh	et	al	2001;	Rathke	2002a,b;	
Turner	2005).	Here,	we	constrain	the	retrievals	to	an	optical	depth	of	10	and	focus	primarily	
on	 results	 for	 optical	 depths	 <=	4.	 The	 retrievals	were	 found	 to	 lose	 sensitivity	 to	 effective	
radius	above	about	50	µm	(see	Supplemental),	which	is	 in	keeping	with	Rathke	and	Fischer	
(2000)	 and	 Garrett	 and	 Zhao	 (2013),	 but	 differs	 from	 the	 cut-off	 values	 of	 25	 µm	 used	 by	
Mahesh	et	al	(2001)	and	of	100	µm	by	Turner	(2005).”	
	



 

 2 

Because	CLARRA	has	similarities	to	a	variety	of	algorithms,	it	is	beyond	the	scope	of	this	work	
to	 detail	 them	 all.	 However,	 we	 provide	 sufficient	 detail	 to	 determine	 differences	 by	
comparing	our	paper	to	the	published	literature.	For	example,	differences	in	CLARRA	relative	
to	MIXCRA	include:	

1) CLARRA	includes	a	cloud	height	retrieval	(Section	3;	the	revised	manuscript	also	
mentions	this	in	the	introduction).	

2) CLARRA	includes	a	forward	retrieval	that	is	computationally	fast	(Section	3.2).	
3) CLARRA	accounts	for	gaseous	emission	at	instrument	resolution	using	a	novel	method	

(convolving	radiances	and	transmittances	with	the	instrument	lineshape;		Section	3.1	
in	the	submitted	manuscript).	

4) The	optimal	nonlinear	inverse	method	in	CLARRA	uses	the	Levenberg-Marquardt	
formulation,	and	uses	the	radiance	as	the	observation	(the	variable	y	in	Rodgers	2000;	
R	in	Eqn	(16)	in	the	submitted	manuscript).	

5) CLARRA	uses	temperature-dependent	liquid	water	refractive	indices	(Section	3.2).	
6) CLARRA	is	written	primarily	in	Python	and	calls	DISORT	directly	from	Python	via	f2py.		

	
Referee:	My	 second	 primary	 concern	 is	 simply:	 Is	 this	 paper	 really	 adding	 any	 new	 knowledge?	 I	
presume	 that	 they	 are	 using	 observations	 in	 spectral	 regions	 that	 are	 between	 absorption	 lines	
(these	 are	 often	 called	 “microwindows”),	 and	 the	 cloud	 properties	 in	 these	 microwindows	 are	
essentially	 unchanged.	 This	 allows	 the	 radiance	 to	 be	 averaged	 from	higher	 spectral	 resolution	 to	
that	of	the	width	of	the	microwindow;	this	was	done	in	the	MIXCRA	paper	(see	Table	1	in	that	paper).	
Indeed,	the	microwindows	used	in	the	MIXCRA	paper	are	between	2	and	8	cm-1	wide,	depending	on	
the	spectral	region.	So	while	the	MIXCRA	paper	didn’t	specifically	test	retrievals	performed	at	0.5	vs.	
4	cm-1,	it	already	is	showing	the	impact.	
	
Authors:	We	understand	the	point	that	averaging	over	microwindows	implies	that	resolution	
is	not	very	 important,	but	 the	 issue	 is	more	complex	because	strong	gaseous	emission	 lines	
bleed	into	the	microwindows	at	coarser	resolution,	so	that	there	is	still	a	need	to	quantify	the	
effect	 of	 resolution.	 The	 reason	microwindows	 are	 used	 is	 to	minimize	 the	 contribution	 of	
emission	 by	 gases.	 Gaseous	 emission	 lowers	 sensitivity	 to	 cloud	 and	 enhances	 errors.	 At	 a	
resolution	of	0.1	cm-1,	in	a	microwindow	of	4	cm-1,	the	contribution	from	gaseous	absorption	
lines	 outside	 the	 microwindow	 will	 be	 minimal.	 However,	 as	 resolution	 gets	 coarser,	 the	
gaseous	absorption	lines	bordering	the	microwindow	contribute	more	and	more,	decreasing	
sensitivity	 and	 increasing	errors.	To	design	a	 lower-resolution	 instrument,	 it	 is	 essential	 to	
quantify	these	errors	to	determine	at	what	resolution	they	become	important.	We	have	added	
text	similar	to	that	above	to	Section	3.1.		
	
Furthermore,	resolution	affects	the	accuracy	of	cloud	height	retrievals,	which	in	turn	affects	
the	accuracy	of	microphysical	cloud	property	retrievals,	as	discussed	in	the	manuscript.	Thus,	
our	 paper	 adds	 new	 knowledge	 by	 quantifying	 how	 cloud-property	 retrievals	 depend	 on	
resolution,	from	0.1	to	8	cm-1.	To	make	this	more	clear,	we	increased	the	resolution	range	to	
20	 cm-1	 and	 included	 more	 discussion	 of	 how	 cloud-height	 retrieval	 accuracy	 affects	 the	
accuracy	of	microphysical	cloud	property	retrievals.	
	
Referee:	 [As	 a	 side	note:	 the	 authors	 really	do	need	 to	 include	a	 table	on	what	microwindows	are	
being	used	in	this	study.		
	
Authors:	A	table	showing	the	microwindows	was	included	in	the	Supplemental	and	discussed	
in	 Section	 3:	 “Selected	 microwindows	 (see	 Supplemental)	 are	 similar	 to	 those	 in	 Turner	
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(2005)	...”	We	have	moved	the	table	into	the	main	text,	added	a	second	set	of	microwindows	
(see	the	response	to	the	final	comment),	and	added	the	relevant	references.		
	
Referee:	In	addition	to	the	actual	microwindows,	if	the	microwindow	is	actually	only	4	cm-1	wide,	do	
the	authors	limit	their	spectral	width	of	that	“channel”	to	only	or	do	they	include	the	absorption	lines	
that	exist	on	the	sides	of	these	microwindows?	If	they	are	testing	0.1	cm-1	resolution,	do	they	allow	
multiple	“channels”	within	a	given	microwindow,	or	only	a	single	channel?	Without	this	information,	
the	results	here	cannot	be	reproduced.]	
	
Authors:	 Section	 3.1	 described	 calculation	 of	 radiances	 and	 transmittances	 (Eqns	 1-8)	 and	
states	 that	 they	 are	 then	 averaged	 within	 microwindows;	 these	 are	 then	 used	 to	 compute	
effective-resolution	 optical	 depths	 (Eqns	 9-10).	 For	 the	 observations	 (which	 here	 are	
simulations),	 radiances	 are	 averaged	 in	 the	 microwindows.	 Using	 the	 equations	 and	
microwindows	provided,	our	results	should	be	reproducible.	(Note	that	much	of	Sect.	3.1	was	
moved	 to	 the	Appendix,	 following	 the	 suggestions	of	Reviewer	2;	we	also	made	changes	 for	
clarity).		
	
Referee:	The	uncertainties	assumed	for	temperature	and	humidity	profiles	in	the	reanalysis	(around	
line	355)	are	shockingly	small.	These	uncertainties	might	be	true	for	a	large	average,	but	in	a	scene-
by-scene	way	the	errors	will	be	much,	much	larger.	For	example,	 if	 the	reanalysis	believes	that	the	
sky	is	cloud-free	above	the	instrument,	there	analysis	may	have	developed	a	surface-based	inversion	
that	would	not	be	there	in	reality	because	of	the	cloud.	An	example	of	how	the	presence	of	a	cloud	
modifies	the	temperature	profile	beneath	the	cloud	is	given	by	Miller	et	al.	JGR	2013	(which	includes	
Walden	 as	 a	 coauthor).	 Because	 clouds	 are	 so	 hard	 to	 represent	 properly	 in	 large-scale	models,	 I	
think	the	authors	need	to	use	more	representative	uncertainties	(e.g.,	many	degrees	for	temperature,	
and	at	least	20%	for	water	vapor)	for	the	temperature	and	humidity	profiles,	and	show	the	impact	of	
these	uncertainties.	
	
Authors:	We	believe	use	of	 the	mean	error	 is	reasonable.	According	to	Wesslen	et	al	(2014)	
the	 95%	 confidence	 interval	 is	 within	 0.3	 K	 for	 temperature	 and	within	 a	 few	 percent	 for	
humidity.	 Also,	 as	 noted	 in	 the	 text,	 bias	 errors	 in	 humidity	 or	 temperature	 give	 similar	
results	 as	 considerably	 larger	 errors	 that	 vary	 in	 sign	 with	 height,	 which	 is	 likely	 for	
reanalysis	 data	 (Wesslen	 et	 al,	 2014).	 Finally,	 note	 that	 in	 addition	 to	 the	mean	 errors,	we	
tested	the	effect	on	the	retrieval	of	errors	in	water	vapor	as	high	as	a	10%	bias	at	all	heights.	
We	 have	 added	 retrievals	 for	 a	 temperature	 bias	 of	 1	 K,	 increased	 error	 magnitudes	 in	
combinations	of	errors,	and	changed	“typical	errors	expected”	to	“biases”	in	the	abstract.	(Our	
main	conclusions	are	unaffected).	
	
Referee:	 The	 authors	 are	 using	 the	 far-infrared	 for	 several	 of	 their	 channels;	 indeed,	 using	 those	
channels	are	really	important	for	discriminating	the	cloud	phase	(see	Turner	et	al.	JAM2003	as	well	
as	Turner	JAM	2005).		
	
Authors:	Yes.	This	point	was	published	prior	to	these	papers	by	Rathke	et	al	(2002),	whom	we	
reference:	
	
Rathke,	C.,	Fischer,	J.,	Neshyba,	S.,	&	Shupe,	M.	(2002).	Improving	IR	cloud	phase	
determination	with	20	microns	spectral	observations.	Geophysical	Research	Letters,	29(8),	
50–1–50–4.	http://doi.org/10.1029/2001GL014594.	
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Referee:	However,	water	vapor	absorbs	strongly	in	the	far-infrared,	and	if	the	PWV	is	large	enough	
the	window	will	be	opaque	purely	due	 to	water	vapor	absorption.	Thus,	 the	range	of	cloud	optical	
depth	that	can	be	sensed	depends	strongly	on	the	PWV;	this	needs	to	be	discussed	in	this	paper.		
	
Authors:	 This	 is	 a	 good	 point.	We	 have	 changed	 Section	 2	 to	 clarify	 that	 the	 range	 of	 PWV	
varied	from	0.2	to	3	cm,	which	previous	work	has	shown	is	appropriate	for	polar	regions.	For	
this	range	of	PWV,	the	far	IR	window	was	not	opaque.	
	
