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This paper describes the design of a neural network algorithm uses imaging spectrometer measurements to separately retrieve 
aerosol optical depth (AOD) for three aerosol types (dust, sulphate, brown carbon). The neural network is trained using synthetic 
spectra and applied to two images from the airborne instrument AVIRIS-NG over India. Overall, the methodology is clearly 
explained and the paper fits the scope of AMT, but in my opinion the study has a number of shortcomings which should be 
properly addressed before the paper can be published. The main problem is that, while the NN results are satisfactory on 
synthetic data, the retrievals on real measurements display large surface features. Other shortcomings are the lack of validation 
for the per type AOD retrievals and the assumption of spherical dust particles made in the creation of the training set, which may 
be inaccurate. Below are my detailed comments.  

 

MAIN COMMENTS  

- The surface features in the AOD retrieval are really striking, and it would be important to investigate whether the problem may 
be mitigated by changing the design of the NN. For example, I have the impression that, if you attempt a simple classification of 
the original image (e.g., into vegetation, bare soil, urban, water classes) and correlate the AOD retrieved on each pixel to the class 
the pixel belongs to, you may see a strong correlation. If this is the case, then it may mean that you need to pass the result of this 
simple classification as an additional input to the AOD-retrieval NN, or to train multiple NNs, one per class. This may reduce this 
effect in your retrievals, which in my opinion is too large at the moment.  

Thank you for this suggestion. We investigated whether an explicit classification of the underlying surface type would help the 
aerosol retrieval. We used a simple 2-layer neural network that classified the surface type and added the classified surface type to 
the neural network input for the aerosol retrieval. While the surface type classification showed promising results there was no 
improvement for the aerosol retrieval form the radiative transfer calculations or AVIRIS-NG observations. Our guess is that the 
NN was always performing an implicit surface type retrieval to separate the aerosol signal from the surface contribution. Thus, 
the added features were redundant. 

However, your later comment: “Why are you using radiance and not reflectance as an input?” made us go back and test whether 
this could make our neural network more robust when applying it to AVIRIS-NG observations. While the use of reflectance does 
not improve the aerosol retrieval from our radiative transfer calculations (test set) it mitigates the surface features in the retrieval 
from AVIRIS-NG. Thus, it is more robust and we now scale the radiances by solar zenith angle and sun-earth distance, similar to 
deriving apparent reflectance. 

Finally, while we agree that it would be nice to completely remove the surface features, less complex atmospheric retrievals from 
hyperspectral imagery have the same problem. Thus, some remaining surface features in the AOT retrieval are to be expected. 
We added that to the manuscript: 

P21, L6: “Some residual surface features are not entirely unexpected as less challenging atmospheric retrievals from imaging 
spectroscopy, for example water vapor (Thompson et al., 2015), often contain surface reflectance artifacts.” 

 

- The use of a spherical model for dust aerosols in the generation of the training set may also lead to inaccurate results when the 
NN is applied to real data (Kalashnikova and Sokolik, 2004, Dubovik et al., 2006, Lee et al., 2017). For this reason, I would 
recommend to retrain the NN by using a nonspherical model. References:  
Kalashnikova, O., and Sokolik, I. N., “Modeling the radiative properties of nonspherical soil-derived mineral aerosols”, J. Quant. 
Spectrosc. Rad. Transfer, 87, 137-166, doi: 10.1016/j.jqsrt.2003.12.026  
Dubovik, O. et al. (2006), “Application of spheroid models to account for aerosol par- ticle nonsphericity in remote sensing of 
desert dust”, J. Geophys. Res., 111, D11208, doi: 10.1029/2005JD006619  
Lee, J. et al. (2017), “AERONET-based nonspherical dust optical models and effects on the VIIRS Deep Blue/SOAR over water 
aerosol product”, J. Geophys. Res., 122, 10384-10401, doi: 10.1002/2017JD027258  



We updated our calculation for the dust aerosols to account for their non-sphericity, repeated the radiative transfer calculations, 
retrained the NN and updated the results of our analysis throughout the manuscript. We did not find systematic differences in the 
retrieved AOT of dust compared to the original (spherical) assumption.  

P6, L4: Content added: “For dust we had to account for its non-spherical shape. We applied the T-matrix code of Mishchenko 
and Travis, (1998), for randomly oriented particles, to generate the MODTRAN SAP files. The range of ratios of semi-major to 
semi-minor axes, or aspect ratios (AR), was varied between 1.01 and 1.8. This range contains the representative AR of 1.4 
(Okada et al., 2001), while the aspect ratio of 1.01 corresponds to a nearly spherical particle. In our application of the T-matrix 
code the second mode parameters (i.e. Rad2 = 0.83 µm, s2 = 1.84, see Table 1) were used to specify the size distribution, and the 
AFCRL 1987 Sand indices are utilized.” 

 

- An additional problem I see is that you try to estimate the AOT for each aerosol type, but you do not provide any indication of 
the credibility of the per-type retrievals performed with real measurements. While direct observations of "typed" AODs are 
probably not available, it would be important to at least have a look of what are the outputs of some reanalysis models (e.g. 
MERRA-2, CAMS) around the locations you considered and in the same dates. I imagine that these models may have a much 
coarser spatial grid than your images, but I guess they would be your only possible source of verification.  

That is an excellent idea. We added a comparison to the CAMS model for the three individual aerosol types: 

P27, L13: Content added: “5.5 Comparison to CAMS 
We further compare the retrieved AOT to the Copernicus Atmosphere Monitoring Service (CAMS) product. The CAMS system 
provides global analysis and forecasting of AOT for organic matter, dust and sulfate and is further described in (Benedetti et al., 
2009; Morcrette et al., 2009). CAMS accounts for aerosol emissions, transport, sedimentation and deposition of various aerosol 
types. In contrast to MODIS and AERONET, one can directly compare the CAMS AOT for a specified aerosol type to the 
retrieved AOT. We make use of the CAMS ‘near-real-time’ product at a spatial resolution of 0.125° available at: 
https://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/.  

Figure 17 shows the comparison for the three considered aerosol types with the CAMS modeled AOT on the y-axis and AVIRIS-
NG retrieved AOT on the x-axis. There seems to be general agreement between CAMS and AVIRIS-NG with AVIRIS-NG 
retrievals being on average 0.03 higher. The standard deviation of the difference between CAMS and AVIRIS-NG for the 21 
analyzed scenes is 0.02, 0.04, 0.05 for carbon, dust and sulfate, respectively. For AOT below 0.1, CAMS and AVIRIS-NG differ 
significantly for carbon and dust with AVIRIS-NG retrieving higher AOT.  

  

 

Figure 17: AOT modeled by CAMS (y-axis) vs AOT retrieved by AVIRIS-NG (x-axis). The standard deviation of the CAMS 
modeled AOT within 6 hours and 0.125° of the AVIRIS-NG observations are shown with vertical bars and the standard deviation 
for the AVIRIS-NG retrievals with horizontal bars. 

 



MINOR COMMENTS  

- P1, L21. “... absorption ... are ...” -> “... is ...”.  

P1, L21: Changed 

 

- P1, L24-25. “Instead, a common practice . . .”. Maybe you mean that one takes the darkest pixel in the image, assumes that the 
observed radiance over that pixel only comes from the atmosphere and subtracts that radiance from all the other pixels in the 
image. If so, make that explicit in the paper. If not, clarify what you mean instead.  

Removed statement for clarity 

P1, L24: Changed to: “Instead, aerosol properties are approximated from visibility (e.g., Gao, Heidebrecht and Goetz, 1993; 
Adler-Golden et al., 1999) or derived from climatology.” 

 

- P1, L28, “great” -> “larger”.  

P1, L28: Changed 

 

- P2, L24. Please also mention the advances made possible by multiangle polarimetry, which provides an enhanced capability of 
separating the aerosol signal from the surface signal, and a better sensitivity to the aerosol microphysical parameters 
(Kokhanovsky et al., 2015, Dubovik et al., 2019). References:  
Kokhanovsky, A.A. et al. (2015), “Space-based remote sensing of atmospheric aerosols: The multi-angle spectro-polarimetric 
frontier”, Earth Sci. Rev., 145, 85-116, doi: 10.1016/j.earscirev.2015.01.012  
Dubovik, O. et al. (2019), “Polarimetric remote sensing of atmospheric aerosols: Instruments, methodologies, results, and 
perspectives”, J. Quant. Spectrosc. Rad. Transfer, 224, 474-511, doi: 10.1016/j.jqsrt.2018.11.024  

P2, L23: Added information: “Other approaches aim to use the vast information content from space-borne multiangle 
polarimetric observations that provide enhanced capability of separating aerosol signal from surface signal, and a better 
sensitivity to aerosol microphysical parameters. However, retrieving aerosol properties from such observations is highly complex 
and operational products have not yet reached the accuracy implied by theoretical calculations (Dubovik et al., 2019; 
Kokhanovsky et al., 2015).” 

 

- P2, L28. Do you also foresee applying the proposed method to existing satellite imagers such as EO-1 Hyperion, or the recently 
launched PRISMA?  

P2, L29: Added both instruments: “To increase accuracy of global aerosol retrievals, we propose a retrieval algorithm that will be 
applicable to current and future hyperspectral space-borne instruments, such as Hyperspectral Precursor and Application Mission 
(PRISMA) (Labate et al., 2009), EO-1 Hyperion (Folkman et al., 2001), Climate Absolute Radiance and Refractive Observatory 
(CLARREO) (Wielicki et al., 2013) and the Hyperspectral Infrared Imager (HyspIRI) (Lee et al., 2015).” 

 

- P6, Fig.2. I would suggest to change “t_aer” to “tau_aer” in the legend.  

P6, Fig.2: Changed “t_aer” to “!”. Thanks for catching that. 



 

- P6. The problem with this study of the sensitivity of the TOA radiance to the aerosol type is that the microphysical properties of 
the aerosol types are prescribed. Thus, your capability of distinguishing them in your simulation may be greatly overestimated 
compared to what happens in nature, where I don’t think you will see dust, brown carbon etc. always with the same size 
distribution. Even the refractive index of certain aerosol types (dust in particular) is highly variable, so it would be better to 
incorporate this variability in the training set (as you already tried to do with the surface properties) in order to have a better hope 
of making your NN scheme more robust. Note that the aerosol size, in particular, mainly influences the spectral slope of your 
radiance. Thus, it may well be that your retrieval just tries to distinguish between three "size classes" of aerosols, which you map 
to "aerosol types" through a rather arbitrary 1:1 correspondence. Also for this reason, it is really important to compare your 
retrieved aerosol speciation on real data to the outputs of some reanalyses. This would be the only way to obtain at least a 
preliminary indication that your AOD retrieval distinguished into types actually works in reality.  

We agree that radiative transfer calculations will always under sample the variety found in nature. However, to limit the number 
of radiative transfer calculations and computation time we limited calculations to three aerosol types with a representative size 
distribution for every aerosol type. Exploring different refractive indices and size distributions is beyond the scope of this paper. 
However, as you suggested, we compared our output to the CAMS reanalysis model, which shows promising results. (see Maine 
Comments) 

 

- P7, L26. I guess you mean “biophysical properties of vegetation”.  

P7, L13: Changed to: “biophysical properties of vegetation” 

 

- P7, L26. Given that your application concerns aerosols, you should also mention previous work on NNs for aerosol retrievals 
(Radosavljevic et al., 2010, Chimot et al., 2017, Di Noia et al., 2017). References:  
Radosavljevic, V. et al. (2010), “A data-mining technique for aerosol retrieval across multiple accuracy measures”, IEEE Geosci. 
Remote Sens. Lett., 7, 411-415, doi: 10.1109/LGRS.2009.2037720  
Chimot, J. et al. (2017), “An exploratory study on the aerosol height retrieval from OMI measurements of the 477 nm O2-O2 
spectral band using a neural network approach”, Atmos. Meas. Tech. 10, 783-809, doi: 10.5194/amt-10-783-2017  
Di Noia, A. et al. (2017), “Combined neural network/Phillips-Tikhonov approach to aerosol retrievals over land from the NASA 
Research Scanning Polarimeter”, Atmos. Meas. Tech., 10, 4235-4252, doi: 10.5194/amt-10-4235-2017  

P8, L13: Information added: “Neural networks have also been applied to retrieve aerosol layer height from Ozone Monitoring 
Instrument (OMI) observations (Chimot et al., 2017), estimate multiple aerosol parameters as a prior for an iterative Phillips-
Tikhonov retrieval (Di Noia et al., 2017) and to estimate AOT from MODIS observations (Lary et al., 2009; Radosavljevic et al., 
2010).” 

 

- P8, L8-9, “training-set” -> “training set”, “validation-set” -> “validation set”.  

Changed throughout the manuscript 

 

- P8, L16. Why are you using radiance and not reflectance as an input? Why are you using ground distance and ground elevation 
(which should have a relatively minor effect on the top-of-atmosphere radiance or reflectance), but are not using viewing zenith 
angle and viewing azimuth angle, which may have a greater effect?  

We switched from standardizing radiance by its mean to scaling radiance by sun-earth distance and SZA. This makes the retrieval 
more robust to the AVIRIS-NG observations and is similar to using reflectance as our input. We use ground elevation and 
surface-sensor-distance since they provide additional information to the NN. While both variables might have a limited impact on 
top-of-atmosphere radiances, our radiative transfer calculations are performed for the altitude of the airborne AVIRIS-NG 



instrument where the effect of ground distance and elevation is greater. We don’t provide the viewing zenith angle and viewing 
azimuth angle as an input to the NN since we assume a nadir looking sensor. 

 

-P9, Eqs. 8 and 9. I have the impression that the "n" in Eq. 9 is not the same "n" as in Eq. 8. Please adopt an unambiguous 
notation and explain the meaning of any symbol you use.  

