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Referee 1

[GENERAL COMMENT]: The manuscript by Liefhebber et al. describes an automatic
quality control procedure for the data provided by the first generation of Meteosat satel-
lites, which have been in orbit between 1981 and 2017. Exploration of these data
sets for climate analysis has not been the main purpose of the data collection at the
time when this data was acquired, so no particular attention had been paid to the re-
quirements related to climate data, e.g., the documentation of data anomalies. The
manuscripts describes methods to automatically detect so-called ‘anomalies’ in these
geostationary satellite data; these anomalies should not be used in retrieval systems
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when deriving thematic climate data records from the satellite data. Multiple typical
anomalies have been identified, each of them is individually detected. For three of the
typical anomalies, details of the detection algorithm are presented in this manuscript,
while no in depth information is provided for the detection of other anomalies. The
manuscript is clearly structured, well written and contains relevant information. | am
recommending publishing this manuscript in AMT after my minor revisions are incor-
porated.

[ANSWER]: Thank you very much for the positive comments.

[SPECIFIC COMMENTS] [COMMENT #1] It would be most useful if the information on
the anomalies detected in the satellite data would be accessible to users to avoid using
anomalous satellite data when creating a climate data record. Please provide a list/ a
data base of the problematic satellite slots, e.g., as a supplement to this manuscript.

[ANSWER]: EUMETSAT is currently undertaking an image reprocessing of the MVIRI
images to produce new level 1.5 data in NetCDF format, which will be utilising the
anomaly detection database. In the new level 1.5 files, there will be quality flags for
users to identify anomalous images or data points and details on the anomalies.

Specific comments Please add the information on the satellite slots and channels (if
appropriate) to all figures depicting satellite data, i.e., Figs. 2, 3,4, 5,7, 8, 9, 10.

We will add the information where appropriate, according to the following table:
Figure filename channel

2 left METEOSAT3-MVIRI-MTP15-NA-NA-19900816133000 WV

2 right METEOSAT2-MVIRI-MTP10-NA-NA-19840215160000 IR

3, left METEOSAT4-MVIRI-MTP10-NA-NA-19911216110000 WV

3, center METEOSAT2-MVIRI-MTP10-NA-NA-19831016120000 WV
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3, right METEOSAT2-MVIRI-MTP10-NA-NA-19810817223000 WV
4 left METEOSAT4-MVIRI-MTP10-NA-NA-19900415003000 WV

4 right METEOSAT5-MVIRI-MTP10-NA-NA-20060317213000 WV
5 left METEOSAT2-MVIRI-MTP10-NA-NA-19810817223000 WV

5 right METEOSAT4-MVIRI-MTP10-NA-NA-19901015013000 WV
7 left METEOSAT7-MVIRI-MTP15-NA-NA-20130717210000 WV

7 center METEOSAT7-MVIRI-MTP15-NA-NA-19991016003000 VIS
7 right METEOSAT4-MVIRI-MTP10-NA-NA-199004 15003000 WV
8 left METEOSAT5-MVIRI-MTP10-NA-NA19961015300000 WV

8 center METEOSAT5-MVIRI-MTP10-NA-NA19961016000000 WV
8 right METEOSAT5-MVIRI-MTP10-NA-NA19961016300000 WV

9 METEOSAT5-MVIRI-MTP10-NA-NA19961016000000 WV

10 around METEOSAT5-MVIRI-MTP10-NA-NA-19960515120000 IR

[COMMENT #2] Page 1, line 17: Please change ‘solar irradiation’ to ‘surface solar
irradiance’.

[ANSWER]: Will be changed to ‘surface solar irradiance’.

[COMMENT #3] Page 3, line 5 ff: Please add the information on the time it takes for
the satellite to finish the forward scan.

[ANSWR] It takes 25 minutes to complete the forward scan. This information will be
added to the document.

COMMENT #4] Also it might be of interest to the reader to have an idea on the overall
size of the data set, so maybe the total size of the data set can be added in this section
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as well (it should be a pretty impressive data amount).

[ANSWER]: The size of all 1.0 files that were being processed iss 47TB. This informa-
tion will be provided in the document.

[COMMENT #5] Page 4, line 14: Consider starting a new paragraph after ‘. . . limited
dataset., which begins with “The remainder of this section. . .

[ANSWER]: The new paragraph will be inserted.

[COMMENT #6] Section 3.1 / Figure 1: The creation of the training-set needs to be
more clearly described. My understanding is that as a first step, [. . .] samples
were randomly selected, but with several constraints [. . .]' (p4, line 31); these sam-
ples (please specify the number of randomly selected samples) have been manually
inspected . . .] to determine if it contains an anomaly. (page 5, line 9). To improve
the quality of the training data set (Is it intended that that training data set only contains
problematic satellite slots?) an ‘anomaly detection ‘-algorithm was applied to the train-
ing data set that either supports or falsifies the result from the manual inspection. The
result of this ‘automatic anomaly detection’ is manually verified and, if an anomaly can
be manually confirmed, this new case is “added to the training-set.” (page 5, line 26).
It is not clear to me how this description transfers into Figure 1. Does ‘Ground truth’
corresponds to the training-set? From the ‘entire dataset’ (all satellite slots, | assume)
a subset is randomly selected (first box) and manually inspected (the ‘subsetting’ as
suggested by the arrow should occur only after the manual inspection, if | am not mis-
taken). To the ‘ground truth’ slots (the ‘training-set'?) the automatic anomaly detection
as well as a manual verification is applied. In case the manual verification identifies an
anomaly this slot is put back to the ‘Ground truth’ and tested again until the result has
been verified.

[ANSWER]: Apologies for the confusion. Indeed, Figure 1 is not correct. The ‘Ground
truth’ as described in the figure should indeed read as ‘training-set. We will change
Flgure 1 by replacing the description in the ‘Ground Truth’ box into “Training set’.
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[COMMENT #7] Please add a box representing the ‘Training-set’ to Figure 1 (maybe
it even is the outcome of the ‘verification result’?); add information on the size of the
different subsets, i.e, the ‘subset’ to start the generation of the training set as well we
the size of the training set. Also please clearly specify whether the training set contains
only anomalies or not.

