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Abstract. Now that the Earth has been monitored by satel-
lites for more than 40 years, Earth observation images can be
used to study how the Earth system behaves over extended
periods. Such long-term studies require the combination of
data from multiple instruments, with the earliest datasets be-5

ing of particular importance in establishing a baseline for
trend analysis. As the quality of these earlier datasets is often
lower, careful quality control is essential, but the sheer size
of these image sets makes an inspection by hand impractica-
ble. Therefore, one needs to resort to automatic methods to10

inspect these Earth observation images for anomalies. In this
paper, we describe the design of a system that performs an
automatic anomaly analysis on Earth observation images, in
particular the Meteosat First Generation measurements. The
design of this system is based on a preliminary analysis of15

the typical anomalies that can be found in the dataset. This
preliminary analysis was conducted by hand on a represen-
tative subset and resulted in a finite list of anomalies that
needed to be detected in the whole dataset. The automated
anomaly detection system employs a dedicated detection al-20

gorithm for each of these anomalies. The result is a system
with a high probability of detection and low false alarm rate.
Furthermore, most of these algorithms are able to pinpoint
the anomalies to the specific pixels affected in the image, al-
lowing the maximum use of the data available.25

1 Introduction

Earth observation (EO) from geostationary satellites pro-
vides a wealth of information which can be used to study
the Earth’s climate system as described, for example, by
Rossow and Schiffer (1999). While their focus of interest was 30

long-term cloud effects, other studies also have used those
data for deriving information on land surface temperatures
(Duguay-Tetzlaff et al., 2015), upper tropospheric humidity
(Soden and Bretherton, 1993), and solar surface irradiance
(Mueller et al., 2015). EUMETSAT’s Meteosat First Gen- 35

eration (MFG) satellites were equipped with the Meteosat
Visible Infra-Red Imager (MVIRI) instrument. The MVIRIs
had been measuring in three distinct wavelengths: (i) visible
(VIS) – providing information on surface and atmospheric
albedo (Ruethrich et al., 2019); (ii) water vapour (WV) pro- 40

viding information on upper tropospheric humidity, which is
a key climate variable, yet not very well simulated by the cur-
rent climate models (John and Soden, 2007) and (iii) infrared
(IR) window providing information on the surface and cloud
top temperature and on the presence of clouds (Stoeckli et al., 45

2019; John et al., 2019). Data from Meteosat-1, launched in
1977, are available for only a year from December 1978 to
November 1979. There are continuous data available from
Meteosat-2 onwards starting in February 1982 until April
2017, when the last satellite in the series, Meteosat-7, was 50

moved to its graveyard orbit.
If such an image dataset is to be used for analysing how

the climate varies over time, one must control the quality of
the dataset in order to avoid any bias in the result. The poten-
tial value of such a historical time series, however, is partially 55

hindered due to the presence of image anomalies (Koepken,
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2 F. Liefhebber et al.: Quality control of MFG measurements

2004) (acquisition errors, physical effects such as stray light,
etc.) and radiometric anomalies (Brogniez et al., 2006) (cal-
ibration errors, calibration drift, etc.). Quality control has al-
ways been a task of great importance for missions that pro-
duce and use Earth observation sensor data on a daily routine5

basis. Now that a massive amount of sensor data is available
– both historical and in the number of different sensors – the
subject of automatic quality control and consequent correc-
tions becomes only more of practical importance. The work
of Szantai et al. (2011) which addresses anomalies in optical10

imagery of different geostationary satellite imagery is inter-
esting. Our work complements this as it analyses the whole
history of one family of geostationary sensors, i.e. the MFG
satellites, for which the results are stored in a database that
during later reprocessing can be consulted. Examples in the15

literature of image restoration – a process that normally fol-
lows after the quality assessment phase – include the correc-
tion for radiometric anomalies (Ruethrich et al., 2019; John
et al., 2019) and the correction of the point spread func-
tion characteristics to compensate for sensor contamination20

(Doelling et al., 2015; Khlopenkov et al., 2015).
For the MFG satellites, EUMETSAT keeps an archive of

the level 1.0 data (raw images with geolocation tie points but
prior to rectification and calibration) and level 1.5 data (rec-
tified to a fixed geolocation grid and calibrated). These data25

were archived in near-real time, meaning no corrections have
been applied beyond that in the original processing. For a
planned reprocessing of the level 1.0 to level 1.5 data ad-
dressing data anomalies, it is mandatory to create a consis-
tent and as-complete-as-possible set of information concern-30

ing each Meteosat image, including its metadata and the de-
tection and flagging of anomalies in the measurements. An
image anomaly is defined as an anomaly in the radiomet-
ric content of an image not caused by the rectification pro-
cess, a satellite manoeuvre, or scheduled change in satellite35

parameters (decontamination, gain changes). If such unex-
pected image radiometric anomalies occur, they can have a
very detrimental impact on the use of the images. Except for
problems such as wrong gain settings or wrong channel con-
figuration, they will usually occur within the commissioning40

phase of a new satellite or in the period after just taking up
operations with a new satellite. However, they still can occur
suddenly on an operational satellite due to system failure.
Another type of anomaly can be found in the metadata of
the images. For various reasons, including operator error and45

control software problems, the metadata can be inconsistent
or incomplete with respect to the scientific contents of the
images. This paper tackles the issue of image anomalies in
the MVIRI measurements by processing the whole archive
of MVIRI images to detect and flag any anomalies present.50

The paper is organized as follows. Section 2 briefly de-
scribes the MVIRI data and known anomalies in them,
Sect. 3 presents the algorithms to detect and flag such anoma-
lies, Sect. 4 discusses the results, and Sect. 5 provides con-
clusions and an outlook.55

Table 1. List of satellite names, operational mission with nominal
sub-satellite longitude position in brackets, the main years of oper-
ation (EUMETSAT, 2014), and the total number of level 1.0 data
files in the archive for a given satellite.