Referee:	I	think	that	the	authors	have	missed	a	real	opportunity	to	talk	about	how	the	uncertainties	
in	 the	 retrieved	 products	 covaries	 (i.e.,	 by	 looking	 at	 the	 off-diagonal	 elements	 of	 the	 posterior	
covariance	matrix).	This	was	one	of	 the	shortcomings	of	 the	MIXCRA	paper,	 and	expansion	of	 that	
here	would	add	 some	new	 insights	 to	 the	 community.	For	example,	 as	 the	 cloud	emissivity	moves	
towards	unity,	 there	will	 likely	be	 a	high	amount	of	 correlated	error	between	Reff,ice	 and	Reff,liq.	
Ditto	when	the	cloud	emissivity	is	small.	How	does	the	ice	fraction	uncertainty	covary	with	the	other	
retrieved	variables,	especially	in	different	areas	of	the	solution	space?	A	different	question	along	the	
same	lines	as	above	is	this:	does	the	accuracy	and	covariance	between	the	cloud	properties	change	if	
the	 retrieval	 is	 configured	 to	 retrieve	 (total_tau,	 ice_fraction,	 Reff_ice,	 Reff_liq)	 vs.	 (tau_liq,	 tau_ice,	
Reff_ice,	Reff_liq)?	The	MIXCRA	algorithm	was	initially	the	first	(in	JAM	2005),	but	was	changed	to	the	
latter	(Turner	and	Eloranta	TGRS	2008)	and	showed	pretty	good	results	relative	to	the	HRSL	during	
MPACE.		
	
Authors:	 We	 agree	 that	 this	 would	 be	 interesting.	 However,	 it	 is	 beyond	 the	 scope	 of	 the	
current	paper.	We	will	look	into	this	in	future	work.	
	
Referee:	The	authors	really	didn’t	spend	any	time	discussing	the	different	technologies	that	could	be	
used	to	provide	these	radiance	observations,	or	why	they	would	be	“cheaper”	 from	the	 instrument	
that	they	assumed	(which	seems	to	be	the	AERI).	Radiometers	using	a	finite	number	of	channels	with	
bolometers	as	detectors	are	one	possibility;	there	are	many	papers	by	the	so-called	“TICFIRE”	project	
being	 run	 out	 of	 the	 Canadian	 Space	 Agency	 that	 might	 be	 useful.	 But	 how	 important	 is	 the	
calibration	of	cheaper	systems	like	this?		
	
Authors:	We	have	added	a	 few	 comments	 indicating	additional	design	 factors	 that	 could	be	
useful	(Section	5.2).	More	in-depth	discussion	of	instrument	development	is	beyond	the	scope	
of	this	work	but	is	an	important	subject	for	future	work.		
	
Referee:	The	authors	did	show	results	if	the	radiance	bias	was	0.2	RU,	but	that	is	a	pretty	small	error	
–	a	more	realistic	error	might	be	1	or	2	RU.	Do	these	results	scale?	[For	example,	even	with	a	carefully	
calibrated	AERI,	radiance	biases	close	to	1	RU	have	been	reported	–	see	Delamere	et	al.	JGR	2010.	It	is	
hard	to	imagine	that	a	cheaper	radiometer	would	have	better	spectral	calibration	than	the	AERI.]		
	
Authors:	We	 have	 added	 retrievals	 for	 radiance	 biases	 of	 0.5	 RU	 (Supplemental)	 and	 1	 RU	
(main	text).	
	
	
Referee:	Some	more	minor	points:		
	
How	many	 streams	 are	 being	 used	 in	 DISORT?	 Fewer	 streams	make	 the	 RT	 code	 faster,	 but	 will	
decrease	the	accuracy.		
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Authors:	This	is	a	good	point.	We	generally	use	16	streams,	but	we	had	previously	used	fewer	
for	smaller	particles	(when	only	a	few	Legendre	moments	are	needed	for	the	phase	function),	
but	after	communicating	with	the	DISORT	group,	we	re-ran	all	cases	with	16	streams.	This	had	
a	 small	 effect	 on	 retrievals,	 and	model	 errors	 are	 lower.	We	 have	 added	 text	 to	 the	 end	 of	
Section	3.3	indicating	that	DISORT	is	run	with	16	streams.	
	
Referee:	Eq	18	is	incorrect	if	gamma	>	0.	The	correct	formulation	was	originally	provided	by	Masiello	
et	al.	QJRMS2012,	but	was	also	presented	in	Turner	and	Löhnert	JAMC	2014.		
	
Authors:	 We	 use	 Eq.	 18	 because	 iterations	 are	 repeated	 until	 gamma	 is	 negligibly	 small	
(<0.01).	This	is	clarified.		
	
Referee:	“the	ideal	range	for	tau	is	between	0.4	and	5”	(line	425).		The	authors	really	should	indicate	
how	often	 this	 is	expected	 to	happen	 in	 the	Arctic.	The	Cox	et	al.	 JAMC	2014	paper	provides	some	
information	on	this,	at	least	for	that	site.	
	
Authors:	This	is	a	good	point.	We	will	add	text	such	as	the	following	to	address	this:		
	
To	get	a	sense	of	how	common	such	clouds	are,	Cox	et	al	2014	found	that	at	Eureka,	Nunavut	
in	 2006-2009,	 clouds	 with	 optical	 depths	 of	 0.25	 to	 6	 accounted	 for	 about	 32%	 of	 AERI	
measurements	 (17%	when	 quality	 control	 procedures	 and	 a	 PWV	 threshold	 of	 1	 cm	were	
applied;	in	this	work	PWV	is	as	high	as	3	cm).	
	
Referee:	 Is	 there	 a	 minimum	 number	 of	 spectral	 microwindows	 that	 need	 to	 be	 used?	 Stated	 a	
different	way,	how	do	the	errors	in	the	retrieved	cloud	properties	change	for	different	microwindow	
subsets?	
	
Authors:	 This	 is	 an	 interesting	 topic.	 We	 have	 tested	 a	 second	 set	 of	 wavenumbers	 and	
reported	 differences.	 We	 agree	 that	 further	 sensitivity	 studies	 along	 these	 lines	 would	 be	
interesting;	however	they	are	beyond	the	scope	of	this	work.	
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Reply	 to	 Referee	 2.	We	 indicate	 a	 referee	 comment	 with	 “Referee”	 and	 our	 response	 with	
“Authors”.	
	
Referee:	The	methodology	is	clearly	stated,	adequate	references	are	made	to	work	by	earlier	studies	
although	more	recent	articles	may	be	available,	and	the	analyses	are	straight-forward.	I	am	glad	to	
see	that	the	software	is	being	made	available	to	the	community	as	described	in	Section	7.	My	view	is	
that	the	paper	is	suitable	for	publication	pending	relatively	minor	revisions	that	address	the	
comments	that	follow.		
	
If	there	is	one	primary	suggestion	to	offer,	it	would	be	to	compare	the	cloud	prop-erties	obtained	by	
this	method	to	those	obtained	from	CALIPSO,	where	new	Version4	products	are	now	available	(or	to	
a	coincident	ground-based	lidar	if	possible).	Of	particular	note	is	that	the	V4	products	have	
significant	improvements	in	calibration	and	cloud/aerosol	properties.	There	will	be	differences	
between	satellite-	and	surface-based	products	that	will	bear	further	investigation,	but	this	may	be	
outside	the	scope	of	this	particular	study.	CALIPSO	cloud	products	have	been	used	heavily	in	the	
development	and	testing	phase	of	many	satellite-based	cloud	retrieval	efforts,	especially	with	the	
discrimination	of	cloud	thermodynamic	phase	which	is	a	critical	component	of	the	current	study.	As	
noted	in	Section	5.4,	imperfect	cloud	phase	discrimination	can	greatly	increase	the	retrieval	errors	
(lines	500-505).	
	
Authors:	This	is	a	good	suggestion	but	is	unfortunately	beyond	this	scope	of	this	work.	We	will	
compare	cloud	property	retrievals	using	CLARRA	to	CALIPSO	in	future	work	and	thank	the	
referee	for	this	suggestion.		
	
Referee:	General	comments:	Lines	58-62:	Two	points	 to	suggest	here:	1.	The	authors	point	out	 the	
need	for	portable,	low-cost,	autonomous	IR	spectrometers	that	can	make	continuous	measurements.	
But	these	measurements	complement	those	from	polar-orbiting	IR	spectrometers	including	IASI	(on	
Metop-A/B/C),	 AIRS,	 and	 CrIS.	 It	 would	 be	 useful	 to	 provide	 an	 example	 where	 the	 surface	
measurements	 fill	 the	 gaps	 between	 satellite	 overpasses.	 2.	 Additionally,	 a	 primary	 benefit	 to	
surface-based	 measurements	 is	 that	 the	 boundary	 layer	 is	 much	 better	 characterized	 than	 with	
profiles	 inferred	 from	 a	 satellite-based	 spectrometer.	 In	 particular,	 my	 impression	 is	 that	 the	
boundary	layer	profiles	are	much	improved	when	temperature	inversions	are	present,	and	this	will	
impact	the	cloud	properties	if	the	layer	is	at/below	the	inversion.	
	
Authors:	This	is	a	good	point.	We	will	add	text	such	as	the	following	to	the	introduction:	
	
“Such	measurements	would	be	beneficial	in	a	number	of	ways.	They	could	be	used	to	fill	gaps	
in	satellite	measurements.	For	example,	cloud	properties	were	retrieved	at	Eureka	from	2006	
to	 2009	 from	 AERI	measurements	made	 nearly-continuously	 every	 ~40	 seconds	 (Cox	 et	 al	
2014).	By	contrast,	satellite	overpasses	are	typically	twice	per	day.	They	can	also	be	used	to	
compare	 to	 satellite-based	measurements.	 Finally,	 surface-based	 instruments	 are	 better	 at	
characterizing	clouds	in	the	boundary	layer.”	
	
Referee:	Section	3:	This	 is	a	 long	section	(over	6	pages)	that	discusses	the	Cloud	and	Atmo-spheric	
Radiation	Retrieval	Algorithm	(CLARRA)	in	quite	a	bit	of	detail.	Cloud	height	was	discussed	in	great	
detail	in	Rowe	et	al.	(2016)	and	is	not	repeated	herein.	Perhaps	the	readability	would	be	improved	by	
moving	much	of	the	theoretical	development	into	an	Appendix.		
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Authors:	 We	 have	 moved	 the	 theoretical	 development	 from	 Section	 3.1	 to	 the	 Appendix	
(almost	3	pages).	To	further	improve	readability,	we	have	reorganized	subsections	in	Section	
3	and	included	the	most	important	information	in	introductory	paragraphs,	making	clear	that	
the	remainder	of	each	section	provides	additional	detail	(which	can	be	skipped).	
	
Referee:	Minor	 comments:	 Line	 19:	 please	 define	 exactly	what	 is	meant	 by	 “mixed	phase”	 -	 is	 it	 a	
homogeneous	mixture	of	ice	and	liquid	particles	or	something	else?	
	
Authors:	 Yes.	 We	 have	 clarified	 this:	 “Mixed-phase	 clouds	 were	 simulated	 as	 an	 external,	
homogeneous	mixture	of	liquid	and	ice	particles.”		
	