[ANSWER]: With respect to the “Training set’ in Figure 1, please see our answer directly
above. We will add the size of the training set to the description. And also specify
whether only anomalies are contained in the ‘Training set'.

Interactive comment on Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2019-249, 2019.
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Fig. 1. Update Figure 1 (Training set issue)
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Apologies, | have forgotten to address a comment:

[COMMENT]: Table 4: Please add the detection performance for each anomaly type to
the table; also please add information on the affected satellite channel, if appropriate.

[ANSWER]: The overall Probability of Detection of the anomalies has been determined
based on the results from the training set. The POD of each anomaly type has not been
determined, because the number of occurrences in the training-set is considered to be
too low to reliably calculate the POD. For some anomaly types the sensitivity level of
the algorithm (should an image where an anomaly is vaguely visible be flagged or not)
could be subject to end-user’s preference, and as such the sensitivity level will affect the
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POD and the false alarm rate of the algorithm. The simple anomaly categories, such
as "corrupt or missing" and "hot pixel", the anomalies are detected in all cases. For the
more complex anomaly types, such as "direct stray light" and "suspicious spectrum”,
the POD is around 90%.

Interactive comment on Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2019-249, 2019.
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Referee 2 This is a clear, well-written paper describing anomaly-detection algorithms
applied to Meteosat First Generation data that allow for quality control to screen out
problematic values when using the data in climate applications. These algorithms could
be usefully generalized to other geostationary sensors. | recommend that this paper is
published if the authors address my minor comments below.

[ANSWER]: Thank you very much for the positive comments.

Specific comments [COMMENT] Figure 10 - left-hand image should have a colour
scale bar showing the magnitude of the bias.

[ANSWER] We agree that the left-hand image of Figure 10 with colour scale will provide
C1

a more information to the reader, and therefore the figure is updated.

[COMMENT] Table 4 - MET6 has 62.4% "incomplete image" due to being configured
for RSS as noted in the text. Why is the corresponding METS value only 0.2% when it
was configured for RSS for 4Lij5-10% of its operational life (according to Table 1)?

[ANSWER]

As shown in EUMETSAT Satellites History document (EUM/OPS/DOC/08/4698, link
below) Met5 was doing RSS from 21/04/1997 to 03/07/1997. However, there are only
a very few RSS data files available during that time.

https://www.eumetsat.int/website/wcm/idc/idcplg?ldcService=GET_FILE&dDocName=PDF_

[COMMENT] Table 4 - the "parameter empty" and "value unexpected" stats are iden-
tical possibly suggesting a strong overlap between these flags: is the former a subset
of the latter case? Is it useful to maintain separate anomaly classifications for these?
More generally, when looking at Table 4, it would be very useful to provide some infor-
mation about the relative importance of the different anomalies and their implications
for the data. For example, what is the typical magnitude of the impact on the data,
or what does "parameter empty" actually imply for the data (does it depend on which
parameter was empty? Does an empty parameter invalidate an entire channel for a
slot, or an entire slot?) At face value, MET2 and MET3 have 100% of slots flagged
for 3 anomalies ("invalid signal", "parameter empty", "value unexpected"), and >98%
of slots flagged for "background noise removed”, but presumably this does not mean
all the MET2 and METS3 data should be rejected? Of course, just because a slot is
flagged, that does not indicate all data for all channels within the slot are affected,
but some information about the impacts of the various anomalies would make these
statistics easier to interpret, and would be essential for someone making use of these
anomaly flags for quality control. This information could be provided in a separate table
or in the text if it will not fit into table 3 or 4.
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We agree with the reviewer that some of the anomalies that are flagged to a very high
percent will not make the data unusable. For example, the "background noise removed"
anomaly for MET2 and METS3 will only hinder the recalculation of instrument noise
(computed as the space corner noise) or space count values for these instruments.
But operationally computed values for these parameters are already available in the
data and could be used. The images themselves are not affected by the removed
background noise. This will only affect when these images have to be recalibrated as
described in Ruethrich et al, 2019.

EUMETSAT is currently undertaking an image reprocessing of the MVIRI images to
produce new level 1.5 data in NetCDF format, which will be utilising the anomaly de-
tection database. In the new level 1.5 files, there will be quality flags for users to identify
anomalous images and information on which data and metadata is affected.

Rathrich, F, V. O. John, R. A. Roebeling, R. Quast, Y. Govaerts, E. Wooliams, and
J. Schulz (2019) Climate Data Records from Meteosat First Generation Part Ill: Re-
calibration and Uncertainty Tracing of the Visible channel on METEOSAT 2-7 using
Reconstructed, Spectrally Changing Response Functions, Remote Sens., 11, 1165,
https://www.mdpi.com/2072-4292/11/10/1165.

[COMMENT] Technical comments Page 5, lines 19/20, typo: remove duplicate "also"
[ANSWER]
One of the ‘also’ words will be removed.

Interactive comment on Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2019-249, 2019.
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The automatic quality control of the Meteosat measurements described in this
manuscript will certainly be helpful for future analysis of MFG data. In my opinion
the anomaly detection results are not just relevant for filtering the complete set of im-
age data but constitute an important data set in their own right. One could for example
imagine that a comparison of the stray light effects identified in flight with the predic-
tions from optical models before launch will aid the design of new instruments without
stray light anomalies. Also celestial bodies in the field of view could be interesting.
Therefore it might be as desirable to have the capability to produce collections of data
affected by certain anomalies as producing data sets containing no anomalies.
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[ANSWER] Thank you very much for your thoughtful comments. We agree that the use
cases for the tool extend indeed beyond excluding anomalous data for re-processing
of long-term data.

Interactive comment on Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2019-249, 2019.
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Automatic Quality Control of the Meteosat First Generation
Measurements

Freek Liefhebber!, Sarah Lammens', Paul W.G. Brussee', André Bos!, Viju O. John?, Frank Riithrich?,
Jacobus Onderwaater?, Michael G. Grant?, and Jorg Schulz?