Satellite Mission Main Number of
operational level 1.0
years files

Meteosat-2 0-degree (0◦) 1981–1988 110 195

Meteosat-3 0-degree (0◦) 1988–1991 89 614
Meteosat-3 ADC (50◦W) 1991–1993
Meteosat-3 XADC (75◦W) 1993–1995

Meteosat-4 0-degree (0◦) 1989–1994 75 728

Meteosat-5 0-degree (0◦) 1991–1997 210 260
Meteosat-5 0-degree RSS (0◦) 1997–1997
Meteosat-5 IODC (63◦ E) 1998–2007

Meteosat-6 0-degree (0◦) 1996–1998 144 773
Meteosat-6 0-degree RSS (0◦) 2000–2007
Meteosat-6 IODC (67◦ E) 2007–2009

Meteosat-7 0-degree (0◦) 1998–2006 329 334
Meteosat-7 IODC (57◦ E) 2006–2017

Table 2. Spatial and spectral characteristics of MVIRI visible (VIS),
thermal infrared (IR), and water vapour (WV) channels.

Channel Res. nadir Nominal spectral
(km) band (µm)

VIS 0.7 2.5 0.40–1.10
WV 6.4 5.0 5.70–7.10
IR 11.5 5.0 10.5–12.5

2 Meteosat First Generation measurements

During the lifetime of the Meteosat First Generation series,
the satellites were operated at different orbit locations. The
primary 0◦ longitude orbit position has been covered from
the start, supplemented by the so-called Indian Ocean Data 60

Coverage service (IODC) from 1998 onwards with MFG
satellites located at 57 and 63◦ E. IODC has been contin-
ued with the first Meteosat Second Generation (MSG) satel-
lite operating from 41.5◦ E. Furthermore, in the first half of
the 1990s, the Meteosat-3 satellite was moved to the western 65

Atlantic to support coverage of the United States of Amer-
ica, thereby providing the so-called Atlantic Data Cover-
age (ADC) and Extended Atlantic Data Coverage (XADC)
services from orbit positions at 50 and 75◦W, respectively.
Some of these satellites were also operated in rapid scanning 70

mode (RSS) – the details are shown in Table 1.
The Meteosat Visible Infra-Red Imager (MVIRI) instru-

ment measures in three spectral channels (Table 2): visible,
water vapour (WV), and thermal IR. The VIS channel has
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two detectors, VIS-South and VIS-North. There are 48 acqui-
sition slots in a day (one every 30 min) and within one slot a
MVIRI scan is created. A MVIRI scan consists of 3030 scan
lines, where 2500 scan lines belong to the image-acquiring
forward scan. The VIS-South and VIS-North detectors cre-5

ate 5000 samples along each scan line and the IR and WV
detectors create 2500 samples along each scan line. It takes
25 min to complete the forward scan. Furthermore, the total
size of all 1.0 files that were being processed is 47 TB.

3 Anomaly detection methods10

Anomaly detection can be approached in various ways, rang-
ing from machine-learning techniques to image processing
in combination with classification techniques (Hodge and
Austin, 2004). Each approach has its own merits, such as
the effort to implement the anomaly detection system, the15

performance of the detection process, and the trust the end-
users ultimately have in the approach selected. The imple-
mentation effort depends on the different types of anomalies
one can expect in the dataset and whether it is possible to
limit the number of anomaly types. If there is no good under-20

standing of what types of anomaly one can expect, it will be
difficult to program the algorithms that detect the presence
of an anomaly in an image, but one can better concentrate
on algorithms that define the nominal case in order to de-
tect deviations from the norm. However, such an algorithm25

will be limited in its capability to classify or identify the type
of anomalies. The performance of an anomaly detector can
be described in terms of the probability of detection (PoD),
the false alarm rate (FAR), and the specificity of the detec-
tion (i.e. whether the anomaly can be isolated to a subset of30

affected pixels rather than discarding the whole image). Fi-
nally, the trust that the ultimate end-users have depends pri-
marily on how much one can understand the workings of the
algorithm and whether there is some indication by the algo-
rithm as to why an image is classified as anomalous (e.g. by35

providing an overview of the affected pixels and the type of
anomaly).

A machine-learning approach is appealing from an imple-
mentation effort point of view, but in this case, the more clas-
sical approach of image processing using a manually selected40

array of anomaly classification algorithms has been used.
The benefit of this well-known approach is that, during the
investigation and development process, knowledge is gener-
ated on the exact appearance of the various anomaly types,
which lead to improved end-user trust and a better chance of45

identifying the source of errors. There is also more control
to tune the quality of the anomaly detection of the analysed
image, especially in terms of specificity, and to prevent over-
training of an algorithm on a limited dataset.

The remainder of this section describes the process of50

analysing a limited test set of data to identify anomalies and
tune algorithms, and improving the quality of the analysis.