P9, Eq9: Changed the second “n” into an “m” and added both to the text: “ 

 "($) = ‖$‖( = )*$+(
,

+-.
 

(1)  

For our network /01 and /1 are the n true and predicted AOT, respectively. We further add the L2 norm ‖$‖( of the vector of the m 
neural network weights,	$, to our cost function (see Equation 9), also referred to as L2 regularization or weight decay.” 

 

- P9, L6. Add that theta is a vector containing all the weights of the NN (right?). Furthermore, in the next sentence I don’t think 
theta should be the subscript “i” in the L2 norm.  

P9, L17: Removed the subscript “i” and added that $ is a vector: “For our network /01 and /1 are the n true and predicted AOT, 
respectively. We further add the L2 norm ‖$‖( of the vector of the m neural network weights,	$, to our cost function (see 
Equation 9), also referred to as L2 regularization or weight decay.” 

 

- P9, L7, add “or weight decay” after “L2 regularization”.  

P9, L18, Changed 

 

- P9, L8. “The L2 regularization is weighted” -> “The L2 regularization term R(theta) is weighted”  

P10, L1: Changed 

 

- P11. Consider splitting Figure 4 into three plots (one per aerosol type). The plot for carbonaceous aerosol looks completely 
hidden.  

P11, Fig 4: Great idea. We split Figure 4 into three plots and changed the visualization to a ‘heatmap’ for even better 
interpretability: 



 

 Figure 4: AOT for carbon, dust and sulfate aerosols, retrieved by the model vs true AOT from the test set. The cyan line shows 
the linear fit to the data with slope and y-intercept given in the respective titles.  

 

- P13, L11-12. In addition to just reducing the number of sampling points, it would be more interesting to also change the spectral 
resolution of the instrument (I mean, the width of a slit function you may convolve your synthetic spectra with). This would make 
your setup more similar to that of existing satellite imagers, which typically have a spectral resolution of ∼10 nm.  

We repeated our test cases for a spectral resolution of 10 nm. To limit the total number of neural networks we had to train we 
reduced the original exploration of sampling resolution and instrument noise slightly. However, we found no significant 
differences to the test cases with a spectral resolution of 5 nm.  

P13, L18: We added this information to the text: “While we found dependencies of retrieval performance to varying amounts of 
noise and number of wavelength channels, the spectral resolution had no significant effect. On average the models trained with a 
spectral resolution of 5 nm had a standard error in retrieved AOT that was only 0.001 smaller than for the cases with a spectral 
resolution of 10 nm.  Therefore, we limit the following discussion to the results of the 12 neural networks trained on radiative 
transfer calculations with the AVIRIS-NG spectral resolution of approximately 5 nm and note that these values are also 
representative for an instrument with a 10 nm spectral resolution.” 

 

- P14, L7. Since you are using synthetic data with a spherical dust model, it would be important to repeat your experiment with a 
more realistic model for dust. Otherwise the numbers you provide for the retrieval accuracy are not really meaningful, as they 
cannot be really taken as an indication of what would happen in a real scenario.  

We updated our calculation for the dust aerosols to account for their non-sphericity (see Maine Comments). 

 

- L15. You say, “It is inherently difficult to interpret the inner workings of neural networks”. Actually, the derivative of the NN 
output with respect to its input can be computed analytically (Blackwell, 2012, Di Noia et al., 2013). This may enable more 
systematic sensitivity analyses, as it means that the NN retrieval can be rigorously linearized around its actual input (spectrum + 
viewing geometry). It may be also useful to feed the values retrieved by the NN back to a radiative transfer model. Combined 
with the NN input Jacobian mentioned above, this may enable estimating the sensitivity of the NN retrieval to the true state 
vector (Jiménez and Eriksson, 2001). References:  
Blackwell, W. (2012), “Neural network Jacobian analysis for high-resolution profiling of the atmosphere”, EURASIP J. Adv. 
Sig. Proc., 2012, 1-11, doi: 10.1186/1687-6180- 2012-71  
Di Noia, A. et al. (2013), “Global tropospheric ozone column retrievals from OMI data by means of neural networks”, Atmos. 
Meas. Tech., 6, 895-915, doi: 10.5194/amt-6- 895-2013  
Jiménez, C. and Eriksson, P. (2001), “A neural network technique for inversion of atmospheric observations from microwave 
limb sounders”, Radio Sci., 36, 941-953, doi: 10.1029/2000RS002561  



Our approach is very similar to the proposed Jacobian analysis by Blackwell. However, the Jacobian analysis (and our approach) 
are limited in that they only allow to calculate sensitivities for a certain operating point (input that we linearize around). Since the 
neural network is non-linear it is “inherently difficult” to understand how the neural network will behave in any situation 
(compared to e.g. linear regression). Blackwell acknowledges the importance of choosing the right operating point in Chapter 6 
and 7. Nevertheless, we agree that neural networks are partially interpretable and tried to shed some light on the proposed neural 
network with our preformed sensitivity analysis.  

P15, L9: Citation added for Blackwell, 2012. 

 

- P17, L9. “To apply the model to real imagery, one would ideally train the model further on real observations”. I don’t think this 
is necessarily true. If your forward simulations and your knowledge of the instrument are realistic enough, using synthetic data 
should be feasible (again, you can look at Chimot et al. (2017) or Di Noia et al. (2017) for examples). Furthermore, training on 
real data is guaranteed to introduce sampling biases and co-location errors that may counterbalance the advantage of implicitly 
incorporating the real instrument characteristics in the training set. Furthermore, for the particular task of retrieving AOD 
separated into types it may be even impossible to find a training dataset with real observations.  

The introduction of a sampling bias is something we hadn’t considered when making the above statement. We removed the 
paragraph about fine tuning. 

 

- P18, Section 5.1. There is one aspect that is not totally clear to me. You perform the PCA of AVIRIS-NG observations and 
retain 16 principal components. Do I correctly understand that what you then pass to the NN are not directly the principal 
components but the radiance spectra reconstructed from the 16 principal components? If so, please add a sentence somewhere in 
the section to make this clear.  

P18, L18: Thanks for catching that. Clarified paragraph and changed to: “The first 16 principal components explain 
approximately 99.9% of the variability in the observations. We reconstruct the AVIRIS-NG observed radiances from these 
principal components. That effectively removes principal components higher than 16 from all analyzed AVIRIS-NG imagery. 
Afterwards, the radiance for every pixel is treated as an independent observation and scaled and standardized (Equation 10 and 
11) to match the training set. 

 

Apart from this, I have a more fundamental question. You use the PCA as a tool to denoise AVIRIS-NG imagery, which is fine to 
do, and derive the PCA coefficients from the AVIRIS imagery itself. However, you trained your NN with synthetic spectra, and 
in order to apply your NN to real observations it is important to make sure that your real data look as similar as possible to the 
data you used to train the NN. How confident are you that your PCA-based denoising does not change the statistical distribution 
of the reconstructed radiances compared to that assumed in the training set? It would be interesting to check what happens to the 
synthetic spectra you used to train the NN if you compress them and reconstruct them with the PCA transformation you derived 
from the AVIRIS imagery. If they change significantly, then this may be a warning flag that there may be problems when you 
apply your NN to real measurements pre- processed with your PCA transformation.  

We investigated the sensitivity of the neural network to removing principal components higher than 16 and found no evidence of 
systematic differences. The denoising was motivated to eliminate vertical stripes in the aerosol retrievals that initially showed up 
in the scenes of Figure 11 and 12. (P18, L26) “Experiments with more and fewer principal components indicated that the model 
was insensitive to the exact number of remaining principal components.” 

 

- P18, L17. Are you sure components 17 and 18 in Fig. 9 do not contain useful information? They seem to display some 
"structured" spatial patterns.  

The first 16 principal components capture 99.9% of the variability. We acknowledged in the manuscript that the choice for the 
cut-off is rather arbitrary: (P18, L23) “We acknowledge that the choice of retaining the first 16 principal components is rather 



arbitrary and should ideally be made on a per flight basis. However, for practical reasons we decided to use one threshold for all 
imagery considered in this study. The threshold is a tradeoff between removing valuable information and reducing noise. 
Experiments with more and fewer principal components indicated that the model was insensitive to the exact number of 
remaining principal components.” 

 

- P25, L17. The correlation value looks misleading, as it looks mainly driven by the two high-AOT data points in the upper right.  

P26, L18: We added the following disclaimer: “However, the correlation might be mainly driven by the few high-AOT 
comparisons.” 

Furthermore, we tested the correlation for significance and found the correlation to be significant at the 0.05 p-value. 



Anonymous Referee #2  

The authors present a neural network based aerosol optical thickness retrieval from a hyperspectral imager – with the intent of 
improving atmospheric correction of land surface reflectances. The network obtains separate estimate of dust, brown carbon, and 
sulfate AOT as a mixture for each observed spectra. They apply this network to airborne AVIRIS-NG imagery and demonstrate 
its usage for a variety of aerosol conditions and compare their results those of AERONET. The efficiency of neural networks, 
combined with the large scale of the remote sensing datasets produced by hyperspectral imagers makes studies such as this one 
important.  

 

General Comments  

Overall	I	think	this	paper	is	good,	but	I	do	think	there	is	relatively	little	discussion	as	to	why	the	network	performs	so	
poorly	for	low	aerosol	optical	thicknesses	(as	indicated	in	the	MODIS	comparison).	The	other	comparisons	could	have	
appeared	better	because	the	collocated	datasets	simply	did	not	have	any	occurrences	of	aerosol	optical	thicknesses	below	
0.3.	In	contrast,	the	MODIS	dataset	has	numerous	occurrences	of	lower	aerosol	optical	thicknesses.	You	should	look	into	
what	might	be	causing	the	network	to	behave	this	way	for	low	optical	thicknesses.	It	is	important	to	note	that	MODIS	has	
been	shown	to	have	fair	agreement	with	AERONET	for	low	optical	thickness	conditions	in	other	comparisons	(see	
citations	below).	 

Gupta,	P.	and	Remer,	L.	A.	and	Levy,	R.	C.	and	Mattoo,	S.,	Validation	of	MODIS	3	km	land	aerosol	optical	depth	from	NASA’s	
EOS	Terra	and	Aqua	missions.	2018,	Atmospheric	Measurement	Techniques,	11,	5,	3145-3159,	DOI:	10.5194/amt-11-
3145-	2018	 

Yuan	Wang,	Qiangqiang	Yuan,	Tongwen	Li,	Huanfeng	Shen,	Li	Zheng,	Liangpei	Zhang,	Evaluation	and	comparison	of	
MODIS	Collection	6.1	aerosol	optical	depth	against	AERONET	over	regions	in	China	with	multifarious	underlying	surfaces.	
2019.	Atmo-	spheric	Environment,	200,	280-301,	https://doi.org/10.1016/j.atmosenv.2018.12.023	 

As a result of comments by Referee 1 we updated our approach to using reflectance rather than normalized radiance. This 
resolved some of the differences between MODIS and AVIRIS-NG. However, there are still differences between both retrievals. 
We added a comparison to CAMS (as suggested by Referee 1) that shows that the bias comes from overestimating carbon and 
dust for low AOT (see P28, Fig 17). We added more discussion but can only speculate were the bias comes from. The MODIS 
retrievals have a different spatial resolution and are recorded at a different time than the AVIRIS-NG flights. Both of these make 
a direct comparison challenging. To investigate whether the differences between AVIRIS-NG and MODIS are systematic will 
necessitate more collocated flights of AVIRIS-NG with AEORNET stations on future missions.  

P26, L20: Discussion Added: “The two AOT retrievals have a significant correlation of 0.81 and a RMSD of 0.12. However, the 
correlation might be mainly driven by the few high-AOT comparisons. The correlation and RMSD is similar to comparisons 
between AERONET and MODIS for India, with a correlation of 0.86 and RMSD of 0.19 (Gupta et al., 2018). Furthermore, 
AVIRIS-NG shows a positive bias of 0.07 compared to MODIS, which itself has a positive bias compared to AERONET (Gupta 
et al., 2018; Wang et al., 2019). This indicates that the AVIRIS-NG retrievals might overestimate combined AOT. Whether this 
bias holds true for a larger sample size and whether it is grounded in the model or the calibration of AVIRIS-NG warrants further 
investigation. Interestingly, the two outliers at the bottom of Figure 16, where MODIS reports almost no aerosols are only 20 km 
and 1 day apart from each other.”    

P27, L5: Possible reason for differences added: “Furthermore, MODIS AOT retrievals have a different spatial resolution and 
stem from observations recorded at different times than the AVIRIS-NG flight tracks” 

 

Specific Feedback:  

1.	The	selection	of	variables	for	spherical	albedo,	transmittance	and	path	radiance	in	equations	1-4	does	not	seem	to	
match	a	convention	that	I	am	familiar	with.	It	also	seems	unconventional	to	refer	to	radiances	with	an	abbreviation	within	
an	equation	rather	than	a	consistent	variable.	The	current	format	makes	the	equations	opaque,	when	in	reality	rad_x,	t,	f,	
and	F	are	all	radiances.		



P4: We updated the notation and changed: 
 - radiance:   Rad_x to L_x 
 - two-way transmittance: t to % 
 - spherical albedo:  & to ' 
 - path radiance:  f to () 
 - at sensor radiance: F to L 

 	

2.	Your	dust	optical	property	database	seems	to	be	from	a	very	old	citation.	I	would	recommend	using	a	non-spherical	
dust	model	as	they	have	very	different	scattering	properties	from	spherical	scattering.		

We updated our calculations for the dust aerosols to account for their non-sphericity, repeated the radiative transfer calculations, 
retrained the NN and updated the results of our analysis throughout the manuscript. We did not find systematic differences in the 
retrieved AOT of dust compared to the original (spherical) assumption. Nevertheless, the model is now trained with non-
spherical dust. 