IScience and Technology B.V., Delft, The Netherlands
ZEUMETSAT, Darmstadt, Germany

Correspondence: Freek Liethebber (liethebber @stcorp.nl)

Abstract. Now that the Earth has been monitored by satellites for more than 40 years, Earth Observation images can be used
to study how the Earth system behaves over extended periods. Such long-term studies require the combination of data from
multiple instruments, with the earliest data sets being of particular importance in establishing a baseline for trend analysis.
As the quality of these earlier datasets is often lower, careful quality control is essential, but the sheer size of these image
sets makes an inspection by hand impracticable. Therefore, one needs to resort to automatic methods to inspect these Earth
Observation images for anomalies. In this paper, we describe the design of a system that performs an automatic anomaly
analysis on Earth Observation images, in particular the Meteosat first generation measurements. The design of this system
is based on a preliminary analysis of the typical anomalies that can be found in the data set. This preliminary analysis was
conducted by hand on a representative subset and resulted in a finite list of anomalies that needed to be detected in the whole
data set. The automated anomaly detection system employs a dedicated detection algorithm for each of these anomalies. The
result is a system with a high probability of detection and low false alarm rate. Furthermore, most of these algorithms are able

to pinpoint the anomalies to the specific pixels affected in the image, allowing the maximum use of the data available.

1 Introduction

Earth Observation (EO) from geostationary satellites provides a wealth of information which can be used to study the Earth’s
climate system as described, for example, by Rossow and Schiffer (1999). While their focus of interest were long term cloud
effects, other studies also have used those data for deriving information on land surface temperatures (Duguay-Tetzlaff et al.
(2015)), upper tropospheric humidity (Soden and Bretherton (1993)) and solar irradiation-surface irradiance (Mueller et al.
(2015)). EUMETSAT’s Meteosat First Generation (MFG) satellites were equipped with the Meteosat Visible Infra-Red Imager
(MVIRI) instrument. The MVIRIs had been measuring in three distinct wavelengths: i) visible (VIS) - providing information on
surface and atmospheric albedo (John and Soden (2007); Ruethrich et al. (2019)); ii) water vapour (WV) providing information
on upper tropospheric humidity, which is a key climate variable, yet not very well simulated by the current climate models
Steeekdi-et-al«2049)(Stoeckli et al. (2019)); and iii) infrared (IR) window providing information on the surface and cloud top
temperature and on the presence of clouds Jehn-etal<20+9)(John et al. (2019)). Data from Meteosat-1, launched in 1977,
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are available for only a year from December 1978 to November 1979. There are continuous data available from Meteosat-2
onwards starting in February 1982 until April 2017 when the last satellite in the series, Meteosat-7, was moved to its graveyard
orbit.

If such an image dataset is to be used for analysing how the climate varies over time, one must control the quality of the
dataset in order to avoid any bias in the result. The potential value of such a historical time series, however, is partially hindered
due to the presence of image anomalies (Koepken (2004)) (i.e. acquisition errors, physical effects such as straylight, etc) and

radiometric anomalies (Brogniez et al. (2006)) (i.e. calibration errors, calibration drift, etc). There-have-been—<considerable

great importance for missions that produce and use Earth Observation sensor data on a daily routine basis. Now that a massive
amount of sensor data is available —both historical and in the number of different sensors- the subject of automatic quality.
control and consequent corrections becomes only more of practical importance. Interesting is the work of Szantai et al. (2011)
which addresses anomalies in optical imagary of different geostationary satellite imagery. Our work complements this as it

analyzes the whole history of one family of geostation

sensor, i.e., the MFG satellites, for which the results are stored in

a database that during later reprocessing can be consulted. Examples in the literature of image restoration — a process that
normally follows after the quality assessment phase include the correction for radiometric anomalies (Ruethrich et al. (2019);
John et al. (2019)), but-se-far-there-were-ne-attempts-to-detect-and-corre image-anomaties—and the correction of the point
spread function characteristics to compensate for sensor contamination (Doelling et al. (2015); Khlopenkov et al. (2015)).

For the MFG satellites, EUMETSAT keeps an archive of the level 1.0 data (raw images with geolocation tie points but prior

to rectification and calibration) and level 1.5 data (rectified to a fixed geolocation grid and calibrated). These data were archived
in near real-time, meaning no corrections have been applied beyond that in the original processing. For a planned reprocessing
of the level 1.0 to level 1.5 data addressing data anomalies, it is mandatory to create a consistent and as-complete-as-possible
set of information concerning each Meteosat image including its metadata and the detection and flagging of anomalies in
the measurements. An image anomaly is defined as an anomaly in the radiometric content of an image not caused by the
rectification process, a satellite manoeuvre, scheduled change in satellite parameters (decontamination, gain changes). If such
unexpected image radiometric anomalies occur, they can have a very detrimental impact on the use of the images. Except for
problems such as wrong gain settings, wrong channel configuration, they will usually occur within the commissioning phase
of a new satellite or in the period after just taking up operations with a new satellite. However, they still can occur suddenly
on an operational satellite due to system failure. Another type of anomaly can be found in the metadata of the images. Due to
various reasons, including operator error and control software problems, the metadata can be inconsistent or incomplete with
respect to the scientific contents of the images. This paper tackles the issue of image anomalies in the MVIRI measurements
by processing the whole archive of MVIRI images to detect and flag any anomalies present.

The paper is organized as follows: Section 2 briefly describes the MVIRI data and known anomalies in them, Section 3
presents the algerithm-algorithms to detect and flag such anomalies, Section 4 discusses the results, and Section 5 provides

conclusions and outlook.
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Table 1. List of satellite names, operational mission with nominal sub-satellite longitude position in brackets, and-the main years of opera-

tion (EUMETSAT (2014)), and the number of level 1.0 data files in the archive.

