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Abstract.

Exact monitoring of water vapour in the Arctic on long time scales is essential for predicting Arctic weather and under-

standing climate trends, as well as addressing its influence in the positive feedback loop contributing to Arctic Amplification.

However, this is challenged by the sparseness of in-situ measurements and the problems that standard remote-sensing retrieval

methods for water vapour have in Arctic conditions. Here, we present advances in a retrieval algorithm for vertically integrated5

water vapour (total water vapour, TWV) in polar regions from data of satellite-based microwave humidity sounders: (1) In

addition to AMSU-B (Advanced Microwave Sounding Unit-B), we can now also use data from the successor instrument MHS

(Microwave Humidity Sounder); (2) artefacts caused by high cloud ice content in convective clouds are filtered out. Compar-

ison to in-situ measurements using GPS and radiosondes during 2008 and 2009 as well as radiosondes during the N-ICE2015

campaign show overall good performance of the updated algorithm. Combining TWV data from the present algorithm with10

those retrieved from microwave imagers like AMSR-E and AMSR2 makes a continuous record of TWV since the year 2000

possible, with nearly complete and year-round coverage of the Arctic.

1 Introduction

Water vapour is a key element of the hydrological cycle (Chahine, 1992; Serreze et al., 2006; Jones et al., 2007; Hanesiak

et al., 2010), with shifts in it affecting atmospheric transport processes, creating and intensifying droughts and flooding (Tren-15

berth et al., 2013). Additionally, as the most important greenhouse gas in the atmosphere, it has a dominant effect on climate

and radiative forcing (Soden et al., 2002; Dessler et al., 2008; Kiehl and Trenberth, 1997; Trenberth et al., 2007; Ruckstuhl

et al., 2007). Hence, it is essential to monitor its variability considering the anthropogenic increase of other greenhouse gases

(Solomon et al., 2010), with the water vapour positive feedback loop highlighted as part of other feedbacks responsible for

Arctic Amplification (Francis and Hunter, 2007; Miller et al., 2007; Screen and Simmonds, 2010; Ghatak and Miller, 2013).20

In summary, understanding the water vapour cycle has high value, yet our comprehension is incomplete (Stevens and Bony,

2013). Throughout this paper, when mentioning atmospheric water content, we refer to the vertically integrated mass in a
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column of air with a base of 1 m2, and call it total water vapour (TWV, sometimes also called column water vapour, integrated

water vapour or total precipitable water).

Balloon-borne radiosondes are a standard method for retrieving the water vapour profile. Additionally, ground-based re-

trievals by microwave radiometers as well as GPS-based retrievals – while having a lower vertical resolution – are good for

monitoring purposes in regions where ground stations can be installed. However, in the Arctic, neither radiosondes mea-5

surements nor ground-based retrievals are sufficient for this purpose because weather stations are too scarce. Only satellite

measurements fulfill the global coverage requirements. An additional challenge is to construct a consistent long-term climate

record, due to the changes in measuring instruments, and degradation of the existing ones. Because of the strong absorption

properties of water vapour in the infrared and microwave range, suitable space-borne instruments can in principle ensure a

complete global coverage of water vapour retrievals (Miao et al., 2001; L. P. Bobylev and Mitnik, 2010). In polar regions, how-10

ever, satellite retrieval of water vapour faces a number of obstacles such as cloud cover which restricts infrared measurements,

or incomplete understanding of the high and highly variable sea-ice emissivity which challenges microwave measurements.

Some studies – like the one by Weaver et al. (2017) – have been done for TWV in the Arctic atmosphere, but none of them

have been able to provide a long-term Arctic-wide data set.

An important step for Arctic water vapour retrieval comes from the work of Miao et al. (2001). They used data from the15

SSM/T2 (Special Sensor Microwave/Temperature 2) humidity sounder to develop an algorithm which was designed to work

in the Antarctic. The key concept of this method is the use of several microwave channels with similar surface emissivity but

different water vapour absorption. These are the three channels near the 183.31 GHz water absorption line (183.31±1,±3 and

±7 GHz), which, together with the channel at the 150 GHz window frequency, allows retrieval of TWV values up to about 7

kg/m2. Above this value, two of the 183.31 GHz band channels become saturated and the sensor is not able to "see" through20

the whole atmospheric column anymore. This limited range is enough for Antarctica, and suffices for the Arctic in winter

conditions (in the polar winter atmosphere, the water vapour column is typically around 3 kg/m2 according to Serreze et al.