Content added: “To account for the fact that dust particles can be aspherical, we applied the T-matrix code of Mishchenko 
(Mishchenko and Travis, 1998), for randomly oriented particles, to generate MODTRAN SAP files for a range of ratios of semi-
major to semi-minor axes, or aspect ratios (AR), between 1.01 and 1.8. This range contains the representative AR of 1.4 (Okada 
et al., 2001), while the aspect ratio of 1.01 corresponds to a nearly spherical particle. In our application of the T-matrix code the 
second mode parameters (i.e. Rad2 = 0.83 µm, s2 = 1.84, see Table 1) were used to specify the size distribution, and the AFCRL 
1987 Sand indices are utilized.” 

	

3.	I’m	not	sure	I	understand	the	neural	network	output	structure,	are	you	retrieving	a	carbon,	dust,	and	sulfate	mixture	
for	all	aerosol	cases?	This	should	be	made	more	clear,	as	in	some	cases/regions	this	mixture	approach	may	not	be	
appropriate.		

Our neural network retrieves carbon, dust and sulfate aerosols independently for all cases. This can be interpreted as an external 
mixture of those aerosols. If only one aerosol type is present in a given scene the AOT for the other aerosol types will be zero. 
We agree that this would not be appropriate for some cases or regions. 

Added “independently retrieved” to sentence that describes the neural network output for clarification: 

P9, L2: The output of the network is the independently retrieved AOT of the three aerosol types. 

 

4.	You	refer	to	the	preprocessing	in	section	3.2	as	normalization	in	a	couple	of	places.	This	is	incorrect,	it	is	typically	
referred	to	as	“standardization”.	It	is	worthwhile	to	explain	why	this	is	useful	to	perform	on	neural	network	inputs	before	
you	explain	the	mathematics.	To	that	end,	perhaps	it	would	be	helpful	to	say	that	the	purpose	of	preprocessing	
standardization	before	providing	input	to	a	neural	network	is	that	it	results	in	a	fair	comparison	of	the	variability	of	
observations	that	come	from	disparate	distributions	(magnitude	and	variance).		

We reorganized the description and replaced “normalization” with “standardization”:  

P10, L9: “We then scale the radiance of a particular observation, (*+,_., by dividing through the cosine of the SZA and 
multiplying with the square of the Sun-Earth distance, d, (Equation 10). This scales the magnitude of (*+,_. while preserving its 
spectral shape. Afterwards, we standardize the scaled observations, /., for the training process. During training, this results in a 
better conditioned cost function and allows the neural network to converge faster to a solution. Standardizing is performed by 
subtracting the mean, 01, and dividing by the standard deviation, &1, at every wavelength, (Equation 11). The mean and standard 
deviation was calculated from the complete set of scaled radiative transfer calculations.  



 /. =
(*+,_. ∗ 4.

5

cos	(;<=)
				 

(1)  

 

 /?@ =
/. − 01
&1

				BCDℎ				01 = FGHI(/)1				HI4				&1 = JD4(/)1 (2)  

5.	In	figures	that	feature	analysis	of	the	validation	dataset	you	need	to	indicate	such	in	the	caption.	I	think	this	would	
apply	to	Figures	4,	5,	6,	7,	and	8.	I	find	that	those	who	are	unfamiliar	with	neural	networks	and	their	applications	often	
have	difficulty	distinguishing	between	validation	dataset	figures	and	those	tested	on	real	data	unless	you	very	explicitly	
state	that.		

Updated captions to state that the data comes from the test set 

 

6.	The	novelty	detection	network	is	a	very	clever	implementation.	I	think	it	would	perhaps	be	useful	to	further	discuss	
how	this	works.	For	example,	in	many	of	your	images	it	specifically	seems	to	flag	only	for	very	dark	surfaces	in	the	true	
color	image	–	is	there	an	explanation	for	this	behavior?		

The dark surfaces that stick out are water. This is not surprising since the neural network was trained only on land surface 
reflectances. While the magnitude is much lower the network for novelty detection also identified some bright soil areas in the 
scene from 01/10/2016  

P20, L14: Added an example to help the reader understand how the neural network for novelty detection works: “During training, 
the neural network learns to minimize this error. For example, the neural network learns that the radiance at 2100 nm is highly 
correlated with the radiance at 2300 nm. Thus, it can reconstruct (decompress) both radiances with only one value passed in from 
the Bottleneck layer with little error. Once the neural network is trained and applied to previously unseen features it will 
compress and decompress features that are similar to the training set (high correlation between 2100 nm and 2300 nm) with a 
smaller error than features that are different (low correlation between 2100 nm and 2300 nm).” 

P20, L3: Added citation for further reading: “Japkowicz, N., Myers, C., Gluck, M. and others: A novelty detection approach to 
classification, in IJCAI, vol. 1, pp. 518–523., 1995.” 

P21, L13: Added explanation for the identified water features: “The detection of water by the neural network for novelty 
detection is to be expected, since the reflectance of water is very different to most land surfaces and was not part of the training 
set.” 

 

7.	In	section	5.4	when	you	are	discussing	the	comparison	to	MODIS	combined	aerosol	product	you	mention	that	MODIS	
“uses	fewer	wavelengths	to	make	this	retrieval.”	I	think	this	may	be	misleading	in	a	sense.	Both	of	the	MODIS	aerosol	
products	included	in	that	dataset	have	a	significantly	different	relationship	spectral	information	and	the	number	of	
spectral	bands	used/required	than	your	approach	does.		

We agree that this might be misleading and removed it.  

	

Text	Feedback:	 

1.	Page	3	line	20:	There	is	an	extra	“s”	in	“TRANSsmittance”	in	the	MODTRAN	name.	It	should	be	“Transmittance”		

P3, L24: Thanks for catching that. Removed “s” 



2.	Page	6	line	8:	Missing	article	in	the	sentence.	“AOT	of	1.0	was	selected	for	each	aerosol	type.”	should	read	as	“An	AOT	of	
1.0	was	selected	for	each	aerosol	type.”		

P6, L19: Added “An” 

3.	Page	9	line	16:	normalization	should	be	standardization.		

P10, L11: Changed to “standardized” 

4.	Page	18	line	18:	normalized	should	be	standardized.		

P18, L23: Changed to “standardized” 

	

Figure	Feedback:	 

1.	Figure	2:	the	formatting	of	optical	thickness	in	the	legend	is	confusing.	The	variable	should	either	be	a	tau	or	AOT.		

P7, Fig.2: Changed “t_aer” to “%” 

2.	Figure	8:	Within	each	aerosol	type	the	y-axis	limits	should	be	consistent.	Otherwise	it	is	very	difficult	to	understand	
how	the	impact	of	noise	influences	the	analysis	for	each	of	these	aerosol	types.		

P17, Fig.8: Changed all y-axis limits to be the same 
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Abstract. We retrieve aerosol optical thickness (AOT) independently for brown carbon-, dust and sulfate from hyperspectral 

image data. The model, a neural network, is trained on atmospheric radiative transfer calculations from MODTRAN 6.0 with 

varying aerosol- concentration and type, surface albedo, water vapor and viewing geometries. From a set of test radiative 10 

transfer calculations, we are able to retrieve AOT with a standard error of better than ±0.05. No a priori information of the 

surface albedo or atmospheric state is necessary for our model. We apply the model to AVIRIS-NG imagery from a recent 

campaign over India and demonstrate its performance under high and low aerosol loadings and different aerosol types. 

1 Introduction 

Remotely sensed surface spectral reflectance is used in many scientific disciplines including, geology, forestry, water studies 15 

and urban studies (Davis et al., 2002; Rencz and Ryerson, 1999). The surface reflectance can be either directly measured at 

the ground with portable field spectrometers or indirectly measured from air- and space-borne platforms. Observations at air- 

and space-borne instrument altitudes are sensitive not only to the signal from the surface but also the intervening atmosphere 

between surface and sensor. Thus, to derive surface reflectance from air- and space-borne observations, the data must be 

corrected for atmospheric absorption and scattering effects. The main objective of atmospheric correction is the accurate 20 

removal of absorption and scattering by aerosols and gases. While absorption by water vapor and other gases are is highly 

wavelength dependent, with relatively strong, discrete, absorption bands, aerosols extinction (the sum of absorption and 

scattering) is a smooth, continuous function of wavelength. This makes it challenging to separate it from the surface 

contribution. Most current atmospheric corrections ignore the aerosol variability within a scene. Instead, a common practice 

is to use an in-scene reference reflectance target on the ground. If a reference target is not available, aerosol properties are 25 

approximated from visibility (e.g.,  Gao, Heidebrecht and Goetz, 1993; Adler-Golden et al., 1999) or derived from climatology. 

Such approximations can lead to large errors in retrieved surface reflectance, particularly for aerosol optical thickness (AOT) 

great larger than 0.4, commonly found, for example, over east Asia (Bilal et al., 2014; Van Donkelaar et al., 2010). While 

instrument performance has steadily improved over the years, resulting in higher signal to noise ratios, improvements in the 

treatment of aerosols in atmospheric correction routines has not kept pace. To improve the retrieval of surface reflectance 30 
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products from air- or space-borne observations, the spatial variability of AOT and wavelength dependent single-scattering 

albedo and phase function or its moments within a scene have to be known.  

Aerosols also pose a major uncertainty in climate predictions through their direct scattering and absorption of solar and thermal 

radiation and indirect effects on cloud albedo (Twomey, 1977) and clouds lifetime (Albrecht, 1989; Pincus and Baker, 1994). 

Their contribution to radiative forcing is now the biggest uncertainty to the total anthropogenic forcing between 1750 and 2011 5 

(Myhre et al., 2013). The magnitude of the direct interaction of aerosol with radiation depends not only on their abundance, 

but also their single scattering properties and the spectral reflectance of the underlying surface (Haywood and Boucher, 2000; 

Nan and A., 2015). Better quantification of the global distribution and optical properties of aerosols is a top priority to further 

improve climate projections.  

Finally, aerosols are an important health risk factor (Pope III et al., 2009). For eastern Asia, the World Health Organization 10 

Air Quality PM2.5 (amount of aerosols with a diameter less than 2.5 µm) Interim Target-1 (World Health Organization, 2006) 

is exceeded for 50% of the population (Van Donkelaar et al., 2010), leading to an increase in mortality of approximately 15%. 

On a global scale, an estimated 7 million deaths were attributed to air pollution in 2016 (World Health Organisation, 2018). A 

better understanding of aerosol sources and their mixing in urban areas can inform decision makers and perhaps mitigate these 

hazards. 15 

 

Currently, aerosols are routinely retrieved from ground and space-borne platforms. Ground based aerosol retrievals from 

AErosol RObotic NETwork (AERONET) (Holben et al., 1998) have the lowest uncertainty in retrieved AOT of less than 0.02 

(Eck et al., 1999) but are spatially restricted. Space-borne instruments like the Moderate resolution Imaging Spectroradiometer 

(MODIS) (Salomonson et al., 1989) and the Multiangle Imaging SpectroRadiometer (MISR) (Diner et al., 1998) provide global 20 

coverage but retrievals from their measurements  require separating the aerosol signal from the surface contribution. This 

results in large differences between the derived aerosol products from different instruments (Chu et al., 2003; Levy et al., 2005, 

2013; Prasad and Singh, 2007; Remer et al., 2005). Other approaches aim to use the vast information content from space-borne 

multiangle polarimetric observations that provide enhanced capability of separating aerosol signal from surface signal, and a 

better sensitivity to aerosol microphysical parameters. However, retrieving aerosol properties from such observations is highly 25 

complex and operational products have not yet reached the accuracy implied by theoretical calculations (Dubovik et al., 2019; 

Kokhanovsky et al., 2015). Hence, accurate aerosol retrieval from space-borne platforms is still an active research topic.  

 

To increase accuracy of global aerosol retrievals, we propose a retrieval algorithm that will be applicable to current and future 

hyperspectral space-borne instruments, such as Hyperspectral Precursor and Application Mission (PRISMA) (Labate et al., 30 

2009), EO-1 Hyperion (Folkman et al., 2001),  currently under development, such as the Climate Absolute Radiance and 

Refractive Observatory (CLARREO) (Wielicki et al., 2013) and the Hyperspectral Infrared Imager (HyspIRI) (Lee et al., 

2015). Exploiting the large data volumes and hundreds of spectral bands of these instruments requires new fast retrieval 

algorithms. To meet these needs, we propose using neural networks. In this study, we present a neural network that is used to 
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independently retrieve dust, carbonaceous- and sulfate aerosols from hyperspectral imagery over land, with no a priori 

knowledge of the surface type or atmospheric state. The neural network can retrieve multiple collocated aerosol types and their 

contribution to the total AOT within a given scene. After fitting the neural network parameters, also referred to as training, the 

model can be used to retrieve AOT in real time without further radiative transfer calculations. We apply the neural network to 

Airborne Visible / Infrared Imaging Spectrometer Next Generation (AVIRIS-NG) (Hamlin et al., 2011) imagery from a recent 5 

campaign over India and demonstrate its performance under high and low aerosol loadings and different aerosol types. 

AVIRIS-NG, a follow-on to the Airborne Visible / Infrared Imaging Spectrometer (AVIRIS) (Green et al., 1998), has a spectral 

range of 380 – 2510 nm,  a spectral resolution of 5 nm and spatial resolution of 4 m to 20 m depending on flight altitude.  

 

The structure of our paper is as follows: Section 2 describes the forward radiative transfer calculations used to train an inverse 10 

model, the neural network. Sections 3 and 4 detail the architecture, training procedure and performance of the inverse model. 

