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Abstract. A new method using the Micro Rain Radar (MRR) to determine the melting layer height is presented. The MRR is a
small vertically pointing frequency modulated continuous wave radar which measures Doppler spectra of precipitation. From
these Doppler spectra, various variables such as Doppler velocity or spectral width can be derived. The melting layer is visible
through a higher reflectivity and an acceleration of the falling particles, among others. These characteristics are fed to a neural
network to determine the melting layer height. For the training of the neural network, the melting layer height is determined
manually. The neural network is trained and tested using data from two sites covering all seasons. For most cases, it is well able
to detect the correct melting layer height. Sensitivity studies show that the neural network is able to handle different settings of

the MRR. Comparisons to radiosonde data and cloud radar data show a good agreement in melting layer heights.

Copyright statement. TEXT

1 Introduction

The bright band in radar meteorology shows the location of the layer where solid precipitation melts into rain in a complex
process. Near the freezing level, aggregation leads to larger ice particles. When melting begins, the particles begin to contain
liquid water, appearing as very large raindrops, until all ice is melted and the particles collapse into raindrops. The reflectivity
maximum is partly due to the different dielectric factor of ice and water. At the bottom of the melting layer (ML), the number
of particles per volume decreases due to acceleration and the smaller size of the particles, resulting in a decreasing reflectivity
(e. g., Austin and Bemis, 1950; Battan, 1959).

Though the bright band has been detected since the beginning of radar meteorology in the 1940s (e. g., Byers and Coons,
1947), it has not yet been fully understood. The detection of this layer is important for various applications, e.g., for the
correction of precipitation estimation or the prediction of the kind of precipitation at the surface. Knowledge of the ML is also
important for aviation. Especially near airports it is very useful to know if there might occur icing. A typical rain event with
rain at the surface and snow above is not a concern for airplanes. If, however, it is raining and the temperature is below 0°C,
the supercooled falling rain can turn to ice once it hits a surface such as an airplane. The accumulating ice causes the shape of

the plane to change, disturbing the aerodynamic properties of the wing. The detection of the ML at airports can help assess the
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risk of icing at that moment and in the near future by adding the information where the melting takes place at that moment and
in the near past to other measurements such as ground temperature.

Many previous studies have used various radars to detect the ML. Some used radars scanning a volume (e. g., Gourley and
Calvert, 2003) or radars pointing vertically (e. g., Fabry and Zawadzki, 1995; White et al., 2002; Johnston et al., 2017) with
different wavelengths, using reflectivity data or a combination of reflectivity and velocity data, others use polarimetric radars,
using the properties of the echoes to distinguish between snow and rain (e. g., Giangrande et al., 2008). In contrast, this study
uses a smaller and less expensive remote sensing instrument, the Micro Rain Radar (MRR) by Metek GmbH, which has been
widely used to measure vertical profiles of precipitation by, e. g., Loffler-Mang et al. (1999); Peters et al. (2005); Yuter et al.
(2008); Kneifel et al. (2011); Maahn and Kollias (2012). It is a frequency modulated continuous wave radar pointing vertically,
operated at 24 GHz. Due to its compact size, it can be easily installed virtually independent of site conditions and measures
Doppler spectra at high resolutions (METEK GmbH, 2018). From the spectra, it calculates two classes of variables. While
the first class consisting of the attenuated, equivalent reflectivity factor (ZEA), the Doppler velocity (VEL), and the spectral
width (WIDTH) is just a condensed description of the spectral properties, the second class consisting of drop size distribution,
path integrated attenuation, Rayleigh-radar reflectivity factor, liquid water content, and rain rate (RR) represents a retrieval of
physical target properties under the assumption that the backscattered signal is caused solely by rain drops. Although variables
of the last class have no physical meaning in case of frozen or mixed precipitation, they may act as indicator for the presence
and height of an ML.

The MRR has been used previously to detect the ML height. Perry et al. (2017) use the gradients of ZEA and VEL to detect
the ML top and bottom, respectively. Cha et al. (2009) detect an ML where the largest positive and negative vertical gradient of
the rain rate embrace the maximum rain rate. A large dataset was used, excluding the winter months with surface temperatures
below 0°C. Pfaff et al. (2014) have compared this algorithm to two other algorithms: fitting an analytical function to the
reflectivity profile, and combining reflectivity and falling velocity to derive the ML height. They conclude that the combination
of reflectivity and falling velocity gives the best results. However, their data consists of two case studies. For operational use,
a much larger dataset should be used for testing.