(1995)), as well as for the central Arctic (above 70◦ N) most of the year. However, because of the upper limit, this method

cannot ensure monitoring of the complete yearly cycle. The algorithm developed by Melsheimer and Heygster (2008) extends

the TWV retrieval range over sea ice by including the 89 GHz channel into the retrieval. Using the triplet of the 183.31±7, 15025

and the 89 GHz channels allows the retrieval to function up the saturation limit of the 183.31±7 GHz channel. This method

has been compared with other datasets: In Rinke et al. (2009) a comparison with the HIRHAM model showed realistic patterns

and maximum root-mean-square errors for monthly data in summer of 1-2.5 kg/m2. For the comparison with Ny Ålesund

radiosondes in Palm et al. (2010), the correlation coefficient was 0.86 and the slope 0.8±0.04 kg/m2. And lastly, in Buehler

et al. (2012) ASMU-B TWV are compared to GPS data from Kiruna, with standard deviations of 1 kg/m2 and a correlation30

coefficient of 0.86. However, the AMSU-B algorithm is not without problem: while the frequency range allows it to bypass

most clouds, the AMSU-B sensor is still sensitive to convective clouds with high ice content. Here we provide an approach for

filtering out problematic data caused by the effect of such ice clouds. This is intended as groundwork for the planned merging

with TWV retrieved over open ocean based on passive microwave imagers (product described by Wentz and Meissner, 2006).
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In Section 2, we describe the algorithm in a more detailed way. In Section 3 we evaluate the application of the algorithm to

MHS instead of AMSU-B data, which is necessary for extending the data set to cover recent years, performing a comparison

with different in-situ data sources in Section 3.2. Then, we evaluate the new ice cloud filtering developed for the algorithm in

Section 4, and finally give some conclusions in Section 5.

2 Retrieval algorithm5

2.1 Data sources

The algorithm uses microwave radiometer satellite measurements from humidity sounders such as AMSU-B or MHS on board

the NOAA (National Oceanic and Atmospheric Administration) 15 to 19 satellites and Eumetsat (European Organisation for

the Exploitation of Meteorological Satellites) Metop-A, Metop-B and Metop-C satellites. The characteristics of each sensor

can be found in Table 1, and the launch dates of each satellite in Table 2. Through this paper, when we refer to AMSU-B10

TWV, the brightness temperature data used for the retrieval is always from the sensor on NOAA-17, with the version from

the Fundamental Climate Data Record (Ferraro and Meng, 2016), which provides an inter-satellite calibrated set of brightness

temperatures as described in Ferraro (2016). When we refer to MHS TWV, the brightness temperature data are from NOAA-18,

similarly sourced.

2.2 Radiative transfer equation15

The algorithm starts from the formulation of the radiative transfer equation in the contracted form by Guissard and Sobiesky

(1994) which describes the brightness temperature (TB) measured by a space-borne radiometer as:

TB(θ) =mpTs− (T0−Tc)(1− εs)e−2τ secθ, (1)

where θ is the zenith angle, Ts and T0 are the surface and air temperatures, respectively, Tc is the cosmic background emission,

εs the surface emissivity, τ0 the total opacity of the atmosphere in the vertical direction, and mp a correction to take into20

account a non-isothermal atmosphere (mp = 1 would be the isothermal case). The approach by Melsheimer and Heygster

(2008), summarized in the following, assumes the ground to be approximated as a specular reflector, which should be good

enough for remote sensing in the frequency range we are dealing with, according to Hewison and English (1999).

2.3 Retrieval for equal emissivity assumption

Note that the entire derivation of the final total water vapour retrieval equation from the radiative transfer equation is described25

in detail in the initial paper for the Antarctic by Miao et al. (2001) and the subsequent Arctic extension by Melsheimer and

Heygster (2008). We summarize it here because the basic mechanism is necessary to understand the changes performed.

We start from microwave radiometer satellite measurements in three different channels i, j,k, such as mentioned in Sec-

tion 2.1. We assume none of these three channels are saturated, i.e., the sensor is still sensitive to the whole atmospheric
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column and ground. Additionally, we take the ground emissivity as equal in all three channels (as they see the same footprint,

and the emissivity does not vary between the channels), while the water vapour absorption (mass absorption coefficient k) is

different, with ki < kj < kk. Then, the brightness temperature difference of two channels i,j can be expressed as:

∆Tij ≡ TBi−TBj = (T0−Tc)(1− εs)(e−2τi secθ − e−2τj secθ) + bij , (2)

where τi is the nadir opacity of the atmosphere at the frequency of channel i, and bij is a bias related to the term mp for the5

channels i and j:

bij = Ts(mpi−mpj), (3)

As shown in Melsheimer and Heygster (2008) – Appendix II, the bias can here be approximated as:

bij ≈
∞∫
0

[
e−2τi(z,∞)secθ − e−2τj(z,∞)secθ

] dT (z)

dz
dz, (4)

where T (z) is the atmospheric temperature profile. Then we take the ratio of what we call compensated brightness temperature10

differences:

ηc ≡
∆T0ij
∆T0jk

=
∆Tij − bij
∆Tjk − bjk

=
e−2τi secθ − e−2τj secθ

e−2τj secθ − e−2τk secθ
. (5)

