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Abstract. Extensive observational and numerical investigations have been performed to better characterize cloud 15 

properties. However, due to the large variations of cloud spatiotemporal distributions and physical properties, 

quantitative depictions of clouds in different atmospheric reanalysis datasets are still highly uncertain, and cloud 

parameters in the models to produce the datasets remain largely unconstrained. A radiance-based evaluation approach is 

introduced and performed to assess the quality of cloud properties by directly comparing reanalysis-driven forward radiative 

transfer results with radiances from satellite observation. The newly developed China Meteorological Administration 20 

Reanalysis data (CRA), the ECMWF’s Fifth-generation Reanalysis (ERA5), and the Modern-Era Retrospective Analysis for 

Applications, Version 2 (MERRA-2), which all provide sufficient diagnostic cloud information, are considered. To avoid the 

influence of assumptions and uncertainties on satellite retrieval algorithms and products, the radiative transfer model (RTM) 

is used as a bridge to “translate” the reanalysis to corresponding satellite observations. Then, the simulated reflectance and 

brightness temperatures (BTs) are directly compared with observations from the Advanced Himawari Imager (AHI) onboard 25 

the Himawari-8 satellite in the region from 80° E to 160° W between 60° N and 60° S, especially for results over East Asia. 

The analysis reveals that CRA better represents the total and mid-layer cloud cover than the other two reanalysis datasets. 

The simulated BTs for CRA and ERA5 are close to each other in many pixels, whereas the vertical distributions of cloud 

properties are significantly different, and ERA5 depicts a better deep convection structure than CRA reanalysis. 

Comparisons of the BT differences (BTDs) between the simulations and observations suggest that the water clouds are 30 

generally overestimated in ERA5 and MERRA-2, whereas the ice cloud is responsible for the overestimation over the center 

of cyclones in ERA5. Overall, the cloud from CRA, ERA5, and MERRA-2 show their own advantages in different aspects. 
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The ERA5 reanalysis is found to have the most capability in representing the cloudy atmosphere over East Asia, and the 

results in CRA are close to those in ERA5. 

1 Introduction 35 

As an important element in the Earth atmosphere, clouds play a vital role in the global radiation budget, water cycle, and 

climate change. Cloud formation is governed by the balance between dynamical, thermodynamic, and microphysical 

processes (Boucher et al., 2013). Although the representation of cloud in different atmospheric datasets and cloud evolution 

in regional and global numerical models have been significantly improved in the past few decades (Cess et al., 1989; Cotton 

et al, 2003; Arakawa, 2004), cloud is still one of the dominant uncertainties in the atmosphere, and causes difficulties in 40 

understanding the energy balance and climate change mechanisms (Dufresne and Bony, 2008; Boucher et al., 2013).  

The atmospheric reanalysis, a dataset that combines observations and forecasting products (Dee et al., 2011), provides 

multivariate records of the global atmospheric circulation, and is widely used in the studies of climate change, cloud property 

retrieval, and the initialization of numerical modeling. With the advances in computation capability and the improvement of 

global observing systems, an increasing number of observed datasets are assimilated into the reanalysis by more advanced 45 

data assimilation methods and systems, and the reanalysis is being closer to realistic atmospheres. From the late period of the 

last century, a series of reanalysis data have been produced, for example, the National Centers for Environmental Prediction 

(NCEP) 40-yr Reanalysis Project  (Kalnay et al., 1996), the 40-year ECMWF Reanalysis (ERA-40; Uppala et al., 2005), the 

Japanese 25-year Reanalysis (JRA-25; Onogi et al., 2007), the Modern-Era Retrospective Analysis for Research and 

Applications (MERRA; Rienecker et al., 2011), the ECMWF’s Interim Reanalysis (ERA-Interim; Dee et al., 2011), and the 50 

Japanese 55-year Reanalysis (JRA-55; Kobayashi et al., 2015). Though some schemes and systems that support the 

assimilation of cloud-affected satellite radiance are developed (Chevallier et al., 2004; MaNally, 2009), clouds are difficult 

to be assimilated into the reanalysis, instead, they are forecasted by numerical weather prediction models (Free et at., 2016). 

Thus, although many atmospheric parameters in the reanalysis data are increasingly confident, the cloud is still challenging, 

and it is important yet difficult to accurately and reasonably assess the cloud properties in the reanalysis. 55 

Because of large advantages of spatial coverages, observed atmosphere from satellite platforms is the best choice in the 

evaluation of output fields from numerical models. Some previous studies have conducted evaluations of reanalysis or model 

outputs based on satellite retrieved products. This is known as the satellite- or retrieval-based approach. Interesting results 

are achieved by this method (Jakob, 1999; Waliser et al., 2009; Hashino et al., 2013), especially for the long-term cloud 

cover in the reanalysis. However, some evaluations by the retrieval-based approach may be questionable (Matsui, et al., 2014) 60 

because of the inverse solving process in satellite retrieval. Many assumptions or parameters are needed to infer unknown 

quantities, and this will introduce some inevitable uncertainties. For example, although the vertical cloud profile is one of the 

most essential properties in most models, the single homogeneous layer cloud assumption is widely used in most satellite 

retrieval algorithms for cloud optical and microphysical properties (Wind et al., 2013; Yang et al., 2015), and the artificial 
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assumption will bring many uncertainties in cloud products. For example, the average relative differences of ice optical 65 

depth retrieved by Advanced Himawari Imager (AHI)/Himawari-8 and collocated Moderate Resolution Imaging 