Furthermore, we explore how instrument noise and sampling resolution influence model performance. In Section 5 we apply 

the inverse model to AVIRIS-NG observations and compare results to AERONET and MODIS retrieved AOT. In section 6 

we provide our conclusion. 

 15 

 

2 Forward Model 

To train a neural network for aerosol retrieval we need a dataset consisting of the model input – output pairs, or samples, of 

the inverse model. These samples need to span a wide variety of atmospheric states, viewing geometries and surface albedos. 

To generate such a dataset, we employ a forward model described in the following section. 20 

 

2.1 Radiative Transfer Calculations 

The forward model radiative transfer calculations were performed with the MODerate spectral resolution atmospheric 

TRANSsmittance algorithm and computer model (MODTRAN) 6.0 (Berk et al., 2014) from 400 nm to 2500 nm. Multiple 

scattering was implemented with MODTRANs’ DISORT algorithm (Stamnes et al., 1988), utilizing a conservative number of 25 

32 streams. We chose the ‘Tropical’ atmospheric profile. The solar zenith angle (SZA) was varied between 25° and 50°	and	
water vapor varied between 0.4 g cm-2 and 4.1 g cm-2. The distance between ground and sensor (ground distance) was varied 

between 3 km and 6 km and the ground elevation between 0 m and 2000 m. The AOT at 550 nm varied between 0 and 1.0. 

Three types of aerosols, brown carbon, dust and sulfate (see Section 2.3) were modeled as an external mixture, with a fraction 

between 0 and 100%. For every parameter permutation we perform three radiative transfer calculations for a constant surface 30 

albedo of 0, 0.5 and 1. In the following, the calculated at sensor radiances for a surface albedo of 0, 0.5 and 1 are denoted as 
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&', &'.( and  &). The three simulations are then used to calculate at sensor radiance for any given surface albedo utilizing the 

MODTRAN interrogation technique (Verhoef and Bach, 2003). We first extract three atmospheric parameters, namely the 

spherical albedo, *, two-way transmittance, +, and path radiance, &,: 

 

 
* = 	

2
1

1 − 1 + 2
				456ℎ				1 =

&) − &'
2 ∗ (&'.( − &')

 
(1) 	

 5 

 

 + = (&) − &') ∗ (1 − *) (2) 	
 

 

 &; = &0 (3) 	
 

Afterwards, we calculate the at sensor radiance, L, for the generated surface spectra, < (see next Section):  10 

 

 & = &, +
+ ∗ <

1 − < ∗ *
 (4) 	

 

Finally, the radiance is convolved with a gaussian kernel with a full width half maximum (FWHM) of 5.6 nm in the UV and 

5.8 nm in IR, similar to the AVIIRIS-NG spectral resolution. 

 15 

2.2 Surface Spectra 

To simulate a wide variety of surface types we need a multitude of surface spectra. However, the number of freely available 

surface spectra is limited. The risk of using too few surface spectra is that the model might not be able to extract general surface 

characteristics. Applied to scenes with a previously unseen surface spectra, the model would perform poorly. Furthermore, 

most catalogs provide pure surface spectra from pure surface materials, also referred to as endmember spectra. This case is not 20 

representative for most air- or space-borne observations over land where multiple surface types are present in a single 

instrument pixel. Therefore, we generate a catalog of mixed surface spectra by randomly combining a limited number of 

measured spectra from different sources. The combination is performed by taking the randomly weighted mean of two 

randomly chosen endmember spectra at a time, until we have a total of 100,000 mixed surface spectra. 

Commented [SM1]: Changed from rad_x to L_x throughout the 
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*	throughout	the	manuscript 
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Endmember spectra were obtained from https://ecosis.org/ and https://speclib.jpl.nasa.gov. The datasets include 844 vegetation 

reflectance spectra from Hawaii (Dennsion and Gardner, 2000), 173 vegetation spectra from Hawaii volcanoes national park 

(Grimm, 2017), 1065 urban surfaces from Santa Barbara (Herold et al., 2004b) and 270 rock and soil spectra (Meerdink et al., 

in prep.; Baldridge et al., 2009). To remove high-frequency noise in the surface spectra due to low signal at some wavelengths 

(Herold et al., 2004a) we smooth the surface spectra with a Gaussian kernel as done by Thompson et al., (2018).  5 

An example of soil, sand and vegetation reflectances from the catalogs are shown on the left in Figure 1. The right side shows 

nine examples of how the three spectra are combined to generate mixed surface spectra.  

 

 

Figure 1: (Left): Surface reflectance for three different surface types (soil, sand and vegetation) from measured and 10 

smoothed surface spectra. (Right): Nine surface spectra, randomly generated from the three spectra on the left. Wavelengths 
with strong water vapor absorption are marked in grey. 

 

2.3 Aerosol Parameterization 

The optical properties of the three aerosols types that served as inputs to MODTRAN were calculated using three size 15 

distributions based upon Dubovik et al., (2002) and the indices of refraction contained in HITRAN 2016 (Gordon et al., 2017). 

While aerosols cannot be strictly separated into types, we use these properties as representatives for dust, carbonaceous and 

sulfate aerosols. HITRAN 2016 includes H2SO4 indices at 300 K for sulfate aerosols and sand indices for dust aerosols from 

the AFCRL 1985 compilation (Fenn et al., 1985). The indices for sulfate and dust were selected because they cover the full 

wavelength range (0.2 to 40 µm) which is convenient for the use with MODTRAN. For brown carbon aerosols, from now on 20 

simply referred to as carbon, the indices are reported up to 1.2 µm by Alexander, Crozier and Anderson (2008). For longer 

wavelengths we extrapolated the real and imaginary parts.  
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Given the size distributions and the refractive indices, an extended version of the HITRAN-RI program (Massie and Hervig, 

2013) was applied to calculate extinction, absorption, scattering spectra, and the Legendre moments of the phase function used 

in MODTRAN 6.0 calculations for carbon and sulfate. The calculations are based in Mie theory and thus assume homogenous 

spherical aerosol particles. For dust we had to account for its non-spherical shape. We applied the T-matrix code of Mishchenko 

(Mishchenko and Travis, 1998), for randomly oriented particles, to generate the MODTRAN SAP files. The range of ratios of 5 

semi-major to semi-minor axes, or aspect ratios (AR), was varied between 1.01 and 1.8. This range contains the representative 

AR of 1.4 (Okada et al., 2001), while the aspect ratio of 1.01 corresponds to a nearly spherical particle. In our application of 

the T-matrix code the second mode parameters (i.e. Rad2=0.83 µm, s2=1.84, see Table 1) were used to specify the size 

distribution, and the AFCRL 1987 Sand indices are utilized. 

Table 1 summarizes the inputs to the aerosol calculations, i.e. parameters for a size distribution with two log-normal 10 

distributions. Given the input size distribution and indices the resulting extinction spectra were distributed uniformly from the 

surface to 2 km altitude, with an additional stratospheric sulfate aerosol optical thickness of 0.006 distributed throughput the 

stratosphere.  

 

Table 1: Log-normal size distribution parameters for the three aerosol types considered 15 

Aerosol Type Den1 Rad1 σ1 Den2 Rad2 σ2 Indices 

Sulfate  1.00 0.64 1.58 1.25 0.37 2.13 AFCRL 1987 H2SO4 300 K 

Dust  1.00- 0.08- 1.52- 7.5- 0.83 1.84 AFCRL 1987 Sand 

Brown Carbon 1.00 0.086 1.49 - - - Alexander Brown Carbon  

 

To highlight the optical properties of the simulated aerosols, Figure 2 shows the MODTRAN simulated radiances for the three 

different aerosol types overlying a black surface. The observed radiance is simulated at an altitude of 3 km with a SZA of 25°	
and	ground elevation at sea level. An AOT of 1.0	was selected for each aerosol type. The single scattering albedos close to 

unity of sulfate and dust have a larger effect on the simulated radiance, compared to the lower single scattering albedo of 20 

carbon. For a highly reflective surface, the effects would be reversed, and we would see the strongest deviation from the case 

of no aerosols for carbon.  
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Figure 2: Radiance for a black surface, three different aerosol types and no aerosols, from an observed altitude of 3 
km with a SZA of 25°. Every aerosol type (dust with an AR of 1.5, carbon and sulfate) is shown for an AOT of 1.0. No data 
are shown for the wavelengths of two water vapor absorption bands (grey bars). 

 5 

2.4 Simulating Instrument Noise 

Unlike radiative transfer calculations, the measured signal from real instruments contains noise. Therefore, we add noise to 

the radiative transfer calculations that is similar to the noise in the AVIRIS-NG instrument.  

The noise is approximated by a three-parameter fit (see Equation 5) (Thompson et al., 2018) and derived from more complex 

AVIRIR-NG noise models (Mouroulis et al., 2000, 2003; Tennant et al., 2008).  10 

 

 =(&(L), L) 	= N(L) ∗ (O(L) ∗ &(L))'.( + P(L) (5) 	
 

The computed noise, =(&(L), L), is a function of three wavelength dependent parameters and observed radiance, &(L), which 

is a function of wavelength as well. Following a normal distribution, we randomly add the calculated noise to the radiative 

transfer calculated radiances: 15 

 

 &QRSTU(L) = &(L) + V   with   V~X(0, =(&(L), L)) (6) 	

	

Commented [SM6]: updated 
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On average, the signal to noise level for a typical scene is about 100 in the ultraviolet, 200 in the visible, 300 in the near 

infrared and peaks at about 1600 nm with a signal to noise level of 700.  

3 Inverse Model 

After using the forward model to generate a dataset to train the neural network, we are now able to train an inverse model that 

relates radiance spectra to AOT for the three aerosol types.  5 

 

3.1 Model Architecture 

A subclass of neural networks, called multilayer perceptrons, have been shown to be able to approximate any linear or non-

linear function (Hornik et al., 1989). After the training phase multilayer perceptrons can be used in real time at low 

computational cost. This makes this model architecture ideal for our application. Neural networks have previously been used 10 

in many studies to extract information from remote sensing observations. For example to estimate cloud optical thickness and 

type (Minnis et al., 2016; Taravat et al., 2015), to un-mix surface types (Licciardi and Del Frate, 2011; Palsson et al., 2018) 

and to retrieve biophysical properties of vegetation (Verger et al., 2011; Xiao et al., 2014). Neural networks have also been 

applied to retrieve aerosol layer height from Ozone Monitoring Instrument (OMI) observations (Chimot et al., 2017), used to 

estimate multiple aerosol parameters as the prior for an iterative Phillips-Tikhonov retrieval (Di Noia et al., 2017) and to 15 

estimate AOT from MODIS observations (Lary et al., 2009; Radosavljevic et al., 2010). 

A multilayer perceptron is comprised of many individual operations, or neurons, that multiply their inputs by a matrix, or 

weights, sum the results and add an additional vector, called bias. A non-linear function, the activation function, is applied to 

the results, or outputs, of these neurons, permitting non-linear projections from the input space to the output space. In a network, 

the output of neurons can be used as the input to other neurons. Hence, neurons are organized in layers. In general, more layers, 20 

and more neurons per layer, allow for more complex information retrieval. However, if the network becomes too complex for 

a given dataset and task, it will perform poorly for new model inputs. The right number of neurons and layers as well as other 

parameters, or hyperparameters, have to be determined empirically for every application. Thus, we altered the 

hyperparameters, trained the neural network on the majority of the samples, the training -set, and evaluated the model 

performance with samples that are separate from the training -set, the validation- set. Once we could no further reduce a user-25 

defined cost function, we froze the hyperparameters. 

 

Our neural network consists of five layers between the input and output layer, or hidden layers, containing 128 neurons in the 

first four hidden layers each and 96 neurons in the last hidden layer. The input layer consists of 322 neurons and the output 

layer consists of 3 neurons. The first five layers are fully connected, meaning that all layer outputs are used as layer inputs of 30 

the succeeding layer. The sixth layer is separated into three groups with 32 neurons each (see Figure 3). The inputs to the 
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neural network are the radiance at 319 wavelengths, the SZA, ground distance and ground elevation. The output of the network 

is the independently retrieved AOT of the three aerosol types.  

 

 

Figure 3: Model architecture of the neural network for aerosol retrieval. The inputs consist of the SZA, ground 5 

distance, ground elevation and the radiance at 319 individual wavelengths. The network has five hidden layers with 128 
neurons in the first four layers and 96 neurons in the last hidden layer. The outputs of the network are the AOT for carbon-, 
dust- and sulfate aerosols.  

 

To allow for non-linearities we add a rectified linear unit (ReLU) as the activation function, g(x), which can be expressed as:  10 

 

 Y(Z) = [
Z, 51	Z ≥ 0
0, 51	Z < 0 (7) 	

 

where x is the output of a neuron. During training we minimize the cost function, given by:  

 

 P^_6 = ` ∗ a(b) +
1
2cdefgh − fhi

j
Q

hk)

 (8) 	

 15 

 a(b) = ‖b‖j =
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j

n
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j

Q
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 (9) 	

 

For our network fgh and fh are the n true and predicted AOT, respectively. We further add the L2 norm ‖bbS‖j to the vector of 

the m neural network weights,	b, to our cost function (see Equation 9), also referred to as L2 regularization or weight decay. 
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This helps to avoid overfitting to the training- set. The L2 regularization term, a(b), is weighted by ` (see Equation 8) which 

is another hyperparameter that had to be determined empirically.  

 

 

3.2 Pre-processing  5 

From the 425 AVIRIS-NG channels we exclude calculated radiances at wavelengths with strong water vapor absorption. At 

these wavelengths, the majority of the surface spectra used in this study did not report or linear interpolate, surface reflectance. 