We can express the opacities τi as a sum of the atmospheric constituent contributions to them: water vapour (τwi ) and oxygen

(τoxygeni ). The latter is negligible for AMSU-B channels near the water vapour line, so if we take water vapour mass absorption

coefficients ki and TWV W :15

τi = τwi + τoxygeni ≈ kiW, (6)

If we approximate the differences of exponentials by products in (5) and take logarithms, we get:

ln(ηc) =B0 +B1W secθ+B2 (W secθ)
2 (7)

The three constants B0, B1, and B2 depend on the mass absorption coefficients for the different channels. The term quadratic

in W can be neglected (Selbach, 2003; Miao et al., 2001) which leaves us with an equation linear in W that can then be solved20

to yield our retrieval equation:

W secθ = C0 +C1ln(ηc) (8)

where C0 = B0

B1
and C1 = 1

B1
. They are determined empirically as calibration parameters from simulated brightness tempera-

tures based on radiosonde profiles by a regression analysis, described in more detail below (section 2.6).
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2.4 Extension of the retrieval

Normally, for TWV values above 7 kg/m2 , saturation occurs at Channel 19 (183.3±3 GHz). To extend the retrieval range

above this threshold, another channel is required that is less sensitive to water vapour to take its place in the triplet. This means

that a new set of assumptions has to be made about the surface emissivity influence. For AMSU-B, the next channel ”in line”

is the one at 89 GHz (Channel 16). Thus, the three channels i, j, k are now the AMSU-B Channels 16, 17 and 20 (89, 1505

and 183.31±7 GHz). Because Channel 16 is so far from the other two, we can no longer assume that it has the same surface

emissivity as the others. Therefore the retrieval equation needs to be re-derived with the changed premise: εi 6= εj = εk. This

leaves us with a similar looking retrieval equation:

W secθ = C0 +C1ln(η′c) (9)

where η′c is a modified ratio of compensated brightness temperatures:10

η′c ≡
rj
ri

(ηc +C(τj , τk))−C(τj , τk), (10)

and C(τj , τk) is defined as

C(τj , τk) =
e−2τj secθ

e−2τj secθ − e−2τk secθ
, (11)

Since now there is a dependence on emissivities εi, or, equivalently, on reflectivities ri = 1− εi, the surface emissivity at

89 GHz needs to be examined. Ideally, the ratio of corresponding reflectivities would be taken for each footprint. However,15

that is not possible without knowing atmospheric conditions and surface temperature. As an approximation, the emissivity is

parametrized, and fixed reflectivity ratios depending on surface types are obtained. This was done for sea ice in Melsheimer

and Heygster (2008) and for open water surfaces in Scarlat et al. (2018). The upper limit of this extended retrieval is about

15 kg/m2. Here, we will use this extended retrieval only over sea ice.

2.5 The ”sub-algorithms”: regime selection20

As described through Sections 2.3 and 2.4, three different channel triplets are used for the retrieval, depending on the water

vapour amount and the saturation of channels; hence, there are three ”sub-algorithms” or retrieval regimes. Each sub-algorithm

reaches its upper retrieval limit when the channel wich is most sensitive to water-vapour becomes saturated. In the original

algorithm formulation by Melsheimer and Heygster (2008), the switch from one sub-algorithm to the next (always starting

with the most sensitive one) is done only when the saturation condition,25

Tbj −Tbk > 0 (12)

is fulfilled. This means that for each satellite footprint, only one of the three sub-algorithms is finally used. As the sub-

algorithms have been calibrated independently, the switch from one to the next can cause a jump in the retrieved value. A

method avoiding this discontinuity in the retrieval values will be discussed further in the follow-on paper. Additionally, as the

switch between regimes is done in the brightness temperature space, this does not correspond to a strict cut-off point in water30

vapour. In Table 3 we summarize the characteristics of each regime.
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2.6 Bias and calibration parameters

Since we ordered the channels by the water vapour sensitivity (τi < τj < τk), the difference of exponentials in ∆T0ij and

∆T0jk is negative. Therefore, the first term of the temperature difference increases with increased emissivity from negative

values to 0 (reached when ε= 1). ηc doesn’t depend on ε, which cancels on the ratioing. In a plot with ∆Tjk as abscissa and

∆Tij as ordinate, for constant W and varying ε, this is a straight line with slope ηc (W ), running through the bias points5

(bjk, bij). Since the biases depend only weakly on W and ε, all straight lines for different W run through almost the same

point F = (Fjk,Fij), which is called focal point by Miao et al. (2001) and Melsheimer and Heygster (2008). The focal point

F is found by simulating brightness temperatures for a set of different ε, with different input atmospheric profiles (including