Spectroradiometer (MODIS) are as large as 40% (Lai et al., 2019), and even MODIS products from different collections 

show significant differences (Yi et al., 2017a; 2017b). Moreover, the scattering properties of cloud particle model themselves 

are with lots uncertainties, and they are inconsistence in different retrieval approaches. Any mismatch in cloud optical 

parameterizations or retrieval algorithms could induce large bias in the retrieval and simulations (Yi et al., 2017a; 2017b).  70 

The retrieval-based evaluation is still an indispensable approach in the evaluation of atmospheric properties from various 

simulations, and quantitative and qualitative analysis of the cloud optical properties (e.g., the cloud effective radius and 

optical depth) can be directly evaluated. However, to avoid uncertainties associated with satellite retrieval algorithms and 

platforms, an alternative radiance-based comparison is chosen for the cloud properties assessment in our study. In this 

approach, simulated radiative parameters, such as brightness temperature (BT) in the infrared (IR) channels or microwave 75 

channels and reflectance in the solar channels, can be calculated by a forward radiative transfer model (RTM), and the 

radiative variables can be directly compared with satellite radiative observations. The RTM helps us build a bridge between 

model atmospheric parameters (e.g., the reanalysis dataset) and direct satellite observations (Zhang et al., 2019). This will 

effectively avoid frustration from the uncertainties of satellite retrieval algorithms and products. This approach was first 

introduced to evaluate simulated cloud fields in the thermal IR channels by Morcrette (1991) and Yu et al. (1991). With the 80 

advantages of confident radiative information and the diversity of satellite channels, the radiance-based method has been 

applied to evaluate different cloud microphysics schemes (Han et al., 2013), precipitation microphysics schemes (Hashino et 

al., 2013), and even aerosol properties (Chaboureau et al., 2007), and became an important way to better understand the 

microphysical and radiative properties of clouds, precipitation, and other atmospheric parameters.  

In this study, we extend the application of radiance-based approach to assess the cloud properties from three reanalysis 85 

datasets: the China Meteorological Administration Reanalysis (CRA), the ECMWF’s Fifth-generation Reanalysis (ERA5; 

Hersbach and Dee, 2016) and the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2; 

Gelaro et al., 2017). This is a new aspect to evaluate cloud and atmosphere properties from different atmospheric datasets. 

The radiative parameters (i.e., BTs in the IR channels and reflectance in the solar channels) from the Advanced Himawari 

Imager (AHI) onboard the Himawari-8 satellite (Bessho et al., 2016) are used as the observations.  90 

This paper is organized as follows. The datasets are introduced in Section 2, and the coupled method between cloud 

microphysical parameters in the reanalysis and optical parameters that are supported by the RTMs are described in Section 3. 

A detailed radiance-based evaluation of cloud properties from the reanalysis, including a case assessment and a long-term 

comparison performed with a 36-day dataset (total of 144 realizations) spanning one year, is presented in Section 4. Section 

5 summarizes the study. 95 

2 Dataset 
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The newly developed Chinese first-generation atmospheric reanalysis, CRA, is based on the use of the National Oceanic and 

Atmospheric Administration (NOAA) Global Forecast System (GFS) model and Gridpoint Statistical Interpolation (GSI) 

3DVAR data assimilation system (Wu et al., 2002; Kleist et al., 2009) with a T574 spectral resolution (34km grid spacing). 

The final CRA products will span the period from 1979 to present and is targeted to be produced and released in late 2020. 100 

An interim version of CRA (CRA-interim) for a 10-year period (1 January 2007 – 31 December 2016) at a 6-hourly time 

interval was produced in February 2018. An abundance data from in-situ observations and multiple satellite instruments, 

especially for the East Asian regions, have been assimilated into CRA-interim. More than 50 kinds of satellite observations, 

e.g., microwave radiance from TOVS, ATMS, and MWHS, infrared radiance from IASI and CrIS, ocean wind data from 

MetOp and SSM/I, and the atmospheric motion vector data from GOES, MTSAT, Himawari-8, MODIS, and AVHRR, are 105 

considered (Wang et al., 2018). Moreover, compared to the NCEP Climate Forecast System Reanalysis (CFSR), more 

Chinese surface and radiosonde datasets are assimilated into the CRA reanalysis (Liao et al., 2018). Those improvements 

significantly help to improve the capability of CRA in reproducing the realistic atmosphere. The CRA-interim data used in 

the study are in 47 pressure levels from the surface to 0.27 hPa with a horizontal resolution of 0.3125° × 0.3125°.  

The ERA5 is the latest released numerical dataset of the recent climate. It is currently available for the period from 1979 to 110 

present at a 3-hourly time interval, and will be extended from 1950 to present. Satellite observed BTs from AMSRE, SSM/I, 

SSMIS, and TMI are assimilated for the cloud liquid water, column water vapour, and humidity sensitivities analysis, and 

BTs from GOES IMAGER, SEVIRI, MVIRI, and AHI are used for the analysis of water vapour and surface/cloud top 

temperature. All the aforementioned observations are assimilated into ERA5. The spatial resolution of the ERA5 dataset is 

0.25° × 0.25°, and the atmospheric data are with 37 pressure levels from the surface to 1 hPa (Hersbach and Dee, 2016). 115 

The MERRA-2 is the atmospheric reanalysis produced by the Global Modeling and Assimilation Office (GMAO) of the 

National Aeronautics and Space Administration (NASA), with the Goddard Earth Observing System (GEOS) atmospheric 

data assimilation system. It provides data from 1980 to present and is designed to build a bridge between the first MERRA 

reanalysis data and the project’s long-term goal of developing an integrated Earth system analysis (IESA; Gelaro et al., 

2017). Compared with MERRA reanalysis, microwave and infrared radiances from ATOVS and ATMS, hyperspectral 120 

infrared radiances from IASI and CrIS, and the geostationary radiances from MSG SEVIRI and the GOES-11, GOES-13, 

and GOES-15 satellites are considered. In this study, the data used from MERRA-2 is at a spatial resolution of 0.5° × 0.625° 

with 42 levels from the surface to 0.1 hPa.  

