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Abstract.

Monitoring of water vapour in the Arctic on long time scales is essential for predicting Arctic weather and understanding

climate trends, as well as addressing its influence in the positive feedback loop contributing to Arctic Amplification. However,

this is challenged by the sparseness of in-situ measurements and the problems that standard remote-sensing retrieval methods

for water vapour have in Arctic conditions. Here, we present advances in a retrieval algorithm for vertically integrated water5

vapour (total water vapour, TWV) in polar regions from data of satellite-based microwave humidity sounders: (1) In addition to

AMSU-B (Advanced Microwave Sounding Unit-B), we can now also use data from the successor instrument MHS (Microwave

Humidity Sounder); (2) artefacts caused by high cloud ice content in convective clouds are filtered out. Comparison to in-situ

measurements using GPS and radiosondes during 2008 and 2009 as well as to radiosondes during the N-ICE2015 campaign

and to ERA5 reanalysis show overall good performance of the updated algorithm.10

1 Introduction

Water vapour is a key element of the hydrological cycle (Chahine, 1992; Serreze et al., 2006; Jones et al., 2007; Hanesiak et al.,

2010), with shifts in it affecting atmospheric transport processes, creating and intensifying droughts and flooding (Trenberth

et al., 2013). Additionally, as the most important greenhouse gas in the atmosphere, it has a dominant effect on climate and

radiative forcing (Soden et al., 2002; Dessler et al., 2008; Kiehl and Trenberth, 1997; Trenberth et al., 2007; Ruckstuhl et al.,15

2007). Hence, it is essential to monitor its variability considering both that water vapour increases when temperature does and

the anthropogenic increase of other greenhouse gases (Solomon et al., 2010), with the water vapour positive feedback loop

highlighted as part of other feedbacks responsible for Arctic Amplification (Francis and Hunter, 2007; Miller et al., 2007;

Screen and Simmonds, 2010; Ghatak and Miller, 2013). In summary, understanding the water vapour cycle has high value,

yet our comprehension is incomplete (Stevens and Bony, 2013). Throughout this paper, when mentioning atmospheric water20

content, we refer to the vertically integrated mass in an air column with an area of 1 m2, and call it total water vapour (TWV,

sometimes also called column water vapour, integrated water vapour or total precipitable water), the units are hence kg/m2.

Balloon-borne radiosondes are a standard method for retrieving the water vapour profile. Additionally, ground-based re-

trievals by microwave radiometers as well as GPS-based retrievals – while having a lower vertical resolution – are good for
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monitoring purposes in regions where ground stations can be installed. However, in the Arctic, neither radiosondes mea-

surements nor ground-based retrievals are sufficient for this purpose because weather stations are too scarce. Only satellite

measurements fulfill the global coverage requirements. An additional challenge is to construct a consistent long-term climate

record, due to the changes in measuring instruments, and degradation of the existing ones. Because of the strong absorption

properties of water vapour in the infrared and microwave range, suitable space-borne instruments can in principle ensure a com-5

plete global coverage of water vapour retrievals (Miao et al., 2001; Bobylev et al., 2010). In polar regions, however, satellite

retrieval of water vapour faces a number of obstacles such as cloud cover which restricts infrared measurements, or incomplete

understanding of the high and highly variable sea-ice emissivity which challenges microwave measurements. Some studies –

like the one by Weaver et al. (2017) – have been done for TWV in the Arctic atmosphere, but none of them have been able to

provide a long-term Arctic-wide data set.10

An important step for Arctic water vapour retrieval comes from the work of Miao et al. (2001). They used data from the

SSM/T2 (Special Sensor Microwave Humidity) humidity sounder to develop an algorithm which was designed to work in

the Antarctic. The key concept of this method is the use of several microwave channels with similar surface emissivity but

different water vapour absorption. These are the three channels near the 183.31 GHz water absorption line (183.31 ±1, ±3

and ±7 GHz), which, together with the channel at the 150 GHz window frequency, allows retrieval of TWV values up to15

about 7 kg/m2. Above this value, two of the 183.31 GHz band channels become saturated and the sensor is not able to "see"

through the whole atmospheric column anymore. In other words, when the TWV reaches a certain threshold, the brightness

temperature at these AMSU-B channels does not change with increasing TWV (Miao, 1998; Melsheimer and Heygster, 2008).