Satellite Mission Main Operational Years Number of level 1.0 files
Meteosat-2 0-degree (0°) 1981-1988 110195
Meteosat-3 0-degree (0°) 1988-1991 89614
Meteosat-3 ADC (50°W) 1991-1993
Meteosat-3 XADC (75°W) 1993-1995
Meteosat-4 0-degree (0°) 1989-1994 75728
Meteosat-5 0-degree (0°) 1991-1997 210260
Meteosat-5 0-degree RSS (0°)

1997-1998:1997:1997
Meteosat-5 IODC (63°E) 1998-2007
Meteosat-6 0-degree (0°) 1996-1998 144773
Meteosat-6 0-degree RSS (0°) 2000-2007
Meteosat-6 10DC (67°E) 2007-2009
Meteosat-7 0-degree (0°) 1998-2006 329334
Meteosat-7 I0DC (57°E) 2006-2017

2 Meteosat First Generation Measurements

During the lifetime of Meteosat First Generation series, the satellites were operated at different orbit locations. The primary 0°
longitude orbit position has been covered from the start, supplemented by the so-called Indian Ocean Data Coverage service
(IODC) from 1998 onwards with MFG satellites located at 57°E and 63°E. IODC has been continued with the first Meteosat
Second Generation (MSG) satellite operating from 41.5°E. Furthermore, in the first half of the 1990s, the Meteosat-3 satellite
was moved to the West Atlantic to support coverage of the United States of America, thereby providing the so-called Atlantic
Data Coverage (ADC) and the Extended Atlantic Data Coverage (XADC) services from orbit positions at 50°W and 75°W,
respectively. Some of these satellites also were operated in rapid scanning mode (RSS) - the details are shown in Table 1.

The METEOSAT Visible Infra-Red Imager (MVIRI) instrument measures in three spectral channels (Table 2): Visible,
Water Vapour (WV), and Thermal Infrared (TIR). The VIS channel has 2 detectors, VIS-South and VIS-North. There are 48
acquisition slots in a day (one every 30 minutes) and within one slot a MVIRI scan is created. A MVIRI scan consists of 3030
scanlines, where 2500 scanlines belong to the image-acquiring forward scan. The VIS-South and VIS-North detectors create

5000 samples along each scanline and the TIR- and WV-detectors create 2500 samples along each scanline. It takes 25 minutes

to complete the forward scan. Furthermore, the total size of all 1.0 files that were being processed is 47TB
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Table 2. Spatial and spectral characteristics of MVIRI visible (VIS), thermal infrared (TIR), water vapour (WV) channels.

Channel res. nadir (km) Nominal spectral band (pm)
VIS 0.7 2.5 0.40-1.10
WV 6.4 5.0 5.70-17.10
TIR 11.5 5.0 10.5-12.5

3 Anomaly Detection Methods

Anomaly detection can be approached in various ways, ranging from machine-learning techniques to image processing in
combination with classification techniques (Hodge and Austin (2004)). Each approach has its own merits, such as the effort to
implement the anomaly detection system, the performance of the detection process, and the trust the end-users ultimately have
in the approach selected. The implementation effort depends on the different types of anomalies one can expect in the dataset,
and whether it is possible to limit the number of anomaly types. If there is not a good understanding of what types of anomaly
one can expect, it will be difficult to program the algorithms that detect the presence of an anomaly in an image, but one can
better concentrate on algorithms that define the nominal case in order to detect deviations from the norm. However, such an
algorithm will be limited in its capability to classify or identifying the type of anomalies. The performance of an anomaly
detector can be described in terms of the Probability of Detection (PoD), the False Alarm Rate (FAR), and the specificity
of the detection (i.e. whether the anomaly can be isolated to a subset of affected pixels rather than discarding the whole
image). Finally, the trust that the ultimate end-users have depends primarily on how much one can understand the workings
of the algorithm and whether there is some indication by the algorithm as to why an image is classified as anomalous (e.g. by
providing an overview of the affected pixels, and the type of anomaly).

A machine-learning approach is appealing from an implementation effort point of view, but in this case, the more classical
approach of image processing using a manually selected array of anomaly classification algorithms has been used. The benefit
of this well-known approach is that, during the investigation and development process, knowledge is generated on the exact
appearance of the various anomaly types, which lead to improved end-user trust and a better chance of identifying the source
of errors. There is also more control to tune the quality of the anomaly detection of the analysed image, especially in terms of
specificity, and to prevent overtraining of an algorithm on a limited dataset.

The remainder of this section describes the process of analysing a limited test set of data to identify anomalies and tune
algorithms, and improving the quality of the analysis. We call this subset of representative images the training set. It should be
understood that this training set is used for visual inspection and to learn about the possible anomalies, and not for the automatic
training of machine-learning algorithms. Next, several anomaly categories are presented and the development process of the
detection algorithm will be discussed. Finally, to provide a feel for the type of algorithms applied, three anomaly detection

concepts will be briefly described.
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3.1 Creating the training-set

During the development of the MFG satellites and the years of operation, valuable knowledge on all kinds of topics related to
the satellite and its application has been created. This knowledge can be related to typical low-level sensors aspects, such as
signal-to-noise ratio or crosstalk, but also to the data-processing of the sensed data and the applied corrections. For the MFG
satellites, the active development period was several decades ago and the involved scientists and engineers are largely not
available anymore. As a result, the present knowledge on anomalies in the dataset due to malfunctioning sensors or incorrect
application is limited and diminishing with time. However, this lack of background information is also an opportunity to
analyse the historical dataset from first principles instead of only focusing on known anomalies.

