First data set of $\text{H}_2\text{O}/\text{HDO}$ columns from TROPOMI

Andreas Schneider1, Tobias Borsdorff1, Joost aan de Brugh1, Franziska Aemisegger2, Dietrich G. Feist3,4, Rigel Kivi5, Frank Hase6, Matthias Schneider6, and Jochen Landgraf1

1Earth science group, SRON Netherlands Institute for Space Research, Utrecht, the Netherlands
2Atmospheric Dynamics group, Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
3Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
4Max Planck Institute for Biogeochemistry, Jena, Germany
5Finnish Meteorological Institute, Sodankylä, Finland
6Institute of Meteorology and Climate Research (IMK-ASF), Karlsruhe Institute of Technology, Karlsruhe, Germany

Correspondence: Andreas Schneider (a.schneider@sron.nl)

Abstract. This paper presents a new data set of vertical column densities of the water vapour isotopologues H_2O and HDO retrieved from short-wave infrared (2.3 μm) reflectance measurements by the Tropospheric Monitoring Instrument (TROPOMI) aboard the Sentinel-5 Precursor satellite. TROPOMI features daily global coverage with a spatial resolution of up to 7 km × 7 km. The retrieval utilises a profile-scaling approach. The forward model neglects scattering, thus strict cloud filtering is necessary. For validation, recent ground-based water vapour isotopologue measurements by the Total Carbon Column Observing Network (TCCON) are employed. A comparison of TCCON δD with measurements by the project Multi-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA) for data prior to 2014 (where MUSICA data is available) shows a bias in TCCON δD estimates. As TCCON HDO is currently not validated, an overall correction of recent TCCON HDO data is derived based on this finding. The agreement between the corrected TCCON measurements and collocated TROPOMI data is derived based on this finding. The agreement between the corrected TCCON measurements and collocated TROPOMI observations is good with an average bias of $(0.02 \pm 2) \cdot 10^{21}$ molec cm$^{-2}$ in H_2O and $(-0.3 \pm 7) \cdot 10^{17}$ molec cm$^{-2}$ in HDO, which corresponds to a bias of $(-12 \pm 17) \%$ in a posteriori δD. The use of the data set is demonstrated with a case study of a blocking anticyclone in northwestern Europe in July 2018 using single overpass data.

1 Introduction

Atmospheric water vapour represents the strongest natural greenhouse gas and transports a large amount of energy through latent heat and thus plays a fundamental role in shaping weather and climate (Kiehl and Trenberth, 1997; Harries, 1997). However, uncertainties in the quantification of these two effects are still large and represent one of the key uncertainties in current climate prediction (Stevens and Bony, 2013). To improve on that requires new observations on a global scale and with a long-term perspective. To this end, satellite observations from space are considered as the most promising approach (Rast et al., 2014).

Constraints for the hydrological cycle are offered by observations of isotopologues of water vapour. Different equilibrium vapour pressures and diffusion constants of different isotopologues lead to isotopic fractionation whenever a phase change occurs. Isotopic fractionation is associated with a partitioning of the heavy and light isotopologues in the different phases, which
depends on the thermodynamic conditions of the environment. The relative abundance of a heavy isotopologue with respect to the light isotopologue in an air parcel is therefore dependent on the source region’s temperature and relative humidity, the source water’s isotopic composition as well as the entire transport history of the air parcel, including all evaporation, condensation and mixing events (e.g. Dansgaard, 1964; Craig and Gordon, 1965). This makes measurements of water vapour isotopologues a unique diagnostic of the hydrological cycle (Dansgaard, 1964) and a valuable benchmark for the evaluation and further development of global and regional circulation models (e.g. Joussaume et al., 1984; Hoffmann et al., 1998; Yoshimura et al., 2008; Risi et al., 2010; Pfahl et al., 2012).

