Novel Aerosol Flow Reactor to Study Secondary Organic Aerosol

Kelly L. Pereira¹, Grazia Rovelli², Young C. Song³, Alfred W. Mayhew¹, Jonathan P. Reid³, Jacqueline F. Hamilton¹

5 1Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, YO10 5DD, UK 2School of Chemistry, Cantock's Close, University of Bristol, Bristol, BS8 1TS, UK

Correspondence to: Jacqueline Hamilton (jacqui.hamilton@york.ac.uk)

Supplementary information

1. Instrument calibration

- 10 The SIFT-MS was calibrated daily using the manufacturer certified gas standard in accordance with the manufacturer instructions. The O₃ analyser was verified using a 49i-PS dual-cell photometer prior to use. This verification has been adopted by the National Institute of Standards and Technology as the principle technology for the international ozone standard. The 49i-PS photometer is annually calibrated using a certified source. The NO_x analyser was calibrated using a 1 ppm NO in N₂ standard diluted with zero air (PAG 003 Ecophysics, Switzerland) through a Multigas calibrator (Environics S6100, CT, USA).
- 15 The NO₂ conversion efficiency was calibrated *via* internal gas phase titration with ozone. The 1 ppm NO standard is provided by the National Physics Laboratory, the Global Atmospheric Watch (GAW) accredited Central Calibration Laboratory for NO_x and is referenced to the GAW global scale. The ELPI flow rate and particle size distribution were calibrated by the manufacturer prior to the start of the project. The ELPI electrometer was blank corrected before each experiment, as per manufacturer instructions.

Exp. number ^a	Negative ionisation mode	Positive ionisation mode	Total number of compounds identified ^b		
2	33	67	100		
3	64	114	178		
4	79	122	201		
5	61	104	165		
8	179	363	542		
9	195	488	683		
10	220	526	746		
11	225	342	567		
12	232	406	638		
13	239	519	758		
17	156	205	361		
18	140	211	351		
19	133	226	359		
20	89	196	285		
21	84	256	340		
22	99	206	305		
23	74	212	286		
24	74	207	281		
26	143	595	738		
27	165	601	766		
28	245	665	910		
29	157	623	780		
30	152	637	789		
31	198	677	875		
32	166	723	889		
34	88	53	141		
36	80	44	124		
38	116	49	165		

Table S1 - Number of compounds identified in the ELPI SOA samples using UPLC-UHRMS

 $\frac{38}{a} = \text{See Table 1 for experimental descriptions.} \ ^{b} = \text{The sum of the number of compounds identified in positive and negative ionisation mode.}$

		-						
Compound Number	Ionisation mode	UPLC-UHRMS t _R (mins)	MW (g mol ⁻¹)	Compound MF	DBE	MF error (ppm)	HPLC-ITMS t _R (mins)	Collection Time (mins)
1	+	1.27	204.14	$C_{10}H_{20}O_4$	1	-0.13	5.0	4.1 - 5.6
2	+	2.98	156.08	$C_8H_{12}O_3$	3	-0.42	11.9	10.9 - 12.5
3	+	6.42	170.09	$C_9H_{14}O_3$	3	0.13	27.3	26.7 - 27.8
4	-	7.41	216.10	$C_{10}H_{16}O_5$	3	0.67	32.3	31.3 - 33.0
5	-	6.37	186.20	$C_9H_{14}O_4$	3	0.62	29.9	29.1 - 30.4
6	+	9.72	230.15	$C_{12}H_{22}O_4$	2	-0.12	40.6	39.9 - 41.6
7	+	10.07	170.13	$C_{10}H_{18}O_2$	2	-0.001	45.1	44.6 - 45.6
8	+	11.56	186.12	$C_{10}H_{18}O_3$	2	-0.04	52.8	52.5 - 53.3
9	+	12.96	186.12	$C_{10}H_{18}O_{3}$	2	-0.03	59.0	58.7 - 59.7
10	+	16.55	308.23	C19H32O3	3	-0.46	73.8	73.5 - 74.4
Terebic acid*	-	2.29	158.15	$C_7H_{10}O_4$	3	0.56	-	-
Terpenylic acid*	-	3.08	172.18	$C_8H_{12}O_4$	3	0.63	-	-
10-hydroxypinonic acid*	-	4.47	200.23	$C_{10}H_{16}O_4$	3	0.44	-	-
Norpinic acid*	-	4.99	172.18	$C_8H_{12}O_4$	3	0.46	-	-
Pinic acid**	-	6.37	186.20	$C_9H_{14}O_4$	3	0.47	-	-
Cis-pinonic acid**	+	8.40	184.23	$C_{10}H_{16}O_{3}$	3	0.07	-	-

Table S2 - Molecular formulae, retention and collection times of the standards used to quantify components in the α -pinene SOA samples generated from the experiments shown in Table 1.

* = Standard from Finessi et al. (2014). ** = Authentic standard used.

Figure S1 – SOA filters collected from the photo-oxidation of α -pinene at 20% (A and B) and 55% (C and D) relative humidity, displaying increasing light absorbing properties with increasing NO_x (shown as an example). A = no NO_x (exp. 3, see Table 1). B = VOC/NO_x ratio of 3 (exp. 13). C = no NO_x (exp. 5). D = VOC/NO_x ratio of 3 (exp. 10).

Figure S2 – Oxygen-to-carbon (O/C) ratio of the generated SOA samples determined from UHRMS and the CHNS elemental analyser. Shaded areas display the SOA samples formed from the photo-oxidation of α -pinene, limonene, β -caryophyllene and toluene. Experiment numbers correspond to Table 1.

Figure S3 – A comparison of authentic (red) and generated (black, compound 5, see Table S1) standard of pinic acid at concentration of 1 ppm using UPLC-UHRMS.

Figure S4 – A comparison of the bulk SOA chemical functionalities in two SOA samples formed from the photo-oxidation of α -pinene, with a VOC mixing ratio of 18.5 ppmv (exp. 10, see Table 1) and 2.1 ppmv (exp. 14). Both experiments were performed at a VOC/NO_x ratio of 3 and a relative humidity of 55%. Data obtained from the ATR-FTIR spectrometer. The peak heights of each chemical functionality have been normalised to the total peak height of all integrated functionalities in each SOA sample, allowing direct comparison between samples.