Therefore, the first step was a manual study of anomalies in the historical dataset. Due to the high number of images (around
1 million), only a limited subset can be manually examined. The objective was to find a representative set of anomaly types that
one could expect in the whole data set. Therefore, a training dataset was created with representative coverage of the relevant
channels, periods and satellites. Specifically, samples were randomly selected but with several constraints in order to avoid
large gaps in time or that a satellite, channel or typical timeslot (e.g. January 1st on 12:00h) is over represented. The dataset
should be as small as possible for practicality reasons, but also large enough to cover all anomaly types. As most anomaly
types (e.g. straylight effect) will affect multiple channels in the same timeslot, the dataset contains only one channel from any
particular time slot, such that the size of dataset is kept small while maximising the number of independent images searched
for anomalies. The main interest is in anomalies related to sensor failure or radiometric effects present in level 1.0 data, but it
is also possible that the level 1.5 rectification process could introduce new anomalies, and thus the training-set dataset consists

of both level 1.0 and level 1.5 images. This dataset was inspected manually to characterise:

Types of anomalies

Frequency of occurrence

Appearance and severity of an anomaly

Origin of the anomaly / root cause

Each image from the dataset is evaluated to determine if it contains an anomaly. The dataset together with the evaluation is
called the “training-set” and is later used to tune and evaluate the performance of the automatic detection software. The manual
inspection process requires several iterations to converge on consistent human decision criteria for flagging images. A difficult
aspect is that the appearance of an anomaly in an image or for a particular pixel is modelled as an effect that is present or is
not present (i.e. it cannot be partially present). In several cases, the severity of the appearance of the anomaly is small and it is

doubtful whether an image or a pixel should be flagged.
3.2 Improving the quality of the training-set

The manual inspection of the MVIRI images is a difficult and a time consuming job. A dedicated tool has been developed to

speed up and to improve the quality of this manual inspection process. The inspection process also determines which anomaly
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types exist and how they look like, which is a learning process. To avoid inconsistent (human) judgements during this learning
process, the images are inspected in several iterations. The manual inspection has been executed with greatest care, but alse
we also have to conclude that the quality of a human-inspected dataset is lower than desired. Common mistakes include
inconsistent detection accuracy, mistakes concerning anomaly types and missed pixels. On the other hand, humans are very
good at detecting patterns and abnormalities in images, which would probably not be detected by any algorithm with very
limited a priori information. To achieve the highest quality possible (no missed cases or false cases), an iterative strategy was
chosen where the manual inspection and evaluation is corrected by algorithms (see Figuret 1). With this strategy, the training-
set is initially defined by manual inspection. New anomaly cases are detected by algorithms based on the initial evaluation
and, after manual inspection and confirmation, the new cases are added to the training-set. The algorithms used to detect new
cases can be all kinds of detection algorithms, but include the to-be-developed anomaly detection algorithms. In our case, the
algorithms used to correct the manual inspection were a combination of the final automatic detection algorithms and other
(generic) detection algorithms. An example of generic detection algorithm is one that detects if the average intensity and the
standard deviation are within a certain range. The usage of a detection algorithm is especially useful when the appearance
of a particular anomaly cannot be visually detected by a human in a single image. The accuracy of such generic detection
algorithms can be quite low, but they help with flagging images where the severity of the anomaly is quite low. An example in
the literature of such a generic detection algorithm in use was to detect cases of the “loose cold optics” issue of the Meteosat
6 satellite (Holmlund (2005)). The proposed method has low detection accuracy but, with manual inspection and evaluation
of the algorithm’s internal calculations, the quality of the training-set can be increased. The strategy of improving the quality

of the dataset is applied during the entire development of the anomaly detection algorithms and during the evaluation of the

detection performance (see also the algorithm description as provided as supplementary material to this article).

3.3 Anomaly types

The training-set dataset was analysed and 30 different anomaly types were defined. The specifics of the defined anomaly
types and their appearance will be unique to the MFG satellites, but the general anomaly origin or category will also hold
for other similar geostationary imaging satellite types, such as GOES (Schmetz and Menzel (2015); Considine (2006)) and
GMS/MTSAT (Tabata et al. (2019)). For the MFG anomalies, some examples of categories follow (see Table 3 for a complete

overview):

— Missing or corrupt data (see Figure 2). All pixels of an image or a scanline have the value ‘0’ or an obviously incorrect

value.

— Low quality sensory data (see Figure 3. For example, the signal-to-noise ratio of the image is much lower than expected

or the pixels are affected by a disturbance source.

— Unexpected behaviour of (historical) processing. The processing software used has changed during the lifetime of the
satellites and these changes sometimes resulted in different behaviour. An example of unexpected behaviour is a different

definition of the start time of a scan or that pixels have been set to ‘0’ due to various different reasons.
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Figure 1. Approach for creating training-set, where a manually inspected image is corrected by algorithms.

— Stray light related anomalies (see Figure 4). Indirect illumination of a light detector by internal reflections; e.g. in the
right locations, the sun will reflect off internal components of the telescope and onto pixels that are not looking at the
sun. This stray light effect will directly affect the various detectors (VIS, IR and WV), but it can also indirectly affect
the consecutive scans for reasons which are currently not known to us. With the MFG satellites, the WV-images were

5 affected several hours after the initial stray light effect. Images have also been affected by stray light from the moon.

— Instable optics related anomalies. The Meteosat 5 and 6 satellites suffer from known hardware issues related to the optics,

which has the effect that the sensitivity changes in time.

The training-set also contains level 1.5 images, but we have not discovered any anomaly that is related to the level 1.5

rectification process. In general, it holds that discovered anomalies in the level 1.5 images are better recognizable than-in the

10 level 1.0 images. The rectification process (Wolff (1985) blurs anomalies on the pixel level so that if an anomaly only affects a
single scanline in the level 1.0 images, its effect in the level 1.5 image will be a blurry curved line.

Table 3 shows an overview of the defined anomaly types.
3.4 Development strategy anomaly detection algorithms

The creation of the training-set gave insight into the appearance and the probability of occurrence of the defined anomaly types.

15 Some anomaly types occur very often, while others only had a few examples in the training-set. Some anomaly types are limited



Figure 2. Examples of missing data. Taken from file METEOSAT3-MVIRI-MTP15-NA-NA-19900816133000 and channel: WV (left) and
file METEOSAT2-MVIRI-MTP10-NA-NA-19840215160000 and channel=IR (right).