This limited range is enough for Antarctica, and suffices for the Arctic in winter conditions (in the polar winter atmosphere,

the water vapour column is typically around 3 kg/m2 according to Serreze et al. (1995)), as well as for the central Arctic20

(above 70◦ N) most of the year. However, because of the upper limit, this method cannot ensure monitoring of the complete

yearly cycle. The algorithm developed by Melsheimer and Heygster (2008) extends the TWV retrieval range over sea ice by

including the AMSU-B (Advanced Microwave Sounding Unit-B) 89 GHz channel into the retrieval. Using the triplet of the

183.31±7, 150 and the 89 GHz channels allows the retrieval to function up the saturation limit of the 183.31±7 GHz channel.

This method has been compared with other datasets: In Rinke et al. (2009) a comparison with the HIRHAM model showed25

realistic patterns and maximum root-mean-square differences for monthly data in summer of 1-2.5 kg/m2. For the comparison

with Ny Ålesund radiosondes in Palm et al. (2010), the correlation coefficient was 0.86 and the slope 0.8±0.04. And lastly,

in Buehler et al. (2012) AMSU-B TWV are compared to GPS data from Kiruna, with RMSD of 1 kg/m2 and a correlation

coefficient of 0.86. However, the AMSU-B algorithm is not without problem: while the frequency range allows it to bypass

most clouds, the AMSU-B sensor is still sensitive to convective clouds with high ice content. Here we provide an approach for30

filtering out problematic data caused by the effect of such ice clouds. This is intended as groundwork for the planned merging

with TWV retrieved over open ocean based on passive microwave imagers (product described by Wentz and Meissner, 2006).

In Section 2, we describe the algorithm in a more detailed way. In Section 3 we evaluate the application of the algorithm to

MHS (Microwave Humidity Sounder) instead of AMSU-B data, which is necessary for extending the data set to cover recent

years, performing a comparison with different in-situ data sources in Section 3.2 and to ERA5 reanalysis in Section 3.3. Then,35
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in Section 4 we evaluate the new ice cloud filtering developed for the algorithm in Section 4, and finally give some conclusions

in Section 5.

2 Retrieval algorithm

2.1 Data sources

The algorithm uses microwave radiometer satellite measurements from humidity sounders such as AMSU-B or MHS on board5

the NOAA (National Oceanic and Atmospheric Administration) 15 to 19 satellites and EUMETSAT (European Organisation

for the Exploitation of Meteorological Satellites) Metop-A, Metop-B and Metop-C satellites. The characteristics of each sensor

can be found in Table 1, and the launch dates of each satellite in Table 2. Through this paper, when we refer to AMSU-B

TWV, the brightness temperature data used for the retrieval is always from the sensor on NOAA-17, with the version from

the Fundamental Climate Data Record (Ferraro and Meng, 2016), which provides an inter-satellite calibrated set of brightness10

temperatures as described in Ferraro (2016). When we refer to MHS TWV, the brightness temperature data are from NOAA-18,

similarly sourced.

Additionally, to distinguish between surface types, the daily ice concentration provided by the ASI-algorithm (Spreen et al.,

2008) will be used, with pixels with ice concentrations below 15% as open water, while the ones with more than 80% will be

considered ice. The percentages between those will not be used.15

2.2 Radiative transfer equation

The algorithm starts from the formulation of the radiative transfer equation in the contracted form by Guissard and Sobieski

(1994) which describes the brightness temperature (TB) measured by a space-borne radiometer as:

TB(θ) =mpTs− (T0−Tc)(1− εs)e−2τ secθ, (1)

where θ is the zenith angle, Ts and T0 are the surface and air temperatures, respectively, Tc is the cosmic background emission,20

εs the surface emissivity, τ0 the total opacity of the atmosphere in the vertical direction, and mp a correction to take into

account both a non-isothermal atmosphere and the difference between the surface (skin) temperature, Ts, and the temperature

of the atmosphere at the ground, T0, (mp = 1 would be the isothermal case and T0 = Ts). The approach by Melsheimer and

Heygster (2008), summarized in the following, assumes the ground to be approximated as a specular reflector, which should

be good enough for remote sensing in the frequency range we are dealing with, according to Hewison and English (1999).25

2.3 Retrieval for equal emissivity assumption

Note that the entire derivation of the final total water vapour retrieval equation from the radiative transfer equation is described

in detail in the initial paper for the Antarctic by Miao et al. (2001) and the subsequent Arctic extension by Melsheimer and