	
Referee:	The	word	“infrared”	appears	26	times	in	the	paper	-	could	contract	to	IR	
	
Line	 47:	 include	 more	 up-to-date	 L’Ecuyer	 papers,	 e.g.,	 “Reassessing	 the	 effect	 of	 cloud	 type	 on	
Earth’s	energy	balance	in	the	age	of	active	spaceborne	observations.	Part	I:	Top-of-atmosphere	and	
surface”,	by	TS	L’Ecuyer,	Y	Hang,	AV	Matus,	Z	Wang,	in	Journal	of	Climate,	2019.	There	is	also	a	Part	2	
manuscript	in	review.		
	
Lines	293-294:	Radiances	are	selected	in	two	bands:	400	to	600	cm-1	and	from	750to	1300	cm-1.	As	
the	method	is	using	selected	wavenumbers	for	each	chosen	spectral	resolution,	it	would	be	useful	to	
state	them	in	this	paper	rather	than	in	the	supplemental.	
	
Lines	340;	352;	557:	suggest	changing	“in	order	to”	to	“to”	
	
Line	356:	change	“found	such	error”	to	“found	such	errors”	
	
Authors:	Thank	you	-	all	of	the	above	changes	have	been	made.	
	
	
Referee:	Lines	503-505:	Cloud	height:	is	CO2	slicing	used	for	both	water	and	ice	clouds?	If	so	....	might	
want	to	change	this	so	it’s	used	primarily	for	ice	clouds	and	use	11-μm	for	optically	thick	clouds.	
	
Authors:	This	is	an	interesting	point	but	is	beyond	the	scope	of	this	work,	which	focuses	more	
on	 the	 microphysical	 retrievals	 than	 the	 cloud	 height	 retrievals	 (discussed	 in	 Rowe	 et	 al	
2016).	We	will	 investigate	 using	 11	micron	 for	 cloud	 height	 retrievals	 in	 future	work,	 and	
thank	the	reviewer	for	this	suggestion.	
	
Referee:		
	
Line	536:	Polar	Regions	does	not	have	to	be	capitalized.	
	
Line	561:	suggest	changing	“correctable”	to	“mitigated”	
	
Authors:	We	have	made	the	above	changes.		
	
In	addition	to	these	changes	and	changes	in	response	to	the	other	reviewer,	we	have	added	a	
new	figure	(Fig.	4)	and	made	a	number	of	edits	for	grammar	and	clarity.	We	also	made	small	
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changes	in	the	retrievals	(e.g.	standardized	number	of	streams	to	16,	removed	radiance	error	
threshold);	resulting	differences	are	minor	and	do	not	affect	our	conclusions.		
	
We	thank	the	reviewer	for	these	helpful	suggestions	that	have	improved	our	paper.	
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Abstract 

Improvements to climate model results in polar regions require improved knowledge of cloud microphysical properties. 

Surface-based infrared (IR) radiance spectrometers have been used to retrieve cloud microphysical properties in polar 15 
regions, but measurements are sparse. Reductions in cost and power requirements to allow more widespread measurements 

could be aided by reducing instrument resolution. Here we explore the effects of errors and instrument resolution on cloud 

microphysical property retrievals from downwelling IR radiances for resolutions of 0.1 to 20 cm-1. Retrievals are tested on 

336 radiance simulations characteristic of the Arctic, including mixed-phase, vertically inhomogeneous, and liquid-topped 

clouds and a variety of ice habits. Retrieval accuracy is found to be unaffected by resolution from 0.1 to 4 cm-1, after which 20 
it decreases slightly. When cloud heights are retrieved, errors in retrieved cloud optical depth (COD) and ice fraction are 

considerably smaller for clouds with bases below 2 km than for higher clouds. For example, at a resolution of 4 cm-1, with 

errors imposed (noise and radiation bias of 0.2 mW/(m2 sr cm-1) and biases in temperature of 0.2 K and in water vapour of -

3%), using retrieved cloud heights, root-mean-square errors decrease from 1.1 to 0.15 for COD, 0.3 to 0.18 for ice fraction 

(fice), and from 10 µm to 7 µm for ice effective radius (errors remain at 2 µm for liquid effective radius). These results 25 
indicate that a moderately low resolution, surface-based IR spectrometer could provide cloud property retrievals with 

accuracy comparable to existing higher resolution instruments, and that such an instrument would be particularly useful for 

low-level clouds. 

1 Introduction 

Knowledge of polar cloud properties is critical for understanding climate change in polar regions. Polar regions are among 30 
the most rapidly warming regions on Earth, with significant concurrent changes in cloud properties that influence the 

amount of warming (Wang and Key 2005) and indications that sensitivity to clouds may increase in a warming Arctic (Cox 

et al 2015). Clouds have a strong influence on the polar surface energy budget (Lawson and Gettelman 2014; van den 

Broeke et al 2017), influencing sea ice loss (Francis and Hunter 2006; Kay et al 2009; Wang et al 2011) and Greenland ice 

melt (van den Broeke et al 2017). Despite ongoing efforts to improve cloud processes in climate models, the 35 
Intergovernmental Panel on Climate Change (IPCC) finds that “clouds and aerosols continue to contribute the largest 

uncertainty to estimates and interpretations of the Earth’s changing energy budget,” (Boucher et al, 2013). Improving the 
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representation of cloud processes in climate models requires observational constraints, including ice and liquid water paths, 

particle size and thermodynamic phase (Komurcu et al 2014; Winker et al 2017). This is particularly true for the polar 

regions, where clouds and cloud processes are distinctly different from lower latitudes and present unique challenges for 

modeling cloud radiative effects (Hines et al 2004), and where measurements are sparse.  

 5 
Although ground-based observations in the polar regions are sparse, measurements made during campaigns and at 

permanent field sites (e.g. Bromwich et al 2012; Cox et al 2014; Uttal et al., 2015, and references therein; Lachlan-Cope et 

al 2016; Silber et al 2018) and from satellites (e.g. L’Ecuyer and Jiang 2010) have made important contributions to our 

understanding of polar clouds. IR spectrometers are proven instruments for remote sensing that have been part of many of 

these surface and satellite-based measurements. Surface-based IR spectrometers are most sensitive to the cloud base, 10 
providing an important complement to satellite-based measurements. In particular, Atmospheric Emitted Radiance 

Interferometer (AERI) instruments currently operate at Barrow (1998-current), Eureka (2006-current), and Summit (June 

2010-current): three Arctic Intensive Observing Sites (Uttal et al., 2015). In the Antarctic, there have been only short-term 

surface-based IR spectrometer measurements, including measurements made at Amundsen-Scott South Pole Station in 1992 

(Mahesh et al 2001) and 2001 (Rowe et al 2008), at Dome C during Austral summer 2003 (Walden et al 2005) and 2012-15 
2014 (Palchetti et al 2015), and McMurdo (as part of the Atmospheric Radiation measurement (ARM) West Antarctic 

Radiation Experiment, or AWARE; Silber et al 2018). These measurements are crucial, but represent only very sparse 

coverage of the polar regions.  

 

Because IR radiance measurements are passive, the energy requirements are considerably lower than for active instruments 20 
such as lidar. Thus there is the potential for portable, low-cost, autonomous IR spectrometers that could be deployed to 

remote locations to make widespread IR radiance measurements across the polar regions from which cloud microphysics 

could be retrieved. Such measurements would be beneficial in a number of ways: First, they could be used to fill gaps in 

satellite measurements. For example, cloud properties were retrieved at Eureka from 2006 to 2009 from AERI 

measurements made nearly continuously every ~40 seconds (Cox et al. 2014). By contrast, satellite overpasses are typically 25 
twice per day. Second, surface-based measurements can be used to validate satellite-based measurements. Finally, surface-

based instruments are generally better at characterizing clouds in the boundary layer. To demonstrate the feasibility of such 

an instrument, the limitations of the retrieval given instrument operational constraints and availability of ancillary data must 

first be assessed.  

 30 
In this paper, we explore the accuracy with which cloud properties could be retrieved from a portable IR spectrometer, 

including optical depth, thermodynamic phase, and effective radius. This paper builds on similar work that explored the 

accuracy of cloud height retrievals (Rowe et al. 2016). One way to develop a robust, low-power portable spectrometer might 

be to reduce the instrument resolution. Here we quantify cloud-property retrieval accuracy as resolution becomes coarser, 

from 0.1 cm-1 to 20 cm-1. Cloud properties are retrieved from simulated downwelling radiance spectra using the CLoud and 35 
Atmospheric Radiation Retrieval Algorithm (CLARRA). In addition to retrieving cloud height (Rowe et al. 2016), 

CLARRA retrieves cloud microphysical properties from IR radiances using an optimal inverse method in a Bayesian 

framework. Cloud property retrievals are performed for simulated polar clouds with varying atmospheric thermal and 

humidity structure, cloud optical depth (in the geometric limit; hereafter, COD), thermodynamic phase (including mixed-

phase and supercooled liquid), liquid effective radius, ice effective radius, ice crystal habit, and cloud vertical structure. 40 
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Mixed-phase clouds were simulated as an external, homogeneous mixture of liquid and ice particles. We also examine the 

sensitivity of retrieved results on noise and bias imposed on the radiance, as well as on errors in specified input parameters, 

especially the atmospheric state and cloud height. 

2 Simulated Radiances 

To test the effect of instrument resolution on the ability to retrieve cloud properties from downwelling radiances, retrievals 5 
using CLARRA were performed on a set of simulations. Using simulations rather than actual measurements confers a 

variety of benefits: 1) the basic capability of the model, in the absence of error, can be determined, setting a benchmark for 

retrieval capability, 2) the effects of various sources of error (such as noise, bias, or uncertainty in the atmospheric state) can 

be determined and assessed independently, and 3) errors in the retrieved values are known and thus can be compared to 

assess the uncertainty prediction from the CLARRA model.   10 
 

The set of simulated downwelling radiances is described in detail by Cox et al. (2016) and by Rowe et al (2016). The 

simulations are based on observed Arctic atmospheric profiles and cloud properties meant to represent a typical Arctic year, 

based on statistics from field observations (Cox et al. 2016 and references therein; although designed for the Arctic, 

significant overlap is expected for typical Antarctic atmospheric states, except perhaps in winter in the interior, when the 15 
atmosphere is colder and drier). All clouds were modeled as plane-parallel, single-layer clouds. Precipitable water vapour 

(PWV) varied from 0.2 to 3 cm. 

 

A base set of 222 simulated radiances was created for atmospheres with vertically uniform clouds, using spheres for ice 

crystal habit (as well as for liquid droplet shape). Cloud bases vary from 0 to 7 km, with about 70% of clouds within the 20 
lowest 2 km and 30% above; thickness varies from 0.1 to 1.6 km; and temperatures vary from 225 to 282 K. Mixed-phase 

clouds are modeled as externally mixed and span temperatures of 240 to 273 K. Cloud phase includes liquid-only (~1/6 of 

cases), ice-only (~1/6) and mixed-phase (~2/3). Statistics for cloud microphysical properties are summarized in Table 1. 