This paper presents a new method to extract the ML height from the MRR data which can be used operationally in all
weather situations. It uses a neural network approach, which is well suited to nonlinear and complex problems and which does
not rely on certain assumptions of the data distribution. A neural network learns from examples and has no need of imposing
fixed thresholds or the shape of reflectivity and/or velocity profiles such as previous studies (e. g., Fabry and Zawadzki, 1995;
White et al., 2002; Giangrande et al., 2008; Cha et al., 2009; Perry et al., 2017). Given the right training, this approach is
therefore more flexible and able to generalize and thus detect unusual melting layers such as melting layers on the ground or
two melting layers at the same time. It is also possible to design a neural network in different ways, so that it is for example
able to either detect a specific height such as the height where melting starts or to detect the whole vertical extent in which the
melting occurs. Our neural network (NN) was designed to detect the whole melting layer and was trained and tested using data

with a high temporal resolution and including all seasons and different precipitation types such as rain, snow, and sleet.
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Sect. 2 presents the neural network approach. It describes how the training data is generated and the setup of the NN. In
sect. 3, the performance of the NN is described. It demonstrates how the performance of the NN is assessed, which kind of

situations it handles well, and what are the limits of this approach. The last section, sect. 4, gives a discussion and a conclusion.

2 Method

The neural network approach is well suited for complex nonlinear problems, which meteorological phenomena often are.
Though the NN lacks all physical basis, it can yield accurate results (e. g., Marzban and Stumpf, 1996; Liu et al., 2001). A
difficulty with NN is the need for training data. During training, an NN is given the input data as well as the desired output.
Through this process it learns patterns and can subsequently be applied to previously unknown data. In the following, the
measurement data used is described. Then, the method of generating the training data is presented, followed by the description

of the NN, the training process and the post-processing.
2.1 Measurement data used

For this study, most data was measured by two MRR-PRO by Metek GmbH (which is a further development of the MRR-2),
deployed by the German Weather Service in Germany at the airport in Hamburg in the North German Plain and at Hohen-
peiBlenberg, a topographically isolated mountain of almost 1 km height. The measurements from Hamburg were taken from
November 2017 to April 2018 with an interruption in the first half of January due to technical issues. The measurements at
Hohenpeillenberg range from August 2017 to December 2018 with interruptions from December 2017 to April 2018 and in
May 2018. The measurements were taken at 128 range gates with a vertical resolution of 15 m in Hamburg and 25 m at Ho-
henpeienberg and with 10 s time resolution at both sites. Only days with precipitation were used, resulting in 166 days from
Hohenpeiflenberg and 90 days from Hamburg. Within the course of a day, precipitation can change substantially. Therefore,
the days were subdivided into four intervals of 6 hours. This makes the selection of training data more flexible and avoids
including long time spans of no precipitation when a short period of rain is desired to be used, and at the same time avoids the
data being split into too many very small intervals which are impractical to process.

Additional data was measured in Elmshorn by Metek, to test the sensitivity of the NN to other height resolutions. One day
with a resolution of 50 m and four days with a resolution of 100 m are available.

The dataset covers many different situations, including cases without precipitation, cases of light drizzle and snow without
MLs, high and low MLs, MLs on the ground with sleet at the surface, and even rare situations with hail or two MLs at the same

time.
2.2 Generating training data

Training an NN requires training data with knowledge of the desired output. This means that reference data of the true location
of the ML is needed. One option of determining the ML is to look at the height of 0 °C in a temperature profile. Temperature

could be measured by a mast, which can only provide data up to limited heights, or by radiosondes, which are restricted to
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few sample points on the time axis. Airplanes flying through the ML could provide very detailed data but would be completely
impractical for generating a large set of training data. Data from models are available at a high spatial and temporal resolution,
but due to inherent uncertainties they cannot be relied upon to provide a correct height of the ML at the exact location of the
radar with a resolution in the order of seconds, because the ML height can be very variable in time and space. Therefore, a
different method of finding the true ML height must be used.