Heygster (2008). We summarize it here because the basic mechanism is necessary to understand the changes performed.
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We start from microwave radiometer satellite measurements in three different channels i, j,k, such as mentioned in Sec-

tion 2.1. We assume none of these three channels are saturated, i.e., the sensor is still sensitive to the whole atmospheric

column and ground. Additionally, we take the ground emissivity as equal in all three channels (as they see the same foot-

print, and the emissivity does not vary between the channels), while the water vapour absorption (mass absorption coefficient

k (m2/kg)) is different, with ki < kj < kk. Then, the brightness temperature difference of two channels i,j can be expressed5

as:

∆Tij ≡ TBi−TBj = (T0−Tc)(1− εs)(e−2τi secθ − e−2τj secθ) + bij , (2)

where τi is the nadir opacity of the atmosphere at the frequency of channel i, and bij is a bias related to the term mp for the

channels i and j:

bij = Ts(mpi−mpj), (3)10

As shown in Melsheimer and Heygster (2008) – Appendix II, the bias can here be approximated as:

bij ≈
∞∫
0

[
e−2τi(z,∞)secθ − e−2τj(z,∞)secθ

] dT (z)

dz
dz, (4)

where T (z) is the atmospheric temperature profile. Then we take the ratio of what we call compensated brightness temperature

differences:

ηc ≡
∆T0ij
∆T0jk

=
∆Tij − bij
∆Tjk − bjk

=
e−2τi secθ − e−2τj secθ

e−2τj secθ − e−2τk secθ
. (5)15

We can express the opacities τi as a sum of the atmospheric constituent contributions to them: water vapour (τwi ) and oxygen

(τoxygeni ). The latter is negligible for AMSU-B channels near the water vapour line, so if we take water vapour mass absorption

coefficients ki and TWV W :

τi = τwi + τoxygeni ≈ kiW, (6)

If we approximate the differences of exponentials by products in (5) and take logarithms, we get:20

ln(ηc) =B0 +B1W secθ+B2 (W secθ)
2 (7)

The three constants B0, B1, and B2 depend on the mass absorption coefficients for the different channels. The term quadratic

in W can be neglected (Selbach, 2003; Miao et al., 2001) which leaves us with an equation linear in W that can then be solved

to yield our retrieval equation:

W secθ = C0 +C1ln(ηc) (8)25

where C0 = B0

B1
and C1 = 1

B1
. They are determined empirically as calibration parameters from simulated brightness tempera-

tures based on radiosonde profiles by a regression analysis, described in more detail below (Section 2.6).

4



2.4 Extension of the retrieval

Normally, for TWV values above 7 kg/m2 , saturation occurs at Channel 19 (183.3±3 GHz). To extend the retrieval range

above this threshold, another channel is required that is less sensitive to water vapour to take its place in the triplet. This means

that a new set of assumptions has to be made about the surface emissivity influence. For AMSU-B, the next channel ”in line”

is the one at 89 GHz (Channel 16). Thus, the three channels i, j, k are now the AMSU-B Channels 16, 17 and 20 (89, 1505

and 183.31±7 GHz). Because Channel 16 is so far from the other two, we can no longer assume that it has the same surface

emissivity as the others. Therefore the retrieval equation needs to be re-derived with the changed premise: εi 6= εj = εk. This

leaves us with a similar looking retrieval equation:

W secθ = C0 +C1ln(η′c) (9)

where η′c is a modified ratio of compensated brightness temperatures:10

η′c ≡
rj
ri

(ηc +C(τj , τk))−C(τj , τk), (10)

and C(τj , τk) is defined as

C(τj , τk) =
e−2τj secθ

e−2τj secθ − e−2τk secθ
, (11)

Since now there is a dependence on emissivities εi, or, equivalently, on reflectivities ri = 1− εi, the surface emissivity at

89 GHz needs to be examined. Ideally, the ratio of corresponding reflectivities would be taken for each footprint. However,15

that is not possible without knowing atmospheric conditions and surface temperature. As an approximation, the emissivity is

parametrized, and fixed reflectivity ratios depending on surface types are obtained. This was done for sea ice in Melsheimer

and Heygster (2008) and for open water surfaces in Scarlat et al. (2018). The upper limit of this extended retrieval is about

15 kg/m2. Here, we will use this extended retrieval only over sea ice.