We call this subset of representative images the training set.
It should be understood that this training set is used for visual
inspection and to learn about the possible anomalies, and not 55

for the automatic training of machine-learning algorithms.
Next, several anomaly categories are presented and the devel-
opment process of the detection algorithm will be discussed.
Finally, to provide a feel for the types of algorithms applied,
three anomaly detection concepts will be briefly described. 60

3.1 Creating the training set

During the development of the MFG satellites and the years
of operation, valuable knowledge on all kinds of topics re-
lated to the satellite and its application has been created. This
knowledge can be related to typical low-level sensor aspects, 65

such as signal-to-noise ratio or crosstalk, but also to the data
processing of the sensed data and the applied corrections. For
the MFG satellites, the active development period was sev-
eral decades ago and the involved scientists and engineers
are largely not available anymore. As a result, the present 70

knowledge on anomalies in the dataset due to malfunction-
ing sensors or incorrect application is limited and diminish-
ing with time. However, this lack of background information
is also an opportunity to analyse the historical dataset from
first principles instead of only focusing on known anomalies. 75

Therefore, the first step was a manual study of anoma-
lies in the historical dataset. Due to the high number of im-
ages (around 1 million), only a limited subset can be man-
ually examined. The objective was to find a representative
set of anomaly types that one could expect in the whole 80

dataset. Therefore, a training dataset was created with rep-
resentative coverage of the relevant channels, periods, and
satellites. Specifically, samples were randomly selected, but
with several constraints in order to avoid large gaps in time
or that a satellite, channel, or typical time slot (e.g. 1 Jan- 85

uary on 12:00 UTC) is over-represented. The dataset should
be as small as possible for practicality reasons, but also large
enough to cover all anomaly types. As most anomaly types
(e.g. stray-light effect) will affect multiple channels in the
same time slot, the dataset contains only one channel from 90

any particular time slot, such that the size of the dataset is
kept small while maximizing the number of independent im-
ages searched for anomalies. The main interest is in anoma-
lies related to sensor failure or radiometric effects present in
level 1.0 data, but it is also possible that the level 1.5 rectifi- 95

cation process could introduce new anomalies, and thus the
training-set dataset consists of both level 1.0 and level 1.5
images. This dataset was inspected manually to characterize

– types of anomalies,

– frequency of occurrence, 100

– appearance and severity of an anomaly, and

– origin of the anomaly/root cause.
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Each image from the dataset is evaluated to determine
whether it contains an anomaly. The dataset together with
the evaluation is called the “training set” and is later used to
tune and evaluate the performance of the automatic detection
software. The manual inspection process requires several it-5

erations to converge on consistent human decision criteria for
flagging images. A difficult aspect is that the appearance of
an anomaly in an image or for a particular pixel is modelled
as an effect that is present or is not present (i.e. it cannot be
partially present). In several cases, the severity of the appear-10

ance of the anomaly is small, and it is doubtful whether an
image or a pixel should be flagged.

3.2 Improving the quality of the training set

The manual inspection of the MVIRI images is a difficult and
time-consuming job. A dedicated tool has been developed15

to speed up and improve the quality of this manual inspec-
tion process. The inspection process also determines which
anomaly types exist and what they look like, which is a learn-
ing process. To avoid inconsistent (human) judgements dur-
ing this learning process, the images are inspected in several20

iterations. The manual inspection has been executed with the
greatest care, but we also have to conclude that the quality
of a human-inspected dataset is lower than desired. Com-
mon mistakes include inconsistent detection accuracy, mis-
takes concerning anomaly types, and missed pixels. On the25

other hand, humans are very good at detecting patterns and
abnormalities in images, which would probably not be de-
tected by any algorithm with very limited a priori informa-
tion. To achieve the highest quality possible (no missed cases
or false cases), an iterative strategy was chosen where the30

manual inspection and evaluation is corrected by algorithms
(see Fig. 1). With this strategy, the training set is initially
defined by manual inspection. New anomaly cases are de-
tected by algorithms based on the initial evaluation and, after
manual inspection and confirmation, the new cases are added35

to the training set. The algorithms used to detect new cases
can be all kinds of detection algorithms, but include the to-
be-developed anomaly detection algorithms. In our case, the
algorithms used to correct the manual inspection were a com-
bination of the final automatic detection algorithms and other40

(generic) detection algorithms. An example of a generic de-
tection algorithm is one that detects whether the average in-
tensity and the standard deviation are within a certain range.
The usage of a detection algorithm is especially useful when
the appearance of a particular anomaly cannot be visually de-45

tected by a human in a single image. The accuracy of such
generic detection algorithms can be quite low, but they help
with flagging images where the severity of the anomaly is
quite low. An example in the literature of such a generic de-
tection algorithm in use was to detect cases of the “loose cold50

optics” issue of the Meteosat-6 satellite (Holmlund, 2005).
The proposed method has low detection accuracy but, with
manual inspection and evaluation of the algorithm’s internal

Figure 1. Approach for creating a training set, where a manually
inspected image is corrected by algorithms.

calculations, the quality of the training set can be increased.
The strategy of improving the quality of the dataset is ap- 55

plied during the entire development of the anomaly detection
algorithms and during the evaluation of the detection perfor-
mance (see also the algorithm description as provided in the
Supplement to this article).

3.3 Anomaly types 60

The training-set dataset was analysed and 30 different
anomaly types were defined. The specifics of the defined
anomaly types and their appearance will be unique to the
MFG satellites, but the general anomaly origin or category
will also hold for other similar geostationary imaging satel- 65

lite types, such as GOES (Schmetz and Menzel, 2015; Consi-
dine, 2006) and GMS/MTSAT (Tabata et al., 2019). For the
MFG anomalies, some examples of categories follow (see
Table 3 for a complete overview).