Figure 3. Examples of low quality sensory data. Left: a scanline contains an interference pattern (file:
METEOSAT4-MVIRI-MTP10-NA-NA-19911216110000 channel: WV). Center: a block of scanlines (inside the red lines) with a
much lower signal-to-noise ratio than neighbouring scanlines (file: METEOSAT2-MVIRI-MTP10-NA-NA-19831016120000, channel:

WYV). Right: image contains an unknown disturbance pattern (file: METEOSAT2-MVIRI-MTP10-NA-NA-19810817223000, channel: WV).
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(file: METEOSAT4-MVIRI-MTP10-NA-NA-19900415003000

Figure 4. Left: image affected by a stray light anomaly (file: METEOSAT4-MVIRI-MTP10-NA-NA-19900415003000,

channel: WYV). Right: several hours later, still showing follow-on effects after the stray light anomaly (file:
METEOSATS-MVIRI-MTP10-NA-NA-20060317213000, channel: WV).

to a particular satellite and others are related to a particular channel or period of the day. The training-set covers more than
2500 timeslots, but still is far too small to calculate reliable probabilities of occurrence for several anomaly types. Therefore,
during the development of the detection algorithms, this uncertainty in the probability of occurrence must be continually taken
into account. For each anomaly type, the most likely root cause or origin of the anomaly is determined to avoid mistakes in the
estimation of the probability of occurrence in a certain situation (channel, satellite, period of the day etc).

Distinctive features for specific anomalies can be various metadata parameters, such as satellite-id or time, but in general the

focus is on image-based parameters. The following data sources can be used for the detection of an anomaly:

Metadata parameters of the file (satellite-id, date, time, geo-location etc)

Image data of a channel

Other channels of same timeslot

Series of consecutive images

In general, it is preferable to minimise the required number of parameters examined for an anomaly because each parameter

can be affected by other anomalies than the targeted one. Therefore, when multiple parameters are used, care must be taken
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to ensure that each parameter is genuinely necessary. Also, feature calculations are complicated by the fact that files (or
parameters) may be missing; this mainly occurred when the majority of a scan is affected by the straylight effect. In general,
anomalies are more recognisable in the raw data (level 1.0 files), so a choice was made to do anomaly detection only on level 1.0
files. If the detection requires a series of consecutive images, the algorithm has to perform some kind of registration between the
images. The level 1.0 file contains information for the alignment or registration, which is used for an approximated rectification
based on a linear homography transform (transform is defined by a 3x3 matrix multiplication). The (internal) approximated
rectification results are verified on the basis of a cross-correlation. If a “better” shift (X, Y-displacement) between images can
be found with cross-correlation, this improved shift is applied to register the images.

In addition to detecting the presence of an anomaly, the area it affects in the image needs to be determined. The affected area

can be described on the following levels:
— Image-level, where the entire or majority of the image is affected by an anomaly.
— Scanline-level, where a single or multiple scanlines are affected by an anomaly.
— Pixel-level, where the anomaly affects a pixel or multiple pixels.

In general, the affected area was already calculated by the calculation of the distinctive features for anomaly detection. The
affected area is stored in a database and, to keep the database efficient, the affected area (scanline or pixels) is approximated
by a list of rectangles (each specified by X & Y coordinates of a corner plus X & Y size).

For each anomaly type, a dedicated algorithm needs to be developed. The algorithm development for some anomaly types,
such as the missing data anomaly (several scanlines are missing), is quite straightforward. Others, such as the more image-
processing based anomalies, can be very challenging and require elaborated, innovative detection concepts. The next sections
will briefly describe the detection concept of three difficult anomaly types, to illustrate the variety of processing steps used. It
will mainly focus on the basic detection concept and not on all important pre-processing steps and details to reach robustness

under all circumstances.
3.5 Example complex-anomaly detection: ''suspicious pattern'

Figure 5 shows two examples that suffer from the “suspicious pattern” anomaly. This anomaly type may have various appear-
ances (due to unknown root causes), which all result in a suspicious repeating pattern. The repetitive pattern is clearly visible,
but the magnitude is still quite small. Such repetitive patterns can be detected by the analysis of the 2D FFT spectrum, where
this anomaly will introduce peaks in the 2D FFT spectrum. As the variation in appearance is very large (magnitude, spatial sep-
aration of the repeats, vertical or horizontal pattern), we do not search for a particular pattern / peak but compare the observed
2D FFT spectrum with the expected 2D FFT spectrum.

To detect these peaks in the 2D FFT spectrum, we divide the observed 2D FFT from a single image by the expected 2D FFT
from the particular satellite. The expected 2D FFT from a satellite is calculated by averaging the 2D FFT from 100 images that

did not contain any anomaly. If the ratio between the two 2D FFT spectra is larger than a threshold (count value of 10), we

11



10

Figure 5. Two examples of the “suspicious pattern” anomaly: In the right—left image the vertical stripes are vis-

ible. (file: METEOSAT2-MVIRI-MTP10-NA-NA-19810817223000 channel:  WV). In the left—right image the ovals indi-

cate the position of the suspicious pattern; the middle oval has been altered to enhance visibility of the pattern. (file:

define it as a peak. The threshold has been manually determined with the aim to detect peaks in images where they would be
identified also by human eye.

A (clear) peak in the 2D FFT spectrum does not always result in a noticeable (by humans) pattern in the spatial domain
(normal image). This especially holds for peaks that correspond to fast changing patterns with a small magnitude (smaller than
1/255 of the maximum intensity). The effect of the detected FFT-peaks can be calculated by comparing the difference between
the original and a reconstructed image. The reconstructed image is calculated by the inverse FFT of the 2D FFT spectrum with

the peaks removed / reduced to a normal value. Only if this difference exceeds a threshold (T) will an anomaly be flagged. The

flowchart of Figure 6 describes the process of detecting suspicious patterns in a schematic fashion.

3.6 Example complex-anomaly detection: "direct straylight"

The design of the MFG-satellites suffers from the issue that the detector can be illuminated via an indirect optical path, which
results in the occurrence of the so-called direct straylight anomaly. This “parasitic” light causes a pattern with an increased
intensity in the image. The observed pattern often contains characteristic bows or arcs, but its appearance is a little bit different

in every instance. Figure7- 7 shows three example images affected by the direct straylight anomaly.

12
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Figure 6. Conceptual processing pipeline for detecting the suspicious pattern anomaly.