(Statistics were generated for log-normal distributions of COD and effective radii. Thus the standard deviations were 

computed for the logarithms. For convenience, these were converted to positive and negative linear deviations in Table 1.) 25 
 

A second set of simulated radiances was created for testing the effects of cloud vertical inhomogeneity, including 23 cases 

from the base set for which the cloud spanned multiple layers of the atmospheric model; these are referred to as “diffuse.” 

Simulations were created for identical conditions, including the total COD, except that clouds were modeled as dense 

(physically thinner), inhomogeneous (the cloud was optically thicker at the center and thinner at the upper and lower edges), 30 
or liquid-topped (liquid cloud was confined to the uppermost layer, while ice cloud was confined to the lower model layers).  

 

A third set was created for testing the effect of ice habit on the retrieval, including 9 base cases having an ice COD greater 

than 0.5. Simulations were created for identical conditions, except that single scattering properties from different cloud 

habits were used: hollow bullet rosettes, smooth plates, rough plates, smooth solid columns, and rough solid columns (Yang 35 
et al. 2005; 2013).  
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The set of simulated spectra were created at monochromatic, or perfect resolution using the discrete ordinates radiative 

transfer model (DISORT; Stamnes et al 1988), with monochromatic gaseous optical depths created using the Line-By-Line 

Radiative Transfer Model (LBLRTM; Clough et al 2005) as inputs. Spectra were then convolved with a sinc function to 

obtain sets of spectra at resolutions of 0.1, 0.5, 1, 2, 4, 8 and 20 cm-1. These are hereafter referred to as the “observed” 

spectra. Figure 1a shows a spectrum at 0.5 cm-1 resolution, together with the clear-sky spectrum for the same atmospheric 5 
conditions. Additional examples at 0.5 cm-1, as well as at 4.0 cm-1, are given in Fig. 2 of Rowe et al (2016). 

3 CLoud and Atmospheric Radiation Retrieval Algorithm (CLARRA) 

CLARRA retrieves cloud macrophysical properties (cloud height and temperature) and microphysical properties, (COD, ice 

fraction, effective radius of liquid droplets, and effective radius of ice crystals) from downwelling IR radiances, given 

knowledge of the atmospheric state. As the first step in the retrieval, cloud heights are retrieved by CLARRA as described 10 
by Rowe et al. (2016; see also references therein). Alternatively, cloud heights can be input into CLARRA (e.g. from other 

instrumentation, such as lidar, or from reanalysis models). Next, CLARRA performs a fast preliminary retrieval to estimate 

cloud microphysical properties (Section 3.1). These are then used as first-guess values in a microphysical retrieval that using 

uses an iterative optimal nonlinear inverse method (Section 3.2).  

 15 
In preparation for running CLARRA, model atmosphere layer boundaries must be chosen and the atmospheric profiles must 

be constructed (based on model and measured data for the location and time of the downwelling radiance spectrum). For this 

work, the same atmospheric profiles used to create the simulated radiances are used (although errors are sometimes added). 

In addition to uncertainty estimates for the observed radiance, the microphysical retrieval requires a priori values for the 

microphysical properties and their covariance matrix. These can be taken from a climatology or can be determined from the 20 
fast retrieval. In this work, the statistics of the cloud properties used to create the simulated radiances are used. Finally, the 

observed spectrum and associated covariance matrix are needed (here, the simulated radiances with known errors are used). 

After these preparations, CLARRA is run as follows. 

1. Compute gaseous layer optical depths at monochromatic resolution.  

2. Using the above and the temperature profile, calculate terms related to emission and transmission by gases at the 25 
effective instrument resolution.   

3. Retrieve cloud height (see Rowe et al 2016), or alternatively, input the cloud height from another source. 

4. Perform the fast retrieval that neglects scattering, to get first-guess microphysical properties.  

5. Perform the optimal iterative inverse method to retrieve cloud microphysical properties, using the first-guess or 

previous iteration results, the a priori and covariance matrix for the microphysical properties, and the observed 30 
spectrum and its covariance matrix. 

6. Repeat step 5 until the result converges or a maximum number of iterations is reached. 

 

For step 1, gaseous layer optical depths are computed at monochromatic resolution using LBLRTM. The cloud height 

retrieval (step 3) was described by Rowe et al (2016). The fast retrieval (step 4), the optimal inverse method (steps 5 and 6), 35 
and calculation of necessary terms (step 2) are described below.  
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3.1 Fast preliminary retrieval 

The preliminary retrieval provides a computationally fast estimate of cloud properties. Cloud properties are retrieved from 

the absorption optical depth, computed from the cloud emissivity, ignoring scattering. The fast retrieval can be used to 

inform real-time decisions about measurements (e.g. duration of time to averaging spectra for noise reduction) as well as 

providing estimates of cloud property statistics that can inform further analysis. Cloud properties retrieved from the fast 5 
retrieval also serve as a first guess for the iterative optimal inverse method described in the following section, with the goal 

of enhancing performance by starting iterations closer to the solution. Optionally, the fast retrieval results can provide input 

statistics for the optimal inverse method (a priori means and standard deviations). The description of the fast retrieval, 

below, can be skipped without loss in continuity.  

 10 
The cloud emissivity is approximated as in Rowe et al (2016)   

	
ε =

Robs −Rclr
Bctc +Rc −Rclr

, (1) 

where Robs is the observed radiance, Rclr is the clear-sky radiance, Bc is the Planck function of cloud temperature, tc is the 

surface-to-layer transmittance, and Rc is the surface-to-layer clear-sky radiance. All terms must be at the effective instrument 

resolution (as will be discussed in Sect. 3.3 and the appendix).  15 
 

The cloud reflectivity is ignored so that the emissivity is assumed to be one minus the cloud transmittance, The natural 

logarithm of the cloud transmittance is the cloud absorption optical depth, which can thus be calculated from quantities that 

are measured or can be calculated independently of the cloud microphysical properties: 

 20 

		
τ a ,obs = − ln 1− Robs −Rclr

Bctc +Rc −Rclr

⎛

⎝⎜
⎞

⎠⎟
. (2) 

 

The value of τa can also be calculated from the state variables: COD (τg), ice fraction (fice), effective radius of liquid (rliq), 

and effective radius of ice (rice),  

 25 
τa = τg/2 [ [1-fice] Qa,liq(rliq) +  fice Qa,ice(rice)  ].   (3) 

 

Qa,liq and Qa,ice are the absorption efficiencies of liquid and ice, determined from the extinction efficiencies Qe and the single 

scatter albedos ω0. For ice 

 30 
Qa,ice = Qe_ice(rice) [1-ω0,ice],   (4) 

 

where Qe,ice and ω0,ice are determined for averages over a log-normal distribution of particle radii corresponding to the 

effective radius rice. For the fast preliminary retrieval, spheres were assumed for ice and single scattering parameters for each 

particle radius were calculated from Mie theory using the index of refraction of Warren et al (2008), based on a temperature 35 
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of 266 K. For liquid, single-scattering parameters determined from temperature-dependent indices of refraction at 

temperatures of 240, 253, 263, and 273 K were used (Rowe et al 2013; Zasetsky et al 2005; Wagner et al 2005). Letting T1 

be the temperature from this list that is closest to but lower than the cloud temperature, and T2 be the temperature closest to 

but higher than the cloud temperature, Qa,liq is given as the weighted sum  

 5 
Qa,liq = w1 Qe_liq(rliq,T1) [1-ω0,liq (rliq,T1)] + w2 Qe_liq(rliq,T2) [1-ω0,liq (rliq,T1)],  (5) 

 

where w1 = (T2 – Tc)/ (T2 - T1) and w2 = (Tc – T1)/ (T2 - T1). 

 

The values of Qe,liq and Qe,ice, ω0,liq , and ω0,ice, are pre-computed for the full range of possible rliq and rice. The COD (τg) is 10 
retrieved by inverse retrieval (using Eqs. (6) and (7) below, but with R replaced with τa,obs, F replaced with Eq. (3) and  γ = 

0). Next, τa,obs is calculated for the retrieved τg and for a variety of values of fice, (0.2, 0.4, 0.6, 0.8), rliq (integers between 5 

and 30) and rice (even numbers between 10 and 50). Calculating τa,obs for all combinations of these values is computationally 

fast compared to other aspects of CLARRA. Finally, the values of fice, rliq, and rice are selected that correspond to the 

minimum absolute difference between τa,obs and τa.  15 

3.2 Optimal Nonlinear Inverse Method 

The optimal nonlinear inverse method iteratively retrieves cloud microphysical properties (COD, fice, rliq, and rice), using the 

results of the fast retrieval as a first guess. The inverse method uses radiances from 400 to 600 cm-1 (allowing 

thermodynamic phase determination; Rathke et al. 2002a) and from 750 to 1300 cm-1, which is sensitive to phase, COD and 

effective radius. Similar optimal nonlinear inverse methods have been used to retrieve cloud properties from AERI 20 
instruments in the Arctic (Turner 2005; Cox et al 2014) and from satellite instruments (L’Ecuyer et al 2006; Wang et al 

2006; Poulsen et al., 2012; L’Ecuyer et al 2006). Cloud properties are retrieved from observed radiances averaged in 

microwindows (see Table 2). The remainder of this section provides additional details about the optimal nonlinear inverse 

method. 

 25 
The inversion equation used here is the iterative Levenberg-Marquardt method (Rodgers 2000 and references therein), 

 

			x i+1 = x i + 1+γ i
⎡⎣ ⎤⎦Sa

−1 +K i
TSe

−1K i{ }−1 K i
TSe

−1 R −F(xi )⎡⎣ ⎤⎦−Sa
−1 x i − xa⎡⎣ ⎤⎦{ } ,  (6) 

 

where x is the state vector, with a priori xa and covariance matrix Sa. The subscript i indicates the iteration number and R is 30 
the observation, with covariance matrix Se. F is the forward model (described below), and the kernel (K) is the Jacobian 

matrix, computed numerically by perturbing each state variable in turn and re-running F. 

 

 

 35 
The Levenberg-Marquardt formulation is a hybrid of the Gauss-Newton formulation and the method of steepest descent, 

with  γ = 0 defaulting to Gauss-Newton. As γ increases, Eq. (6) becomes more heavily weighted towards steepest descent 

and convergence slows. Choosing γ is difficult, as a large value of γ will slow the retrieval. Here we start with γ = 0. Each 
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time the current iteration causes the root-mean-square (rms) error between measurement and forward model result to 

increase in magnitude by more than 1 RU, or by more than double the current error, γ is increased (first to γ = 1 and then) by 

a factor of 10; the retrieval is then repeated with the new γ. After increasing γ, if a subsequent iteration does not increase the 

rms error as described above, γ is decreased by a factor of 10. Iterations are repeated until γ < 0.01 or the maximum allowed 

number of iterations is reached. 5 
 

Error in the retrieved state variable is given by the covariance matrix  

 

𝐒 = 𝐊!𝐒!!!𝐊 + 𝐒!!! !!.   (7) 

 10 
Note that this equation applies only when γ = 0. We find that our criterion of γ < 0.01 results in negligibly different retrievals 

than for γ = 0. Convergence is tested using 

 

𝑑!! = 𝐱! − 𝐱!!! !𝐒!! 𝐱! − 𝐱!!! ≪ 𝑛,   (8) 

 15 
(Rodgers 2000), where n is the length of x.  