– Missing or corrupt data (see Fig. 2). All pixels of an 70

image or a scan line have the value “0” or an obviously
incorrect value.

– Low-quality sensory data (see Fig. 3. For example, the
signal-to-noise ratio of the image is much lower than ex-
pected or the pixels are affected by a disturbance source. 75

– Unexpected behaviour of (historical) processing. The
processing software used has changed during the life-
time of the satellites, and these changes sometimes re-
sulted in different behaviour. An example of unexpected
behaviour is a different definition of the start time of a 80

scan or that pixels have been set to “0” for various dif-
ferent reasons.

Atmos. Meas. Tech., 13, 1–13, 2020 www.atmos-meas-tech.net/13/1/2020/
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Figure 2. Examples of missing data. Taken from file METEOSAT3-
MVIRI-MTP15-NA-NA-19900816133000 and channel WV (a)
and file METEOSAT2-MVIRI-MTP10-NA-NA-19840215160000
and channel IR (b). The pixel values in this figure are the raw digital
counts and are mapped using the viridis colour map with 0 repre-
sented by dark blue and 255 by yellow.

– Stray-light-related anomalies (see Fig. 4). Indirect illu-
mination of a light detector by internal reflections; e.g.
in the right locations, the Sun will reflect off internal
components of the telescope and onto pixels that are
not looking at the Sun. This stray-light effect will di-5

rectly affect the various detectors (VIS, IR, and WV),
but it can also indirectly affect the consecutive scans for
reasons which are currently not known to us. With the
MFG satellites, the WV images were affected several
hours after the initial stray-light effect. Images have also10

been affected by stray light from the Moon.

– Unstable optics-related anomalies. The Meteosat-5 and
-6 satellites suffer from known hardware issues related
to the optics, which has the effect that the sensitivity
changes in time.15

The training set also contains level 1.5 images, but we
have not discovered any anomaly that is related to the level
1.5 rectification process. In general, it holds that discovered
anomalies in the level 1.5 images are better recognizable in
the level 1.0 images. The rectification process (Wolff, 1985)20

blurs anomalies on the pixel level, so that if an anomaly only
affects a single scan line in the level 1.0 images, its effect on
the level 1.5 image will be a blurry curved line.

Table 3 shows an overview of the defined anomaly types.

3.4 Development strategy anomaly detection25

algorithms

The creation of the training set gave insight into the ap-
pearance and the probability of occurrence of the defined
anomaly types. Some anomaly types occur very often, while
others only had a few examples in the training set. Some30

anomaly types are limited to a particular satellite and others
are related to a particular channel or period of the day. The
training set covers more than 2500 time slots, but still is far
too small to calculate reliable probabilities of occurrence for

several anomaly types. Therefore, during the development of 35

the detection algorithms, this uncertainty in the probability
of occurrence must be continually taken into account. For
each anomaly type, the most likely root cause or origin of the
anomaly is determined to avoid mistakes in the estimation of
the probability of occurrence in a certain situation (channel, 40

satellite, period of the day, etc.).
Distinctive features for specific anomalies can be various

metadata parameters, such as satellite id or time, but in gen-
eral the focus is on image-based parameters. The following
data sources can be used for the detection of an anomaly. 45

– Metadata parameters of the file (satellite id, date, time,
geo-location, etc.)

– Image data of a channel

– Other channels of same time slot

– Series of consecutive images 50

In general, it is preferable to minimize the required number
of parameters examined for an anomaly because each param-
eter can be affected by other anomalies than the targeted one.
Therefore, when multiple parameters are used, care must be
taken to ensure that each parameter is genuinely necessary. 55

Also, feature calculations are complicated by the fact that
files (or parameters) may be missing; this mainly occurred
when the majority of a scan is affected by the stray-light ef-
fect. In general, anomalies are more recognizable in the raw
data (level 1.0 files), so a choice was made to do anomaly 60

detection only on level 1.0 files. If the detection requires a
series of consecutive images, the algorithm has to perform
some kind of registration between the images. The level 1.0
file contains information for the alignment or registration,
which is used for an approximated rectification based on a 65

linear homography transform (transform is defined by a 3×3
matrix multiplication). The (internal) approximated rectifica-
tion results are verified on the basis of a cross-correlation. If
a “better” shift (X, Y displacement) between images can be
found with cross-correlation, this improved shift is applied to 70

register the images.
In addition to detecting the presence of an anomaly, the

area it affects in the image needs to be determined. The af-
fected area can be described on the following levels.

– Image level, where the entire or majority of the image 75

is affected by an anomaly.

– Scan-line level, where a single or multiple scan lines are
affected by an anomaly.

– Pixel level, where the anomaly affects a pixel or multi-
ple pixels. 80

In general, the affected area was already determined by
the calculation of the distinctive features for anomaly detec-
tion. The affected area is stored in a database and, to keep

www.atmos-meas-tech.net/13/1/2020/ Atmos. Meas. Tech., 13, 1–13, 2020
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Table 3. Description of the defined anomaly types in the MFG measurement and the affected channels. For the channels, all means the
anomaly affects all channels simultaneously, whereas each means that each channel is analysed individually.