Looking at time-height-series of ZEA, VEL and other output from the MRR, the human eye is well able to detect the ML
height in many situations (e. g., by the increase in VEL or the maximum in RR or ZEA). Therefore, a tool was build to draw
the upper and lower boundaries of the ML into plots from different output variables of the MRR by moving the mouse over
the plot by hand (see Fig. 1). This has the advantage that the “true” ML is determined with the appropriate time resolution
at the location of the MRR. Different variables show different properties of the ML. Some variables show a stronger gradient
at the upper boundary, while the gradients of other variables are stronger at the lower boundary of the ML. For example, the
reflectivity shows the strongest gradient at the upper boundary of the ML because it has a maximum where the particles are
already coated with water but are still large because the ice has not melted completely yet. The velocity grows toward the lower
boundary of the ML when the air resistance decreases and the density of the particle increases. Therefore, the upper and lower
boundary of the ML were determined by different variables.

Figure 1 shows the five variables which are used to draw the ML height. For each variable, two lines were drawn (upper and
lower boundary) in the same color. For WIDTH and RR, the strongest gradients define the boundaries of the ML. For VEL’,
the area of negative gradients encompasses the ML. For ZEA’, the area where the gradient is either clearly positive (lower part
of ML) or negative (upper part of ML) defines the ML, for ZEA” the middle of the positive values defines the upper and lower
boundary of the ML. These five variables were used for determining the ML because in these variables the ML is fairly well
visible to the human eye. The ML could also have been detected by only VEL and ZEA, but using more variables reduces
the uncertainty involved in the process. For the upper boundary, the RR and the gradient and curvature ZEA’ and ZEA” (first
and second derivative of ZEA) were used, while the lower boundary was determined by WIDTH and the gradients VEL’ and
ZEA’. The plot shows that the drawn lines can deviate considerably for the five variables, which is why not all variables are
used to determine both the upper and lower boundaries of the ML. The lines from the variables chosen for physical reasons
lie fairly close together, giving confidence to the choice of variables. This choice results in the optimal case in two triplets of
lines for the upper and lower boundary of the ML. The drawing of the lines has an inherent uncertainty, stemming on the one
hand from the ability of the human eye to detect the pattern of the ML and on the other hand from the imperfect movements
of the mouse. Therefore, the standard deviation of both triplets was calculated. The transition in the upper and lower boundary
of the ML, describing the uncertainty, are determined by +- the standard deviation centered around the triplet averages. Within
the transition the uncertainty of the procedure is expressed as a linear function between 0 (no ML) and 1 (certain ML). If there
are less than three lines available, the uncertainty is not determined by the standard deviation but by fixed values which grow
with decreasing number of available lines. The last panel in Fig. 1 shows the resulting “true” ML in gray, overlain with the

lines drawn from the five variables. The dark gray area depicts the region where there is certainly an ML and the light gray



area depicts the transition region. The training data for the NN thus consists of one profile for each measuring time, with values
ranging between 0 and 1.

The ML can only be determined by eye for cases where the ML is fairly continuous in time, therefore only such events
were chosen to generate the “true” data. Many cases consist of fairly continuous rain at the surface and a well developed ML

above, but the training data also includes MLs at the surface, cases with no ML due to snow or drizzle, and cases without
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Figure 1. Determining the “true” ML for Hamburg on 8 Mar 2018, 15:00 to 18:00 UTC. Shown are WIDTH, RR, ZEA’, VEL’, ZEA” and
the “true” ML. The manually determined ML heights from each variable are shown as colored lines: blue lines from WIDTH, orange lines
from RR, purple lines from ZEA’, red lines from VEL’, and green lines from ZEA”. The resulting “true” ML is shown at the bottom right as

shaded gray (see text).
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Table 1. Overview over Training Cases of 6 hour intervals

no precip  snow or drizzle ML above ground ML on ground  showers

3 14 48 7 7

any precipitation. Also, some cases with showers were included, where no ML was detected by eye and the desired output is
“no ML”. In total, 79 intervals of 6 hours were drawn, giving a total time of 474 hours. An overview of the cases is given in
Table 1. Within one interval, there can be more than one situation. In many cases, precipitation starts or stops, so that the cases
were classified on the basis of the most significant characteristic (e.g., “ML above ground” even if half the time there is no

precipitation).
2.3 Neural network

NNs are modeled after the human brain. The idea is to connect individual artificial neurons and train them for a specific task. A
neuron receives input data, combines the weighted input and gives an output according to an activation function. The weights
determine the importance of the input data and the activation function determines the level of activity of the neuron. The
output value is only transmitted if a threshold is exceeded. In a simple NN such as used here, the neurons are arranged in an
input and an output layer, with optional hidden layers in between, and the data only moves forward through the NN. Each
neuron is connected to all neurons in the previous and the next layer. The connections between the neurons have a weight,
which is random in the beginning and adjusted during the training process to give the desired output. The training process is
performed by giving data to the NN multiple times. Each time, the output of the NN is compared to the desired output, an error
is calculated and the weights are slightly adjusted to minimize the error. Once the NN is trained, it is evaluated with previously
unseen data.