To compare the quality of the three reanalysis datasets, satellite observed data from Himawari-8 are used. Launched on 7 

October, 2014 and operated by the Japan Meteorological Agency (JMA) since 2015, the Himawari-8 is one of the new 125 

generation satellite members of the Multi-functional Transport Satellites (MTSATs; Da, 2015; Bessho et al., 2016). The AHI, 

which is a radiometer with 16 bands from the solar to IR range, is on board the Himawari-8 to observe the Earth from 80° E 

to 160° W between 60° N and 60° S. The spatial resolution of the observations is 0.5–2 km and the temporal resolution is 

2.5–10 minutes (Iwabuchi et al., 2018). With high spatial and temporal sampling, the AHI measurement is valuable for 

disaster monitoring and cloud studies, especially for the region over East Asia.  130 



5 
 

For consistency in the comparison, all datasets used in this study are at a 6-hourly time interval, and the horizontal 

resolutions are re-gridded by the inverse distance weighted method to match the spatial distribution of the CRA (Guan and 

Wang, 2007; Holz et al., 2008). An 8-day case and a general comparison with a 36-day dataset (total of 144 realizations) 

spanning one year are chosen. Although the size of the evaluated datasets is small, the statistical results are credible, and the 

significant features are presented. 135 

3 Methodology 

With our focus on cloudy atmospheres, the accuracy of cloud properties is one of the most critical factors for the reliability 

of the evaluation. Cloud effective radius and optical depth are key microphysical and optical parameters in determining the 

radiation property in each atmospheric layer. However, variables from the reanalysis, e.g., cloud mixing ratio, cannot be 

directly supported by the fast RTM, and therefore cannot be directly compared with the satellite retrieved cloud optical 140 

properties. Thus, a reasonable coupled method between the microphysical properties in the reanalysis and the optical 

parameters that are comparable to satellite retrieved cloud properties and supported by the RTM is important and challenging. 

Table 1 lists the geophysical parameters in the reanalysis that are used in our study. A cloud coupled approach with less 

empirical or semi-empirical assumptions is performed. In each grid box, the occurrence of cloud or hydrometeor particles is 

diagnosed with cloud mixing ratio (qc) larger than 0.001 g/kg and the relationship between relative humidity and cloud 145 

amount (Slingo, 1980). Ignoring little BT/reflectance bias caused by the mixed-phase cloud, a temperature threshold of 253 

K is used to distinguish cloud phase. If the temperature of cloud layer is larger than 253 K, then the grid box is regarded as a 

water cloud, otherwise the grid box is regarded as an ice cloud (Mazin, 2004). 

The effective radius (Rw) in each water cloud grid box is approximated by the cloud mixing ratio (qc) and number 

concentration (Nw) (Thompson et al., 2004): 150 

!! = !
!×(

!!!!!
!!!!!

)
!
! (1)  

where ρa is the density of air, which is determined by the pressure and temperature in the corresponding layer. The density of 

water cloud particles (ρw) is assumed to be 1000 kg/m3. The water cloud number concentration of Nw = 3 × 108 m-3 is 

assumed over the continent and Nw = 1 × 108 m-3 is used over the ocean region (Miles et al., 2000). 

The ice cloud effective radius (Ri) is obtained by the relationship between mass extinction coefficient (k) and cloud effective 155 

radius. The k can be given by an empirical relationship based on in-situ measurements (Heymsfield and McFarquhar, 1996; 

Platt, 1997; Heymsfield et al., 2003): 

! = 0.018×(IWC)!!.!" (2) 

where IWC is the corresponding ice water content, and it is obtained from the cloud mixing ratio and density of air. Once k 

is produced, the corresponding Ri can be available from the cloud property database. 160 

The optical depth determines the attenuation of radiation in the cloud layer. When the cloud effective radius (Rw or Ri) and 

the corresponding k are given, the cloud optical depth (τ) in the visible wavelength can be obtained by: 
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! = !×CWP (3) 

where CWP is the cloud (water or ice phase cloud) water path in each grid box and is found by integrating the cloud water 

content (CWC) from the cloud base (hbase) to top (htop): 165 

CWP = CWC!!"#
!!"#$ !ℎ (4) 

Then the cloud optical depth can be directly compared with the satellite retrieved cloud optical depth, and be converted into 

the corresponding optical depth at a specific wavelength when performing the RTM simulations. 

It should be noted that schemes for both cloud optical properties (e.g., ice cloud model) in the RTM and coupling between 

atmospheric reanalysis and RTM (e.g., approximation of cloud effective radius) may influence simulated BTs/reflectances, 170 

although the influences are relatively minor compared to presences of clouds (cloud amount). The potential numerical 

uncertainties due to different schemes will be performed with more details in further studies.  