CATEGORY TYPE Channels Description

artefact misalignment all Scan lines are not aligned properly and the east–west horizon of the Earth is not a continuous curve.

over-illumination (overflow) each Over-illuminated pixels have an incorrect value of 124 instead of the maximum value of 255.

tilted line WV In an image, a line under an angle 19◦ (from the vertical) is visible.

celestial body celestial body: the Moon all The Moon is present in the MVIRI image.

celestial body: undefined all An artefact appearing similar to a celestial body was detected in the space area of the image,
but the Moon can be excluded due to orbital position

corrupt or completely black each All or almost all pixels have an intensity lower than 10 (a threshold significantly
missing higher than background noise).

corrupt file all The size of the level 0 file is too small to contain data of all scan lines.

hanging scan line all Position of detector has not changed

incomplete image each Forward scan time/length is too small to capture the entire Earth. Note that if a rapid scan
image is analysed, the captured image is considered as incomplete because the software is
currently only designed for full Earth images.

invalid signal each According to the metadata, a channel is invalid.

large black area each The image contains a large black area, where several scan lines are completely black (intensity is 0).

large white area each The image contains a large white area, where several scan lines are completely white (intensity is 255).

no sub-images each The scan does not contain any forward scan.

hot pixel hot pixel pattern 1 WV A typical pixel pattern on a single scan line.

hot pixel pattern 2 all A typical pixel pattern on a single scan line.

hot pixel pattern each Randomly distributed hot pixels (high intensity and very unlikely compared
independent to the neighbouring pixels).

unstable optics unstable optics WV and The observed sensitivity of the detector is not constant in time. This anomaly mainly appears with
IR the known optical hardware issues of Meteosat-5 and 6.

low SNR low SNR: scan line WV The observed noise level in a scan line is much higher than the observed noise level in the entire image.

metadata EFF position corrupt all The stored position of the satellite in the Earth Fixed Frame format is corrupt.

orbit position empty all The stored position of the satellite is empty.

parameter empty all A metadata parameter, which should have a value, is empty or zero.

start time: forward scan all The start time definition used is unexpected. Here, the start time of the “scan” is equal to
start time of the forward scan.

start time: southern horizon all The start time definition used is unexpected. Here, the start time of the “scan” is equal to
the moment when the southern horizon is detected.

start time: start image all The start time definition used is unexpected. Here, the start time of the “scan” is equal to
the start time of the entire scan.

start time: undefined all The definition of the start time cannot be determined.

value unexpected all A metadata parameter has an unexpected value (outside a certain range).

raw data background noise removed each Raw data has been changed and pixels that should contain background noise
manipulated have “0” as their value.

background noise removed each Raw data has been changed. Besides the removal of the background noise,
and noise added the intensity of all pixels might have been adjusted.

the number of scan lines each The number of valid scan lines has been changed.
changed

stray light direct stray light each Image is affected by parasitic light via indirect optical path, which results in a typical pattern
where the pixels have a higher intensity.

indirect stray light WV After the appearance of the direct stray light effect, several images can be affected. With the affected
images, several scan lines will have a significant lower intensity. The affected scan lines with
the indirect stray light anomaly are the scan lines, where in a preceding image the direct
stray-light effect was present.

reflection of the Moon WV An over-illuminated, fingernail-/crescent-shaped blob. It often appears on the right side of the Moon.

suspicious pattern suspicious pattern WV The image contains a non-physical pattern.

Atmos. Meas. Tech., 13, 1–13, 2020 www.atmos-meas-tech.net/13/1/2020/
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Figure 3. Examples of low-quality sensory data. (a) A scan line contains an interference pattern (file: METEOSAT4-MVIRI-MTP10-NA-
NA-19911216110000, channel: WV). (b) A block of scan lines (inside the red lines) with a much lower signal-to-noise ratio than neighbour-
ing scan lines (file: METEOSAT2-MVIRI-MTP10-NA-NA-19831016120000, channel: WV). (c) Image contains an unknown disturbance
pattern (file: METEOSAT2-MVIRI-MTP10-NA-NA-19810817223000, channel: WV). The pixel values are the raw digital counts; see also
Fig. 2.

Figure 4. (a) Image affected by a stray-light anomaly (file:
METEOSAT4-MVIRI-MTP10-NA-NA-19900415003000, chan-
nel: WV). (b) Several hours later, still showing follow-on effects
after the stray-light anomaly (file: METEOSAT5-MVIRI-MTP10-
NA-NA-20060317213000, channel: WV). The pixel values are the
raw digital counts; see also Fig. 2.

the database efficient, the affected area (scan line or pixels)
is approximated by a list of rectangles (each specified by X

and Y coordinates of a corner plus X and Y size).
For each anomaly type, a dedicated algorithm needs to

be developed. The algorithm development for some anomaly5

types, such as the missing data anomaly (several scan lines
are missing), is quite straightforward. Others, such as the
more image-processing-based anomalies, can be very chal-
lenging and require elaborated, innovative detection con-
cepts. The next sections will briefly describe the detection10

concept of three difficult anomaly types, to illustrate the va-
riety of processing steps used. It will mainly focus on the ba-
sic detection concept and not on all important pre-processing
steps and details to reach robustness under all circumstances.

Figure 5. Two examples of the “suspicious pattern” anomaly: in
(a) the vertical stripes are visible (file: METEOSAT2-MVIRI-
MTP10-NA-NA-19810817223000, channel: WV). In (b) the
ovals indicate the position of the suspicious pattern; the middle
oval has been altered to enhance the visibility of the pattern
(file: METEOSAT4-MVIRI-MTP10-NA-NA-19901015013000,
channel: WV). The pixel values are the raw digital counts; see also
Fig. 2.

