Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2019-236-RC1, 2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

AMTD

Interactive comment

Interactive comment on "An experimental study on light scattering matrices for Chinese loess dust with different particle size distributions" by Jia Liu et al.

Anonymous Referee #1

Received and published: 10 August 2019

Experimental studies like this one are still rare and should be encouraged. This is a useful paper and can be published largely as is. I would only suggest to expand the motivation for this study in the introduction by pointing out that satellite retrievals of dust-aerosol characteristics such as, e.g., the optical thickness are strongly affected by particle nonsphericity (e.g., [1]), and so reliable knowledge of the phase function (or, more generally, the scattering matrix) for real dust aerosols is essential.

[1] Mishchenko, M. I., I. V. Geogdzhayev, L. Liu, J. A. Ogren, A. A. Lacis, W. B. Rossow, J. W. Hovenier, H. Volten, and O. Munoz, 2003: Aerosol retrievals from AVHRR radiances: effects of particle nonsphericity and absorption and an updated long-term

Printer-friendly version

Discussion paper

global climatology of aerosol properties. J. Quant. Spectrosc. Radiat. Transfer 79/80, 953-972.

Interactive comment on Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2019-236, 2019.

AMTD

Interactive comment

Printer-friendly version

Discussion paper