4 Evaluation of the reanalysis 

In the radiance-based evaluation, the Community RTM (CRTM) is used to calculate satellite observed radiative variables 

based on the synthetic atmospheric variables in the reanalysis. The CRTM is designed to simulate radiance and radiance 175 

gradients at the (TOA), and has been widely applied in radiance assimilation, remote sensing sensor calibration, climate 

reanalysis and so on. Procedures for solving the radiative transfer in the model are divided into various independent modules 

(e.g., gaseous absorption module, surface emissivity module, and cloud absorption/scattering module) (Chen et al., 2008; 

Ding et al., 2010). To improve the computational efficiency, the advanced fast adding-doubling method (ADA) method is 

used (Liu and Weng, 2006), and it is 1.7 times faster than the vector discrete ordinate method (Weng, 1992) and 61 times 180 

faster than the classical adding-doubling method (Twomey et al., 1966; Hansen and Hovenier, 1971). Four major surface 

types (i.e., water, land, ice, and snow) are included in the surface emissivity module, and the corresponding spectral library 

from visible to microwave wavelengths is pre-prepared for the emissivity calculation (Chen et al., 2008; Baldridge et al., 

2009).  

To minimize the numerical errors and uncertainties from radiative transfer computation, the cloud optical property look-up 185 

tables (LUTs) in the absorption/scattering module of CRTM are optimized before the simulation. We recalculate the single-

scattering optical properties of water clouds by Lorenz-Mie theory (Mie, 1908). The single-scattering optical properties of 

ice clouds are from the data library developed by Yang et al. (2013), and we consider the ice cloud model based on aggregate 

columns with eight elements and severely roughened surface. A gamma size distribution with an effective variance of 0.1 

(Hansen and Travis, 1974) is assumed to compute the bulk scattering properties (i.e., the extinction coefficient, single-190 

scattering albedo, asymmetry factor and phase function coefficients). Validation of the CRTM with the new optical property 

LUTs is presented in Yao et al. (2018), and the BTDs between the CRTM and rigorous models in different channels are 

generally less than 1 K for ice clouds. For water clouds, the biases in the IR windows channels may reach to 2 K for optical 
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thin clouds and vary between -1 and 1 K in the water vapor channel. Moreover, compared to the default CRTM model, the 

update can substantially improve CRTM simulations on cloudy atmospheres (Yi et al., 2016; Yao et al., 2018). 195 

To obtain the most realistic representation of the radiance from the TOA, the full layer atmospheric profiles (i.e., the 

pressure, temperature, and water vapor) and cloud optical properties that are computed in Section 3 are directly kept and 

adopted by the CRTM for the calculation of gas absorption and emission, and cloud scattering. The surface characteristics 

(e.g., surface type, altitude, and surface temperature) are also necessary for the CRTM to give the surface radiative property. 

Because the ozone absorption is insensitive in the channels of interest, the climatological ozone profiles are used in the 200 

simulation.  

4.1 Case assessment 

We first present a comparing typical case study to provide a detailed assessment of the cloud properties in three reanalysis 

datasets from 10 to 17 September 2016, the super typhoon Meranti, which is one of the most powerful tropical cyclones on 

record, was monitored. The extremely favorable atmospheric environment, including adequate water vapor, increased 205 

outflow in the upper layer, and unusually warm sea surface temperature, intensified the structure and energy of the typhoon. 

Meanwhile, on 11 September 2016, another tropical depression was detected and monitored over the Northwest Pacific 

Ocean, and it evolved into the typhoon Malakas on 13 September. The interaction of the two typhoons increased the water 

vapor transportation, which promoted the development of deeper and thicker clouds, and the rapid enhancement of the 

typhoons (Zhou and Gao, 2016). When Meranti passed over the Philippines and China, it produced heavy rain and hurricane-210 

force winds and caused extensive damage. Note that even for this case study, we consider a period over eight days covering 

32 time steps. 

Figure 1 shows the spatial distribution patterns of the reflectance in the 0.64- and 1.6-µm channels. The observed and 

simulated results are taken at 00:00 UTC on 12 September 2016. Four typical regions marked by red boxes are chosen for 

better understanding and illustration. For these two channels, atmospheric profiles have little effect on the simulated 215 

reflectance, and the differences are mainly contributed by cloud properties. Because the channel in the visible wavelength 

(0.64-µm) is non-absorbing, the reflectance is primarily constrained by the cloud optical depth. Therefore, some cloud macro 

characteristics can be recognized from the result in this channel. The pixels with reflectance close to 1 (the whiter points) 

indicate the region covered by optically thick clouds. A qualitative comparison between the observation and the simulation 

shows that the results for CRA reanalysis more reasonably represent the cloud spatial distribution than those for the other 220 

two reanalysis datasets. The simulations from ERA5 and MERRA-2 obviously overestimate the cloud cover, and the 

overestimated cloud pixels are mostly over the ocean regions, for example, the region B, C and surrounding areas. In the 1.6-

µm channel, the radiance observed from the TOA is significantly different for different phase clouds. Because ice particles 

have a stronger absorption property, the reflectance in this channel is usually smaller for pixels covered by ice clouds than 

those covered by water clouds. Thus, we can give a general distinction of the cloud phase based on the information in this 225 

shortwave IR channel. The similar characteristics between the observation and simulation over region A indicate that CRA, 
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ERA5, and MERRA-2 all have capabilities to distinguish ice and water phase clouds. Comparing the results over region B, 

the three reanalysis datasets all represent the cloud phase characteristics of the cyclones. More pixels with larger reflectance 

values for ERA5 suggest that although the cloud distributions in ERA5 and MERRA-2 are both overestimated over region B, 

the causes for the results are different. Some overestimated clouds in ERA5 reanalysis are from water phase clouds, whereas 230 

they are mostly caused by ice phase clouds in MERRA-2. For pixels over regions C and D, the overestimation comes from 

the water cloud in ERA5 and MERRA-2.  

Different from the reflectance in the solar channels, the BTs in the IR channels are available for both daytime and nighttime. 