3.5 Example complex-anomaly detection: “suspicious 15

pattern”

Figure 5 shows two examples that suffer from the “suspi-
cious pattern” anomaly. This anomaly type may have vari-
ous appearances (due to unknown root causes), which all re-
sult in a suspicious repeating pattern. The repetitive pattern 20

is clearly visible, but the magnitude is still quite small. Such
repetitive patterns can be detected by the analysis of the 2-D
FFT spectrum, where this anomaly will introduce peaks in
the 2-D FFT spectrum. As the variation in appearance is very
large (magnitude, spatial separation of the repeats, vertical 25

or horizontal pattern), we do not search for a particular pat-
tern/peak, but compare the observed 2-D FFT spectrum with
the expected 2-D FFT spectrum.

To detect these peaks in the 2-D FFT spectrum, we divide
the observed 2-D FFT from a single image by the expected 30
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Figure 6. Conceptual processing pipeline for detecting the suspi-
cious pattern anomaly.

2-D FFT from the particular satellite. The expected 2-D FFT
from a satellite is calculated by averaging the 2-D FFT from
100 images that did not contain any anomaly. If the ratio
between the two 2-D FFT spectra is larger than a threshold
(count value of 10), we define it as a peak. The threshold has5

been manually determined with the aim of detecting peaks in
images where they would be identified also by human eye.

A (clear) peak in the 2-D FFT spectrum does not always
result in a noticeable (by humans) pattern in the spatial do-
main (normal image). This especially holds for peaks that10

correspond to fast changing patterns with a small magnitude
(smaller than 1/255 of the maximum intensity). The effect
of the detected FFT peaks can be calculated by comparing
the difference between the original and reconstructed images.
The reconstructed image is calculated by the inverse FFT of15

the 2-D FFT spectrum with the peaks removed/reduced to a
normal value. Only if this difference exceeds a threshold (T)
will an anomaly be flagged. The flowchart of Fig. 6 describes
the process of detecting suspicious patterns in a schematic
fashion.20

3.6 Example complex-anomaly detection: “direct stray
light”

The design of the MFG satellites suffers from the issue that
the detector can be illuminated via an indirect optical path,
which results in the occurrence of the so-called direct stray-25

light anomaly. This “parasitic” light causes a pattern with an
increased intensity in the image. The observed pattern often
contains characteristic bows or arcs, but its appearance is a
little bit different in every instance. Figure 7 shows three ex-
ample images affected by the direct stray-light anomaly.30

In a series of images, the stray-light pattern moves across
the scene quite quickly compared to the normal movements
of the background (clouds, etc.), which enables its detection.
Figure 8 shows three sequential images that are affected by
the same direct stray-light anomaly. For detection, we as-35

sume that an affected pixel is (significantly) brighter than the
same pixel of the preceding and consecutive images.

To be able to use this assumption, it is essential that the raw
images are aligned with each other and that no other anoma-
lies have affected them. This allows the algorithm to deter- 40

mine whther a pixel is affected by this anomaly (see Fig. 9).
Note that the bow in the lower left corner of the image has
not been identified. The reason for this is that the algorithm
compares the current image with the previous one. In this
case the previous image also contained the same bow, and 45

therefore the algorithm fails to identify the bow as anoma-
lous.

3.7 Example complex-anomaly detection: “unstable
optics”

Meteosat-5 and -6 both suffer from a known optical hardware 50

issue, which affects the sensitivity of the detector (Koepken,
2004). The sensitivity of the detector can vary by just a few
percent and the effect is not noticeable by a human, which
makes it hard to manually select images that are affected by
the hardware issue. The detector’s sensitivity is not continu- 55

ously affected by these issues and the appearance and effect
magnitude changes from time to time. Koepken (2004) has
shown that the occurrence of this anomaly can be detected by
analysing the average IR intensity (over an entire image) over
time or by cross-referencing with another satellite. However, 60

requiring a complete image average means there is only one
observation every 30 min, while the anomaly can continu-
ously change and, in the meantime, the temperature of the
Earth also changes (e.g. as night progresses across the Earth
from the satellite’s viewpoint). Therefore, this method for 65

detection is not very sensitive or reliable. Cross-referencing
measurements from the affected satellite with data from an-
other satellite is unfortunately not always possible. It is also
preferable to have a detection concept that is independent
of other data sources. Therefore, the selected detection ap- 70

proach models the effect of the anomaly as an (intensity) off-
set per scan line per image, calculated by least-squares op-
timization. The optimization makes two assumptions: (i) the
average intensity of a scan line in an image is equal to the av-
erage intensity of the same scan line in the preceding image; 75

(ii) the effects of the anomaly average out over N time slots.
The first assumption is in general valid for registered images
without any anomaly. The second assumption is a direct con-
sequence of a time-dependent stochastic process. Based on
the results, we can conclude that the second assumption is 80

valid for the known optical hardware issues of Meteosat-5
and -6.

The bias for each scan line per image corresponding to this
anomaly type can be calculated by solving a linear system of
equations, from which we define the following variables: 85

– X[i,j ] = measured average intensity of scan line j from
image i.