2.5 The ”sub-algorithms”: regime selection20

As described through Sections 2.3 and 2.4, three different channel triplets are used for the retrieval, depending on the water

vapour amount and the saturation of channels; hence, there are three ”sub-algorithms” or retrieval regimes. Each sub-algorithm

reaches its upper retrieval limit when the channel which is most sensitive to water-vapour becomes saturated. In the original

algorithm formulation by Melsheimer and Heygster (2008), the switch from one sub-algorithm to the next (always starting

with the most sensitive one) is done only when the saturation condition,25

Tbj −Tbk > 0 (12)

is fulfilled. This means that for each satellite footprint, only one of the three sub-algorithms is finally used. As the sub-

algorithms have been calibrated independently, the switch from one to the next can cause a jump in the retrieved value. A

method avoiding this discontinuity in the retrieval values will be discussed further in the follow-on paper. Additionally, as the

switch between regimes is done in the brightness temperature space, this does not correspond to a strict cut-off point in water30

vapour. In Table 3 we summarize the characteristics of each regime.
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2.6 Bias and calibration parameters

Since we ordered the channels by the water vapour sensitivity (τi < τj < τk), the difference of exponentials in ∆T0ij and

∆T0jk is negative. Therefore, the first term of the temperature difference increases with increased emissivity from negative

values to 0 (reached when ε= 1). ηc doesn’t depend on ε, which cancels on the ratioing. In a plot with ∆Tjk as abscissa and

∆Tij as ordinate, for constant W and varying ε, this is a straight line with slope ηc (W ), running through the bias points5

(bjk, bij). Since the biases depend only weakly on W and ε, all straight lines for different W run through almost the same

point F = (Fjk,Fij), which is called focal point by Miao et al. (2001) and Melsheimer and Heygster (2008). The focal point

F is found by simulating brightness temperatures for a set of different ε, with different input atmospheric profiles (including

W ) from radiosonde data, and surface temperature taken as ground-level atmospheric temperature (which makes the small

emissivity dependence of the biases vanish; see Melsheimer and Heygster (2008) - Appendix II). Having determined the focal10

point, the simulated brightness temperature differences and corresponding TWV values from the radiosonde profiles can be

used to get the calibration parameters C0 and C1. Thus, together with the two focal point coordinates Fjk and Fij , there is a

total of four calibration parameters in the retrieval equation which are derived by this regression. The specific values for each

viewing angle and regime of AMSU-B sensor are found in Melsheimer and Heygster (2008) – Appendix III. For MHS, all

these calibration parameters were recalculated and are shown in Appendix A.15

2.7 Filtering ice cloud artefacts

The effect of ice clouds at the AMSU-B frequencies as studied in Sreerekha (2005) is known, and has been used for detecting

tropical deep convection (Hong et al., 2005) and for an automated method for finding polar mesocyclones (Melsheimer et al.,

2016). The latter method uses the sensitivity of retrieved TWV to convective clouds with high ice content as one of the main

signatures of polar lows. In these cases, since cloud ice particles are strong scatterers in the used microwave range, the radiation20

from below the clouds is scattered strongly and hardly reaches the sensor, so that the AMSU-B retrieval is only sensitive to

atmospheric water vapour above such clouds and retrieves erroneously low TWV. A procedure to recognize and screen such

cases for the AMSU-B/MHS algorithm has been developed. Cloud ice contents high enough to affect our TWV retrieval are

almost entirely caused by strong convective clouds which are typically organised in rather small-scale (tens of kilometres) cells

or clusters thereof, or which take the shape of mesoscale structures such a polar lows with extents of at most a few hundred25

kilometres; even in large scale, synoptic low pressure systems, convective clouds are organised in clusters and lines with the

above-mentioned scales of tens to a few hundred kilometres. Therefore, image processing methods that rely on the size and

shape of ice cloud artefacts can be used: Our approach for eliminating the affected TWV is to find connected areas – minimum

of two pixels – of low TWV (<4 kg/m2) smaller than 50 pixels which are surrounded by higher or non-retrieved values and

remove them with a succession of morphology operations (Gonzalez and Woods, 2007), using the tools for Python described in30

van der Walt et al. (2014): First a dilation with a 7x7 square structural element, and then a closing with the same size structural

element.
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3 Evaluation of retrieval

In this section, the performance of the TWV retrieval using MHS data is evaluated in subsection 3.1. Then, the satellite-based

retrieval will firstly be compared with in-situ data in subsection 3.2, and secondly to ERA5 reanalysis data in subsection 3.3.