W ) from radiosonde data, and surface temperature taken as ground-level atmospheric temperature (which makes the small

emissivity dependence of the biases vanish; see Melsheimer and Heygster (2008) - Appendix II). Having determined the focal10

point, the simulated brightness temperature differences and corresponding TWV values from the radiosonde profiles can be

used to get the calibration parameters C0 and C1. Thus, together with the two focal point coordinates Fjk and Fij , there is a

total of four calibration parameters in the retrieval equation which are derived by this regression. The specific values for each

viewing angle and regime of AMSU-B sensor are found in Melsheimer and Heygster (2008) – Appendix III. For MHS, all

these calibration parameters were recalculated and are shown in Appendix A.15

2.7 Filtering ice cloud artefacts

The effect of ice clouds at the AMSU-B frequencies as studied in Sreerekha (2005) is known, and has been used for detecting

tropical deep convection (Hong et al., 2005) and for an automated method for finding polar mesocyclones (Melsheimer et al.,

2016). The latter method uses the sensitivity of retrieved TWV to convective clouds with high ice content as one of the

main signatures of polar lows. In these cases, since cloud ice particles are strong scatterers in the used microwave range, the20

radiation from below the clouds is scattered strongly and hardly reaches the sensor, so that the AMSU-B retrieval is only

sensitive to atmospheric water vapour above such clouds and retrieves erroneously low TWV. A procedure to recognize and

screen such cases for the AMSU-B/MHS algorithm has been developed. Our approach for eliminating the affected TWV is

to find connected areas – minimum of two pixels – of low TWV (<4 kg/m2) smaller than 50 pixels which are surrounded by

higher or non-retrieved values and remove them with a succession of morphology operations (Gonzalez and Woods, 2007),25

using the tools for Python described in van der Walt et al. (2014): First a dilation with a 7x7 square structural element, and then

a closing with the same size structural element.

3 Evaluation of retrieval with MHS data

3.1 Comparison between MHS and AMSU-B based retrieval

As shown in Table 1, there are some frequency and polarization differences between AMSU-B and MHS sensors. According to30

the analysis in John et al. (2012), there are some non-negligible discrepancies between the brightness temperatures of AMSU-B
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and MHS for the second and fifth channels (17 – 150 GHz – and 20 – 183.31 ± 7 GHz – for AMSU-B, respectively), due to

the differences in frequency, while the differences in polarization seem not to be relevant. That raises the question of whether

the TWV algorithm will perform equally when using MHS data as input, and, if that is not the case, which adaptation would

be needed to ensure consistency of the retrieval results. First, we evaluate the performance for the retrieval as a whole by

comparing the retrieved data of both algorithms in the overlap period of both sensors (2008-2009). Figure 1 shows two density5

plots for the overlap months of January (top) and July (bottom) of 2008-2009. The results of a least squares regression are

shown in the figure as well. Both data sets show good agreement, with most of the points along the one-to-one line. However,

we can observe some outliers with high MHS TWV and low, almost constant, AMSU-B TWV, and vice versa, specially striking

during the month of July. They are likely caused by time differences of the satellite overpasses, and amount to only about 0.27%

of the data, so they are not significant in the overall picture.10

In Table 4, the fit statistics for all months are shown. The correlation ranges from 0.87 in June to 0.94 in September.

The lowest slope (0.82 kg/m2) is found in December, which may be related to the smaller than expected amount of data for

this month compared to the coincidences in the other winter months. On the other hand, the slope is closest to 1.0 in May

(0.91 kg/m2). The intercept increases for the summer months (June, July, August) but is relatively small for the other months.

The RMSD has a similar behaviour: we find higher values for the central months of the year, with a maximum of 2.25 kg/m215

in August, coinciding with the increased number of outliers. Minimum is of 0.73 kg/m2 in March. The bias is generally

small (minimum of 0.04 kg/m2 in March, maximum of 0.49 kg/m2 in September), and positive except for May and June. In

general, all parameters show lowest agreement in the summer months when the atmospheric variability is highest. However,

we presume the strongest contribution to the low agreement in summer is due to the higher uncertainty and variability in the

surface emission due to melt process and occurence of melt ponds.20

To check any possible influence from the surface type in the consistency of our retrievals, we have studied the TWV time

series during 2008-2009 for MHS and AMSU-B over different surfaces: ice, land and open water. The location chosen for

each study point is shown in Figure 2, with the surface classification used in the TWV retrieval for a day in early March 2008

(maximum ice extent) as background. Using the ice concentration provided by the ASI-algorithm (Spreen et al., 2008), pixels

with ice concentrations below 15% will be open water, while the ones with more than 80% will be considered ice. We show25

the monthly and yearly means of this time series for the four different locations in Figure 3. Note the lack of data for summer

months over open water and ocean because of the limitations of the algorithm. All four time series show good agreement which

confirms the consistency between our retrievals. The bias and RMSD are small for all four surface types (ice: 0.1±0.4 kg/m2,

open water:0.03±0.15 kg/m2, marginal ice zone: 0.2±0.7 kg/m2, land: 0.12±0.19 kg/m2), but slightly higher in two cases with

ice surfaces, which agrees with the higher error of our method for higher water vapour values (extended regime).30