Furthermore, we exclude radiances at wavelengths that show strong signs of noise in the AVIRIS-NG data. A total of 319 

wavelength channels remain. We then scale the radiance of a particular observation, &h, by dividing through the cosine of the 

SZA and multiplying with the square of the Sun-Earth distance, d, (Equation 10). This scales the magnitude of &h  while 10 

preserving its spectral shape. Afterwards, we standardize the scaled observations, ao, for the training process. During training, 

this results in a better conditioned cost function and allows the neural network to converge faster to a solution. Standardizing 

is performed by were then normalized to zero mean and unit variance. subtracting the mean, pq, and dividing by the standard 

deviation, =q, at every wavelength, (Equation 11). The mean and standard deviation was calculated from the complete set of 

radiative transfer calculations. The normalization was applied twice, once per spectrum for every individual observation, rst, 15 

(Equation 10) and once per wavelength for the whole data-set, ru, (Equation 11). 

 

 ah =
&h ∗ vh

j

cos	(wxy)
				 (10) 	

 

 ast =
ah − pq
=q

				456ℎ				pq = z{Nceahiq				Ncv				=q = _6v(ah)q (11) 	

 

The first normalization normalizes the magnitude of the radiance of a particular observation while preserving its spectral shape. 20 

This forces the neural network to interpret the spectral shape rather than its magnitude. The second normalization optimizes 

the observations for the training process and allows the neural network to converge faster to a solution.  

 

3.3 Training, Validation and Test 

The MODTRAN radiance samples were split into a trainings-, validation- and test -set. The validation- and test -set contain 25 

10,000 randomly chosen samples each and the training- set consists of 280,000 samples. Training is performed with Googles’ 
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TensorFlow framework (Abadi et al., 2016). We gradually minimize the cost function by adjusting the randomly initialized 

weights and bias terms with the gradient-based optimizer Adam from Kingma and Ba (2014), at a learning rate of 0.001. 

During training we evaluate the neural network performance on the validation- set and update the model architecture and 

training parameters. Once, the cost function cannot be further minimized, training is complete. 

 5 

 

4 Results and Discussion 

After training of the neural network is completed, we evaluate its performance on the test -set. For the samples in the test -set, 

that were not present during training, we find a linear correlation coefficient of 0.87, 0.98 and 0.96 for the AOT of carbon, 

dust and sulfate, respectively (see Figure 4). The standard error for carbon-, dust- and sulfate aerosols is 0.05, 0.02 and 0.03, 10 

respectively. Thus, the model accuracy is higher for dust and sulfate, which have a larger single scattering albedo compared 

to carbon.  

 

 

  Figure 4: AOT for carbon, dust and sulfate aerosols, retrieved by the model vs true AOT from the test set. The cyan 15 

line shows the linear fit to the data with slope and y-intercept given in the respective titles. for simulated radiances, given 
different surface types, viewing geometries and atmospheric states.  

 

We further investigate the model’s performance for retrieved AOT under varying amounts of the three aerosol types. The 

absolute error in retrieved AOT for the three aerosol types is shown in the top row of Figure 5. Horizontal gradients (vertical 20 

bands) indicate that the model’s performance for the retrieval of a single aerosol type depends on the concentrations of the 

other aerosols in a given observation. Vertical gradients indicate that the model’s performance is dependent on the AOT of the 

aerosol that we are trying to retrieve. For the error on retrieved carbon (Figure 5 a) and sulfate (Figure 5 c) we find dependencies 

on AOT while the error in the retrieval for dust (Figure 5 b) appears insensitive to its AOT. Examining the retrieval error in 

percent of AOT (bottom row) we find that all three aerosol retrievals have higher relative errors for lower AOT and a standard 25 

error of about 40% for an AOT of 0.1. We further analyzed the model’s performance over a SZA range from 25° – 50°, ground 
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elevation from 0 – 2000 m and ground distance from 3000 – 6000 m. No significant correlation between model error and the 

three parameters was found. 

 

 

Figure 5: Error in retrieved AOT for carbon, dust and sulfate aerosols on the test -set. (a, b, c) shows the absolute 5 

error while (d, e, f) shows the error in [%]. The color-mapping is held constant for each row and varies across the three 
columns.  

 

4.1 Model Performance for Varying Surface Types 

To investigate systematic, surface dependent biases in the model we derive AOT for the three aerosol types over various 10 

unmixed surface types. The data consist of 250,000 samples. The standard error and mean between true and predicted AOT 

for different surfaces types is summarized in Figure 6. For the retrieval of carbon, we find the largest standard error for asphalt 

with ±0.0811 and the largest systematic bias for grass of +0.024. For dust the largest systematic bias is less thanof +0.012 

and occurs for scenes with vegetationconcrete. The standard error is similar for all surface types and approximately ±0.023. 

The systematic biases for the retrieval of sulfate aerosols are all mostly negative with grass asphalt and concreteand shingle 15 

causing the largest bias of −0.01. Overall, the standard error for the retrieval of carbon over most surfaces is larger compared 

to the other two aerosol types. This is not surprising, considering the overall lower performance of the model for the retrieval 

of carbon aerosols. Note that the model’s performance should be evaluated from the more realistic case of mixed surface 

spectra as was done in the previous section. 
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Figure 6: Mean error and standard error of retrieved AOT for carbon, dust and sulfate for various unmixed surface 
types from the test set. 

 

 5 

4.2 Effect of Spectral Resolution, Sampling Resolution and Instrument Noise 

Here we examine how spectral resolution, sampling resolution and instrument noise affect model performance. The underlying 

motivation is to estimate the model’s performance for instruments other than AVIRIS-NG, which might have a 10 nm spectral 

resolution, fewer wavelength channels as well as a higher or lower signal to noise ratio. Hence, we train and analyze the 

model’s performance for an additional 230 networks with varying noise, spectral resolution and sampling resolution. 10 

To simulate the fewer wavelength bands, the training-samples were reduced in sampling resolution, leaving 319, 107, 36 and, 

12 and 4 uniformly spaced, wavelengths per sample. Furthermore, to account for different signal to noise ratios, we changed 

the simulated AVIRIS-NG equivalent noise level (see Equation 5 and 6) by multiplying it with 0 (no noise), 1 and, 3 and 9 

before applying it to our training- and test- samples. Finally, we preformed all calculations once for the AVIRIS-NG spectral 

resolution of approximately 5 nm and for a spectral resolution of 10 nm. All neural network parameters were kept constant, 15 

except the input layer, which had to be adapted to the reduced number of wavelengths. Training was stopped when the error 

on the validation- set could not be reduced any further or we reached a maximum of 10,000 epochs, meaning that every 

training-sample was used during training 10,000 times. While we found dependencies of retrieval performance to varying 
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amounts of noise and number of wavelength channels, the spectral resolution had no significant effect. On average the models 

trained with a spectral resolution of 5 nm had a standard error in retrieved AOT that was only 0.001 smaller than for the cases 

with a spectral resolution of 10 nm.   Therefore, we limit the following discussion to the results of the 12 neural networks 

trained on radiative transfer calculations with the AVIRIS-NG spectral resolution of approximately 5 nm and note that these 

values are also representative for an instrument with a 10 nm spectral resolution.  5 

The standard error in on the test -set of the respective 20 12 neural networks is shown in Figure 7. The left column shows the 

standard error for the complete test -set (AOT is varied between 0 and 1) while the right column shows the standard error for 

low aerosol loadings, with AOT ranging between 0 and 0.3. As expected, we find a decrease in model accuracy for fewer 

wavelengths and more noise. This decrease in model accuracy, with respect to the idealized case of 319 wavelength bands and 

no noise, is nearly symmetrical for our chosen test cases. Thus, if we reduce the number of wavelength bands by a factor of 10 

three the model has  similar accuracy compared to if we add AVIRIS-NG equivalent noise and if we reduce the number of 

wavelength bands by a factor of nine the model has similar accuracy compared to applying three times AVIRIS-NG equivalent 

noise, and so on. This holds true for all aerosol types. Overall, the model has the highest accuracy for the retrieval of dust. To 

put the calculated standard errors in the left column into perspective: if the model would randomly guess the combined AOT 

of all three aerosols between 0 and 1 and simply divide by three, the standard error would be ±0.10. Thus, all trained models 15 

show higher accuracy than guessing randomly. If we had a model that would be able to retrieve the combined AOT without 

error, and then simply divide by three, the standard error would be ±0.07. For the retrieval of carbon, the models with 124 

wavelengths bands or and 39 times AVIRIS-NG equivalent noise shows such a standard error. This is an indication that the 

AOT from carbon aerosols cannot be isolated from other aerosols for instruments with only 124 wavelengths andor 39 times 

AVIRIS-NG equivalent noise. The retrieval of dust and sulfate requires fewer wavelength bands and can tolerate more noise 20 

compared to the retrieval of carbon., with dust having a better standard error than ±0.07 for all cases other than 4 wavelength 

bands combined with 9 times AVIRIS-NG equivalent noise. Overall, the standard errors imply that the retrieval of combined 

AOT is possible with few wavelengths and poor signal to noise ratio for all three aerosol types.  

For aerosol retrieval under low AOT conditions (right column in Figure 7), a model that would guess the combined AOT 

randomly between 0 to 0.3 and divide by three, would have a standard error of ±0.06 and a model that can determine the 25 

combined AOT perfectly and then simply divides by three would have a standard error of ±0.03. Most combinations of 

wavelength bands and instrument noise have standard errors that exceeds this threshold of ±0.03 for the retrieval of carbon. 

This highlights the limitations of the model for the separation of carbon aerosols types for low levels of AOT. Additionally, it 

stresses the importance of low noise hyperspectral instruments, such as AVIRIS-NG. 

 30 
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Figure 7: Standard error for retrieved AOT of 12 individually trained neural networks with (319, 107, 36, 12) 
wavelength bands and varying amount of simulated AVIRIS-NG equivalent noise (0, 1, 3) (see Equation 5 and 6) from the 
test set. Left column shows the standard error when AOT is varied between 0 and 1. Right column shows the standard error 
for AOT between 0 and 0.3.  5 

 

4.3 Sensitivity Analysis 

It is inherently difficult to interpret the inner workings of neural networks. However, by perturbing the inputs and observing 

the changes of the outputs one can infer the relative importance of an input for a given model (Blackwell, 2012). We perform 

such a sensitivity analysis by increasing one input at a time by 1%, while keeping the other 321 inputs unchanged. The model 10 

output is then calculated for the entire test -set and compared to the retrieval without the perturbation. For example, AOT of 

carbon is derived while the model input, representing the observed radiance at 500 nm, is increased by 1%. All other model 
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inputs, for example radiance at 600 nm and 700 nm or SZA, are kept unchanged. We perform such a sensitivity analysis once 

for the model trained without noise (an ideal instrument) and once for the model trained with AVIRIS-NG equivalent noise. 

The sensitivity to every input is shown in Figure 8. For the model trained without noise (top, third and fifth row) we find more 

sensitivity at 687 nm and 762 – 767 nm for the retrieval of carbon and dust while sulfate shows more sensitivity to the latter. 

all aerosol types. These wavelengths correspond to the oxygen B-and A-band located at 685 nm – 695 nm and 759 - 771 nm, 5 

respectively. Multiple studies have suggested the use of these absorption bands for the retrieval of AOT and its vertical 

structure (Dubuisson et al., 2009; Heidinger and Stephens, 2000; Min et al., 2004). Overall, we note higher sensitivity at shorter 

wavelengths and reduced sensitivity for wavelengths longer than 2000 nm. This is what we would expect, given the higher 

contribution of the aerosols to radiance at shorter wavelengths (see Figure 2). The sensitivity to small perturbations of SZA, 

ground distance and ground elevation is small compared to the radiances. From these three model inputs, surface elevation is 10 

indicated to be the most important for the retrieval of dust and sulfate.  

For the model trained with AVIRIS-NG equivalent noise we find approximately an order of magnitude lower sensitivity at 

shorter wavelengths compared to their respective counterparts trained without noise (Note the different y-scales for the six 

sensitivity plots). This demonstrates how the model adapted to small perturbations (noise) at individual wavelengths by 

becoming less sensitive to these perturbations. For longer wavelengths, the change in sensitivity is less pronouncedis reversed, 15 

with higher or similar sensitivities compared to the model trained without noise.. In general, we observe a relative shift in 

sensitivity from shorter towards longer wavelengths when instrument noise is added. The shift in sensitivity to longer 

wavelengths might be a direct effect of the noise distribution of AVIRIS-NG which allows for a higher signal to noise ratio at 

longer wavelengths. Additionally, there is an overall smoother shift in sensitivity between neighboring wavelengths. This can 

be interpreted as the model relying on multiple neighboring wavelengths to obtain their shared information content, rather than 20 

interpreting wavelengths individually.  
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 Figure 8: Sensitivity for retrieved AOT of carbon, dust and sulfate to all model inputs. The x-axis shows the model 
inputs (radiances at shown wavelength, SZA, ground distance and ground elevation). The y-axis shows the difference in 
retrieved AOT when increasing a given input by 1% while keeping all other inputs unchanged. Note that the scaling of the y-
axis is different for every panel. 5 
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5 Applying the Model to Real Imagery 

To apply the model to real imagery one would ideally train the model further on real observations from the instrument used 

for the final aerosol retrieval. This would allow the model to adapt to the unique instrument characteristics; for example, 

calibration offsets, instrument response function or wavelength shifts not captured in the radiative transfer calculations. This 5 

process is often referred to as fine tuning. It would require observations over a wide variety of surface types, viewing geometry 

and aerosol properties as well as ground truth data of the AOT of the three aerosol types. While there is a multitude of AVIRIS-

NG observations from a recent India campaign with widely varying aerosol properties and surface types, the number of 

observations that coincide with AERONET stations that could provide the necessary ground truth is very limited. We therefore 

refrain from fine tuning the model and apply the trained neural network it directly to AVIRIS-NG observations from a flight 10 

campaign in 2016 over India in collaboration with Space Applications Centre, Indian Space Research Organization (SAC, 

ISRO). The results are compared to MODIS and AERONET retrieved AOT and a reanalysis product.  