As input data, profiles of both ZEA and VEL proved to be the best choice. The combination of these two variables have
also produced the best results in Pfaff et al. (2014). Before using these profiles within the NN, they need to be prepared. First,
the data was interpolated to a vertical resolution of 25 m, and aliasing of VEL was corrected. Also, where ZEA falls below
a threshold of -5dBZ, ZEA and VEL were considered to be invalid. Because the NN is not able to process missing values,
they were set to O for VEL and to -10 for ZEA. Since the NN needs the values of the input to roughly range between 0 and 1,
ZEA and VEL were scaled accordingly. To use the fact that the height of the ML shows some persistence in time, profiles of
ZEA and VEL from four previous time steps were also used as input. Those four profiles were not taken from the time steps
directly before, but were spaced apart 6 time steps to be able to “see” farther into the past without having to use all 24 profiles.
Then, to account for the fact that most MLs in the training dataset are located roughly in the middle of the profiles, and to
increase the volume of training data, the profiles were subdivided. From each profile, the bottom 64 heights were taken as one
sub-profile. Then, the interval of 64 heights was shifted by one height, and these 64 heights were taken as another sub-profile.
This procedure was continued to the top 64 heights, resulting in 65 sub-profiles. This improved the prediction of MLs at the
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very bottom and top of the profiles. This whole preprocessing of the data results in an input array consisting of sub-profiles of
multiple time steps of both ZEA and VEL, yielding 2*65*64*%4=33280 values for each measurement time step of the MRR.

The NN used here is a feedforward NN with two hidden layers. Each hidden layer has 64 neurons, the learning rate at the
beginning is 0.002. The python library scikit-learn (Pedregosa et al., 2011) was used to develop the NN. Due to the large
amount of training data, it was impractical to load all data into memory at once, so it was determined manually in which order
and how often the individual datasets were used in training. To be able to determine the performance of the NN during training,
validation data was used. The training procedure of the NN began with iterating through all 6 hour intervals of the training
dataset once, successively in a random order. After each 6 hour interval, the performance of the NN was determined with the
validation data and the mean square error (MSE) between the prediction and the “true” ML was calculated. For the calculation
of the MSE the prediction was slightly tweaked for false positive values to nudge the NN toward a conservative prediction.
After one epoch, the mean MSE was calculated, and all 6 hour intervals with an MSE larger than the mean MSE were not
used for training in the following epochs. This means that for each epoch, the amount of training data decreases, until there is
no more data left, denoting the end of the training. After each epoch, the learning rate was divided by two and the remaining
data was again shuffled. If the mean MSE of one epoch was worse than that of the epoch before, that epoch was not used for
training.

The validation data consisted of seven 6 hour intervals, chosen to represent different situations such as an ML above the
ground, an ML on the ground, a case with showers, and a case of snow. The common method of splitting all data randomly
into training and validation data seemed impractical here, because it was important to cover many different meteorological
situations within the validation set to ensure that the NN can handle them all well. Picking the validation data randomly would
either result in not covering different situations, or the random picking would have to be applied to individual profiles instead
of 6 hour intervals. This, however, was impractical due to memory constrictions and turned out not to be necessary.

To ensure that the NN is not overfitted to the validation data, the rest of the measurement data, for which no “truth” was
created, was used as test data. Since the NN should handle all possible situations, the performance of the NN was assessed
visually for the test data. The NN was adjusted and the training process was repeated until the visual inspection showed a
satisfactory result (see also sec. 3).