3.2 Comparison with in-situ data sources

While TWV retrieved from AMSU-B has been validated with different data sources (Rinke et al., 2009; Palm et al., 2010;

Buehler et al., 2012), the same cannot be said about the retrieval with MHS data. Therefore, we performe a comparison with

TWV derived from radiosondes taken during the N-ICE21015 campaign from January to June 2015 onboard research vessel
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Lance north of Svalbard (Hudson et al., 2017; Cohen et al., 2017). We select the MHS data as the mean of all the values in a 50

km radius around the location of each radiosonde. The resulting time series is shown in Figure 4. The first thing to note is that

the MHS series ends at the start of June because, afterward, the water vapour values are too high for the retrieval. However,

both data sets show good visual agreement, except that MHS is not able to capture some of the quasi periodic peaks in TWV

from N-ICE2015 data set (seen roughly every two weeks in February and March). We have eliminated these nine outliers from5

the following analysis. The scatter plot of all overlapping points of both data sets – with the colour scale representing the month

of the campaign – shown in Figure 5, confirms the good agreement.

Additionally, we used Global Positioning System (GPS) and radiosounding (RS) TWV observations during the common

2008-2009 period between the AMSU-B and MHS sensors to evaluate the satellite TWV retrieval. GPS and radiosonde TWV

have been measured at the five coastal Arctic stations Alert, Eureka, Ny Ålesund, Resolute and Scorebysund, as shown in10

Figure 6. These datasets are part of a homogenized year time series. From the GPS data, 1-h average values of local integrated

TWV have been computed each 6 hours. The radiosoundings have been performed once or twice per day at the selected sites

(00:00 and 12:00 UTC). Further details about processing can be found in Negusini et al. (2016). As for the AMSU-B and

MHS TWV values, we selected points fulfilling the data conditions of ±1h from the integrated GPS measurements (00:00,

06:00, 12:00, 18:00UTC) and found in a 50 km radius around the GPS/RS stations. The resulting AMSU-B, MHS, GPS and15

radiosonde time series in Figure 7 present generally consistent patterns and reasonable seasonal evolution, with drier winters

and wetter summers. Overall, the datasets have worse agreement during the summer months, mainly due to “spikier” data, i.e.

more extreme water vapour values. Due to this pronounced seasonal cycle, we separate the results between summer (April to

September) and winter (October to March) in the following analysis. There seems to be a slight wet bias in summer for both

satellite-derived TWV with respect to the other datasets.20

Scatter plots comparing each satellite dataset with both radiosondes and GPS have been prepared for each season and station.

As an example, Figure 8 shows the results for Alert. The correlation coefficients vary between 0.55 to 0.82, and the correlations

in winter seems to be generally lower. We presume this is just a numerical effect because of the narrower data distribution.

The RMSD, in contrast, is higher in summer (as seen in Figure 9). The only difference between both satellite-based retrievals

seems to be a smaller number of coincident points between the MHS TWV and the radiosondes TWV (approximately half of25

the data points).

Figure 9 shows all fit parameters for the five stations, with separated results between summer and winter. There seems to

be only little difference between the results from the two satellite-based retrievals, which corroborates our confidence in the

MHS-based retrieval. Over the three quality indicating parameters RMSD, bias and correlation coefficient there is even a slight,

but consistent advantage for the MHS based retrieval. The bias values are almost all negative, and smaller than the RMSD. In30

other words, the variability of our data is bigger than the systematic difference between the compared datasets. Additionally,

RMSD is along usual values for TWV studies at high latitudes (as seen in Palm et al. (2010) for Ny Ålesund and in Buehler

at al. (2012) for Kiruna), which reassures us on the quality of satellite-based PW retrievals. The higher RMSD values in the

Arctic summer correlate with the higher disagreement seen at high PW values over 7 kg/m2 for all methods in Figure 8 (left,

top and bottom). Such disagreement can be explained by the change in sub-algorithms as explained in Section 2.5.35
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4 Evaluation of changes/improvements in the retrieval: Filtering ice cloud artefacts

Figure 10 shows daily averaged TWV maps – with the cloud mask (Section 2.7) already applied – for the AMSU-B/MHS

algorithm (top and centre), as well as from a different data product based on AMSR-E observations (Wentz and Meissner,