The usual notation to describe the isotopological abundance variations is the relative difference of the ratio of the heavy and the light isotopologue, here HDO and H\textsubscript{2}O, $R_D = c_{\text{HDO}}/c_{\text{H}_2\text{O}}$, to a standard abundance ratio $R_{D,\text{std}}$,

$$\delta D = \frac{R_D - R_{D,\text{std}}}{R_{D,\text{std}}}$$

(Coplen, 2011). The commonly used standard ratio is Vienna Standard Mean Ocean Water (VSMOW), $R_{D,\text{std}} = 3.1152 \times 10^{-4}$.

Measurements of atmospheric water vapour isotopologues are not very common. In situ observations are performed from aircrafts and balloons (e.g. Rinsland et al., 1984; Dyroff et al., 2010, 2015; Herman et al., 2014; Sodemann et al., 2017) and on the ground (e.g. Wen et al., 2010; Aemisegger et al., 2012; Bastrikov et al., 2014) using laser spectrometers or cryogenic trapping techniques. Remote sensing instruments exist on the ground and on space or balloon based platforms. The former are usually Fourier transform infrared (FTIR) spectrometers. Ground stations are often organised in networks. The largest networks are the Total Carbon Column Observing Network (TCCON, Wunch et al., 2011) and the Network for the Detection of Atmospheric Composition Change (NDACC, De Mazière et al., 2018). The data product of the former includes H\textsubscript{2}O and HDO, while for measurements by the latter water vapour isotopologues are retrieved by the project Multi-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water (MUSICA, Schneider et al., 2016). From satellite, H\textsubscript{2}O and HDO were first retrieved by Zakharov et al. (2004) using thermal infrared measurements from the Interferometric Monitor for Greenhouse gases (IMG) sensor aboard the Advanced Earth Observing Satellite (ADEOS). Later, this was followed by the Tropospheric Emission Spectrometer (TES) on the Earth Observing System (EOS) Aura satellite (Worden et al., 2006), the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard European Space Agency (ESA)’s environmental satellite (ENVISAT) (Steinwagner et al., 2007; Payne et al., 2007), the SCanning Imaging Absorption spectrometer for Atmospheric CHartographY (SCIAMACHY) instrument on ENVISAT (Frankenberg et al., 2009; Scheepmaker et al., 2015; Schneider et al., 2018), the Infrared Atmospheric Sounding Interferometer (IASI) aboard the MetOP satellite (Herbin et al., 2009; Schneider and Hase, 2011; Lacour et al., 2012) and the Greenhouse Gases Observing Satellite (GOSAT) (Frankenberg et al., 2013; Boesch et al., 2013). On 13th October 2017, the Tropospheric Monitoring Instrument (TROPOMI) aboard the Sentinel-5 Precursor satellite (Veefkind et al., 2012) was launched. It has a short-wave infrared band in heritage of SCIAMACHY with a spectral range of 2305–2385 nm and a spectral resolution of 0.25 nm, yet with a signal to noise ratio much better than SCIAMACHY and an unprecedented spatial resolution of 7 km × 7 km (in the centre of the swath). This work presents a new data set of H\textsubscript{2}O and HDO columns from TROPOMI observations starting at first light of the instrument on 9th November 2017. Section 2 introduces the retrieval method. In Section 3, a ground-based data set to validate the satellite
observations against is presented, and the comparison between both data sets is performed in Section 4. Section 5 provides a first insight into the data set’s use for studying synoptic-scale variability in the atmospheric branch of the water cycle. Finally, the results are summarised and conclusions are drawn in Section 6.

2 Retrieval method

The retrievals are performed with the short-wave infrared retrieval algorithm SICOR, which utilises a profile-scaling approach and is described in detail by Scheepmaker et al. (2016); Landgraf et al. (2016); Borsdorff et al. (2014). Below, the most important features are summarised and the specific setup is given.