For further assessment and comparison, the discussion below is mostly based on the results in the three IR channels (one is 

in the water vapor channel, and two are in the window channels), and the time period is the same as that in Figure 1. Figure 2 235 

illustrates the observed BTs in the 6.2-, 8.6-, and 11.2-µm channels, and the brightness temperature differences (BTDs) 

between the simulated BTs from CRA, ERA5, and MERRA-2 and the observations. Some typical regions and pixels are 

marked by boxes and dashed lines for better understanding and analysis. The IR window channels (8- to 12-µm) have less 

molecular absorption, and they are mostly sensitive to the surface temperature and cloud profiles. Therefore, the BTs in these 

channels are usually used to evaluate cloud properties or surface temperature (King et al., 1992; Mao et al., 2005). In the 6.2-240 

µm channel, because of large sensitivity to a broad upper-layer humidity, the BTs are used to infer the mid- to high-layer 

water vapor content. Similar horizontal distributions between the observation and simulation in the two window channels 

generally confirm the dependable capabilities of the three reanalysis datasets to represent the atmospheric characteristics on 

cloudy and clear-sky. Over the entire region, the smallest average error of -1.59 K in the 11.2-µm channel indicates the best 

simulated BTs for ERA5, and the average results for CRA are close to it. However, the simulated error is much larger for 245 

MERRA-2, and the mean BTD is -9.19 K. Region A (i.e., the continental region) is characterized by low-layer clouds or 

clear-sky conditions, with a mean BT of 268.55, 270.12, 269.57, and 263.21 K for the observation, CRA, ERA5, and 

MERRA-2. The slightly underestimated cloud optical depth or cloud top height over this region may cause positive mean 

BTDs of 1.56 and 1.01 K for CRA and ERA5, respectively. However, the negative mean BTDs indicate that the properties 

are overestimated in the simulation for MERRA-2. Meanwhile, we need to note that some other atmospheric or surface 250 

properties may also cause similar results because of the uncertain and complex terrain features over the arid or semiarid 

regions. For the Tibetan Plateau, the limitation of the in-site observations results in uncertainties for the reanalysis datasets. 

Compared with the continental regions, larger simulation errors over ocean are primarily associated with more complex 

cloud distributions and structures. Over region B, broad simulated clouds with BTs between 220 and 250 K are largely 

responsible for the negative mean BTDs. The absolute BTD may reach as large as 80–90 K in the window channel, and it is 255 

almost 15–20 K larger than that over region A. More series excessive cloud pixels for MERRA-2 reanalysis explain the 

mean BTD of -19.02 K in the 11.2-µm channel. The negative mean BTDs over region B for CRA and MERRA-2 in the 6.2-

µm channel suggest the excessive integrated mid- to high-layer water vapor content. The positive mean BTD for ERA5 over 

region B in this water vapor channel reveals a general insufficient water vapor content over the corresponding layer, and this 

results in the underestimation of upper-layer clouds. Meanwhile, the mean BTD of -2.35 K in the 11.2-µm channel indicates 260 
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that the overestimation of clouds should be related to low- or mid-layer clouds in this region. However, more water vapor 

content is represented in ERA5 over region C than in CRA and MERRA-2, and it is closer to the realistic atmosphere. 

Compared with the observation, a similar cyclone structure is captured in the imagery of IR window channel. 

To give a quantitative evaluation of the results in Figure 1, the pixel-to-pixel comparisons over the entire region are shown in 

Figure 3. The color contours show the occurrence of the reflectance from the observations and simulations, and the color bar 265 

is shown on a logarithmic scale. The symmetry distribution with the high occurrence frequency following around the black 

1:1 line for the results of CRA reveals a better agreement with the observed reflectance than the ERA5 and MERRA-2. The 

correlation coefficients of 0.66 and 0.62 for CRA in the 0.64- and 1.6-µm channels, respectively, reveal the best simulation 

in the solar channels. The simulations for ERA5 and MERRA-2 are clearly higher than the observations in some pixels, 

which yield a secondary high occurrence frequency band over the observed reflectance less than 0.2. This band corresponds 270 

to the overestimated cloud distributions in Figure 3. The correlation coefficients for ERA5 and MERRA-2 are 0.65 and 0.53, 

respectively, in the 0.64-µm channel, and they are less than 0.5 in the 1.6-µm channel. Figure 4 gives a similar pixel-to-pixel 

evaluation, but it is for the results in the IR channels. The correlation coefficients are all larger than 0.6, and the high 

occurrence is around the 1:1 line, revealing good agreements between the simulated and observed BTs in the 11.2-, 8.6-, and 

6.2-µm channels, especially for CRA and ERA5.  275 

To better illustrate the differences between cloudy and clear pixels, we distinguish them based on integrated column cloud 

optical depth in each pixel of 0.1 (! > 0.1 as cloudy pixels, and ! < 0.1 as clear pixels), and Figure 5 shows the comparison 

between observed and simulated BTs in the 11-µm channel. The upper and lower panels are for cloudy and clear cases 

respectively. The upper panels show clearly wider distributions, which can also be indicated by smaller correlated 

coefficients, and this means that the cloud representation definitely introduces additional errors to the simulated BTs. 280 

Particularly for MERRA-2, much larger correlated coefficient for the clear pixels indicate that cloud property representation 

in MERRA-2 may significantly contribute to the differences from the observations.   