2006) over open ocean (bottom) in winter (left) and summer (right). The days chosen to represent each season (6 January

and 6 July, 2008, respectively) show how a typical retrieval looks like for the respective season. The first thing to notice is5

the difference in spatial coverage of AMSU-B TWV between winter and summer. In summer, AMSU-B/MHS retrieval is

restricted to the drier regions, mostly over sea ice and Greenland (the upper limit of the retrieval is usually about 15 kg/m2 for

sea ice surfaces). In winter, the retrieval is possible over most of the land, open water areas and sea ice. Meanwhile, there is no

significant coverage variation between seasons for the AMSR-E retrieval: most open water areas are covered. In consequence,

the area covered by both methods is smaller in summer, as we can note in the map illustrating the regional coverage – for the10

same days – of both algorithms in Figure 11 (orange area shows joint coverage). Still, TWV is retrieved in most of the Arctic

in both seasons. Another consequence is that in summer the overlap area is small. In this particular example of Figure 11, there

is no overlap between both datasets.

To visualize the areas affected by the ice cloud mask, Figure 12 shows different areas of interest before (left) and after

(right) masking, for different days spaced evenly throughout 2008 (each three months approximately: 6th of January, 2nd of15

April, 6th of July and 14th of October). These areas have been chosen as representative cases for the season. Most features

are removed, but there are still some small areas of low values of TWV (such as the retrieved regions in the land around 70◦

W, 62◦N Figure 12 (October, bottom right)). Note that these incorrectly retrieved areas are surrounded by grey values which

represent water vapour too high to be retrieved with the AMSU-B method (about >7 kg/m2 over ocean or land surfaces).

To show the overall effectiveness of the ice cloud mask, we have compiled all the overlapping retrieved TWV from AMSU-20

B and AMSR-E for the complete months of January (top) and July (bottom) from 2006 to 2008, shown in Figure 13. Before

filtering for ice cloud artifacts (left), there is a big cluster of data with high AMSR-E values for relatively low AMSU-B

values. Those correspond to the values affected by convective clouds with high ice content. Note that the overlap area between

AMSR-E and AMSU-B is small (Figure 11) and therefore cloud artifacts make up a large fraction of the overlap data points,

particularly in summer. After filtering (right) the AMSU-B retrieval, they are gone. Additionally, the fit performed improves25

significantly, with the correlation reaching 0.6 in summer and the slope getting much closer to one in winter (0.95, as compared

to 0.3). Note also the jump in density of the retrieved TWV values caused by switching between sub-algorithms mentioned

above (Section 2.5), most notably near 6 kg/m2 (Figure 13).

5 Conclusions

We provide an updated version of the TWV retrieval algorithm that originally uses as input microwave humidity sounder data30

from AMSU-B. The updated algorithm, can now also use data from MHS, the successor instrument of AMSU-B, and contains

a filter for artifacts caused by convective clouds with high cloud ice content. The improved retrieval performs better when

compared to another satellite product and to in situ data.
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We have investigated the impact of differences between AMSU-B and MHS on the retrieved TWV and have found the

differences to be negligible. This means that a consistent continuous data set for the years 1999 until now can be generated

from combining AMSU-B and MHS data. Additionally, the MHS-based TWV data have been compared with radiosonde data

from the N-ICE2015 campaign, and the results show good performance for MHS TWV. Both satellite-derived TWV have

been compared against GPS and radiosonde data for five Arctic coastal stations during 2008 and 2009, and the results are5

satisfactory.

The filter for ice cloud artifacts performs well as shown by comparison with data from the AMSR-E based algorithm that

works over open water. A remaining issue are the jumps of retrieved TWV values between the different retrieval regimes.

This can, however, in principle be mitigated by comparing root mean square differences and bias for adjacent TWV regimes,

and choosing an optimal regime, i.e., channel combination, for the range of the water vapour column. Where regimes overlap,10

weighted averages can smooth the transition.

The algorithm described here has an upper TWV limit that restricts retrieval in summer to the central Arctic and Greenland.

However, when combining the TWV data retrieved by the algorithm described here with TWV retrieved over open ocean from

AMSR-E and AMSR2 – the product by Remote Sensing Systems (RSS) (Wentz and Meissner, 2006) – a nearly complete

coverage of the whole Arctic year-round is possible, starting in 2000, which is the overall goal of future work.15

Appendix A

The following tables list the calibration parameters C0, C1, Fjk, and Fij for the TWV retrieval algorithm for the Arctic and –

for the sake of completeness – the Antarctic, for 15 viewing angles that span the range of the viewing angles of MHS, calculated

in the same way as the parameters for AMSU-B-based retrieval by Melsheimer and Heygster (2008). The retrieval equation is,

from (5) and (8):20

W secθ = C0 +C1ln

[
∆Tij −Fij
∆Tjk −Fjk

]
, (A1)

where ∆Tij = Tb,i−Tb,j , the MHS channels i, j,k are

– 5 (190.31 GHz), 4 (183.31 ± 3 GHz), 3 (183.31 ± 1 GHz) for the low-TWV algorithm,

– 2 (157 GHz), 5 (190.31 GHz), 4 (183.31 ± 3 GHz) for the mid-TWV algorithm,

and, from equations ( 10) and ( 9),25

W secθ = C0 +C1ln

[
rj
ri

(
∆Tij −Fij
∆Tjk −Fjk

+ 1.1

)
− 1.1

]
(A2)

where i,j,k are 1 (89.9 GHz), 2 (157 Ghz), 5 (190.31 GHz) for the extended algorithm.