Using the spectral window from 2354.0 nm to 2380.5 nm (Scheepmaker et al., 2016), the algorithm fits the total columns of H$_2$O, HDO, CH$_4$ and CO together with an order 1 Lambertian surface albedo. The isotopologue H$_2$H$_2$O is included in the forward model but not fitted. A priori profiles of water vapour are adapted from the European Centre for Medium-Range Weather Forecasts (ECMWF) analysis product. Since the ECMWF data product does not distinguish individual isotopologues, H$_2$O, HDO and H$_2$H$_2$O profiles are obtained from the water vapour profile by scaling it with the respective average relative natural abundances. A priori profiles of CH$_4$ and CO are taken from TM5 simulations (Krol et al., 2005). Scattering cross-sections are taken from HITRAN 2016 (Gordon et al., 2017). The forward model ignores scattering, so that strict filtering for clear-sky scenes is necessary. To this end, collocated measurements from the Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) instrument are used (Siddans, 2016). The cloud cover threshold is 1 % for inner field of view and outer field of view. Moreover, soundings with high aerosol load are filtered out by a two-band filter as introduced by Scheepmaker et al. (2016); Hu et al. (2018), which in the present configuration requires that the ratio of retrieved methane in bands with weak and strong absorption (2310–2315 nm and 2363–2373 nm, respectively) is between 0.94 and 1.06. Furthermore, scenes with solar zenith angle greater than 75° are discarded because they are prone to errors due to diffraction effects which are not covered well by the forward model and due to long light paths which mean enhanced sensitivity to inaccuracies in the spectroscopy.

The sensitivity of a retrieved column to changes in a given altitude region is described by the column averaging kernel (Rodgers, 2000). The ideal averaging kernel is unity in all altitudes, but in practice the sensitivity changes with height. Figure 1 depicts examples of column averaging kernels for different solar zenith angles. The sensitivity for the two isotopologues are significantly different. For H$_2$O, the highest sensitivity is in the lowest layer (where typically most water vapour resides) and decreases with increasing altitude. The sensitivity in the stratosphere is small, however the amount of water vapour in this altitude region is very small and contributes little to the total column. The sensitivity of HDO does not deviate as much from unity as the one of H$_2$O. In the lower troposphere it increases slightly with increasing altitude until reaching a maximum depending on solar zenith angle, above which it decreases. The differences in column averaging kernel are due to the different absorption strength of the two isotopologues and mean that a posteriori δD is sensitive on the profile shapes, particularly of the main isotopologue H$_2$O since for that the averaging kernel deviates considerably from unity in higher altitudes.
Figure 1. Examples of column averaging kernels for (a) \(\text{H}_2\text{O} \) and (b) \(\text{HDO} \) for different solar zenith angles in orbit 4924 on 25 Sep 2018.

3 Ground-based FTIR data sets

To validate the TROPOMI retrievals, ground-based Fourier transform infrared (FTIR) measurements are used. HDO is a product of NDACC-MUSICA (Barthlott et al., 2017) and TCCON (Wunch et al., 2015). Seven stations are in both networks: Eureka, Ny Ålesund, Bremen, Karsruhe, Izaña, Wollongong and Lauder. This allows to compare the TCCON and NDACC-MUSICA data products, which reveals that they do not coincide, but have a large difference in \(\delta D \) of on average 58 ‰ when collocating with a maximal time difference of one hour. An example for Wollongong is plotted in Fig. 2. MUSICA is explicitly created for isotopologue studies, and \(\delta D \) profiles have been validated against aircraft measurements in an altitude range of 2–7 km during a dedicated campaign in summer 2013 (Schneider et al., 2015; Dyroff et al., 2015; Schneider et al., 2016). However, data is only available until 2014, so that there is no temporal overlap with TROPOMI which has been launched in October 2017. TCCON \(\text{H}_2\text{O} \) total columns are calibrated with in situ measurements (mainly radiosondes); a so-called aircraft correction factor of 1.0183 is applied to match the reference (Wunch et al., 2015). However, TCCON HDO is currently not verified and so no correction factor is applied to it. Thus it is assumed that TCCON HDO has to be corrected.