The trained neural network consists of a number of weights. Figure 2 visualizes these weights for the input layer. The x-axis
shows the index of the input parameters with indices 1-320 corresponding to the 5 sets of 64 heights of attenuated equivalent
reflectivity and indizes 321-640 corresponding to the fall velocity inputs, the y-axis represents the index of the nodes of the
second layer, and the color denotes the value of the weight. Figure 3 highlights the weights used to calculate the input for second
layer node 22 which are applied to the fall velocity. The sinewave like structure functions similar to a gradient approximation
showing that the neural network extracted the importance of the fall velocity gradient from the training data. The maximum
and minimum of this structure correspond to heights 175 m apart, which aligns well with the expected width of the melting
layer. The amplitude of the weights decreases with time, showing that the NN puts higher importance to more recent velocity
values and lesser importance to those values which are farther in the past. Similar structures can be found for different second

layer nodes but at different heights demonstrating that the neural network searches for gradients in the fall velocity.



After the training was complete, there occurred situations where an ML was wrongly detected. Many of these situations had
similar characteristics. These cases were situations with a high ML and a wrongly detected second ML near the surface. Also,
sometimes the upper edge of valid MRR data was wrongly taken as ML. Therefore, a post processing step was included to
remove the wrong detections in these specific cases, based on fixed thresholds of rain rate and signal to noise ratio. Also, MLs
that lasted less than six time steps were removed to avoid short term clutter, and MLs with a confidence of less than 0.2 were

set to 0.

3 Results

This section describes the performance of the fully trained NN, starting with a straightforward case of a well developed

continuous ML. Then, more complex cases are shown to give an overview over the range of possible situations and to show
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Figure 2. Neural network input layer weights.
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Figure 3. Fall velocity weights for node 22 of the input layer.
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how the NN is able to handle these situations. Also, sensitivity studies of vertical and temporal resolutions and comparisons

with an ML detected by weather radars, with radiosonde data, and with a cloud radar are shown.
3.1 Performance of NN

An example of the performance of the NN is given in Fig. 4 for a well developed ML. In the time period shown, there is a
continuous ML at about 1900 m and rain below. The output of the NN is shown in the range between 0 and 1, indicating the
uncertainty with which the NN detects the ML. Values close to 1 indicate a high confidence in the existence of an ML. The
ML detected by the NN is fairly broad. This is due to the training data, where the ML starts at the top with completely frozen
particles and ends only when all particles are liquid. This means that the NN will also give broad MLs. The NN could as well
have been trained with one height of the ML, e.g., the middle of the ML height; it is a choice of design. The thickness of the
ML is also influenced by the precipitation intensity, in the training data as well as detected by the NN in the test data. This
behavior has previously been observed by, e. g., Klaassen (1988).

Though the performance of the NN in the situation shown in Fig. 4 is obviously good, the NN needs to be validated for many

different situations if it is to be used operationally. However, calculating a metric to quantify the error is difficult, since common
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Figure 4. ZEA, VEL, and ML detected by the NN for Hohenpei3enberg on 13 Jun 2018, 0:00 to 3:00 UTC.
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metrics such as mean square error or probability of detection all need to know the expected outcome. Sect. 2.2 described the
procedure with which "true" data was generated, which was needed for the training of the NN. We wanted to use as much data
as possible for the training process because the performance of the NN depends on the amount of training data. Therefore,
most of the data where a "truth" was generated was used to train the NN and the rest of the "true" data was used for validation.
During training of the NN, it was constantly tested against a validation data set and the mean square error was calculated (see
sect. 2.3), which determined when the training is complete. For testing the NN, no “true” data was used, since creation of “true”
data is time consuming and only possible for situations where the eye can easily identify an ML. Also, we wanted the NN to be
conservative, meaning that a false negative is considered less severe than a false positive. Therefore, during the development
of the NN, the performance of the NN was visually inspected and a low MSE was not automatically considered a good result.
The final evaluation of the NN was conducted by plotting the output of the NN as well as the time series of the profiles of ZEA,
VEL, and others. Then, all available 261 days of data were visually inspected and evaluated. In the following, a few cases are
shown which are exemplary of the performance of the NN in different weather situations.

Figure 5 shows a case without ML. The temperature on the ground is below zero and the precipitation is snow throughout

the measuring range. ZEA has no maximum and VEL shows no acceleration. The NN correctly detects the absence of an ML.
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Figure 6 shows a case where the ML lifts from the ground. Surface observations measured a temperature at 2 m height of
around 1.5 °C at 0 UTC, increasing to about 3.5 °C at 3 UTC, and the precipitation at the surface turned from sleet to rain. In the
beginning, the snow has started to melt, but the melting process has not completed above ground. With increasing temperature,
the melting starts higher up and is complete before the precipitation hits the ground.