To further demonstrate a quantitative evaluation of the results in the solar and IR channels, Figure 6 shows the probability 

(top panels) and cumulative probability (bottom panels) for the simulations and observations. The probability and cumulative 

probability are numerically calculated as: 285 

!"#$%$&'&() = !"#$%& !" !"#$%& !"#! !" !"#$""% !"!!∆!" !"# !"!!∆!"
!"#$! !"#$% !"#$%&   (5) 

and: 
!"#"$%&'() !"#$%$&'&() = !"#$%& !" !"#$%& !"#! !" !"## !!!" !"! 

!"#$% !"#$% !"#$%&   (6) 
In the IR window channels, the simulation from MERRA-2 overestimates the probability density against the observation 

between 220 and 275 K, generally reflecting the overestimation of mid- and mid-to-high layer cloud. For ERA5, the low-290 

layer clouds are overestimated, but the high-layer clouds are underestimated, especially for clouds with a top temperature 

less than 230 K. Similar probability density structures between simulations for ERA5 and the observation in the 6.2-µm 

channel reveal a more reasonable water vapor distribution over the entire region, compared to those of the other two 

reanalysis datasets. Matsui et al. (2014) point out that the cumulative probability density is a better metric to assess the cloud 
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cover than satellite cloud products. If a threshold of BT approximately ~ 275 K in the 11.2-µm channel is assumed to be 295 

present of cloud pixels, the simulated cloud cover for CRA reanalysis achieves the best agreement with the observation. 

However, cumulative probability densities with BTs of ~ 275 K in ERA5 and MERRA-2 are larger than the corresponding 

value given by the observation, indicating an overestimation of cloud cover in the two datasets. 

The atmospheric and cloud profiles (i.e., temperature, cloud effective radius and optical depth) over pixels of 18°N (marked 

by blue solid lines in Figure 2) are shown in Figure 7, and the corresponding integrated cloud mixing ratio, cloud optical 300 

depth and the number of cloud layers in each column are illustrated in Figure 8. Compared with the differences in the 

temperature profiles, the differences in the cloud profiles (cloud effective radius and optical depth) are more conspicuous 

among the three reanalysis. The vertical distribution of cloud property is insufficient over the low-to-mid layer in CRA, but 

in ERA5 reanalysis, the shortage is over the mid-to-high layer. On the one hand, in Figure 8, the integrated cloud properties 

cover up the inconsistency, and they are close to each other and result in similar simulated BTs in thin cloud pixels. On the 305 

other hand, similar integrated properties may cause significantly different BTs. Although the number of cloud layers and the 

integrated cloud optical depth are close in some pixels over region D (Figure 2), the simulated BTs in the 11.2-µm channel 

are much lower for CRA than for ERA5 reanalysis. This is caused by an abnormally excessive cloud mixing ratio or optical 

depth in the mid to high-layer. For MERRA-2 reanalysis, the widespread cloud mixing ratio brings in overestimated 

integrated cloud optical depth and cloud distributions in many pixels. 310 

Different spectral channels have their own sensitivities to atmospheric and cloudy properties, so different cloud properties or 

atmospheric conditions can be detected and validated by the BTDs among different channels (Baum et al. 2000; Otkin, et al. 

2009). Different from previous analysis based on single channel results, Figure 9 shows the observed and simulated BTDs of 

11.2 – 12.4-µm, 8.6 – 11.2-µm, and 6.2 – 11.2-µm. The absorption of atmospheric water vapor in the 12.4-µm channel is 

greater than that in the 11.2-µm channel, and BTDs for 11.2 – 12.4-µm are usually positive in most regions. The cloud 315 

emissivity increases as the optical depth increases, which weakens the influence from the atmosphere below the cirrus clouds, 

and results in similar BTs in the two channels. Thus, smaller or zero BTDs are detected across the deep convective region 

(e.g., region C) and thick cloud regions. Meanwhile, because of the enhanced extinction of small ice particles in the 12.4-µm 

channel, the BTDs for thinner clouds around thick cloud pixels are large. Although the absorptive properties for different 

phase particles are similar in the 8.6-µm channel, the absorption for ice clouds is larger than that for water clouds in the 11.2-320 

µm channel. Thus, the BTDs of 8.6 – 11.2-µm are positive for ice clouds and negative for water clouds in a typical case. 

Comparing the BTDs in the particular cloud region (e.g., region B), simulations for CRA are close to the observations, and 

the mean BTDs for them are 0.16 and 0.14 K, respectively. The negative mean BTDs in this region for ERA5 and MERRA-

2 indicate the overestimation of water clouds or some underestimation of ice clouds. Because of the strong water vapor in the 

6.2-µm channel and the negative temperature lapse rate in the troposphere, the BTDs of 6.2 – 11.2-µm are usually negative, 325 

and increase as the cloud height increases. The largest negative BTDs are often in the clear-sky region with sufficient water 

vapor and high surface temperature, and the positive or near zero BTDs correspond to overshooting cloud tops. Although the 

simulation for ERA5 reanalysis generally underestimates the mid to high-layer water vapor content and upper-layer cloud in 
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the entire and B region, as we mentioned before, if we isolate the overshooting cloud top by BTDs less than 0 K, the ERA5 

has the closest structure and distribution to the observation over the three reanalysis datasets, corresponding to the analysis 330 

of region C.  