In order to correct for the discrepancy, the idea is to scale TCCON HDO to match MUSICA \(\delta D \). Scaling HDO with a factor \(a \), i.e. \(c_{\text{HDO}} \rightarrow ac_{\text{HDO}} \), is equivalent to the linear transformation

\[
\delta D \rightarrow a \delta D + a - 1
\]

in \(\delta D \). Figure 3a depicts a correlation histogram of TCCON \(\delta D \) vs. MUSICA \(\delta D \) for the station Wollongong. Here, the relation between MUSICA and TCCON is to a good degree described by a simple scaling of the column. The result of a fit of Eq. (2) to the data is plotted as blue line, giving the scaling factor for the TCCON HDO column. The bar chart in Fig. 3c visualises fit results for all stations in both networks. It shows that the correction factor does not change much between stations. The large
Figure 2. Time series of daily averages of H$_2$O (a), HDO (b) and a posteriori δD (c) of the NDACC-MUSICA type 2 (blue crosses) and TCCON (red pluses) data products at Wollongong, Australia. The bias in δD without daily averaging is 65.8‰.

4 Validation of TROPOMI retrievals

For validation, TROPOMI observations are collocated with TCCON measurements with a radius of 30 km, a maximal altitude difference of 500 m, a field of view of 45° in the FTIR viewing direction and a maximal time difference of 2 h. Here, the TCCON HDO data are corrected according to the approach presented in the previous section. Table 1 gives an overview of all stations used. Other stations have too few (less than 5 days) collocated measurements and have thus not been included in the validation study. No altitude correction is applied here. The mentioned collocation criterium for altitude is used to ensure that no bias due to large height difference between station and satellite ground pixel is introduced (cf. Schneider et al., 2018). For each station, daily averages are computed over all collocated measurements. Figure 4 shows an exemplary time series for Edwards. The collocated observations of H$_2$O and HDO agree very well, and the agreement in δD is also good with more scatter and a small bias. Corresponding correlation plots are depicted in Fig. 5. Panels (a) and (b) confirm the excellent agreement in H$_2$O and HDO with a Pearson correlation coefficient of 0.98 and 0.99, respectively, and a corresponding correlation coefficient of
Figure 3. (a) Exemplary correlation histogram of TCCON δD vs. MUSICA δD for Wollongong, Australia. The blue line shows the result of a fit of Eq. (2), giving the correction factor for TCCON HDO. (b) Amount of collocated measurements for all stations in both networks. (c) Fit results of correction factors for individual stations. The red line corresponds to the error-weighted average over all stations, $a = 1.0778$.
Figure 4. Time series of daily averages of corrected TCCON measurements (blue crosses) and collocated TROPOMI observations (red pluses) at Edwards (34.96° N, 700 m a.s.l.). Shown are (a) the number of individual observations per day, (b) H₂O columns, (c) HDO columns, and (d) a posteriori δD.
Figure 5. Correlation plot of corrected TCCON measurements and collocated TROPOMI observations for Edwards for daily averages of H$_2$O columns (a), HDO columns (b), and δD (c).
Table 1. List of TCCON stations used for the validation.