In a series of images, the straylight pattern moves across the scene quite fast compared to the normal movements of the
background (clouds, etc), which enables its detection. Figure 8 shows three sequential images that are affected by the same
direct straylight anomaly. For detection, we assume that an affected pixel is (significantly) brighter than the same pixel of
preceding and consecutive image.

To be able to use this assumption, it is essential that the raw images are aligned with each other and that no other anomalies
have affected them. This allows the algorithm to determine if a pixel is affected by this anomaly (see Figure 9). Note that the
bow in the lower left corner of the image has not been identified. The reason for this is that the algorithm compares the current
image with the previous one. In this case the previous image also contained the same bow, and therefore the algorithm fails to

identify the bow as anomalous.
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Figure 7. Three examples of the direct straylight effect anomaly. Left: _ Taken _ from __file
METEOSAT7-MVIRI-MTP15-NA-NA-19991016003000 and channel VIS. Right: Taken from file

Figure 8. Three sequential images  affected by the  direct straylight anomaly. Left: Taken _ from
file_ __ METEOSATS-MVIRI-MTP10-NA-NA19961015300000 ___and ___ channel WV, _ Center: _ Taken ___ from

file METEOSAT5-MVIRI-MTP10-NA-NA19961016000000 and channel WV. Right: Taken from file
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Figure 9. Segmentation result of the direct straylight anomaly detection. Taken from METEOSATS5-MVIRI-MTP10-NA-NA19961016000000
and channel WV,

3.7 Example complex-anomaly detection: “instable optics™

Meteosat 5 and 6 both suffer from a known optical hardware issue, which affects the sensitivity of the detector (Koepken
(2004)). The sensitivity of the detector can vary by just a few percent and the effect is not noticeable by a human, which makes it
hard to manually select images that are affected by the hardware issue. The detector’s sensitivity is not continuously affected by
these issues and the appearance and effect-magnitude changes from time to time. (Keepken-(2004)-)-Koepken (2004) has shown
that the occurrence of this anomaly can be detected by analysing the average IR intensity (over an entire image) over time or by
cross-referencing with another satellite. However, requiring a complete image average means there is only 1 observation every
30 minutes, while the anomaly can continuously change and, in the meantime, the temperature of the Earth also changes (e.g.
as night progresses across the Earth from the satellite’s viewpoint). Therefore, this method for detection is not very sensitive
or reliable. Cross-referencing measurements from the affected satellite with data from another satellite is unfortunately not
always possible. It is also preferable to have a detection concept that is independent of other data sources. Therefore, the
selected detection approach models the effect of the anomaly as an (intensity) offset per scanline per image, calculated by
least-squares optimization. The optimization makes two assumptions: i) the average intensity of a scanline in an image is
equal to the average intensity of the same scanline in the preceding image; ii) the effects of the anomaly average out over N
timeslots. The first assumption is in general valid for registered images without any anomaly. The second assumption is a direct
consequence of a time-dependent stochastic process. Based on the results, we can conclude that the second assumption is valid

for the known optical hardware issues of Meteosat 5 and 6.
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The bias for each scanline per image corresponding to this anomaly type can be calculated by solving a linear systems of

equations, from which we define the following variables:
— X[i,j] = measured average intensity of scanline j from image i.
— BJi,j] = bias due to the instable optics anomaly of scanline j from image i
5 Assumption 1 results in the following equation:
X[i,j] = Bli,j] = X[i = 1,5] = Bli = 1,j] = X[i,j] = X[i = 1, j] = Bli,j] = Bli — 1,]]
Of course, these equations hold for every image <. Assumption 2 results in the following equation:
Bli,jl+ Bli+1,j]+ B[i +2,j]+ ...+ B[i+ N,j| =0

The equations for all images and scanlines can be stored in a matrix. As example a part of the matrix, where the anomaly is

10 averaged out over 5 images with weight W:

1 1 X[i+1,j] —  X[i.j]

-1 1 Bli, ] X[i+2,] — X[i+1,j]

1 1 Bli+1,j] X[i+3,j] — X[i+2,]]

-1 1 Bli+2,j] X[i+4,5] — X[i+3,]]

-1 1 | Bl | | Xli+5.4] — X[i+4.] 0

-1 1 Bli+4,j] X[i+6,5] — X[i+5,]]

—1 1| |Bli+5,7] X[i+75] — X[i+6,]]
L7 A N A Bli+6,5] 0
wow W W W Bli+7,5] 0
wow W W W 0

In our case, the linear system covers in total 21 consecutive timeslots, where the anomaly averages out over 5 timeslots and
the anomaly bias is modelled per 100 scanlines. The calculated bias per image per scanline can be stored as an array (like the
left figure of Figuret0 10), to better see how bias per scanlines changes within an image or in time.

15 The calculated bias of images that have been affected by this anomaly will be, in general, close to one digital count. The

detection of this anomaly in an image is based on the average magnitude of the calculated scanlines’ biases in a particular

image (see also the algorithm description as provided as supplementary material to this article).

4 Results

For each anomaly type, a dedicated algorithm has been developed. The detection performance of the algorithm on the training-

20 set (covering 2500 timeslots) has been manually verified. During this verification process, we noticed that algorithms found
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“vertical scanline” —

Figure 10. Example of the Meteosat 5 optical hardware issue in time, where the left image shows the anomaly’s bias for consecutive
images across the scanlines. The right image is for a particular timeslot and shows the anomaly’s bias across the scanlines. Taken from

more anomalies in the training-set than were manually found. After inspection of the new detections, it appeared that in most
cases the algorithms were correct. If we look at the overall detection performance of the algorithms on the basis of the training-
set dataset, 97.7% (2.3% missed cases) of the anomalies are successfully (true positive) detected. 2.7% of the detections are

incorrect (false positive).

several-anomaly typesare related-to-eertain-satellitess the overall Probability of Detection of the anomalies has been determined
based on the results from the training set. The POD of each anomaly type has not been determined, because the number of
occurrences in the training-set is considered to be too low to reliably calculate the POD. For some anomaly types the sensitivity
level of the algorithm (should an image where an anomaly is vaguely visible be flagged or not) could be subject to end-user’s
preference, and as such the sensitivity level will affect the POD and the false alarm rate of the algorithm. The simple anomaly

#"'hot pixel", the anomalies are

detected in all cases. For the more complex anomaly types, such as "direct stray light" and "suspicious spectrum", the POD is
around 90%.