 

In this work, the “observation” R is derived from the simulated spectra described in Sect. 2 by averaging radiances in 

microwindows between strong gaseous emission lines. Microwindows used in this work for resolutions of 0.1 to 4 cm-1 are 

shown in Table 2. They span 3-10 cm-1 and include at least one radiance (wavenumber spacing is equivalent to resolution). 20 
For retrievals at 8 and 20 cm-1, the closest measurement point to each central microwindow frequency was used. Using 

radiances in microwindows minimizes the contribution by gases, increasing sensitivity to cloud and reducing errors. 

However, due to the finite resolution, gas emission from outside the microwindow is convolved into radiances within the 

microwindow. For example, at a resolution of 0.1 cm-1, in a microwindow of 4 cm-1, the contribution from gaseous 

absorption lines outside the microwindow will be minimal. As resolution gets coarser, the gaseous absorption lines 25 
bordering the microwindow contribute more and more, potentially decreasing sensitivity and increasing errors.  

  

The state vector x is composed of COD, ice fraction, log of the effective radius of liquid, and log of the effective radius of 

ice, so that n = 4. For the a priori (xa), means of the values of x used to create the base set are used (Table 1). The 

covariance matrix Sa is assumed to be diagonal, with diagonal elements based on a standard deviation of about one half the 30 
range of values; this is used rather than using the standard deviations given in Table 1 to weight the retrieval heavily toward 

the measurement rather than the a priori. The error covariance matrix for radiance (Se) is assumed to be diagonal with 

elements based on the model errors described in the next section and the measured and simulated radiance errors due to any 

imposed errors, added in quadrature. The first guess values (i = 0) are determined from the fast microphysical property 

retrieval. The maximum number of allowed iterations was set to 20 and the tolerance for convergence was set to d2 < 1. For 35 
convenience, the result of the forward model acting on the retrieved state vector is termed the retrieved radiance. 

 

The forward model (F) is calculated by running DISORT with the state variables and with effective-resolution gaseous 

optical depths (described below). Other inputs to DISORT include the solar contribution, surface albedo, temperature 

profile, and the Legendre moments that describe the phase function, single-scatter albedo, and COD, which depend on the 40 
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state variables and cloud height. DISORT is run with 16 streams. Single scattering properties were the same as for the fast 

preliminary retrieval. 

3.3 Resolution and Model Errors  

In this work, DISORT was used both for simulating the “observed” radiances and for the forward model F. DISORT 

requires gaseous layer optical depths, which are calculated more accurately for observed radiances compared to those used 5 
in F. Gaseous layer optical depths computed by LBLRTM are at monochromatic, or perfect resolution and a fine 

wavenumber spacing, and DISORT must be run for each wavenumber, after which the radiance must be convolved to 

instrument resolution. This was done to simulate the observations but is too computationally intensive for the iterative 

inverse retrieval (i.e. for F). Instead, we develop a novel method for producing effective-resolution gaseous layer optical 

depths (given in the Appendix) so that DISORT need only be run for each microwindow.  10 
 

Model errors arising from these differences are shown in Fig 1b, as box and whiskers plots of model errors for cloudy-sky 

radiances at 0.5 cm-1 resolution, in microwindows used in the cloud microphysical property retrievals. The errors were 

calculated as differences between downwelling radiances calculated using the effective-resolution layer optical depths 

(described in the Appendix) and monochromatic radiances convolved with the instrument lineshape (the radiance 15 
simulations described in Sect. 2), and averaged in microwindows. At 0.5 cm-1 resolution, median model errors are within +/- 

0.02 RU (1 RU = 1 mW/(m2 sr cm-1)). For resolutions of 0.1 to 2 cm-1, all model errors are within +/- 0.15 RU (figures for 

other resolutions are given in the Supplemental). For resolutions of 4 to 20 cm-1, model errors generally increase with 

coarsening resolution, with maximum errors of -0.7 to 1.0 RU at 20 cm-1 resolution (Supplemental).  

 20 
Another source of model error is related to the cloud height retrieval. The cloud height retrieval also uses effective-

resolution terms: the gaseous radiance and the transmittance from the surface up to each possible cloud layer (Rc and tc), and 

the clear-sky radiance (Rclr), described in Rowe et al (2016). Derivation of these quantities is given in the Appendix. Model 

errors for a typical clear-sky radiance used in the cloud height retrievals are also shown in Fig. 1b (solid blue curve); the 

error shown is the difference between Rclr calculated in this work (as described in the Appendix) and the monochromatic 25 
radiance from LBLRTM convolved with the instrument lineshape. As the figure shows, model errors for clear skies are 

typically very low. 

 

4 Imposed Errors 

To determine the impact of sources of error on the microphysical retrievals, various errors were imposed on “observed” 30 
radiances, including Gaussian noise (mean of 0.2 RU) and bias (± 0.2 RU). In remote locations, reanalysis datasets may be 

used for specification of the atmospheric state. Wesslen et al. (2014) characterized temperature errors in the European 

Centre for Medium-range Forecasting (ECMWF) Interim (ERA-Interim; Dee et al., 2011) as varying from -0.5 K to 1 K. 

Rowe et al (2016) found such errors to have a roughly equivalent effect on radiative transfer calculations as a positive 

temperature bias of 0.2 K. Wesslen et al. (2014) characterized water vapour errors to be 2% to 10%, with lower biases in the 35 
first 3 km and higher biases above. Because water vapour decreases rapidly with height, this was found to be roughly 

equivalent to a water vapour bias at all heights of 3% (Rowe et al 2016). Thus, imposed errors also included biases in the 

atmospheric temperature (± 0.2 K) and water vapour (± 3%). Higher biases in water vapour and temperature were also tested 

(± 10% and ± 1 K). Microphysical properties were retrieved with these errors each imposed in isolation, using both true 
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cloud heights and cloud heights retrieved with CO2 slicing as described in Rowe et al (2016).  

 

In addition to errors imposed in isolation, various combinations of the above sources of errors were imposed on retrievals, as 

described in Sect. 5 below. 

 5 
5 Results and Discussion 

5.1 Retrieval overview 

Use of the fast retrieval as a starting point for the inverse retrieval was found to have a variety of benefits. The fast retrieval 

reduced rms errors relative to the a priori: from 300% to 6% for τg, from 0.4 to 0.2 for fice, from 4.4 to 3.7 µm for rliq and 

from 16 to 11 for rice. This provided a first-guess for the inverse retrieval that was closer to the solution, lowering retrieval 10 
errors slightly, modestly increasing the number of cases that converged, and preventing convergence to an incorrect solution 

for a few cases. Overall, the greatest improvement from using the fast preliminary retrieval was reducing computation time; 

on average, one fewer iteration was needed when the fast retrieval was used. 

 

Figure 2 shows the inverse-retrieval trajectory, with iterations, for an ice-only cloud with a COD of 0.89 and effective radius 15 
of 22 µm. The retrieval trajectory is superimposed on error contours (root-mean-square radiance differences). As the figure 

shows, the retrieval converged from the first-guess value (red dot on right in each panel), to the minimum in 4 iterations. 

Furthermore, the retrieval correctly converged to an ice-only cloud, although the mean cloud temperature of ~256 K falls 

within the range of temperatures where mixed-phase clouds may occur.  

 20 
Retrievals using the base set of simulations indicate that the kernels are typically sufficiently linear to converge on the 

solution, except for large COD and effective radii. We find that the retrievals lose sensitivity to COD between about 5 and 

10 (see Sect. 5.2 below); in previous work retrieving cloud properties from downwelling IR radiances in a similar 

wavenumber range, cut-offs of 4 to 6 were used (Mahesh et al 2001; Rathke 2002a,b; Turner 2005). The retrievals were 

found to lose sensitivity to effective radius above about 50 µm (see Supplemental), which is in keeping with Rathke and 25 
Fischer (2000) and Garrett and Zhao (2013), but differs from the cut-off values of 25 µm used by Mahesh et al (2001) and of 

100 µm by Turner (2005). In addition, when values approach these limits, the retrieval was found to sometimes move away 

from the solution. To avoid this, upper bounds were set for the COD (10) and effective radius (50 µm), and the kernels were 

typically calculated for a step in the direction of smaller COD and effective radius; that is, in the direction where sensitivity 

is larger. 30 
 

Nearly all retrievals converged to within the specified tolerance in d2, with only 0 to 2 cases failing to converge for any set 

of imposed errors. Overall, convergence was achieved in a mean of 4 iterations (median of 3). At most 2 cases failed to 

converge within 20 iterations for any set of imposed errors. 

 35 

5.2 Retrieval Errors 

To determine the retrieval capability, errors in retrieved values are examined in the absence of any imposed errors, where 

only model errors are present. Table 3 shows errors in retrieved cloud microphysical properties (τg, fice, rliq, and rice) for the 
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base set of spectra, for spectral resolutions of 0.1, 0.5, and 4 cm-1. Retrieval errors are shown for different ranges of τg. For 

thin clouds (τg < 0.4), the low signal reduces sensitivity. For thick clouds (τg > 5), the spectrum begins to approach 

saturation, and sensitivity to the cloud’s microphysical properties diminishes. Both can result in large errors in fice, rliq, and 

rice (such increases are not seen for τg > 5 in Table 3 but occur when errors are imposed). By contrast, error in τg increases 

with increasing τg and is smallest for the thinnest clouds. Based on these considerations, the ideal range for τg was identified 5 
as 0.4 < τg < 5. (To get a sense of how common such clouds are, Cox et al, 2014 found that at Eureka, Nunavut, in 2006-

2009, clouds with optical depths of 0.25 to 6 accounted for about 32% of AERI measurements; 17% when quality control 

procedures and a PWV threshold of 1 cm were applied; in this work PWV is as high as 3 cm). Unless otherwise specified, 

results will be presented for this range. Retrieval errors for 0.4 < τg < 5 are overall quite low, with magnitudes of errors in τg 

below 0.013, in fice below 0.03, in rliq below 0.7 µm, and in rice below 4 µm. Overall, the table shows no trend in retrieval 10 
errors with coarsening resolution for 0.4 < τg < 5. 