Figure 7 shows a convective case with showers. In these situations, the ML is not continuous in space and time as it is in a
case with a homogeneous cloud layer and stratiform rain. In these short rain events, the measured profiles of vertical velocity
and reflectivity are distorted because the falling rain is skewed, thus the NN is not given profiles in which the melting is fully
contained. Therefore, in such cases the detection of an ML by eye is difficult or even impossible. Accordingly, the NN has
difficulties dealing with these cases. During the training process, the NN was tuned to detect as little as possible in these cases,
but it was not possible to train the NN not to detect anything without impeding the abilities of the NN for other cases. Therefore,
convective cases are those cases where the NN has the most problems.

In our dataset we found two cases where two MLs at the same time were clearly visible, one of which is shown in Fig. 8. At
Greifswald, the radiosonde at 12 UTC measured two layers with temperatures above freezing, one freezing layer in between

and freezing temperatures above (Fig. 9). The two MLs in the radar data are visible to the eye, especially in the reflectivity
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Figure 6. Same as Fig. 4 for Hamburg on 14 Dec 2017, 0:00 to 3:00 UTC.
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data. The time difference in the occurrence of the two ML in the radiosonde and radar data can be originated in the different
locations, which are about 100 km apart. The NN also observes the two MLs, despite the fact that there was no such case in the

training data set. This is a sign that the NN is able to generalize.
3.2 Sensitivity studies

For the NN to work operationally, it must be ensured that it can handle various settings of MRR operation parameters. There-
fore, four 6 hour intervals with precipitation from an MRR located in Elmshorn with a vertical resolution of 50 m and ten 6
hour intervals with a resolution of 100 m were tested. Since all data is first interpolated to a resolution of 25 m and the NN
expects 128 height levels, no ML can be detected above 3200 m. Since the ML heights in the data from Elmshorn are below
this height, the NN was well able to detect the ML, proving that it can handle data with various vertical resolutions up to 100 m.
For even coarser vertical resolutions, the NN might have trouble detecting an ML since then the resolution might be of the
same order or even larger than the vertical extent of the ML.

Also, the sensitivity of the NN to the temporal resolution of the data was tested. The NN was trained with a temporal

resolution of 10 s and with profiles of five different times each one minute apart from the next profile. Since the NN should
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work for different operational settings of the MRR, it should also give good results when an MRR is operated with a larger
averaging interval. Therefore, part of the test dataset (20 days) was averaged over 30s and 1 min, and the NN was again
given five profiles each one minute apart from the next. The output of the NN was then visually inspected. Only averages
up to one minute are tested because MRRs are seldom operated with longer averaging intervals. The difference between the
different averaging intervals are small (not shown). In general, for a longer temporal average, the detected ML gets smoother.
In some cases, the NN with a larger averaging interval wrongly detects an ML with a low probability for short periods of time
(“clutter”). Also, the edges of the ML are a bit less clearly defined, manifested by slightly larger tails of a low probability of
detected ML. However, in some cases there are small gaps in the detected ML for the short averaging interval of 10 s when the
ML is detected in some time steps but not in others. This results in small fragments of correctly detected ML which might in
addition be filtered out by the criterion that MLs lasting less than six time steps are removed. For larger averaging intervals,
these gaps are sometimes filled because of the smoothing of the data. The described differences only appear for cases where
the detection of an ML is somewhat difficult due to, e. g., showers, whereas for most cases, differences between the different
temporal averages are hardly discernible. Therefore, we conclude that the NN is able to handle different temporal resolutions

of MRR data up to a resolution of one minute.
3.3 Comparison to C-band radar

The ML height detected by the NN was compared to the ML height detected by C-band radars deployed by the German
Weather Service (DWD). The DWD is in the process of developing an ML detection algorithm for the operational weather
radars in Germany, supported by the numerical model COSMO-D2. For the two locations of the MRR where most of the used
data comes from, the ML was compared to the ML detected by the surrounding C-band radars. For the MRR at Hamburg
airport, the surrounding weather radars are located at Boostedt, Rostock, and Hanover. For Hohenpeif3enberg, they are located
at Tiirkheim, Isen, and Memmingen. Data is available until June 2018. For 35 (18) of the 90 (84) days where the MRR detected
precipitation in Hamburg (HohenpeiBlenberg), at least one weather radar in the vicinity of the MRR detected an ML at the
location of an MRR. Many cases were detected by the MRR but not by the weather radars. Mainly, this is because the weather
radars are too far away from the MRR.