To give a comprehensive evaluation of the cloud cover in the 8-day case, the BTD between 6.2- and 11.2-µm channels is 

used to classify pixels with clouds over different altitudes (Mecikalski and Bedka, 2006; Yao et al., 2018). Pixels with BTD 

between -45 and -30 K are understood as low-layer clouds, and the performance of the reanalysis for such clouds can be 

briefly demonstrated by:   335 

Low-layer cloud ratio = !"#$%& !" !"#$%& !"#! !"#$%&'() !"# !"!!""#!!" !"#!!" ! 
!"##$%& !" !"#$%& !"#! !"#$%&$' !"# !"#$""%!!" !"#!!" ! (7) 

Similar, we have the mid-layer cloud ratio defined with BTDs between -30 and -10 K, and the high-layer cloud ratio given 

by pixel numbers with BTDs larger than -10 K. Ratios close to 1 indicate better performance of the cloud representation. The 

ratios as a function of time are illustrated in Figure 10. The CRA total cloud cover (TCC) ratio and mid-layer cloud ratio are 

mostly close to 1. The low-layer cloud ratio for MERRA-2 reanalysis is reasonable, but large mid- and high-layer cloud 340 

ratios (~ 1.6 and ~ 2) result in a substantial overestimation of TCC by approximately ~ 30%. For ERA5 reanalysis, the high-

layer cloud ratio is approximately 0.7, and the low- and mid-layer cloud ratios are both larger than 1.  

4.2 Long-term assessment 

Further, a dataset spanning in 2016, with a total of 144 realizations (the realizations are from the 5th, 15th, and 25th of each 

month, and 4 snapshots in a 6-hourly time interval in each day are available) for each reanalysis is chosen to give a long-345 

term assessment. Although the size of the dataset is not large enough, the significant characteristics are presented. 

Figure 11 gives the ratio of clouds in different layers, and the definition and classification are the same as those in Figure 10, 

and the average values are listed in Table 2. For CRA and ERA5, the ratios of clouds show relatively weak variation over 

time, and the variation ranges and mean values are similar to the results in Figure 10. Clear seasonable variation is noticed 

for the bias of MERRA-2 cloud representation. Such seasonal variations are only shown for mid-layer clouds of ERA5, and 350 

are not shown for CRA. The simulated mid-, high-layer cloud ratios in MERRA-2 reanalysis in summer are significantly 

larger than those in other seasons. This is associated with the widespread overestimated cloud distributions, and the more 

frequent convective systems with thicker and higher clouds in summer aggravate the excessive overestimation. 

Figure 12 illustrates the average BTDs between the simulations from CRA, ERA5, and MERRA-2 and the observations in 

the IR window and water vapor channels. Over the entire region, most pixels with average BTDs around 0 K in the IR 355 

window channels reveal a general good simulation from CRA and ERA5. Regions with larger deviations are generally over 

the arid or semiarid areas (as marked in region A in Figure 2), and the surrounding regions of the equator. For MERRA-2, 

the significant deviations with negative BTDs are over the Intertropical Convergence Zone (ITCZ), and the phenomenon is 

extended to the region around 20° N. Most pixels of positive BTDs in the water vapor channel for ERA5 indicate an 

underestimation of water vapor, and it is more obvious over the region of ITCZ.  360 
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Figure 13 shows the temporal variation of the mean BTDs (MBTD, i.e., average of the simulated and observed BT 

differences over the whole interested region), standard deviations of the BTDs (SBTD, i.e., corresponding standard deviation 

of the BTDs over the whole region), and correlation coefficient (R, correlation coefficient between simulated and observed 

BTs) in the 11.2-, 8.6-, and 6.2-µm channels, and the corresponding average values are listed in Table 2, together with the 

results for Figure 11. Three statistical parameters show seasonal variation characteristics over time and the largest errors are 365 

in summer because of more complex weather systems and clouds. The mean errors for the three reanalysis datasets are 

always negative in the IR window channels, demonstrating the general overestimation of clouds, especially for MERRA-2 in 

summer. In the 6.2-µm channel, the opposite phases of mean errors indicate the general underestimated mid to high-layer 

water vapor for ERA5 but an overestimation for CRA, corresponding to the analysis in Figure 12.  

Overall, the spatial distributions of the average BTDs in Figure 11 and the statistical evaluation in Figure 13 indicate that the 370 

results for ERA5 have the best generalizable capability to represent atmospheric and cloud characteristics over the 

corresponding large region of the Himawari-8 observation, with the smallest absolute mean BTD of 0.92 K, the smallest 

standard deviation of BTDs of 12.77 K, and the largest correlation coefficient of 0.80. The results in CRA are close to those 

in ERA, whereas in MERRA-2, the deviations are slightly larger. Large and systemic deviations for the three reanalysis are 

mostly over the oceanic region around the equator and areas with complex surface features. The atmospheric and cloud 375 

characteristics are complex and volatile, and the in-situ observations are limited over these regions. The atmospheric and 

cloud in the reanalysis are with lots of uncertainties. 

5 Summary 

This study performs an assessment of cloud properties from three reanalysis datasets (i.e., the CRA, ERA5, and MERRA-2) 

with the Himawari-8 satellite observation by a radiance-based approach. The atmospheric and cloud variables in the 380 

reanalysis are converted into BTs or reflectance, with the help of a reasonable cloud and atmosphere coupled method and the 

widely used forward RTM (i.e., CRTM), and they are compared and analysed with the satellite direct observations. 