 

5.1 Preprocessing of AVIRIS-NG Observations 

To remove remaining noise in the AVIRIS-NG observations we use a principal component analysis (PCA) (Wold et al., 1987) 15 

and inspect the generated eigen-images manually. The PCA is only applied to the 319 wavelength channels that we used to 

train the model on. As stated before, these channels were down selected from the 425 AVIRIS-NG channels to avoid 

wavelength bands with strong water absorption and instrument noise. While Tthe first 16 components explain approximately 

99.9% of the variability and are dominated by image features (see Figure 9)., most Most higher principal components are 

dominated by systematic noise (vertical stripes along the flight path). We reconstruct the AVIRIS-NG observed radiances from 20 

these first 16 principal components. This effectively removes principal components higher than 16 from all analyzed AVIRIS-

NG imagery. Afterwards, the radiance for every pixel is treated as an independent observation and normalized scaled and 

standardized (Equation 10 and 11) to match the training -set. We acknowledge that the choice of retaining the first 16 principal 

components is rather arbitrary and should ideally be made on a per flight basis. However, for practical reasons we decided to 

use one threshold for all imagery considered in this study. The threshold is a tradeoff between removing valuable information 25 

and reducing noise. Experiments with more and fewer principal components indicated that the model was insensitive to the 

exact number of remaining principal components. 
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 Figure 9: First 36 eigen-images from an AVIRIS-NG flight on 10/01/2016 near Coimbatore, India. Shown is a 
spatially resolved scene of 100 x 100 ground pixel, approximately 500 x 500 m. Instrument artifacts (vertical stripes) are 
visible for eigen-images greater than 16 (for example 19 and 22). 

 5 

5.2 Novelty Detection 

Our model is trained on a limited set of training examples. The set of surface types available for training is not complete. 

Generally speaking, library spectra of surface materials vastly under-represent the spectral variability of surface materials 

found in nature. The variety of surface materials is just too great to include in any single library. Applying the model to scenes 

with new surface types, which have significant differences compared to the surface types in the training- set can lead to false 10 
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aerosol retrieval by the model. Hence, it is important to measure the similarity of a given AVIRIS-NG scene to the training 

examples and discard individual image pixel that are far outside of the training space. This is referred to as novelty detection. 

For this purpose, we train a second neural network proposed by Japkowicz et al., (1995) on the training samples with AVIRIS-

NG equivalent noise. The network architecture is an auto-associative multilayer perceptron (Kramer, 1992) with three hidden 

layers and shown in Figure 10. All three hidden layers use a ReLU activation function and consist of 512, 32 and 512 neurons, 5 

each. The input- and output-layer consist of 322 neurons, each. The network takes 319 radiances at individual wavelengths 

(measurements of one image pixel), SZA, ground distance and ground elevation as input parameters and is trained to reproduce 

these parameters after some computation by the network. The network is trained in a manner similar to the model for aerosol 

retrieval and uses the same optimization algorithm and cost function (see Equation 8) with n = 322, and fgh and fh being the 

original and reproduced radiances and SZA, ground distance and ground elevation. The first three layers (Input, Compression 10 

and Bottleneck) act similarly to deriving the first 32 principal components but are non-linear. The last two layers 

(Decompression and Output) can be interpreted as reproducing the radiances only from their first 32 principal components, 

but again, are non-linear. After the replication of the input parameters we compare those to the original inputs and calculate 

the mean square error between the two. During training, the neural network learns to minimize this error. For example, the 

neural network learns that the radiance at 2100 nm is highly correlated with the radiance at 2300 nm. Thus, it can reconstruct 15 

(decompress) both radiances with only one value passed in from the Bottleneck layer with little error. Once the neural network 

is trained and applied to previously unseen features it will compress and decompress features that are similar to the training 

set (high correlation between 2100 nm and 2300 nm) with a smaller error than features that are different (low correlation 

between 2100 nm and 2300 nm). Finally, a threshold for the error is determined as a tradeoff between the number of remaining 

aerosol retrieval and the number of remaining outliers. Samples above the determined threshold are considered new and not 20 

considered for the aerosol retrieval.  
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 Figure 10: Auto-associative neural network for novelty detection used for novelty detection. The input and output 
layer consist of SZA, ground distance, ground elevation and radiances at 319 wavelengths. The network has three hidden 
layers with 512, 32, 512 neurons per layer.  

 5 

5.3 Results 

Figure 11 and Figure 12 show the aerosol retrieval for two of the 21 analyzed AVIRIS-NG scenes. The scene in Figure 11 was 

captured on 02/04/2016 near Kota, India. It shows a detail of the flight with 100 x 500 pixels and an approximate ground 

resolution of 5 m per pixel. The median and standard deviation of the retrieval is indicated at the top of the first four panels, 

showing the combined AOT and un-mixed AOT for carbon, dust and sulfate. The normalized mean square error from the auto-10 

associative neural network for novelty detection and a true color image is shown on the right as well. Image pixels that lie 

above a user defined threshold are highlighted in red and discarded. For the scene shown in Figure 11 the discarded image 

pixels consist of water features in the middle and bottom portions of the scene as well as some agricultural sites. The detection 

of water by the neural network for novelty detection is to be expected, since the spectral shape of water is very different to 

most land surfaces and was not part of the training set. The aerosol retrieval still includes surface features. For example, it 15 

overestimates carbon aerosols over what appears to be a street (top middle of second plot from the left). Some residual surface 

features are not entirely unexpected as less challenging atmospheric retrievals from imaging spectroscopy, for example water 

vapor (Thompson et al., 2015), often contain surface reflectance artifacts. The detail shown in Figure 12 is from an AVIRIS-

NG flight near Gundlupet, India from 01/10/2016. The model for novelty detection excluded mostly individual fields with bare 

soil. Similar to the figure above, we find some residual surface features in the retrieval. Both images show the limitation of the 20 

model in distinguishing small variations in AOT from different surface types. To minimize the residual surface features a 

median filter could be applied in post processing at the cost of lower spatial resolution.  
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 Figure 11: Aerosol retrieval with the model from AVIRIS-NG imagery near Kota, India, 02/04/2016. The median 
and standard deviation of the retrieval is indicated at the top of each panel. The normalized output of the neural network for 
novelty detection is shown in the panel, second from the right. Values above a chosen threshold are discarded from the 
aerosol retrievals and highlighted in red (e.g. a river in the middle of the images). A true color image of the scene is shown 5 

as well for reference. 
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 Figure 12: Aerosol retrieval with the model from AVIRIS-NG imagery near Gundlupet, India, 01/10/2016. The 
median and standard deviation of the retrieval is indicated at the top of each panel. The normalized output of the neural 
network for novelty detection is shown in the panel, second from the right. Values above a chosen threshold are discarded 
from the aerosol retrievals and highlighted in red. A true color image of the scene is shown as well for reference. 

 5 

5.4 Comparison to AERONET and MODIS 

We compare the combined aerosol retrievals from AVIRIS-NG to AERONET and MODIS retrievals. AERONET is a network 

of ground-based sun photometers distributed around the globe (Holben et al., 1998). AERONET instruments derive AOT at 

multiple wavelengths with an uncertainty of 0.01	to 0.02 (Eck et al., 1999). These low uncertainties make AERONET stations 

a common source for validation of air- and space-borne AOT retrieval (Bilal et al., 2014; Chu et al., 2003; Levy et al., 2013). 10 

However, there are sparse AERONET locations in India. We, therefore, add a second source of AOT retrievals to the 

comparison from MODIS observations. MODIS makes daily and nearly global observations from two platforms, Aqua and 

Terra. MODIS has a spectral range from 410 nm to 14.5 µm over 36 discrete wavelength bands. Its ground resolution is better 

than 1 km, depending on the wavelength band (Salomonson et al., 1989). Two algorithms are utilized to derive AOT form 

MODIS observations. The Dark Target (Kaufman et al., 1997) algorithm is used for dark ground targets such as vegetation 15 

and water. The Deep Blue (Hsu et al., 2004, 2006) algorithm is applied to measurements over dark and bright surfaces although 

it was originally developed for the aerosol retrieval over bright desert regions. Over land, MODIS retrieved AOT has an 

expected standard error of 0.05 + 15% of AOT (Levy et al., 2013). MODIS has larger uncertainties than AERONET, but the 

retrievals are in closer spatial and temporal proximity to the AVIRIS-NG flights. 

 20 

For the period of the 21 AVIRIS-NG flights only three AERONET stations within India were operational. These are 

Gandhi College at 25.9°N 84.1°E, Jaipur at 26.9°N 75.8°E and Pune at 18.5°N 73.8°E. We make use of the daily means of 

their Level 2.0 data product, which is cloud-cleared and manually inspected. The locations of all three stations are shown in 

Figure 13 together with the location of all 21 AVIRIS-NG flights considered in the study. For a given flight we consider the 

AOT retrieved from all three AERONET stations within 1 and 2 days of the flight date. The time averaged, retrieved AOT of 25 

each AERONET station, +Å̅UÇ_S, is weighted proportionally to the square of the distance, vS, between station and flight: 	
 

 τÖÜáà	 =
∑ τÖÜáà_ä
ã
Sk) ∗ vS

åj

∑ vS
åjã

Sk)

 (12) 	
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 Figure 13: Location of AERONET stations and AVIRIS-NG flights. The AERONET stations are marked with blue 
diamonds, a 4 deg and 2 deg (approximately 440 km and 220 km) radius around each station is indicated with a black and 
blue circle. The AVIRIS-NG flight locations are shown with red x. AVIRIS-NG flights outside the circles are not considered 
for the comparison to AERONET. 5 

 

The comparison between AOT retrieved by AERONET and the AVIRIS-NG flights is shown in Figure 14 and Figure 15 for 

AERONET retrievals within 1 day and 2 days, respectively. For the comparison within 1 day of the AVIRIS-NG flights only 

four AERONET stations reported their measured AOT. Only one comparison falls within the specified 1-day window and is 

within 2 deg (≈	220 km) of the flight location (red circle). The three other comparisons are for flights with a distance ranging 10 

from 2 deg to 4 deg between the AERONET station and the AVIRIS-NG flight. The standard deviation of all considered 

AERONET retrievals that we compare to for a given flight is indicated by the vertical bars. The standard deviation within a 

scene for the analyzed AVIRIS-NG flights is shown with horizontal bars. For the 4 comparisons we find a root mean square 

difference (RMSD) of 0.1109. However, due to the large spatial distance between AERONET stations and the considered 

AVIRIS-NG flights this value has to be interpreted with caution and comes with large uncertainties. Nevertheless, we included 15 

this comparison for completeness and hope to have more collocated flights of AVIRIS-NG and AERONET stations in the 

future. 
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Considering AERONET observations within 2 days of the flights we are able to compare eight flights in total with three flights 

within 2 deg and 5 flights within 2 to 4 deg. The RMSD for all eight comparisons is 0.08. Again, we caution that the distance 

between AERONET stations and AVIRIS-NG flights is significant. For the comparison within 2 days, the closest comparison 

has a distance of about 40 km and is shown in Figure 15 (circled red and furthest to the right).  

 5 

 

 Figure 14: AOT retrieved by AERONET (see Equation 12) and the AOT retrieved from AVIRIS-NG with the 
model. The standard deviation of the considered AERONET measurements is shown with vertical bars and the standard 
deviation for the retrieval with AVIRIS-NG with horizontal bars. All comparisons between AERONET and AVIRIS-NG 
flights are located within 4 deg (≈	440 km) and within 1 day from each other. The one comparison within 2 deg (≈	220 km) 10 

is circled in red.  

 

Commented [SM16]: updated 



26 

 

 

 Figure 15: AOT retrieved by AERONET (see Equation 12) and the AOT retrieved from AVIRIS-NG with the 
model. The standard deviation for AERONET is shown with vertical bars and the standard deviation for the retrieval with 
horizontal bars. All comparisons between AERONET and AVIRIS-NG flights are located within 4 deg (≈	440 km) and 
within 2 day from each other. The three comparisons within 2 deg (≈	220 km) are circled in red.  5 

 

For the comparison to MODIS we make use of the Collection 6, ‘MODIS/Terra and MODIS/Aqua Level-2 (L2) Aerosol 

Product’ (Levy et al., 2015, 2013). More specifically, we use the science data set 

‘AOD_550_Dark_Target_Deep_Blue_Combined’ within the specified aerosol product. These data have a spatial resolution of 

10 x 10 km and are derived utilizing the Dark Target and Deep Blue algorithm. All AOT retrievals come with a Quality 10 

Assurance Confidence (QAC), which is a measure of the algorithm performance. The QAC is determined by the number of 

examined pixel, fitting error and whether the solution falls into realistic physical conditions (Levy et al., 2013). In our study, 

we only consider derived AOT with the highest QAC = 3 and consider retrievals within 1 day and 0.2 deg ≈	22 km of the 

AVIRIS-NG flights. The spatiotemporal cutoff is chosen as close in time and space as possible, while avoiding AVIRIS-NG 

flights with no collocated MODIS retrievals. This results in an average of 55 and minimum of 13 MODIS retrievals per 15 

AVIRIS-NG flight that we compare to. The comparison for the 21 AVIRIS-NG flights to the MODIS retrieved AOT is shown 

in Figure 16. The data have a correlation of 0.78 and a RMSD of 0.15. The two AOT retrievals have a significant correlation 

of 0.81 and a RMSD of 0.12. However, the correlation might be mainly driven by the few high-AOT comparisons. The 

correlation and RMSD is similar to comparisons between AERONET and MODIS for India, with a correlation of 0.86 and 

RMSD of 0.19 (Gupta et al., 2018). Furthermore, AVIRIS-NG shows a positive bias of 0.07 compared to MODIS, which itself 20 

has a positive bias compared to AERONET (Gupta et al., 2018; Wang et al., 2019). This indicates that the AVIRIS-NG 

retrievals might overestimate combined AOT. Whether this bias holds true for a larger sample size and whether it is grounded 
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in the model or the calibration of AVIRIS-NG warrants further investigation. Interestingly, the two outliers at the bottom of 

Figure 16, where MODIS reports almost no aerosols are only 20 km and 1 day apart from each other. (Gupta et al., 2018)It 

has to be noted that the presented model was trained purely on radiative transfer calculations and not adjusted or calibrated to 

match the aerosol retrieval from MODIS or AERONET in any way. As with the comparison to AERONET, the comparison 

to MODIS comes with caveats. In essence, MODIS faces the same challenges as our model, namely detecting the weak signal 5 

of aerosols in the presence of a strong signal from the underlying surface. Furthermore, MODIS AOT retrievals have a different 

spatial resolution and stem from observations recorded at different times than the AVIRIS-NG flight tracks.uses fewer 

wavelengths to make this retrieval. Nevertheless, in the absence of higher accuracy collocated measurements we included the 

comparison to MODIS.  