Figure 10 shows an example of the MRR data with the ML detected by the algorithm using weather radars and model data
overlain as dots on the output of the NN. The C-band radars do a volumetric scan every 5 minutes, therefore the temporal
resolution of the detected ML is much coarser than that of the MRR. In the shown case, the different weather radars disagree
on the exact height of the ML, possibly because the weather radars measure with a low elevation angle and are located between
40km and 90 km away from the MRR, so the vertical resolution of the C band radar over the MRR is around 700m for the
closest radar and around 1500m for the farthest radar. Also, the coarser spatial resolution could explain the differences to the
MRR, since the scanned volume might be different. The MRR seems to be much better suited to detect the ML height at one

location, thus the information of the MRR might aid the detection algorithm of the weather radars.
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3.4 Comparison of ML height to radiosondes

The ability of the NN to determine the ML height has mostly been assessed by visual comparison with the other data measured
by the MRR (see sec. 3.1). As explained in sect. 2.2, it is difficult to find other sources of the ML height with which a
meaningful comparison can be made. At Hohenpeilenberg, radiosondes are launched about twice a week to measure ozone.
These radiosondes also measure temperature, so that a comparison can be made between the height of the freezing level of the
radiosonde and the top height of the ML detected by the NN, since the frozen particles should start to melt at the level of 0 °C.
Such a comparison has limitations, because for those times when a radiosonde is launched, precipitation must be detected by
the MRR within a short time period of the launch. Also, the weather situation must be fairly constant so that a sudden change in
ML height is unlikely and it can be assumed that the ML height detected by the MRR can be compared to the O °C height of the
radiosonde. When sorting through the available radiosonde data, cases were rejected where it was clear from MRR data that the
precipitation and therefore the ML height might be changing too quickly or the duration of the precipitation was less than two
minutes. From all available data from Hohenpei3enberg, 18 cases were found for which a fairly reasonable comparison can be

made. Figure 11 shows a comparison between the freezing level of the radiosonde and the top height of the ML determined by
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Figure 10. ZEA, VEL, and ML detected by the NN for Hohenpeifienberg on 10 Aug 2017, 15:00 to 18:00 UTC. The dashed lines indicate

the top and bottom of the ML heights detected by three weather radars: Green from Isen, blue from Memmingen, pink from Tiirkheim.
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the NN. Since the time difference between the detected ML by the NN and the measurement of the radiosonde is up to about
5 hours and the radiosonde drifts horizontally as it rises, the value of this comparison is limited. Nevertheless, overall there is
a good agreement between the radiosondes and the NN, almost independent of the time difference between the ML measured
by the NN and the radiosonde. The largest difference between ML top and freezing level is about 320 m for a case where the
time difference between both measurements is about 3,5 hours. In four cases, the radiosonde measured negative temperatures

at the surface and the NN correctly detected no ML (blue circles at height 0 m in Fig. 11).
3.5 Comparison of ML height to cloud radar

For four additional days in December 2018 and January 2019, a comparison between the ML detected by the NN and a cloud
radar (MIRA-35 by Metek, 30m vertical resolution) was made. The cloud radar determines a melting layer height to identify
plankton. The ML is determined from the linear depolarization ratio (LDR) in the vicinity of the ML taken from a database
(METAR-data, radio soundings, or model data). Figure 12 shows an example of this comparison. The background shows ZEA
measured by the MRR for reference. The gray area denotes the ML detected by the NN, and the blue line is the ML detected
by the cloud radar. The ML from the NN is fairly broad and encompasses the maximum of the reflectivity, as described in
the previous sections. The ML from the cloud radar mostly follows the bottom boundary of the ML detected by the NN. This

is caused by the way the ML is determined by the cloud radar. The LDR is sensitive where the particles are already mostly
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Figure 11. Comparison between ML height determined by NN and freezing level from radiosonde for Hohenpeilenberg. The colors denote
the time difference between the two heights: no difference (blue), 0—1 hour (green), 1-2 hours (olive green), 2-3 hours (yellow), 3—4 hours

(orange), 4-5 hours (red).
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melted, while the NN considers the whole process of melting. Considering these differences in purpose and determination of

the ML, the agreement between both instruments is very good.