The calibration parameters for the Arctic (Tables A1–A3) were derived using radiosonde data from those World Meteoro-

logical Organization (WMO) stations in the Arctic that are located on the coast or on islands (29 stations), from the years 1996

to 2002, which amounts to about 27000 radiosonde profiles.30
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Figure 1. Density plot and fit for MHS TWV versus AMSU-B TWV retrievals for all the coincident points in January (top) and July (bottom),

2008-2010. The dashed line is the one-to-one line, and the black line corresponds to the linear fit of the data.
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Figure 2. In black, location of the points chosen for the surface characterisation study for TWV. As background, the surface classification

used in the TWV algorithm, obtained from ASI algorithm ice concentration (Spreen et al., 2008) for a typical day in March (6.03.2008).
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Figure 3. Monthly and yearly means for 2008 and 2009 of the AMSU-B (pink circles) and MHS (blue triangles). TWV retrieval over the

locations shown in Figure 2.
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Figure 4. Time series of coincident MHS TWV data (blue symbols) and TWV from radiosondes (red symbols) during the N-ICE campaign.
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Figure 5. Scatter plot and fit for MHS TWV versus radiosonde TWV retrievals for all coincident points during the N-ICE campaign. The

colour scale shows the month where the data point comes from; dashed line: one-to-one lines, solid line: linear regression.
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Figure 6. Location of the radiosonde and GPS stations.
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Figure 7. Time series of AMSU-B (dark blue), MHS (light blue), GPS (green) and radiosonde (salmon) TWV retrievals during 2008 and

2009.
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Figure 8. Scatter plots and fits for AMSU-B (top) and MHS (bottom) TWV retrievals versus GPS (light blue) and radiosondes (dark blue)

TWV retrievals for all coincident points during summer (left) and winter (right) of 2008 and 2009 in the Alert station. The solid lines in light

and dark blue show the linear regressions for GPS and radiosondes in each case, while the dashed lines are the identity line
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Figure 9. Values of fit parameters for summer (left) and winter (right): RMSD, bias, correlation coefficient R2, slope and intercept of

regression line for MHS and AMSU-B TWV retrievals versus radiosonde and GPS TWV retrievals. RMSD, bias and intercept are in kg/m2,

slope and R2 are absolute numbers.
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Figure 10. AMSU-B (top), MHS (centre) and AMSR-E (bottom) TWV retrievals for (left) winter (6 January, 2008), and (right) summer

(6 July 2008)
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Figure 11. Coverage and overlap area of the merged AMSU-B and AMSR-E retrieval for (top) winter (6 January, 2008), and (bottom)

summer (6 July, 2008). Note that there is no overlap between retrievals (orange) for the summer case presented.
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Figure 12. Unmasked (left) and masked (right) AMSU-B TWV retrieval for different showcased areas of four days through 2008: 6 January

(top), 2 April (middle up), 6 July (middle down) and 14 October (bottom). Please note the different location in each case.
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Figure 13. Density plot and fit for AMSR-E TWV versus AMSU-B TWV retrievals for all the coincident points in January (top) and July

(bottom) from 2006 to 2008, before (left) and after (right) filtering AMSU-B retrieval for ice cloud artifacts, with a fit (black solid line) for

the data clusters over the 1-1 line (dashed grey).
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Table 1. Frequency and polarization details for each channel of AMSU-B and MHS sensor

AMSU-B MHS

Channel Frequency (GHz) Polarisation Channel Frequency (GHz) Polarisation

16 89.9 ± 0.9 Vertical 1 89.9 Vertical

17 150.0 ± 0.9 Vertical 2 157.0 Vertical

18 183.31 ± 1 Vertical 3 183.31 ± 1 Horizontal

19 183.31 ± 3 Vertical 4 183.31 ± 3 Horizontal

20 183.31 ± 7 Vertical 5 190.311 Vertical
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Table 2. Humidity Sounders in orbit with platforms, launch year and approximate equator crossing times (ECT) [NOAA]