After the verification of the training-set, all images from the MFG satellites have been processed and the anomaly detections
stored in a separate database. An overview of the detected anomalies in the entire MFG dataset is presented in Table 4. The
percentage of level 1.0 files that contain an anomaly of a certain type (affecting any of the channels) is shown separately per
satellite. The MET6 dataset contains mostly RSS images, which explains some of the high anomaly rates.

The database can be used to create statistical analyses about the anomaly distribution, or to filter images (or even pixels) for

reprocessing campaigns or for specific and sensitive use cases such as cross-calibration.
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Table 4. Percentage of level 1.0 files containing anomalies in the images and metadata.

CATEGORY TYPE MET2 | MET3 | MET4 | MET5 | MET6 | MET7
artefact east-west horizon misaligned 0.1 <0.1 0.1 <01 | <01 ] <01
overillumination 329 349 | <01 | <01 ] <01 ] <0.1
tilted line <0.1 | <0.1 3.8 39 | <01 | <0.1
celestial body celestial body: the Moon 0.3 0.4 0.3 0.4 0.2 0.4
celestial body: undefined 0.1 0.1 0.1 <0.1 <0.1 0.1
corrupt or missing completely black 34 1.1 06 | <0.1 2.5 0.4
corrupt file <01] <01 | <01] <01 ] <01 | <0.1
hanging scanline 1.7 2.6 0.9 0.9 0.9 0.6
hanging scanline: no sub images <01l] <01 | <01] <01 ] <01 | <0.1
incomplete image 1.4 2.5 1.4 0.2 62.4 0.5
invalid signal 100 100 0.1 0.1 | <01 0.2
large black area 3.8 4.0 2.7 2.8 2.3 1.1
large white area 0.8 03| <01 <0.1 <0.1 <0.1
no sub images 0.2 0.4 0.8 0.3 1.0 1.1
hot pixel hot pixel pattern 1 <01 ]| <01 91.4 92.0 74.8 90.9
hot pixel pattern 2 0.4 0.2 4.7 13.7 2.9 5.0
hot pixel pattern independent 40.6 5.0 18.1 24.2 23 9.4
instable optics instable optics 0.4 0.3 0.2 2.7 10.2 0.2
low SNR low SNR: scanline 16.2 1.3 0.3 0.1 <0.1 0.1
raw data manipulated | background noise removed 98.8 98.6 136 | <0.1 0.1 <0.1
background noise removed / noise added 91.1 10.9 07 | <01 04 | <01
the number of scanlines changed 2.1 02| <01 0.1 <0.1 <0.1
stray light direct stray light 39 5.6 4.8 6.8 1.9 4.7
indirect stray light 6.1 4.7 4.9 6.4 22 6.1
reflection of the Moon 0.1 02 ] <01 | <01] <01 ] <0.1
suspicious spectrum suspicious spectrum 6.9 44.9 60.4 2.2 0.1 1.8
meta data EFF position corrupt 26.6 81.8 1.7 02| <01 <0.1
orbit position empty 2.3 1.3 2.0 0.3 1.1 1.5
parameter empty 100 100 100 17.3 63.9 1.8
start time: forward scan <01 ]| <01 | <01] <01 ] <01 ]| <0.1
start time: southern horizon <01]| <01 ] <01 | <01 ] <01 | <01
start time: start image 70.0 0.2 0.1 0.4 62.7 0.3
start time: undefined <01 | <01 ] <01 0.1 <0.1 0.1
value unexpected 100 100 100 17.3 63.9 1.8
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5 Discussion and conclusions

Monitoring the quality of input data is of great importance in guaranteeing the correctness of the results of any analysis.
For long-term studies, such as those on the Earth’s climate, there is a need to combine data sets of various instruments,
including those of early sensors that were not originally well quality-controlled. Later efforts to identify anomalies face multiple
difficulties — loss of the original human expertise, limited documentation and datasets too large to assess manually in retrospect.
A practical quality-assessment system must be based on automatic means and, rather than merely removing imperfect data
from a period where observations are limited, must be able to support a wide variety of future uses by supplying detailed and
precise information on the form and impact of anomalies. In addition, a uniform approach towards assessing the quality of data
products is of great benefit to improving consistency over multiple sensors.

This paper describes a general method to screen an EO image database with a cumulative observation history of approxi-
mately 40 years. It has been shown that the method of using dedicated anomaly detection algorithms is sufficiently powerful
to detect a wide array of anomalies, ranging from clear faults to subtle problems related to straylight that occur only under
certain celestial constellations. The main challenge was to develop the methods such that the algorithms accurately detect the
images that are affected by the anomalies and, within the images, which areas are affected. With respect to the first objective,
the Probability of Detection for affected images has been established at 97.7% and the False Alarm Rate of the method is 2.7%.
The specificity within an affected image of the method is subjectively very good and most of the detection algorithms are able
to highlight only those pixels that are affected.

The anomaly detection results for the full dataset of EUMETSAT’s MFG satellites are stored in a dedicated database that
can be consulted to better understand the distribution of anomalies over the complete data set, and to filter the image data so
that long-term analyses are being conducted on quality-controlled input data.

The anomaly detection system will be an essential part of the quality control system in future reprocessing and analysis
work, and strengthens EUMETSAT’s stewardship of the full MFG data archive by providing a consistent and data-based
methodology for quality assessment. Although the anomaly detection algorithms have been tested on MFG data, it is believed
that the approach can be used for other similar geostationary satellite instruments as well, such as those on MSG (Schmetz
and Menzel (2015)), GMS/MTSAT (Tabata et al. (2019)) and GOES (Considine (2006)), as no satellite-specific knowledge is

needed to parameterize the detection algorithms.
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