<table>
<thead>
<tr>
<th>Station</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Altitude</th>
<th>Data available from/to</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Białystok</td>
<td>53.2° N</td>
<td>23.0° E</td>
<td>190 m</td>
<td>01 May 2017 – 27 Apr 2018</td>
<td>Deutscher et al. (2015)</td>
</tr>
<tr>
<td>Bremen</td>
<td>53.1° N</td>
<td>8.9° E</td>
<td>30 m</td>
<td>15 Jan 2007 – 20 Apr 2018</td>
<td>Notholt et al. (2014)</td>
</tr>
<tr>
<td>Karlsruhe</td>
<td>49.1° N</td>
<td>8.4° E</td>
<td>110 m</td>
<td>19 Apr 2010 – 21 Jan 2019</td>
<td>Hase et al. (2015)</td>
</tr>
<tr>
<td>Park Falls</td>
<td>45.9° N</td>
<td>90.3° W</td>
<td>440 m</td>
<td>02 Jun 2004 – 29 Dec 2018</td>
<td>Wennberg et al. (2017)</td>
</tr>
<tr>
<td>Lamont</td>
<td>36.6° N</td>
<td>97.5° W</td>
<td>320 m</td>
<td>06 Jul 2008 – 31 Dec 2018</td>
<td>Wennberg et al. (2016)</td>
</tr>
<tr>
<td>Tsukuba</td>
<td>36.0° N</td>
<td>140.1° E</td>
<td>30 m</td>
<td>04 Aug 2011 – 27 Apr 2018</td>
<td>Morino et al. (2018)</td>
</tr>
<tr>
<td>Edwards</td>
<td>35.0° N</td>
<td>117.9° W</td>
<td>700 m</td>
<td>20 Jul 2013 – 31 Dec 2018</td>
<td>Iraci et al. (2016)</td>
</tr>
<tr>
<td>JPL</td>
<td>34.2° N</td>
<td>118.2° W</td>
<td>390 m</td>
<td>19 May 2011 – 14 May 2018</td>
<td>Wennberg et al. (2014)</td>
</tr>
<tr>
<td>Pasadena</td>
<td>34.1° N</td>
<td>118.1° W</td>
<td>240 m</td>
<td>20 Sep 2012 – 31 Dec 2018</td>
<td>Wennberg et al. (2015)</td>
</tr>
<tr>
<td>Wollongong</td>
<td>34.4° S</td>
<td>150.9° E</td>
<td>30 m</td>
<td>25 Jun 2008 – 30 Jul 2018</td>
<td>Griffith et al. (2014)</td>
</tr>
<tr>
<td>Lauder</td>
<td>45.0° S</td>
<td>169.7° E</td>
<td>370 m</td>
<td>02 Feb 2010 – 31 Oct 2018</td>
<td>Sherlock et al. (2014)</td>
</tr>
</tbody>
</table>

0.95 for δD. The average difference between TROPOMI and TCCON defines the bias. In δD, a small bias is plain in the correlation plot and amounts to −23 ‰.

The results for all TCCON stations are depicted in Fig. 6. The correlation is high for all stations, except for a lower correlation in δD of 0.58 at Lauder, where the variability in δD is small. The bias in H₂O and HDO is small with an average over all stations of 2 · 10¹⁹ molec cm⁻² (0.9 %) for H₂O and −3 · 10¹⁶ molec cm⁻² (−0.7 %) for HDO. The mean bias in δD is −12 ‰ or 4 %, which is good taken into account that δD is very sensitive to small errors in H₂O or HDO.