 10 

 

 Figure 16: AOT retrieved by MODIS (y-axis) vs AOT retrieved by AVIRIS-NG with the model (x-axis). The 
standard deviation for MODIS is shown with vertical bars and the standard deviation for the retrieval with horizontal bars.  

 

5.5 Comparison to CAMS 15 

We further compare the retrieved AOT to the Copernicus Atmosphere Monitoring Service (CAMS) product. The CAMS 

system provides global analysis and forecasting of AOT for organic matter, dust and sulfate and is further described in 

(Benedetti et al., 2009; Morcrette et al., 2009). CAMS accounts for aerosol emissions, transport, sedimentation and deposition 

of various aerosol types. In contrast to MODIS and AERONET, one can directly compare the CAMS AOT for a specified 
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aerosol type to the retrieved AOT. We make use of the CAMS ‘near-real-time’ product at a spatial resolution of 0.125° 

available at: https://apps.ecmwf.int/datasets/data/cams-nrealtime/levtype=sfc/.  

Figure 17 shows the comparison for the three considered aerosol types with the CAMS modeled AOT on the y-axis and 

AVIRIS-NG retrieved AOT on the x-axis. There seems to be general agreement between CAMS and AVIRIS-NG with 

AVIRIS-NG retrievals being on average 0.03 higher. The standard deviation of the difference between CAMS and AVIRIS-5 

NG for the 21 analyzed scenes is 0.02, 0.04, 0.05 for carbon, dust and sulfate, respectively. For AOT below 0.1, CAMS and 

AVIRIS-NG differ significantly for carbon and dust with AVIRIS-NG retrieving higher AOT.  

  

 

Figure 17: AOT modeled by CAMS (y-axis) vs AOT retrieved from AVIRIS-NG spectra with the neural network 10 

(x-axis). The standard deviation of the CAMS modeled AOT within 6 hours and 0.125° of the AVIRIS-NG observations are 
shown with vertical bars and the standard deviation for the AVIRIS-NG retrievals with horizontal bars. 

6 Conclusion 

We demonstrated the retrieval of AOT from externally mixed dust, sulfate and carbonaceous aerosols from hyperspectral 

imagery with no a priori information of surface albedo or atmospheric state. We showed how sampling resolution and 15 

instrument noise influences the retrieval and, as expected, we find a decrease in model performance for fewer wavelengths and 

increased instrument noise. These results underline the need for low noise hyperspectral instruments. A sensitivity analysis 

gave insight in which wavelengths are important and how the neural network compensates for instrument noise; shifting 

sensitivity to multiple neighboring wavelengths and to longer wavelengths. We applied our model to AVIRIS-NG observations 

from a recent campaign over India and compared the retrieved AOT to AERONET and MODIS retrievals. The comparison to 20 

AERONET show a RMSD in AOT of 0.0911 and 0.08 for collocated flights within 1 and 2 days, respectively. The comparison 

to MODIS finds a RMSD of 0.125 . From a test -set of radiative transfer calculations, we are able to retrieve AOT 

independently for dust, sulfate and brown carbon with a standard error of 0.03, 0.03	and	0.05, respectively. At execution time 

Commented [SM19]: Figure added 
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the presented neural network methodology can be executed at almost no computational cost. On a high-end consumer laptop 

(MacBook Pro CPU: i7 at 2.6 GHz) one can extract AOT, with the presented model, at about 250,000 spectra per second. 

 

The results shown here are promising but also underline the difficulties of retrieving aerosol properties, especially over land: 

aerosol extinction is a weak, slowly varying spectral signal. Hyperspectral measurements can reduce uncertainty in aerosol 5 

remote sensing, and we demonstrate that neural networks provide an efficient means for extracting information from large, 

multi-dimensional data sets, such as hyperspectral data cubes. As future satellite capabilities increase to acquire high spatial 

resolution hyperspectral data, there is a need to be able to process the large amount of data in a reasonable amount of time. 

Neural Networks can provide a solution for this task. 

 10 

6.1 Future work 

The current set of AVIRIS-NG flights in India has only a limited number of AERONET stations in close proximity to the 

various flight paths. To further validate our model, more collocated comparisons to AERONET observations are necessary. 

Deployed on a global platform, such as the upcoming CLARREO pathfinder or HyspIRI mission, many collocated 

observations with AERONET could systematically validate the retrieval and further improve the model performance through 15 

fine tuning. Furthermore, in situ microphysical measurements are necessary to validate the retrieved aerosol types. Finally, the 

presented methodology can be expanded in the future to retrieve other atmospheric and surface properties, such as water vapor, 

cloud properties and surface reflectance.  

 

 20 

Acknowledgment 
This research was supported in part by NASA Award 80NSSC17K0569 

References 

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M. and others: Tensorflow: a 

system for large-scale machine learning., in OSDI, vol. 16, pp. 265–283., 2016. 25 

Adler-Golden, S. M., Matthew, M. W., Bernstein, L. S., Levine, R. Y., Berk, A., Richtsmeier, S. C., Acharya, P. K., Anderson, G. P., Felde, 

J. W., Gardner, J. A. and others: Atmospheric correction for shortwave spectral imagery based on MODTRAN4, in Imaging Spectrometry 

V, vol. 3753, pp. 61–70., 1999. 

Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science (80-. )., 245(4923), 1227–1230, 1989. 

Alexander, D. T. L., Crozier, P. A. and Anderson, J. R.: Brown Carbon Spheres in East Asian Outflow and Their Optical Properties, Science 30 

(80-. )., 321(5890), 833 LP – 836 [online] Available from: http://science.sciencemag.org/content/321/5890/833.abstract, 2008. 

Baldridge, A. M., Hook, S. J., Grove, C. I. and Rivera, G.: The ASTER spectral library version 2.0, Remote Sens. Environ., 113(4), 711–

715, 2009. 



30 

 

Benedetti, A., Morcrette, J.-J., Boucher, O., Dethof, A., Engelen, R. J., Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W. and 

others: Aerosol analysis and forecast in the European centre for medium-range weather forecasts integrated forecast system: 2. Data 

assimilation, J. Geophys. Res. Atmos., 114(D13), 2009. 

Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F. and Van Den Bosch, J.: MODTRAN 6: A major upgrade of the MODTRAN 

radiative transfer code, in Proc.SPIE, vol. 90880H, pp. 9088-9088–7., 2014. 5 

Bilal, M., Nichol, J. E. and Chan, P. W.: Validation and accuracy assessment of a Simplified Aerosol Retrieval Algorithm (SARA) over 

Beijing under low and high aerosol loadings and dust storms, Remote Sens. Environ., 153, 50–60, doi:10.1016/j.rse.2014.07.015, 2014. 

Blackwell, W. J.: Neural network Jacobian analysis for high-resolution profiling of the atmosphere, EURASIP J. Adv. Signal Process., 

2012(1), 71, 2012. 

Chimot, J., Veefkind, J. P., Vlemmix, T., de Haan, J. F., Amiridis, V., Proestakis, E., Marinou, E. and Levelt, P. F.: An exploratory study on 10 

the aerosol height retrieval from OMI measurements of the 477\,\unit{nm} \chem{O_2-O_2} spectral band \hack{\newline}using a neural 

network approach, Atmos. Meas. Tech., 10(3), 783–809, doi:10.5194/amt-10-783-2017, 2017. 

Chu, D. A., Kaufman, Y. J., Zibordi, G., Chern, J. D., Mao, J., Li, C. and Holben, B. N.: Global monitoring of air pollution over land from 

the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS), J. Geophys. Res. Atmos., 108(D21), 2003. 

Davis, C. O., Bowles, J., Leathers, R. A., Korwan, D., Downes, T. V., Snyder, W. A., Rhea, W. J., Chen, W., Fisher, J., Bissett, W. P. and 15 

Reisse, R. A.: Ocean PHILLS hyperspectral imager: design, characterization, and calibration, Opt. Express, 10(4), 210–221, 

doi:10.1364/OE.10.000210, 2002. 

Dennsion, P. and Gardner, M.: Hawaii 2000 vegetation species spectra, , Ecological Spectral Information System (EcoSIS), 

doi:10.21232/C2HT0K, 2000. 

Diner, D. J., Beckert, J. C., Reilly, T. H., Bruegge, C. J., Conel, J. E., Kahn, R. A., Martonchik, J. V, Ackerman, T. P., Davies, R., Gerstl, S. 20 

A. W. and others: Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview, IEEE Trans. Geosci. 

Remote Sens., 36(4), 1072–1087, 1998. 

Van Donkelaar, A., Martin, R. V, Brauer, M., Kahn, R., Levy, R., Verduzco, C. and Villeneuve, P. J.: Global estimates of ambient fine 

particulate matter concentrations from satellite-based aerosol optical depth: development and application, National Institute of 

Environmental Health Science., 2010. 25 

Dubovik, O., Holben, B., Eck, T. F., Smirnov, A., Kaufman, Y. J., King, M. D., Tanré, D. and Slutsker, I.: Variability of Absorption and 

Optical Properties of Key Aerosol Types Observed in Worldwide Locations, J. Atmos. Sci., 59(3), 590–608, doi:10.1175/1520-

0469(2002)059<0590:VOAAOP>2.0.CO;2, 2002. 

Dubovik, O., Li, Z., Mishchenko, M. I., Tanré, D., Karol, Y., Bojkov, B., Cairns, B., Diner, D. J., Espinosa, W. R., Goloub, P. and others: 

Polarimetric remote sensing of atmospheric aerosols: instruments, methodologies, results, and perspectives, J. Quant. Spectrosc. Radiat. 30 

Transf., 224, 474–511, doi:https://doi.org/10.1016/j.jqsrt.2018.11.024, 2019. 

Dubuisson, P., Frouin, R., Dessailly, D., Duforêt, L., Léon, J.-F., Voss, K. and Antoine, D.: Estimating the altitude of aerosol plumes over 

the ocean from reflectance ratio measurements in the O2 A-band, Remote Sens. Environ., 113(9), 1899–1911, 2009. 

Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O’neill, N. T., Slutsker, I. and Kinne, S.: Wavelength dependence of the 

optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys. Res. Atmos., 104(D24), 31333–31349, 1999. 35 

Fenn, R. W., Clough, S. A., Gallery, W. O., Good, R. E., Kneizys, F. X., Mill, J. D., Rothman, L. S., Shettle, E. P. and Volz, F. E.: Optical 

and infrared properties of the atmosphere, Handb. Geophys. Sp. Environ., 18, 1985. 

Folkman, M. A., Pearlman, J., Liao, L. B. and Jarecke, P. J.: EO-1/Hyperion hyperspectral imager design, development, characterization, 

and calibration, in Hyperspectral Remote Sensing of the Land and Atmosphere, vol. 4151, pp. 40–51., 2001. 

Gao, B.-C., Heidebrecht, K. B. and Goetz, A. F. H.: Derivation of scaled surface reflectances from AVIRIS data, Remote Sens. Environ., 40 

44(2–3), 165–178, 1993. 



31 

 

Gordon, I. E., Rothman, L. S., Hill, C., Kochanov, R. V, Tan, Y., Bernath, P. F., Birk, M., Boudon, V., Campargue, A., Chance, K. V and 

others: The HITRAN2016 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf., 203, 3–69, 2017. 

Green, R. O., Eastwood, M. L., Sarture, C. M., Chrien, T. G., Aronsson, M., Chippendale, B. J., Faust, J. A., Pavri, B. E., Chovit, C. J., Solis, 

M. and others: Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS), Remote Sens. Environ., 65(3), 227–

248, 1998. 5 

Grimm, J. M. A.: Hawaii Volcanoes National Park February 2017 Spectra. Data set, 2017. 

Gupta, P., Remer, L. A., Levy, R. C. and Mattoo, S.: Validation of MODIS 3\,km land aerosol optical depth from NASA’s EOS Terra and 

Aqua missions, Atmos. Meas. Tech., 11(5), 3145–3159, doi:10.5194/amt-11-3145-2018, 2018. 

Hamlin, L., Green, R. O., Mouroulis, P., Eastwood, M., Wilson, D., Dudik, M. and Paine, C.: Imaging spectrometer science measurements 

for terrestrial ecology: AVIRIS and new developments, in Aerospace Conference, 2011 IEEE, pp. 1–7., 2011. 10 

Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review, Rev. Geophys., 

38(4), 513–543, 2000. 