 

Retrieval accuracy was tested for two sets of microwindows. Set 1 consists of 22 microwindows similar to those used by 

Turner (2005), indicated in Table 2 in plain (non-bold) font; these were used in the retrievals described below. Set 2 consists 

of the combined microwindows of Rathke et al (2000) and Mahesh et al (2001), indicated in Table 2 with superscripts R and 15 
M (11 microwindows). Retrieval errors were found to be slightly lower for set 1; therefore it is used in the remainder of this 

work. However, differences were small (compare Table 4, described below, to Table S1 of the Supplemental), indicating 

that a smaller set of microwindows is likely sufficient. Choice of optimal microwindows depends on noise level and 

spectrally-varying errors (e.g. due to errors in assumed profiles of atmospheric water vapour and chlorofluorocarbons) and is 

therefore a complicated but interesting topic for future work.    20 
 

Errors in retrieved microphysical cloud properties for different imposed errors are given in Table 4 for a spectral resolution 

of 0.5 cm-1 and τg between 0.4 and 5. Magnitudes of imposed errors are given in the first column except for cases of 

combined errors. Error combination (a) includes noise of 0.2 RU, radiation bias of 0.2 RU, temperature bias of 0.2 K, and 

water vapour bias of -3%, and uses true cloud heights. Combination (b) is the same but with opposite signs on biases. 25 
Combinations (c) and (d) are the same as (a) and (b), respectively, but use retrieved cloud heights (similar sets but with 

radiation biases of 0.5 RU are given in Table S2 of the Supplemental). Subsequent columns give the mean errors and the 

standard deviations of the errors.  

 

When true cloud heights are used, errors in τg are within ± 0.2 for large biases imposed on the observed radiation, 30 
temperature, and water vapour, (± 1.0 RU, 1 K, and 10%, respectively) or combined errors, and within ± 0.09 for smaller 

imposed biases (± 0.2 RU, 0.2 K, and 3% respectively). Large imposed errors also lead to large errors in fice, making it 

difficult to distinguish liquid and ice. Errors in rice are typically 2 to 3 times as large as errors in rliq. Mean errors reveal how 

biases in measured radiance, water vapour and temperature lead to biases in retrieved cloud properties. For example, 

positive biases in observed radiances lead to negative biases in COD, rliq, and rice, and positive biases in ice fraction, while 35 
the reverse is true for negative biases in observed radiance.  

 

When cloud heights are retrieved from the observed radiances (columns labelled CO2 slicing and combined errors (c) and 

(d)), errors in cloud height lead to biases in inferred cloud temperature. Biases in cloud temperature cause errors that are 
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spectrally flat. Because cloud emissivity depends fairly linearly on τg, spectrally flat errors have a large effect on τg. 

Furthermore, in the cloud height retrieval (CHR), the cloud is placed in the atmospheric model layer containing the cloud 

height retrieved with CO2 slicing. This means that errors in COD are also affected by the choice of atmospheric layering. 

One approach to improving cloud temperature and optical depth is the geometric method of Rathke et al (2002b), for which 

the instrument would be designed to look at multiple angles; this can also be used to examine the horizontal homogeneity of 5 
clouds. 

 

Additional work is needed to understand the effects of CHR errors on microphysical property retrievals, for several reasons. 

First, Rowe et al (2016) found that CHR errors for CO2 slicing were most sensitive to biases in observed radiance and 

temperature, with less sensitivity to noise and biases in water vapour. By contrast, for an alternate CHR method (MLEV) 10 
these sensitivities were found to be the opposite. Since CHR errors translate into errors in retrieved optical depth, it is 

important to choose the CHR method to use based on expected error magnitudes. Second, Rowe et al (2016; see e.g. Fig. 7) 

found that CHR errors generally decrease with increasing cloud signal, which should oppose the tendency of microphysical-

property retrieval errors to grow with increasing optical depth. Finally, Rowe et al (2016; Fig. 7) found that CHR errors 

generally decrease with decreasing cloud height. Here we find important consequences for retrievals of COD and fice. For 15 
example, when errors are imposed (noise of 0.2 RU, radiation bias of 0.2 RU, temperature bias of 0.2 K, water vapour bias 

of -3%, and CHR errors in cloud height; for spectra at 4.0 cm-1 resolution), comparing clouds with based above 2 km to 

those with bases below, rms errors in retrieved COD decrease from 1.1 to 0.15, errors in fice decrease from 0.3 to 0.18, and 

errors in rice decrease from 10 to 7 µm (errors remain at 2 µm for the effective radius of liquid).  

 20 
Errors in retrieved microphysical properties are shown as a function of resolution from 0.1 to 20 cm-1, for clouds with bases 

below 2 km, in Fig. 3. Errors are shown for base cases with no imposed error and for a combination of imposed errors: noise 

of 0.2 RU, radiation bias of 0.2 RU, temperature bias of 0.2 K, water vapour bias of -3%, and CHR errors in cloud height. 

No trend is seen in retrieval errors for resolutions of 0.1 to 4 cm-1, after which errors increase. For clouds with bases above 2 

km, errors are larger for optical depth and ice fraction (Figure S4 of the Supplemental) and trends with resolution are similar 25 
but less pronounced. (Scatter plots of true vs retrieved microphysical properties are given in Figs. S5 and S6 of the 

Supplemental). Based on these trends, an instrument resolution of 4 cm-1 seems to be a good compromise for reducing 

resolution while avoiding increases in retrieval errors. For example, at 0.5 cm-1 (for clouds at all heights), rms retrieval 

errors are 0.6 for COD, 0.2 for fice, 3 µm for rliq, and 8 µm for rice; at 4 cm-1 they are nearly the same (0.6, 0.2, 2 µm, and 8 

µm, respectively).  30 

5.3 Retrieval error covariance matrix 

Discussion of errors so far has focused on actual retrieval errors, which can be calculated because simulated data was used 

as the observation set. For real measurements, error analysis relies on the covariance matrix S, which in turn depends on the 

kernels and covariance Se (Eq. (8); Se is calculated by adding measurement and forward model errors in quadrature; model 

errors are determined from errors in water vapour or temperature profiles). Here we determine how well S represents 35 
retrieval errors. For unbiased, normally distributed errors, the diagonals of S should correspond to the 68% confidence 

interval. We can test this by comparing retrieval errors to the diagonal of S. This is complicated by the fact that S is not 

constant but depends on x (because the kernels depend on x). Thus for each retrieved x, the absolute error was divided by 

the square root of the appropriate diagonal element of the corresponding S. For Gaussian errors, this ratio should be <=1 for 
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68% of retrievals (and <=2 for 95% of retrievals, etc). In the absence of imposed error, only 52 to 63% of retrievals had a 

ratio within 1 (for Se based on model errors). The lowest model errors are likely underestimates, since it is unlikely all 

sources of error in the forward model were captured. A minor increase in model error (0.03 RU) gave values between 68 and 

77%. However, the error distributions were found to decrease more slowly than Gaussians, with only 78 to 87% of errors 

(rather than 94%) falling within the second standard deviation indicated by S.  5 
 

For imposed noise of 0.2 RU, only 52 to 58% of retrievals were found to have a ratio within 1, suggesting that model errors 

are amplified in the presence of error. This is likely because away from the correct solution, the estimate of S is incorrect. 

Increasing the contribution of noise to Se by 30% accounted for this, resulting in values of 65 to 70%. 

 10 
S was found to provide a poor indication of retrieval errors due to biases in radiance, temperature, water vapour, or cloud 

height. This is likely because the inverse retrieval is based on an assumption of unbiased, normally distributed errors. For 

biases in radiance, water vapour, and for errors in cloud height, S is particularly non-representative for COD, for which only 

11 to 25% of cases fall within one standard deviation for S (for other properties the range is 36 to 78%). Biases in 

temperature affect S similarly for COD, fice, rliq, and rice, (range of 48 to 66%). This underscores the importance of removing 15 
bias errors from measurements whenever possible to ensure that S provides the best possible representation of errors. 

5.4 Cloud vertical inhomogeneity and ice habit 

Errors in retrieved microphysical properties (from spectra at 0.5 cm-1 resolution) due to failing to capture cloud vertical 

inhomogeneity are shown in Table 5. For the upper set of cases shown in the table, errors were not imposed and true cloud 

heights were used. In performing the retrieval the correct cloud base and top were used, but the cloud was assumed to be 20 
vertically homogeneous in terms of COD and phase; thus the cloud model is accurate for dense and diffuse clouds but not 

for inhomogeneous or liquid-topped clouds. This emulates a measurement where the cloud base and top are known from an 

ancillary instrument such as a lidar. As expected, therefore, errors are similar for dense and diffuse clouds. For 

inhomogeneous clouds, which are thinner at the upper and lower edges, errors are slightly larger for τg. The largest retrieval 

errors are found to be for liquid-topped clouds, particularly for τg and fice, for which errors are about five times as large. 25 
These errors are large because the cloud heights are effectively wrong for the liquid and ice layers of the cloud. A lidar that 

can classify phase would allow reduction of these errors down to the level seen for other cloud types. The enhancement of 

errors in liquid-topped clouds relative to other cloud types disappears when errors are imposed on the observations (imposed 

noise of 0.2 RU, radiation bias of 0.2 RU, temperature bias of 0.2 K, and water vapour bias of -3%; see the last two sets of 

cases in Table 5). This is true when true cloud heights are used (middle set) and when they are retrieved (lowest set). 30 
(Similar trends are found when the radiation bias is increased to 0.5 RU, as shown in the Supplemental). 

 

Errors in retrieved microphysical properties (from spectra at 0.5 cm-1 resolution) due to assuming a spherical ice habit are 

shown in Table 6. The first column of the table shows the true ice habit. The upper set of data has no other imposed errors, 

while the lower two sets have the same imposed errors as for vertically-varying clouds. Retrieval error in rliq is not shown 35 
because clouds were mainly ice. In the absence of imposed errors, compared to spheres, the increase in error is greatest for 

τg, for which errors increase by an order of magnitude or more. This large increase suggests that errors in habit mainly bias 

the magnitude rather than spectral shape of the cloud emissivity. Overall, errors are the smallest for solid columns. 

However, differences in errors based on assumed ice habit diminish when errors exist in observations and cloud heights are 
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retrieved (bottom set). Thus, using a realistic ice habit can minimize errors, but this becomes less important when cloud 

height is also retrieved.  

6 Conclusions 

This work explores the capability of a low-resolution IR spectrometer for retrieving cloud properties in polar regions. To 

this end, the CLoud and Atmospheric Radiation Retrieval Algorithm (CLARRA) was used to retrieve cloud effective height 5 
(Rowe et al 2016) and microphysical properties (COD, ice fraction, effective radius of liquid, and effective radius of ice) 

from simulations of surface-based IR downwelling radiances, to determine the effect of instrument resolution on accuracy. 

CLARRA includes a method for calculating gaseous transmission and emission terms at the effective instrument resolution, 

minimizing model errors. A fast forward retrieval rapidly retrieves preliminary cloud microphysical properties, which then 

serve as inputs into an optimal nonlinear inverse method. Cloud properties were retrieved from 222 simulated radiances 10 
based on atmospheric and cloud conditions characteristic of the Arctic, with additional tests of sensitivity to cloud vertical 

inhomogeneity and ice habit.  