5 Demonstration of applications of the data set

An illustration of the TROPOMI retrievals on the global and monthly scale is depicted in Fig. 7 for September 2018. There is no data over the oceans because water is too dark in the short-wave infrared and glint measurements are not taken into account. The data gaps in tropical regions are due to persistent clouds. The data quality in terms of noise is significantly better than for a multi-year average of SCIAMACHY observations, cf. Schneider et al. (2018, Fig. 7). In the spatial distribution shown in Fig. 7 the major isotopic effects formulated by Dansgaard (1964) can be recognised. The general latitudinal gradient due to the temperature-dependence of the fractionation effects and progressive rain out of heavy isotopologues, the so-called latitudinal effect, is plain. The continental effect of depletion due to rain out of the heavy isotopologue is visible on all continents including Australia. The altitude effect, which describes depletion above high ground due to lower temperature and increasing rain out, can be seen, for example, over the Andes and the Himalayas.
Figure 6. Validation for all TCCON stations. (a) Number of days with collocated measurements. (b) Average number of collocated TROPOMI observations per day with its standard deviation. (c) Pearson correlation coefficient for H_2O (blue), HDO (red) and δD (green). (d) Bias in H_2O and its standard error. (e) Bias in HDO and its standard error. (f) Bias in a posteriori δD and its standard error. In panels (d), (e), and (f), the horizontal line visualises the average over all stations.
Figure 7. Global plots of H$_2$O (a) and δD (b) averaged over September 2018 on a grid of $0.5^\circ \times 0.5^\circ$. The average of δD is weighted with the H$_2$O column for mass conservation purposes.
Figure 8. TROPOMI single overpass results for H$_2$O column (a) and δD (b) over Europe on 30 Jul 2018; VIIRS cloud fraction on the same day (c); specific humidity (d), relative humidity (e), and potential temperature (f) at 700 hPa from the ECMWF analysis product over Europe at 12:00 UTC on 30 Jul 2018. The 700 hPa level is chosen for the thermodynamic variables because it reflects the large-scale conditions in the lower troposphere above the continental boundary layer. The overlaying contours in all panels show mean sea-level pressure from ECMWF at 12:00 UTC with a contour line distance of 2 hPa.
To demonstrate the quality and the possibilities of the new data set of water vapour isotopologues from TROPOMI, a case study using single overpass results over Europe on 30th July 2018 is presented in Fig. 8. The summer 2018 was one of the hottest and driest in central and northern Europe (Copernicus Climate Service, 2018; Gubler et al., 2018) with forest fires in Scandinavia, dry fields and low river stages all over the central and northern parts of the continent. The reason for this exceptionally hot and dry summer was the presence of a high pressure system over northern Europe that blocked the otherwise predominant westerly moist flow from the North Atlantic. Synoptic-scale atmospheric blocking situations can lead to hot temperature extremes due to adiabatic warming of the descending air in the core of the anticyclone (Pfahl and Wernli, 2012). The descending vertical motion favours clear sky conditions and thus further contributes to the surface warming through radiative effects in the centre of the anticyclone (Trigo et al., 2004). In particular, the end of July 2018 was characterised by a stationary blocking anticyclone extending over the entire troposphere over northwestern Russia and Scandinavia. This blocking led to large-scale descent and to a divergent flow near the surface in its core, resulting in clear sky conditions over northwestern Russia and Finnland (see Fig. 8c). The isotopic signature of the blocking anticyclone in Fig. 8b reflects this synoptic flow configuration with low δD signals of between −250‰ and −200‰ in the centre of the anticyclone. The depleted total column vapour in this region is due to the large-scale subsidence bringing depleted (Fig. 8b) and dry (Fig. 8d) upper tropospheric air towards lower levels. The near-surface divergent wind exports more enriched freshly evaporated moisture that is taken up near the surface towards the edges of the blocking. The anticyclone area is characterised by clear skies (Fig. 8c) with low specific humidity (1–3 g kg\(^{-1}\) at 700 hPa, Fig. 8d), low relative humidity (10–30 % at 700 hPa, Fig. 8e) and high potential temperature associated with the dry subsiding (adiabatically warming) air masses (Fig. 8f). The dry low-level outflow encounters moister and warmer air at the edge of the surface anticyclone, leading to a very strong horizontal gradient of specific and relative humidity (Fig. 8d,e) in the lower troposphere. As a consequence the warm moist air is forced to rise, localised instabilities occur and isolated convective cells develop leading to condensation and the formation of a ring of clouds around the blocking anticyclone. A distinct arc-like feature of enriched total column water vapour at the edge of the anticyclone can be distinguished slightly displaced from the first clouds in the northwest (Fig. 8b). Turbulent mixing and convection injecting more enriched, freshly evaporated moisture advected with the large-scale flow from marine environments (Barents Sea, North Sea and Black Sea) could be the reason for this interesting enriched ring-like water vapour isotopologue pattern. A very depleted cloud free area south of the Ob river with δD values below −250‰ (Fig. 8b) might be connected to anomalously strong descent of northerly continental air masses. In future work, the nature and occurrence of these features should be analysed in more detail including a catalogue of different continental blocking events with observations from TROPOMI.

Apart from investigations on the water cycle dynamics associated with continental blockings, many other dynamically interesting contexts exist where TROPOMI could present an important added value for further investigations. These comprise among others the region of the heat low over the Sahara (e. g. Schneider et al., 2015; González et al., 2016; Lacour et al., 2017) or continental regions upstream of cold air surges leading to events of strong ocean evaporation along the warm ocean western boundary currents (Aemisegger and Papritz, 2018; Aemisegger and Sjolte, 2018).
Summary and conclusions

This work presents a new data set of H\textsubscript{2}O and HDO columns retrieved from TROPOMI short-wave infrared observations. Scattering is ignored in the forward model so that a strict cloud filtering is necessary, which is performed with collocated VIIRS measurements. The data quality is such that single overpasses yield meaningful results, which is a huge step forward compared to previous missions like SCIAMACHY.