Heidinger, A. K. and Stephens, G. L.: Molecular line absorption in a scattering atmosphere. Part II: Application to remote sensing in the O2 

A band, J. Atmos. Sci., 57(10), 1615–1634, 2000. 

Herold, M., Roberts, D. A., Gardner, M. E. and Dennison, P. E.: Spectrometry for urban area remote sensing—Development and analysis 15 

of a spectral library from 350 to 2400 nm, Remote Sens. Environ., 91(3–4), 304–319, 2004a. 

Herold, M., Roberts, D. A., Gardner, M. and Dennison, P. E.: Urban Reflectance Spectra from Santa Barbara, CA. Data set, 2004b. 

Holben, B. N., Eck, T. F., Slutsker, I., Tanré, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, 

F., Jankowiak, I. and Smirnov, A.: AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization, Remote 

Sens. Environ., 66(1), 1–16, doi:10.1016/S0034-4257(98)00031-5, 1998. 20 

Hornik, K., Stinchcombe, M. and White, H.: Multilayer feedforward networks are universal approximators, Neural Networks, 2(5), 359–

366, doi:10.1016/0893-6080(89)90020-8, 1989. 

Hsu, N. C., Tsay, S.-C., King, M. D. and Herman, J. R.: Aerosol properties over bright-reflecting source regions, IEEE Trans. Geosci. 

Remote Sens., 42(3), 557–569, 2004. 

Hsu, N. C., Tsay, S.-C., King, M. D. and Herman, J. R.: Deep blue retrievals of Asian aerosol properties during ACE-Asia, IEEE Trans. 25 

Geosci. Remote Sens., 44(11), 3180–3195, 2006. 

Japkowicz, N., Myers, C., Gluck, M. and others: A novelty detection approach to classification, in IJCAI, vol. 1, pp. 518–523., 1995. 

Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B.-C., Li, R.-R. and Flynn, L.: The MODIS 2.1-/spl mu/m channel-correlation with visible 

reflectance for use in remote sensing of aerosol, IEEE Trans. Geosci. Remote Sens., 35(5), 1286–1298, 1997. 

Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, arXiv Prepr. arXiv1412.6980, 1–15, 30 

doi:http://doi.acm.org.ezproxy.lib.ucf.edu/10.1145/1830483.1830503, 2014. 

Kokhanovsky, A. A., Davis, A. B., Cairns, B., Dubovik, O., Hasekamp, O. P., Sano, I., Mukai, S., Rozanov, V. V, Litvinov, P., Lapyonok, 

T. and others: Space-based remote sensing of atmospheric aerosols: The multi-angle spectro-polarimetric frontier, Earth-science Rev., 145, 

85–116, doi:https://doi.org/10.1016/j.earscirev.2015.01.012, 2015. 

Kramer, M. A.: Autoassociative neural networks, Comput. Chem. Eng., 16(4), 313–328, 1992. 35 

Labate, D., Ceccherini, M., Cisbani, A., De Cosmo, V., Galeazzi, C., Giunti, L., Melozzi, M., Pieraccini, S. and Stagi, M.: The PRISMA 

payload optomechanical design, a high performance instrument for a new hyperspectral mission, Acta Astronaut., 65(9–10), 1429–1436, 

2009. 



32 

 

Lary, D. J., Remer, L. A., MacNeill, D., Roscoe, B. and Paradise, S.: Machine learning and bias correction of MODIS aerosol optical depth, 

IEEE Geosci. Remote Sens. Lett., 6(4), 694–698, 2009. 

Lee, C. M., Cable, M. L., Hook, S. J., Green, R. O., Ustin, S. L., Mandl, D. J. and Middleton, E. M.: An introduction to the NASA 

Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities, Remote Sens. Environ., 167, 6–19, 

doi:https://doi.org/10.1016/j.rse.2015.06.012, 2015. 5 

Levy, R., Hsu, C., Sayer, A., Mattoo, S. and Lee, J.: MODIS Atmosphere L2 Aerosol Product, NASA MODIS Adapt. Process. Syst., 

doi:doi:10.5067/MODIS/MOD04_L2.006; doi:10.5067/MODIS/MYD04_L2.006, 2015. 

Levy, R. C., Remer, L. A., Martins, J. V, Kaufman, Y. J., Plana-Fattori, A., Redemann, J. and Wenny, B.: Evaluation of the MODIS aerosol 

retrievals over ocean and land during CLAMS, J. Atmos. Sci., 62(4), 974–992, 2005. 

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F. and Hsu, N. C.: The Collection 6 MODIS aerosol products 10 

over land and ocean, Atmos. Meas. Tech., 6(11), 2989, 2013. 

Licciardi, G. A. and Del Frate, F.: Pixel unmixing in hyperspectral data by means of neural networks, IEEE Trans. Geosci. Remote Sens., 

49(11 PART 1), 4163–4172, doi:10.1109/TGRS.2011.2160950, 2011. 

Massie, S. T. and Hervig, M.: HITRAN 2012 refractive indices, J. Quant. Spectrosc. Radiat. Transf., 130, 373–380, 2013. 

Meerdink, S. K., Hook, S. J., Grove, C. I., Abbott, E. A. and Roberts, D. A.: The ECOSTRESS Spectral Library version 1.0., Remote Sens. 15 

Environ., 230(111196), 2019. 

Min, Q.-L., Harrison, L. C., Kiedron, P., Berndt, J. and Joseph, E.: A high-resolution oxygen A-band and water vapor band spectrometer, J. 

Geophys. Res. Atmos., 109(D2), 2004. 

Minnis, P., Hong, G., Sun-Mack, S., Smith Jr, W. L., Chen, Y. and Miller, S. D.: Estimating nocturnal opaque ice cloud optical depth from 

MODIS multispectral infrared radiances using a neural network method, J. Geophys. Res. Atmos., 121(9), 4907–4932, 2016. 20 

Mishchenko, M. I. and Travis, L. D.: Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for 

randomly oriented, rotationally symmetric scatterers, J. Quant. Spectrosc. Radiat. Transf., 60(3), 309–324, 1998. 

Morcrette, J.-J., Boucher, O., Jones, L., Salmond, D., Bechtold, P., Beljaars, A., Benedetti, A., Bonet, A., Kaiser, J. W., Razinger, M. and 

others: Aerosol analysis and forecast in the European Centre for medium-range weather forecasts integrated forecast system: Forward 

modeling, J. Geophys. Res. Atmos., 114(D6), 2009. 25 

Mouroulis, P., Green, R. O. and Chrien, T. G.: Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and 

spatial information, Appl. Opt., 39(13), 2210–2220, 2000. 

Mouroulis, P., Hartley, F. T., Wilson, D. W., White, V. E., Shori, A., Nguyen, S., Zhang, M. and Feldman, M.: Blazed grating fabrication 

through gray-scale X-ray lithography, Opt. Express, 11(3), 270–281, 2003. 

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B. and others: 30 

Anthropogenic and natural radiative forcing, Clim. Chang., 423, 658–740, 2013. 

Nan, F. and A., C. S.: Measurement-based estimates of direct radiative effects of absorbing aerosols above clouds, J. Geophys. Res. Atmos., 

120(14), 6908–6921, doi:10.1002/2015JD023252, 2015. 

Di Noia, A., Hasekamp, O. P., Wu, L., van Diedenhoven, B., Cairns, B. and Yorks, J. E.: Combined neural network/Phillips--Tikhonov 

approach to aerosol retrievals over land from the NASA Research Scanning Polarimeter, Atmos. Meas. Tech., 10(11), 4235–4252, 35 

doi:10.5194/amt-10-4235-2017, 2017. 

Okada, K., Heintzenberg, J., Kai, K. and Qin, Y.: Shape of atmospheric mineral particles collected in three Chinese arid-regions, Geophys. 

Res. Lett., 28(16), 3123–3126, 2001. 

Palsson, B., Sigurdsson, J., Sveinsson, J. R. and Ulfarsson, M. O.: Hyperspectral Unmixing Using a Neural Network Autoencoder, IEEE 



33 

 

Access, 6, 25646–25656, 2018. 

Pincus, R. and Baker, M. B.: Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer, Nature, 372(6503), 

250, 1994. 

Pope III, C. A., Ezzati, M. and Dockery, D. W.: Fine-particulate air pollution and life expectancy in the United States, N. Engl. J. Med., 

360(4), 376–386, 2009. 5 

Prasad, A. K. and Singh, R. P.: Comparison of MISR-MODIS aerosol optical depth over the Indo-Gangetic basin during the winter and 

summer seasons (2000--2005), Remote Sens. Environ., 107(1–2), 109–119, 2007. 

Radosavljevic, V., Vucetic, S. and Obradovic, Z.: A data-mining technique for aerosol retrieval across multiple accuracy measures, IEEE 

Geosci. Remote Sens. Lett., 7(2), 411–415, 2010. 

Remer, L. A., Kaufman, Y. J., Tanré, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R.-R., Ichoku, C., Levy, R. C., Kleidman, R. G. and 10 

others: The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 62(4), 947–973, 2005. 

Rencz, A. N. and Ryerson, R. A.: Manual of remote sensing, remote sensing for the earth sciences, John Wiley & Sons Incorporated., 1999. 

Salomonson, V. V, Barnes, W. L., Maymon, P. W., Montgomery, H. E. and Ostrow, H.: MODIS: Advanced facility instrument for studies 

of the Earth as a system, IEEE Trans. Geosci. Remote Sens., 27(2), 145–153, 1989. 

Stamnes, K., Tsay, S.-C., Wiscombe, W. and Jayaweera, K.: Numerically stable algorithm for discrete-ordinate-method radiative transfer in 15 

multiple scattering and emitting layered media, Appl. Opt., 27(12), 2502, doi:10.1364/AO.27.002502, 1988. 

Taravat, A., Del Frate, F., Cornaro, C. and Vergari, S.: Neural networks and support vector machine algorithms for automatic cloud 

classification of whole-sky ground-based images, IEEE Geosci. Remote Sens. Lett., 12(3), 666–670, 2015. 

Tennant, W. E., Lee, D., Zandian, M., Piquette, E. and Carmody, M.: MBE HgCdTe Technology: A very general solution to IR Detection, 

Described by “Rule 07”, a very convenient Heuristic, J. Electron. Mater., 37(9), 1406–1410, 2008. 20 

Thompson, D. R., Gao, B. C., Green, R. O., Roberts, D. A., Dennison, P. E. and Lundeen, S. R.: Atmospheric correction for global mapping 

spectroscopy: ATREM advances for the HyspIRI preparatory campaign, Remote Sens. Environ., 167, 64–77, doi:10.1016/j.rse.2015.02.010, 

2015. 

Thompson, D. R., Natraj, V., Green, R. O., Helmlinger, M. C., Gao, B.-C. and Eastwood, M. L.: Optimal estimation for imaging spectrometer 

atmospheric correction, Remote Sens. Environ., 216, 355–373, 2018. 25 

Twomey, S.: The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34(7), 1149–1152, 1977. 

Verger, A., Baret, F. and Camacho, F.: Optimal modalities for radiative transfer-neural network estimation of canopy biophysical 

characteristics: Evaluation over an agricultural area with CHRIS/PROBA observations, Remote Sens. Environ., 115(2), 415–426, 

doi:10.1016/j.rse.2010.09.012, 2011. 

Verhoef, W. and Bach, H.: Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative 30 

transfer models, Remote Sens. Environ., 87(1), 23–41, 2003. 

Wang, Y., Yuan, Q., Li, T., Shen, H., Zheng, L. and Zhang, L.: Evaluation and comparison of MODIS Collection 6.1 aerosol optical depth 

against AERONET over regions in China with multifarious underlying surfaces, Atmos. Environ., 200, 280–301, 

doi:https://doi.org/10.1016/j.atmosenv.2018.12.023, 2019. 

Wielicki, B. A., Young, D. F., Mlynczak, M. G., Thome, K. J., Leroy, S., Corliss, J., Anderson, J. G., Ao, C. O., Bantges, R., Best, F., 35 

Bowman, K., Brindley, H., Butler, J. J., Collins, W., Dykema, J. A., Doelling, D. R., Feldman, D. R., Fox, N., Huang, X., Holz, R., Huang, 

Y., Jin, Z., Jennings, D., Johnson, D. G., Jucks, K., Kato, S., Kirk-Davidoff, D. B., Knuteson, R., Kopp, G., Kratz, D. P., Liu, X., Lukashin, 

C., Mannucci, A. J., Phojanamongkolkij, N., Pilewskie, P., Ramaswamy, V., Revercomb, H., Rice, J., Roberts, Y., Roithmayr, C. M., Rose, 

F., Sandford, S., Shirley, E. L., Smith, W. L., Soden, B., Speth, P. W., Sun, W., Taylor, P. C., Tobin, D. and Xiong, X.: Achieving Climate 

Change Absolute Accuracy in Orbit, Bull. Am. Meteorol. Soc., 94(10), 1519–1539, doi:10.1175/BAMS-D-12-00149.1, 2013. 40 



34 

 

Wold, S., Esbensen, K. and Geladi, P.: Principal component analysis, Chemom. Intell. Lab. Syst., 2(1–3), 37–52, doi:10.1016/0169-

7439(87)80084-9, 1987. 

World Health Organisation: Burden of disease from the joint effects of household and ambient Air pollution for 2016, 2018. 

World Health Organization: Air quality guidelines: global update 2005, World Health Organization., 2006. 

Xiao, Z., Liang, S., Wang, J., Chen, P., Yin, X., Zhang, L. and Song, J.: Use of general regression neural networks for generating the GLASS 5 

leaf area index product from time-series MODIS surface reflectance, IEEE Trans. Geosci. Remote Sens., 52(1), 209–223, 2014. 

 