Platform Sensor Launch year ECT

NOAA15 AMSU-B 1999 07:00

NOAA16 AMSU-B 2000 21:00

NOAA17 AMSU-B 2002 07:00

NOAA18 MHS 2005 20:00

NOAA19 MHS 2009 20:00

MetOp-A MHS 2006 9:30

MetOp-B MHS 2012 9:30

MetOp-C MHS 2018 9:30
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Table 3. Characteristics of the different sub-algorithms of the AMSU-B/MHS TWV retrieval. The channel combination is described with

AMSU-B frequencies, the MHS retrieval uses the corresponding ones

Sub-algorithm Chanel combination Operating surface Approximate limit TWV (kg/m2)

Low 183.31 ± 7 183.31 ± 3 183.31 ± 1 Sea ice, ocean, land 1.5

Middle 183.31 ± 7 183.31 ± 3 150 Sea ice, ocean, land 7

Extended 183.31 ± 7 150 89 Sea ice 15
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Table 4. Parameters for linear regression for monthly MHS and AMSU-B intercomparison

Month R2 Slope Intercept RMSD Bias Number of points

January 0.90 0.85 0.37 0.97 0.06 10691385

February 0.89 0.84 0.38 0.87 0.05 9858305

March 0.90 0.87 0.31 0.73 0.04 10389349

April 0.90 0.88 0.40 1.02 0.06 8592621

May 0.91 0.91 0.61 1.59 -0.02 6087842

June 0.87 0.84 2.33 2.25 -0.38 4741678

July 0.88 0.83 2.23 2.18 0.38 3803287

August 0.92 0.88 1.43 2.07 0.35 3272951

September 0.94 0.89 0.83 1.77 0.49 3630497

October 0.93 0.86 0.67 1.55 0.19 6000153

November 0.90 0.85 0.53 1.20 0.06 8610697

December 0.88 0.82 0.50 1.24 0.12 7723324
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Table A1. Calibration parameters, Arctic, low-TWV algorithm

θ C0 [kg/m2] C1 [kg/m2] FL
4,3 [K] FL

5,4[K]

1.667◦ 0.619 1.05 4.86 4.43

5.000◦ 0.619 1.05 4.87 4.45

8.333◦ 0.618 1.05 4.90 4.50

11.667◦ 0.617 1.05 4.94 4.58

15.000◦ 0.615 1.05 4.99 4.68

18.333◦ 0.613 1.05 5.06 4.81

21.667◦ 0.609 1.05 5.14 4.97

25.000◦ 0.606 1.04 5.23 5.16

28.333◦ 0.601 1.04 5.32 5.36

31.667◦ 0.598 1.02 5.31 5.41

35.000◦ 0.597 1.00 5.25 5.36

38.333◦ 0.602 0.96 5.01 4.96

41.667◦ 0.603 0.92 4.76 4.50

45.000◦ 0.607 0.87 4.43 3.85

48.333◦ 0.607 0.80 4.12 3.27
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Table A2. Calibration parameters, Arctic, mid-TWV algorithm

θ C0 [kg/m2] C1 [kg/m2] FM
5,4 [K] FM

2,5[K]

1.667◦ 1.63 2.64 6.56 5.74

5.000◦ 1.63 2.64 6.55 5.75

8.333◦ 1.62 2.64 6.54 5.75

11.667◦ 1.61 2.63 6.52 5.75

15.000◦ 1.60 2.62 6.50 5.77

18.333◦ 1.59 2.61 6.46 5.77

21.667◦ 1.57 2.59 6.43 5.79

25.000◦ 1.55 2.57 6.38 5.82

28.333◦ 1.53 2.54 6.34 5.86

31.667◦ 1.50 2.50 6.25 5.86

35.000◦ 1.46 2.46 6.18 5.90

38.333◦ 1.42 2.40 6.09 5.95

41.667◦ 1.37 2.33 5.99 6.01

45.000◦ 1.30 2.24 5.83 6.03

48.333◦ 1.22 2.11 5.65 6.08
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Table A3. Calibration parameters, Arctic, extended algorithm

θ C0 [kg/m2] C1 [kg/m2] FE
2,5 [K] FE

1,2[K]

1.667◦ 14.4 7.45 6.52 0.74

5.000◦ 14.4 7.47 6.55 0.74

8.333◦ 14.4 7.50 6.61 0.75

11.667◦ 14.4 7.56 6.71 0.77

15.000◦ 14.4 7.63 6.84 0.80

18.333◦ 14.4 7.73 7.00 0.83

21.667◦ 14.5 7.83 7.20 0.87

25.000◦ 14.5 7.97 7.44 0.93

28.333◦ 14.5 8.11 7.72 1.00

31.667◦ 14.5 8.26 8.04 1.08

35.000◦ 14.5 8.43 8.41 1.19

38.333◦ 14.4 8.60 8.83 1.33

41.667◦ 14.2 8.76 9.30 1.50

45.000◦ 13.9 8.90 9.83 1.74

48.333◦ 13.4 8.99 10.4 2.04
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