Atmos. Meas. Tech., 13, 1–13, 2020 www.atmos-meas-tech.net/13/1/2020/
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Figure 7. Three examples of the direct stray-light effect anomaly. (a) Taken from file METEOSAT7-MVIRI-MTP15-NA-NA-
20130717210000 and channel WV. (b) Taken from file METEOSAT7-MVIRI-MTP15-NA-NA-19991016003000 and channel VIS. (c) Taken
from file METEOSAT4-MVIRI-MTP10-NA-NA-19900415003000 and channel WV. The pixel values are the raw digital counts; see also
Fig. 2.

Figure 8. Three sequential images affected by the direct stray-light anomaly. (a) Taken from file METEOSAT5-MVIRI-MTP10-NA-
NA19961015300000 and channel WV. (b) Taken from file METEOSAT5-MVIRI-MTP10-NA-NA19961016000000 and channel WV.
(c) Taken from file METEOSAT5-MVIRI-MTP10-NA-NA19961016300000 and channel WV. The pixel values are the raw digital counts;
see also Fig. 2.

– B[i,j ] = bias due to the unstable optics anomaly of scan
line j from image i.

Assumption 1 results in the following equation:

X[i,j ] −B[i,j ] ≈X[i− 1,j ] −B[i− 1,j ] ⇒X[i,j ]

−X[i− 1,j ] ≈ B[i,j ] −B[i− 1,j ].

Of course, these equations hold for every image i. As-5

sumption 2 results in the following equation:

B[i,j ] +B[i+ 1,j ] +B[i+ 2,j ] + . . .+B[i+N,j ] ≈ 0.

The equations for all images and scan lines can be stored
in a matrix. An example of a part of the matrix, where the
anomaly is averaged out over five images with weight W , is 10



−1 1
−1 1

−1 1
−1 1

−1 1
−1 1

−1 1
W W W W W

W W W W W
W W W W W


·



B[i,j ]
B[i+ 1,j ]
B[i+ 2,j ]
B[i+ 3,j ]
B[i+ 4,j ]
B[i+ 5,j ]
B[i+ 6,j ]
B[i+ 7,j ]



≈



X[i+ 1,j ] − X[i,j ]
X[i+ 2,j ] − X[i+ 1,j ]
X[i+ 3,j ] − X[i+ 2,j ]
X[i+ 4,j ] − X[i+ 3,j ]
X[i+ 5,j ] − X[i+ 4,j ]
X[i+ 6,j ] − X[i+ 5,j ]
X[i+ 7,j ] − X[i+ 6,j ]

0
0
0


. (1)

In our case, the linear system covers in total 21 consecutive
time slots, where the anomaly averages out over 5 time slots
and the anomaly bias is modelled per 100 scan lines. The
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Figure 9. Segmentation result of the direct stray-light anomaly
detection. Taken from METEOSAT5-MVIRI-MTP10-NA-
NA19961016000000 and channel WV. The pixel values are the raw
digital counts; see also Fig. 2 (© EUMETSAT).

calculated bias per image per scan line can be stored as an
array (like Fig. 10b) to better see how bias per scan lines
changes within an image or in time.

The calculated bias of images that have been affected by
this anomaly will be, in general, close to one digital count.5

The detection of this anomaly in an image is based on the
average magnitude of the calculated scan lines’ biases in a
particular image (see also the algorithm description as pro-
vided in the Supplement to this article).

4 Results10

For each anomaly type, a dedicated algorithm has been de-
veloped. The detection performance of the algorithm on the
training set (covering 2500 time slots) has been manually
verified. During this verification process, we noticed that al-
gorithms found more anomalies in the training set than were15

manually found. After inspection of the new detections, it ap-
peared that in most cases the algorithms were correct. If we
look at the overall detection performance of the algorithms
on the basis of the training-set dataset, 97.7 % (2.3 % missed
cases) of the anomalies are successfully (true positive) de-20

tected and 2.7 % of the detections are incorrect (false posi-
tive). The overall probability of detection of the anomalies
has been determined based on the results from the training
set. The POD of each anomaly type has not been determined,
because the number of occurrences in the training set is con-25

sidered to be too low to reliably calculate the POD. For some
anomaly types the sensitivity level of the algorithm (should
an image where an anomaly is vaguely visible be flagged or
not) could be subject to end-user’s preference, and as such
the sensitivity level will affect the POD and the false alarm30

rate of the algorithm. For simple anomaly categories, such
as “corrupt or missing” and “hot pixel”, the anomalies are
detected in all cases. For the more complex anomaly types,
such as “direct stray light” and “suspicious spectrum”, the
POD is around 90 %. 35

After the verification of the training set, all images from
the MFG satellites have been processed and the anomaly de-
tections stored in a separate database. An overview of the
detected anomalies in the entire MFG dataset is presented
in Table 4. The percentage of level 1.0 files that contain an 40

anomaly of a certain type (affecting any of the channels)
is shown separately per satellite. The MET6 dataset con-
tains mostly RSS images, which explains some of the high
anomaly rates.

The database can be used to create statistical analyses 45

about the anomaly distribution or to filter images (or even
pixels) for reprocessing campaigns or for specific and sensi-
tive use cases such as cross-calibration.