4 Conclusions

We have developed a neural network to detect the ML from MRR data operationally. The available data encompasses measure-
ments from all seasons and from two MRRs at two locations in Germany, one location being on an isolated mountain in the
very south of Germany and the other in the North German Plain. With this dataset, the NN was tested extensively.

Overall, the NN was well able to detect the correct ML height. Some weather situations are more difficult for the NN to
handle than other situations. Cases where an ML is located well above the ground and fairly continuous in time and space pose
the easiest cases and therefore the NN handles them best. The most frequent situations in which the NN is not able to capture
the ML height well are those with discontinuous precipitation associated with convection. Then, also the human eye can hardly
detect the ML height in the measurement data. These situations are more frequent in summer due to stronger and more frequent
convection in this season. Also, in some situations with snowfall, the NN detects clutter near the ground (wrongly detected
MLs with a low probability and a small vertical and temporal extent), which is not covered by the suppression of clutter in
the post-processing. More uncommon situations where the NN is sometimes not able to correctly detect an ML are situations
when (i) there is strong horizontal wind, (ii) the signal directly below the ML is weak, (iii) there are disturbances in the signal,
or (iv) the dealiasing of the fall velocity failed. Horizontal wind leads to slanted structures of precipitation, which violates the
assumption of the NN that an ML can be derived from characteristics within one vertical profile. Though aliasing of the fall
velocity is corrected, this algorithm is not able to handle rare situations where the fall velocity is shifted by large amounts due
to strong convection.

To ensure that the NN is able to handle different averaging intervals of the input data and different settings of the vertical

resolution of the MRR, sensitivity studies were made. These tests showed that the NN is well able to handle temporal aver-
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Figure 12. Comparison between ML height determined by NN and by a cloud radar, for Elmshorn on 22 Dec 2018, 15:00 to 18:00 UTC.
The colors in the background show the ZEA from the MRR, the gray shading denotes the area where the NN detected an ML, and the blue
line is the ML detected by a cloud radar.
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aging up to one minute and different vertical resolutions of up to 100 m. Also, a comparison to radiosonde data was made at
Hohenpeillenberg where one MRR was located and radiosondes were launched. Though there were only few simultaneous ML
observations, the agreement of ML height was very good. In addition, the detected ML is consistent with measurements from
a cloud radar.

The NN presented here was designed to be used operationally, being able to handle different weather situations and settings
of the MRR. Some decisions were made during the development concerning the design of the NN and the desired output.
One such choice is the broad width of the detected ML, encompassing the whole process of melting. While tuning the NN, a
balance was sought between too many false positive detections and too many false negative detections. For some applications,
few false positives might be more beneficial, while for other applications, few false negatives might be more important. The
decisions made for this NN were aimed to be valid for a broad range of applications.

This study showed that a neural network approach is well suited to detect the pattern of the ML from radar data. Though we
have used the MRR, this approach can in principle be used by other types of radars as well. In contrast to deterministic methods
(e. g., Fabry and Zawadzki, 1995; White et al., 2002; Cha et al., 2009; Perry et al., 2017), the NN is able to detect uncommon
melting layers such as melting layers on the ground or two melting layers at once, and does not need to be given thresholds or
the shape of a profile with a melting layer in advance. A disadvantage of this method is that an NN lacks all physical basis and
is thus not suited to study the physics within the melting layer. The time resolution of our approach can in principle be as high
as the time resolution of the measuring radar, giving the possibility of detecting fast changes in the melting layer height, which
can be important at, e. g., airports. Post-processing can include time-averaging and filtering of short ML occurrences, if a false
positive detection is deemed worse than a false negative detection.

Future work could include using data from other climatic regions. Also, the preparation of the data such as the dealiasing
of the fall velocity, or the post processing of the NN could be improved. The chosen algorithms for data preparation and post
processing are designed to be fast enough for real time use within an MRR, therefore, their complexity was limited. Extending
these algorithms might improve the performance of the NN.

Fields of applications for the presented NN are for example airports where reliable ML data could add important information
to help to detect the danger of icing. The local data can also be used as supporting information to improve the quality of spatial

ML data as provided by weather radars or numerical models.
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