 

Sensitivity studies for vertically-varying clouds indicate that, in the absence of observational errors, errors in retrieved 

microphysical properties are highest for liquid-topped clouds that are assumed to be homogeneously mixed-phase (relative 15 
to clouds that are dense, diffuse, or inhomogeneous vertically). However, in the presence of errors in observations, the gap 

in retrieved microphysical property errors between liquid-topped clouds and other cloud structures disappears. Future work 

is needed to assess errors when multiple clouds are present. For different ice habits, sensitivity studies indicate that use of a 

reasonable guess for the ice habit can help minimize errors, but these differences become minor in the presence of 

observational errors.   20 
 

Retrieval accuracy was determined as a function of resolution for model errors, CHR errors, and a variety of imposed 

observational errors, including random noise as well as biases in the measured spectrum and atmospheric state. In the 

absence of imposed errors, errors in retrieved microphysical properties were found to be 0.007 for COD, 0.03 for fice, 0.7 for 

µm rliq, and 3 µm for rice (0.5 cm-1 resolution; COD between 0.4 and 5). In the presence of imposed errors, errors in retrieved 25 
COD and ice fraction were found to be strongly affected by bias errors in cloud height, which in turn are high when the 

CHR is used. Furthermore, CHR errors typically decrease with decreasing cloud base height (Rowe et al 2016), with 

consequences for microphysical property retrievals. For example, for a combination of errors including noise of 0.2 RU, 

radiation bias of 0.2 RU, temperature bias of 2 K, water vapour bias of -3%, and CHR errors (at 4.0 cm-1 resolution), 

comparing clouds with bases above 2 km to those with bases below, the rms error decreases from 1.1 to 0.15 for COD and 30 
from 0.3 to 0.18 for fice, pointing to a strong potential for retrievals of low clouds. 

 

Retrieval errors were found to be fairly invariant to resolution up to about 4 cm-1, after which accuracy declined. For 

example, at 0.5 cm-1 resolution, for the combination of errors given above, rms retrieval errors (for clouds at all heights) are 

0.7 for COD, 0.2 for fice, 3 µm for rliq, and 8 µm for rice. At 4 cm-1 these errors are similar (0.6, 0.2, 2, and 8, respectively). 35 
Taken together, this lack of sensitivity to resolution indicates that a moderately low resolution (~ 4 cm-1) surface-based IR 

spectrometer could provide cloud property retrievals with accuracy comparable to existing higher resolution instruments. 

Furthermore, these retrievals would be particularly useful for low-level clouds, for which accuracy is likely to be highest. 
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7 Code and data availability 

Simulated radiances at monochromatic resolution (Cox et al 2015) are available by email to the corresponding author. 

Computer code is available at Bitbucket (https://bitbucket.org/%7B4e9c3a2c-5ac5-40f9-a7e4-0c9578f88b21%7D/), 

including repositories containing Python computer code (runDisort_py; 

https://bitbucket.org/clarragroup/rundisort_py/src/master/) and Matlab/Octave computer code (runDisort_mat; 5 
https://bitbucket.org/clarragroup/rundisort_mat/src/master/) for creating cloudy-sky spectra using DISORT (Stamnes et al 

1988). See also Rowe et al (2013; 2016).å 

8 Author contribution 

Steven Neshyba calculated Legendre moments and single-scatter albedo from single-scattering parameters. Christopher Cox 

led creation of simulated spectra used in this work. Von Walden conceived of the idea and provided guidance. Penny Rowe 10 
performed all other calculations and wrote the manuscript with input from all authors. 

 

Appendix 

 

A.1 Approximations for cloud-height retrievals 15 
To solve the radiative transfer equation in LBLRTM and DISORT (Stamnes et al 1988), the atmosphere is divided into 

model atmospheric layers and the approximation is made that the Planck function varies linearly with optical depth through 

the layer (Wiscomb et al 1976, Clough et al 1992). In the absence of scattering, the downwelling radiance from a layer at a 

given wavenumber is approximated as 

 20 

∆𝑅! = 𝐵 𝜏 𝑒!! !"#!𝑑𝜏!!
!!!!

   (A1) 

 

where the tildes indicate monochromatic, or perfect, resolution (all quantities with tildes depend on wavenumber), τ is 

defined as the vertical optical depth from the surface up to some height (e.g. within layer L), τL-1 is from the surface to the 

layer bottom, and τL is from the surface to the layer top. (Parentheses are used here and below to indicate dependence.) 𝐵 is 25 
the Planck function and θ is the viewing angle from zenith. Note that the formulation here differs from that of Clough et al 

(1992); here, RL,  τL, and the transmittance, tL (defined below) are defined from the bottom of the model atmosphere (e.g. 

from Earth’s surface), to the top of layer L. Quantities that are for layer bottom to top only are indicated with a delta. Using 

these conventions means that Eq. (1) represents the radiance from layer L that is transmitted by the atmosphere below to the 

surface. The viewing angle is included explicitly here so that τ refers to the vertical optical depth. 30 
 

The surface-to-layer top transmittance depends on the the optical depth, 

 

𝑡! = exp(-𝜏! sec 𝜃). (A2) 

 35 
The linear-in-optical depth approximation for B allows the integral to be solved, yielding 
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∆𝑅! = −𝐵!𝑡! + 𝐵!!!𝑡!!! − Δ𝐵!
!!!
!!!

  (A3) 

 

where 𝐵!!! and 𝐵! are the Planck functions of the temperature at the lower and upper boundary of layer L, and the deltas 

indicate the change across the layer. (Note that ∆𝑅! is calculated slightly differently in LBLRTM, following Clough et al. 

1992; the two methods give similar results). 5 
 

Thus ΔRL is the radiance from the layer that makes it to the surface. The total (clear-sky) radiance is the sum of all the layer 

radiances. To match instrument resolution, the clear sky radiance needs to be convolved with the instrument lineshape S, 

 

𝑅!"# 𝜈 = ∆𝑅!(𝜈)! 𝑆(𝜈, 𝜈)𝑑𝜈∞
-∞ ,  (A4)          10 

 

where the dependence on wavenumber has been included explicitly. Eqn (A4) can also be calculated directly by running 

LBLRTM and convolution with the S (typically a sinc function). We will use Rclr calculated in this manner to test the 

remaining approximations. 

 15 
In practice the integral need only be performed over the small wavenumber region characterized by the width of S (typically 

a sinc function). Switching the order of the sum and the integral, we have 

 

𝑅!"# 𝜈 ≈ ∆𝑅!(𝜈)! .  (A5) 

 20 
where 

 

∆𝑅!(𝜈) ≡ ∆𝑅!(𝜈)𝑆(𝜈, 𝜈)𝑑𝜈
∞

-∞ ,   (A6) 

 

In addition to Rclr, the cloud-height retrieval (Rowe et al 2016) requires the gaseous radiance from the surface up to each 25 
possible cloud layer (Rc), which can also be calculated from ΔRL, 

 

𝑅! ≈ ∆𝑅!!
!!! .   (A7) 

 

Finally, the cloud height retrieval requires the transmittance of the atmosphere below the cloud (tL; in Rowe et al 2016 it is 30 
referred to as tc) at the effective instrument resolution. Examining Eqns (1)-(6) shows that it is more accurate to convolve the 

Planck function multiplied by the surface-to-layer transmittance. Thus we define the effective transmittance from the surface 

to a layer as 

 

𝑡! 𝜈 ≡ 𝐵! 𝜈 𝑡! 𝜈 𝑆 𝜈, 𝜈 𝑑𝜈
!
!! /𝐵!(𝜈).   (A8) 35 

 

To summarize how these approximations are used for the cloud height retrieval, first, gaseous layer optical depths Δ𝜏! are 

computed using LBLRTM. Next, Δ𝜏! is summed from the surface up to each layer to get 𝜏!. Eqn (A2) is then used to 

calculate t!, and Eqns (A3) and (A6) are used to calculate ∆𝑅!. Equation (A5) is used to calculate Rclr., and Eqn (A7) is used 
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to calculate Rc for each model layer that could contain cloud (for cloud heights within layers, terms are interpolated). 

Equation (A8) is used to calculate tL. 

 

A.2 Approximations and model error for cloud microphysical property retrievals 

Retrieval of microphysical cloud properties requires effective-resolution layer optical depths, ΔτL, as input into the DISORT 5 
radiative transfer code. One method to create the set of ΔτL might be to reduce the resolution of the layer optical depths. 

However, the above equations suggest that a more accurate method would be in terms of transmittances. Inserting Eq. (A2) 

into Eq. (A6) and breaking up the integral gives 

 

 ∆𝑅! 𝜈 = − 𝐵!𝑡!𝑆 𝜈, 𝜈 𝑑𝜈
∞

-∞ + 𝐵!!!𝑡!!!𝑆 𝜈, 𝜈 𝑑𝜈
∞

-∞ − Δ𝐵!
!!!
!!!

𝑆(𝜈, 𝜈)𝑑𝜈∞
-∞ .    (A9) 10 

 

The first two terms on the right hand side of this equation have the same form as the integral in Eqn (A8) and can be 

replaced with -BLtL and BL-1tL-1. Thus it makes sense to create the set of ΔτL using tL (noting that the third term in Eqn (A9) 

also includes the monochromatic layer gaseous optical depth and thus represents a source of error).  

 15 
Due to ringing, tL can be greater than 1 or less than 0, resulting in optical depths outside physical bounds. To minimize 

ringing, transmittances were averaged over small spectral regions between strong emission lines, or microwindows (Table 

2). Observed radiances are therefore also averaged over microwindows. (Note that it might be more accurate to average the 

term in brackets in Eqn. (A8); an alternate option would be to use an apodization function rather than a sinc function in Eqn. 

(A8) to reduce ringing; these are both interesting topics for future work). Following this, transmittances below 10-40 and 20 
above 1 were modified such that 10-40 <= tL <=1.  

 

Finally, layer optical are calculated from tL. For the first layer, 

 

Δ𝜏! ≡ −log(t!).   (A10) 25 
 

For subsequent layers, the optical depths of all layers below must be subtracted.  

 

Δ𝜏! ≡ −log(t!) − Δ𝜏!!!!
!!! .   (A11) 

 30 
The advantage of approximating radiances using layer optical depths derived from surface-to-layer transmittances 

convolved to the instrument resolution is shown in Fig. 4. Errors for this convolved-transmittance (CT) method are 

compared to errors for radiances calculated using optical depths derived from averaged monochromatic surface-to-layer 

transmittances (or from averaged monochromatic layer optical depths). In Fig. 4a averages are over the wavenumber 

spacing. Fig. 4b shows averages over microwindows, used in the cloud microphysical retrievals. (For simplicity, clouds are 35 
omitted from this example). Errors are determined by comparison with Rclr calculated as in Eqn. (A4), using LBLRTM and 

then convolving to the desired resolution (0.5 cm-1 here), and (in b), averaged over microwindows. Errors are reduced 

significantly by the CT method, relative to the other approximations. In microwindows used in the cloud microphysical 

property retrieval (Fig 4b), errors are within 3 or 30 RU for the other methods, whereas for the CT method they are <= 0.01 
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(for this clear-sky example; the range for cloudy cases used in this work is shown in Fig. 1); thus the CT method represents 

a significant improvement. Finally, it is worth noting that errors at instrument resolution are also fairly low (Fig. 4a). This is 

shown here for reference only, and is not used in this work, but has the potential for use in a cloud-property retrieval that 

includes scattering, using DISORT.   