For validation of the TROPOMI data product, particular attention must be given to the reference data sets. At this stage, there are two data products of ground-based observations of the HDO total column available, provided by the TCCON and NDACC-MUSICA networks. Comparing these two data products for stations in both networks reveals a large bias between the ground-based products of on average 58 ‰ in δD. NDACC-MUSICA was decidedly developed for water vapour isotopologue studies and is validated in δD with aircraft measurements, but data are only available until 2014. TCCON provides recent data with temporal overlap with TROPOMI observations and its H\textsubscript{2}O total column data product is validated against in situ measurements, however its HDO data product is not verified. In order to obtain a suitable validation data set, TCCON HDO columns are scaled by a factor of 1.0778 to match the MUSICA δD over the common observation time period.

Using a collocation radius of 30 km, a maximal altitude difference of 500 m, a field of view of 45$^\circ$ and a maximal time difference of 2 h, a good agreement between corrected TCCON measurements and collocated TROPOMI observations is found. The mean bias is $(-0.02 \pm 2) \times 10^{20}$ molec cm$^{-2}$ ((0.9 ± 7) %) for H\textsubscript{2}O, $(-0.3 \pm 7) \times 10^{17}$ molec cm$^{-2}$ ((-0.7 ± 8) %) for HDO, and (-12 ± 17) ‰ ((4 ± 8) %) for δD.

The use of the new data set is demonstrated in a case study of an atmospheric blocking event with a single TROPOMI overpass over northeastern Europe on 30th July 2018. Depleted air masses are found in the core of the anticyclone due to subsidence bringing upper tropospheric air towards lower levels. At the edge of the anticyclone a ring of enriched air is observed. A climatological study on the water vapour isotopic signature of continental summer blocking events could provide promising insights into the atmospheric water cycling associated with such systems that frequently lead to heat waves and hot temperature extremes. This case study shows the quality of the new data set and the added value for isotopologue studies, enabling studies on a day-by-day basis with high spatial resolution over continental regions.

Due to the restrictive filter for clear sky scenes, the data coverage is limited. To improve on this, cloudy-sky retrievals over low clouds will be considered in a future work by using a forward model that accounts for scattering. Moreover, a calibration and validation of the TCCON HDO product is necessary. Additionally, it would be beneficial if recent NDACC-MUSICA data would become available. Finally, an improvement in the consistency between the networks would be very valuable.

Data availability. The TROPOMI HDO data set of this study is available for download at ftp://ftp.sron.nl/pub/pub/DataProducts/TROPOMI_HDO/. TCCON data are available from the TCCON Data Archive at https://tccondata.org/. MUSICA data are available from ftp://ftp.cpc.ncep.noaa.gov/ndacc/MUSICA/.
Author contributions. Andreas Schneider, Tobias Borsdorff, Joost aan de Brugh and Jochen Landgraf made the TROPOMI HDO retrievals and the analysis. Franziska Aemisegger carried out the case study in Section 5. Dietrich G. Feist aided in the search for the cause of discrepancies between (uncorrected) TCCON HDO and TROPOMI HDO. Rigel Kivi and Frank Hase provided TCCON data. Matthias Schneider provided MUSICA data and TCCON data. All authors discussed the results and commented on the manuscript.

Competing interests. The authors declare that they have no conflict of interest.

Disclaimer. Plots/data contain modified Copernicus Sentinel data, processed by SRON.

Acknowledgements. This work was supported by the ESA Living Planet Fellowship project Water vapour Isotopologues from TROPOMI (WIFT). The TROPOMI data processing was carried out on the Dutch national e-infrastructure with the support of the SURF Cooperative. The ground-based measurements by the project MUSICA have been funded by the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007–2013)/ERC grant agreement number 256961. KIT acknowledges BMWi for funding TCCON data analysis and delivery through DLR project 50EE1711A. Nicholas Deutscher, David Griffith, Laura T. Iraci, Isamu Morino, Justus Notholt, Christof Petri, Dave Pollard, Kimberly Strong, Thorsten Warneke, Paul Wennberg and Debra Wunch provided TCCON data.
References