5 Discussion and conclusions

Monitoring the quality of input data is of great importance 50

in guaranteeing the correctness of the results of any analy-
sis. For long-term studies, such as those on the Earth’s cli-
mate, there is a need to combine datasets of various instru-
ments, including those of early sensors that were not origi-
nally well quality-controlled. Later efforts to identify anoma- 55

lies face multiple difficulties – loss of the original human ex-
pertise, limited documentation, and datasets too large to as-
sess manually in retrospect. A practical quality-assessment
system must be based on automatic means and, rather than
merely removing imperfect data from a period where obser- 60

vations are limited, must be able to support a wide variety
of future uses by supplying detailed and precise information
on the form and impact of anomalies. In addition, a uniform
approach towards assessing the quality of data products is of
great benefit to improving consistency over multiple sensors. 65

This paper describes a general method to screen an EO
image database with a cumulative observation history of ap-
proximately 40 years. It has been shown that the method of
using dedicated anomaly detection algorithms is sufficiently
powerful to detect a wide array of anomalies, ranging from 70

clear faults to subtle problems related to stray light that occur
only under certain celestial constellations. The main chal-
lenge was to develop the methods such that the algorithms
accurately detect the images that are affected by the anoma-
lies and, within the images, which areas are affected. With 75

respect to the first objective, the probability of detection for
affected images has been established at 97.7 % and the false
alarm rate of the method is 2.7 %. The specificity within an
affected image of the method is subjectively very good, and
most of the detection algorithms are able to highlight only 80

those pixels that are affected.
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Figure 10. Example of the Meteosat-5 optical hardware issue in time, where the image (a) shows the anomaly’s bias for consecutive images
across the scan lines. The image (b) is for a particular time slot and shows the anomaly’s bias across the scan lines. Taken from METEOSAT5-
MVIRI-MTP10-NA-NA-19960515120000 and channel IR.

Table 4. Percentage of level 1.0 files containing anomalies in the images and metadata.

Category Type MET2 MET3 MET4 MET5 MET6 MET7

artefact east–west horizon misaligned 0.1 < 0.1 0.1 < 0.1 < 0.1 < 0.1
over-illumination 32.9 34.9 < 0.1 < 0.1 < 0.1 < 0.1
tilted line < 0.1 < 0.1 3.8 3.9 < 0.1 < 0.1

celestial body celestial body: the Moon 0.3 0.4 0.3 0.4 0.2 0.4
celestial body: undefined 0.1 0.1 0.1 < 0.1 < 0.1 0.1

corrupt or missing completely black 3.4 1.1 0.6 < 0.1 2.5 0.4
corrupt file < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
hanging scan line 1.7 2.6 0.9 0.9 0.9 0.6
hanging scan line: no sub-images < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
incomplete image 1.4 2.5 1.4 0.2 62.4 0.5
invalid signal 100 100 0.1 0.1 < 0.1 0.2
large black area 3.8 4.0 2.7 2.8 2.3 1.1
large white area 0.8 0.3 < 0.1 < 0.1 < 0.1 < 0.1
no sub-images 0.2 0.4 0.8 0.3 1.0 1.1

hot pixel hot pixel pattern 1 < 0.1 < 0.1 91.4 92.0 74.8 90.9
hot pixel pattern 2 0.4 0.2 4.7 13.7 2.9 5.0
hot pixel pattern independent 40.6 5.0 18.1 24.2 2.3 9.4

unstable optics unstable optics 0.4 0.3 0.2 2.7 10.2 0.2

low SNR low SNR: scan line 16.2 1.3 0.3 0.1 < 0.1 0.1

raw data manipulated background noise removed 98.8 98.6 13.6 < 0.1 0.1 < 0.1
background noise removed/noise added 91.1 10.9 0.7 < 0.1 0.4 < 0.1
the number of scan lines changed 2.1 0.2 < 0.1 0.1 < 0.1 < 0.1

stray light direct stray light 3.9 5.6 4.8 6.8 1.9 4.7

indirect stray light 6.1 4.7 4.9 6.4 2.2 6.1
reflection of the Moon 0.1 0.2 < 0.1 < 0.1 < 0.1 < 0.1

suspicious spectrum suspicious spectrum 6.9 44.9 60.4 2.2 0.1 1.8

metadata EFF position corrupt 26.6 81.8 1.7 0.2 < 0.1 < 0.1
orbit position empty 2.3 1.3 2.0 0.3 1.1 1.5
parameter empty 100 100 100 17.3 63.9 1.8
start time: forward scan < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
start time: southern horizon < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1
start time: start image 70.0 0.2 0.1 0.4 62.7 0.3
start time: undefined < 0.1 < 0.1 < 0.1 0.1 < 0.1 0.1
value unexpected 100 100 100 17.3 63.9 1.8
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The anomaly detection results for the full dataset of EU-
METSAT’s MFG satellites are stored in a dedicated database
that can be consulted to better understand the distribution
of anomalies over the complete dataset and to filter the im-
age data so that long-term analyses are being conducted on5

quality-controlled input data.
The anomaly detection system will be an essential part of

the quality-control system in future reprocessing and analysis
work, and strengthens EUMETSAT’s stewardship of the full
MFG data archive by providing a consistent and data-based10

methodology for quality assessment. Although the anomaly
detection algorithms have been tested on MFG data, it is be-
lieved that the approach can be used for other similar geo-
stationary satellite instruments as well, such as those on
MSG (Schmetz and Menzel, 2015), GMS/MTSAT (Tabata15

et al., 2019), and GOES (Considine, 2006), as no satellite-
specific knowledge is needed to parameterize the detection
algorithms.

Data availability. MFG level 1.0 data can be requested through the
EUMETSAT help desk at ops@eumetsat.int.20

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-13-1-2020-supplement.
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