 5 
To summarize the approximations used for the cloud microphysical property retrievals, the set of effective-resolution 

gaseous layer optical depths needed for running DISORT are calculated as follows. The first few steps are the same as for 

the cloud height retrieval: Δ𝜏! is computed using LBLRTM and these are summed from the surface to each layer to get 𝜏!, 

and Eqn (A2) is used to calculate t!. Next, Eqn (A8) is used to calculate tc, which is then averaged over microwindows and 

bounded to be between 10-40 and 1. Eqns (A10) and (A11) are then used to calculate ΔτL. Since DISORT is run at single 10 
precision, serious errors can result for very small input optical depths, thus ΔτL was increased as needed such that ΔτL >= 10-

5.  
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Table 1. Statistics of cloud microphysical properties. Standard deviations were calculated for the logarithms of cloud optical 

depth referenced to the geometric limit (τg), effective radius of liquid (rliq) and effective radius of ice (rice) because 

distributions for the logarithms were found to be more Gaussian in shape; these standard deviations were converted positive 

and negative standard deviations for these quantities. The ice fraction, fice, peaks strongly at both limits; thus no standard 

deviation is provided. 5 
Quantity Units Mean Std. dev. range 

 τg (tau) 2 -0.5, +2 0.03 – 9.3 

fice (fract) 0.5      - 0 - 1 

rliq (µm) 10 -3, +4 2 - 21 

rice (µm) 25 -9, +14 5 - 58 
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Table 2. Microwindows used in the microphysical cloud property retrievals. The first column gives the central wavenumber, 

the second column gives the microwindow width for resoluitons of 0.1 to 4 cm-1. For resolutions of 8 cm-1, some 

microwindows were widened slightly so that there was at least one point in the microwindow (a few were narrowed so that 

there was only one point). Two sets of microwindows were used in this work: a combination of those used by Rathke et al 

(2000) and Mahesh et al (2001), indicated with superscripts R and M; and microwindows similar to those used by Turner 5 
(2005), consisting of all wavenumbers in plain font (e.g. not bold). 

 0.1 – 4 
cm-1 

ν  
(cm-1) 

width  
(cm-1) 

497.0 4.1 

522.5R 4.0 

531.8R 3.7 

560.0R 4.0 

572.5R 3.0 

772.8 3.9 

788.1 4.0 

811.5 4.0 

820.2 6.5 

831.6M 6.0 

845.6 5.0 

862.0M 3.9 

875.0 5.0 

893.8 3.9 

901.5M 6.6 

917.5M 4.0 

934.6M 10.1 

961.1M 6.3 

988.2M 6.6 

1080.7 8.2 

1095.2 5.7 

1115.1 3.0 

1128.5 8.2 

1145.1 5.8 

1159.3 8.2 

 

 

 

 10 



 

 31 

Table 3. Root-mean-square errors in retrieved cloud microphysical properties for base set of spectra due to model error only 

(no errors imposed), for spectral resolutions indicated. Errors are shown for cloud geometric optical depth (τg), ice fraction 

(fice) effective radius of liquid (rliq), and effective radius of ice (rice), for four ranges in τg. 

  0.1 cm-1 0.5 cm-1 4 cm-1 

 τg τg < 0.25 0.005 0.004 0.005 

 0.25 < τg < 0.4 0.005 0.006 0.006 

 0.4 < τg < 5 0.013 0.007 0.013 

 τg > 5 0.3 0.3 0.4 

fice τg < 0.25 0.11 0.11 0.13 

 0.25 < τg < 0.4 0.10 0.08 0.09 

 0.4 < τg < 5 0.03 0.03 0.03 

 τg > 5 0.017 0.013 0.10 

rliq  τg < 0.25 4 3 4 

(µm) 0.25 < τg < 0.4 2 2 3 

 0.4 < τg < 5 0.6 0.7 0.6 

 τg > 5 0.7 0.7 1.2 

rice τg < 0.25 7 6 8 

(µm) 0.25 < τg < 0.4 7 7 6 

 0.4 < τg < 5 4 3 3 

 τg > 5 3 3 8 

 

 5 
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Table 4. Errors in retrieved cloud microphysical properties (mean error and standard deviation

 of error; SD; COD refers to cloud optical depth in the geometric limit, rliq and rice are the effective radii of liquid and ice) for 

various errors imposed on the observations (see text). 

            COD Ice fraction  rliq (µm)     rice (µm) 

       Mean    SD Mean  SD  Mean  SD    Mean  SD 

None 0.001 0.007 0.00 0.03 0.0 0.9 1 3 

Noise (0.2 RU) 0.00 0.03 0.00 0.13 0 1.8 0 6 

Bias (0.2 RU) -0.03 0.03 0.04 0.14 -1 1.5 -2 5 

Bias (-0.2 RU) 0.03 0.03 -0.04 0.14 0 1.6 2 5 

Bias (1.0 RU) -0.12 0.13 0.04 0.17 -1 2 -5 6 

Bias (-1.0 RU) 0.17 0.2 -0.08 -0.2 1 2 6 7 

Temp. (0.2 K) 0.03 0.03 -0.04 0.11 0.2 1.2 2 4 

Temp. (-0.2 K) -0.01 0.09 0.00 0.19 -0.2 1.1 0 5 

Temp (1.0 K) 0.15 0.2 -0.09 0.18 0 2 3 6 

Temp (-1.0 K) -0.10 0.13 0.04 0.21 0 2 -2 6 

WV (3%) 0.01 0.02 -0.02 0.09 -0.3 1.5 1 5 

WV (-3%) -0.01 0.02 0.05 0.11 -0.4 1.6 -1 6 

WV (10%) 0.04 0.05 -0.02 0.14 -1 2 1 6 

WV (-10%) -0.04 0.06 0.07 0.15 0 2 -2 7 

CO2 Slicing 0.1 0.3 -0.04 0.14 0.3 1.4 1 4 

Combined, a -0.01 0.04 0.04 0.14 0 2 -3 7 

Combined, b 0.08 0.08 -0.10 0.18 0 3 4 6 

Combined, c -0.1 0.7  0.03 0.25 0 2 -3 7 

Combined, d 0.1 0.3 -0.12 0.20 1 2 4 7 
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Table 5. Root-mean-square errors in retrieved cloud microphysical properties for macroscopically varying clouds: 

cloud optical depth (COD), ice fraction (fice), and effective radii of liquid and ice (rliq and rice). For the upper set of 

cases, errors were not imposed on observations (error = n) and true cloud heights were used. The middle set of cases 

includes imposed errors with true cloud heights (error = y), while the lowest set includes imposed errors with retrieved 

cloud heights (error = y*; see text). 5 

Cloud type Error 
COD fice rliq  

(µm) 

rice 

(µm) 

Dense n 0.012 0.01 0.5 6 

Diffuse n 0.012 0.02 0.5 6 

Inhomogeneous n 0.019 0.02 0.5 7 

Liquid topped n 0.09 0.10 1.1 10 

Dense y 0.04 0.16 2 9 

Diffuse y 0.05 0.15 3 9 

Inhomogeneous y 0.05 0.12 2 8 

Liquid topped y 0.08 0.14 3 8 

Dense y* 0.10 0.17 2 10 

Diffuse y* 0.09 0.17 2 9 

Inhomogeneous y* 0.18 0.19 2 9 

Liquid topped y* 0.12 0.15 3 8 
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Table 6. Root-mean-square errors in retrieved cloud microphysical properties, assuming a spherical ice habit, for ice clouds 

of varying habit (first column): cloud optical depth (COD), ice fraction (fice), and effective radius of ice (rice). For the upper 

set of cases, errors were not imposed (error = n) and true cloud heights were used. The middle set of cases includes imposed 

error with true cloud heights (error = y), while the lowest set includes imposed errors with retrieved cloud heights (error = 

y*; see text).  5 

Habit Error COD fice 
rice 

(µm) 

Sphere n 0.02 0.01 4 

Hollow bullet rosette n 0.6 0.07 10 

Smooth solid column n 0.3 0.03 7 

Rough solid column n 0.3 0.04 7 

Smooth plate n 0.6 0.05 7 

Rough plate n 0.5 0.07 7 

Sphere y 0.06 0.12 8 

Hollow bullet rosette y 0.6 0.09 8 

Smooth solid column y 0.3 0.07 7 

Rough solid column y 0.3 0.09 7 

Smooth plate y 0.5 0.11 9 

Rough plate y 0.5 0.10 6 

Sphere y* 0.7 0.11 6 

Hollow bullet rosette y* 0.8 0.22 8 

Smooth solid column y* 0.7 0.19 4 

Rough solid column y* 0.8 0.17 5 

Smooth plate y* 0.7 0.21 5 

Rough plate y* 0.7 0.21 4 
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Figure 1. (a) Clear and cloudy-sky downwelling radiance (1 RU = 1 mW / [m2 sr cm-1]) for a typical polar atmosphere at a 

resolution of 0.5 cm-1. (b) Model errors (model – true) in downwelling radiances for the clear-sky radiance shown in the top 

panel (blue solid line), and box and whiskers plots of model errors for all radiances, averaged in microwindows (horizontal 

lines give the median, boxes give the 1st and 3rd quartiles, and whiskers give the range). 5 
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Figure 2. Error contours for retrievals of ice effective radius (rice), ice fraction, and cloud optical depth, as root-mean-square 

error in radiances for an ice-only cloud. The retrieval trajectory (red line) and results for each iteration (red dots) are 

superimposed on the contour surface. 5 
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Figure 3. Root-mean-square error in retrieved microphysical cloud properties as a function of resolution, where rliq is the 

effective radius of liquid and rice is the effective radius of ice, for cases with and without imposed error, as described in the 

text.  
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Figure 4. Radiance errors (1 RU = 1 mW/[m2 sr cm-1]) for different methods of approximating the radiance at a resolution of 

0.5 cm-1. Approximate radiances are computed using averages of perfect-resolution layer optical depths R(<Δτ>), mean 

surface-to-layer perfect-resolution transmittances R(<𝑡>), or mean surface-to-layer transmittances after convolution to the 5 
instrument R(<t>); averages are over 0.5 cm-1 (a) or over microwindows (b). Approximate radiances are compared to 

simulated radiances at 0.5 cm-1 resolution (Rclr), which are averaged over microwindows in (b). 

 