The assessment indicates that the atmospheric and cloud characteristics from CRA, ERA5, and MERRA-2 are mostly 

depicted. The BTs in the IR window channels (i.e., 11.2- and 8.6-µm) and reflectance in the 0.64-µm channel reveal the 

excellent TCC and mid-layer in CRA. For the results in MERRA-2, the low-layer clouds are more reasonable than clouds 385 

over other layers, and the widespread overestimated TCC is mostly caused by the overestimation of mid- and high-layer 

clouds. From the results in the 6.2-µm channel, obvious overestimated mid to high-layer water vapor is shown in CRA and 

MERRA-2, whereas it is underestimated in ERA5 over most regions. The BTD comparisons of 6.2 – 11.2-µm further 

suggest that ERA5 has the most reasonable overshooting cloud top structures and distributions. The reflectance in the 1.6-µm 

channel and the BTDs of 8.6 – 11.2-µm reflect the overestimated water vapor pixels over the ocean region in ERA5 and 390 

MERRA-2. However, it is slightly different over the center of the cyclone because more ice cloud pixels are depicted in 

ERA5 reanalysis.  
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Generally, the CRA, ERA5, and MERRA-2 are all capable of representing the atmospheric and cloud characteristics over the 

Himawari-8 observed region. Seasonal variation features over time are shown in a long-time assessment. The larger 

statistical errors occur over the oceanic region around the equator and areas with complex surface features, because of the 395 

complex atmospheric and cloud structures, and the limitation of in-site observations that can be assimilated into the 

reanalysis. The largest correlation coefficients of 0.80 and 0.90 between the simulations and observations in the IR window 

and water vapor channels, respectively, demonstrating that the ERA5 reanalysis achieves the generally best simulations. The 

results for CRA also reveal reasonable simulations, and they are close to those in ERA5, whereas for MERRA-2 reanalysis, 

the deviations are slightly larger. It should be noticed that both ERA5 and CRA reanalysis consider the Himawari-8 400 

observations for assimilation (see Section 2), whereas the MERRA-2 does not. This may be one of the reasons that MERRA-

2 has relatively poor performance on cloud representation in the Asia region. 

Compared with the assessment by satellite retrieved cloud products, the feasible direct comparison of radiative parameters 

provides a more reasonable evaluation of the microphysical and radiative properties of the atmospheric and cloud properties 

from the reanalysis. It effectively avoids many uncertainties associated with satellite retrieved products, such as the 405 

scattering properties of cloud model, retrieval algorithms, and platforms, and more interesting results and information are 

obtained. Although the discussion in this manuscript is focus on the observed region of Himawari-8 satellite on cloudy 

atmosphere, this approach can be applied to perform the evaluation of more parameters (e.g., cloud, aerosol, precipitation, 

and so on) from different atmospheric datasets or modeled results. The radiance-based approach is a reasonable choice for 

the evaluation to avoid uncertainties due to retrieval products, and its drawbacks may be investigated in further studies. For, 410 

examples, differences between simulated and observed radiances can be contributed by both cloud and atmospheric variables, 

and these may be distinguished by considering the same atmospheric profiles in the RTM simulation. We believe more 

reasonable and qualitative analysis and interested information should be investigated and detected in the future, and it should 

have a chance to contribute to the improvement of cloud properties in regional or global models and the designation of 

observations. 415 
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Table 1. Geophysical parameters from the reanalysis datasets used in the assessment. 610 

Ordinal Parameters 

1 Temperature at surface 

2 Pressure at surface 

3 Cloud mixing ratio 

4 
Atmospheric profiles 

(pressure, specific humidity, temperature, height) 
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Figure 1. Observed and simulated reflectance in the 0.64-µm (top) and 1.6-µm (bottom) channels. The results are taken at 
00:00 (UTC) on 12 September 2016. 620 
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Figure 2.  Observed results and the brightness temperature differences between the observations and simulations in the 11.2-

µm (top), 8.6-µm (middle), and 6.2-µm (bottom) channels. The results are taken at the same time as that in Figure 1. 
  625 
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Figure 3. Pixel-to-pixel comparisons between the observed and simulated reflectance in the 0.64-µm (top) and 1.6-µm 

(bottom) channels. The histograms illustrate the occurrences of reflectance, and the results are taken at the same time as that 

in Figure 1. 
  630 
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Figure 4. Same as the results in Figure 3, but for the infrared channels. 
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Figure 5. Comparisons between the observed and simulated BTs in the 11.2-µm channel with pixels for cloudy (top) and 635 

clear-sky (bottom). The results are taken at the same time as that in Figure 4. 
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Figure 6. Probability and cumulative probability density for the observed and simulated reflectances in the 0.64-µm (left) 

channel and the BTs in the 6.2- (middle) and 11.2-µm (right) channels. 640 
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Figure 7. Comparison of the profiles of the temperature, cloud effective radius and optical depth in the CRA (left), ERA5 

(middle), and MERRA-2 (right) reanalysis datasets. The profiles are for the track marked by blue solid lines in Figure 2. 
  645 
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Figure 8. Column cloud mixing ratio (left), cloud optical depth (middle), and number of cloud layer (right) in each column. 

The results are from Figure 2 marked by blue solid lines. 
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650 
Figure 9. Observed and simulated brightness temperature differences of 11.2–12.4-µm (top), 8.6–11.2-µm (middle), and 

6.2–11.2-µm (bottom). The results are taken at the same time as that in Figure 1. 
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Figure 10. Temporal variation of the ratios (simulation-to-observation) for different layer clouds. The classification of 655 

clouds is based on the BTDs of 6.2-µm - 11.2-µm. 
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Figure 11. Same as Figure 10, but for the results from 144 realizations spanning over 2016. 

 660 
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Figure 12. Average result of brightness temperature differences between the observations and simulations in the 11.2-µm 

(top), 8.6-µm (middle), and 6.2-µm (bottom) channels. The observations and simulations are from the 144 realizations 

spanning over 2016. 665 
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Figure 13. Temporal variation of three statistical parameters: the mean BTDs (MBTD), standard deviations of BTDs 

(SBTD), and correlation coefficient (R) between the observation and simulation. The results are from 144 realizations 

spanning over 2016. 670 

 
 