3.1 Comparison between MHS and AMSU-B based retrieval

As shown in Table 1, there are some frequency and polarization differences between AMSU-B and MHS sensors. According to5

the analysis in John et al. (2012), there are some non-negligible discrepancies between the brightness temperatures of AMSU-B

and MHS for the second and fifth channels (17 – 150 GHz – and 20 – 183.31 ± 7 GHz – for AMSU-B, respectively), due to

the differences in frequency, while the differences in polarization seem not to be relevant. That raises the question of whether

the TWV algorithm will perform equally when using MHS data as input, and, if that is not the case, which adaptation would be

needed to ensure consistency of the retrieval results. One main adjustment we did to the retrieval for MHS is the recalculation10

of all the calibration parameters as described in Section 2.6 and shown in Appendix A.

First, we evaluate the performance for the retrieval as a whole by comparing the retrieved data of both algorithms in the

overlap period of both sensors (2008-2009). For this analysis, we considered all the coincident points in the daily gridded data

with a 0.25◦ grid. Figure 1 shows two density plots for the overlap months of January (top) and July (bottom) of 2008-2009.

The results of a least squares regression are shown in the Figure as well. Both data sets show good agreement, with most of15

the points along the one-to-one line. However, we can observe some outliers with high MHS TWV and low, almost constant,

AMSU-B TWV, and vice versa, specially striking during the month of July. These points are mostly associated with time

differences of the satellite overpasses, and amount to only about 0.27% of the data, so they are not significant in the overall

picture.

In Table 4, the fit statistics for all months are shown. The correlation ranges from 0.87 in June to 0.94 in September. The20

lowest slope (0.82) is found in December. On the other hand, the slope is closest to 1.0 in May (0.91). The intercept increases

for the summer months (June, July, August) but is relatively small for the other months. The RMSD has a similar behaviour:

we find higher values for the central months of the year, with a maximum of 2.25 kg/m2 in August, coinciding with the

increased number of outliers. Minimum is of 0.73 kg/m2 in March. The bias is generally small (minimum of 0.04 kg/m2 in

March, maximum of 0.49 kg/m2 in September), and positive except for May and June. In general, all parameters show lowest25

agreement in the summer months when the atmospheric variability is highest. However, we presume the strongest contribution

to the lower agreement in summer is due to the higher uncertainty and variability in the surface emission due to melt process

and occurence of melt ponds.

To check any possible influence from the surface type in the consistency of our retrievals, we have studied the TWV time

series during 2008-2009 for MHS and AMSU-B over different surfaces: ice, land and open water. The location chosen for30

each study point is shown in Figure 2, with the surface classification used in the TWV retrieval for a day in early March 2008

(maximum ice extent) as background. We show the monthly and yearly means of this time series for the four different locations

in Figure 3. Note the lack of data for summer months over open water and ocean because of the limitations of the algorithm.
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All four time series show good agreement which confirms the consistency between our retrievals. The bias and RMSD are

small for all four surface types (ice: 0.1±0.4 kg/m2, open water:0.03±0.15 kg/m2, marginal ice zone: 0.2±0.7 kg/m2, land:

0.12±0.19 kg/m2), but slightly higher in two cases with ice surfaces, which agrees with the higher error of our method for

higher water vapour values (extended regime).

3.2 Comparison with in-situ data sources5

While TWV retrieved from AMSU-B has been validated with different data sources (Rinke et al., 2009; Palm et al., 2010;

Buehler et al., 2012), the same cannot be said about the retrieval with MHS data. Therefore, we perform a comparison with

TWV derived from radiosondes taken during the N-ICE21015 campaign from January to June 2015 onboard research vessel

Lance north of Svalbard (Hudson et al., 2017; Cohen et al., 2017). We select the MHS data as the mean of all the values in a 50

km radius around the location of each radiosonde. The resulting time series is shown in Figure 4. The first thing to note is that10

the MHS series ends at the start of June because, afterward, the surface in the area is considered mixed according to the criteria

described in Section 2.1. However, both data sets show good visual agreement, except that MHS is not able to capture some of

the quasi periodic peaks in TWV from N-ICE2015 data set (seen roughly every two weeks in February and March). We have

eliminated these nine outliers associated with the quasi periodic peaks in TWV from the following analysis. The scatter plot of

all overlapping points of both data sets – with the colour scale representing the month of the campaign – shown in Figure 5,15

confirms the good agreement.

Additionally, we used Global Positioning System (GPS) and radiosounding (RS) TWV observations during the common

2008-2009 period between the AMSU-B and MHS sensors to evaluate the satellite TWV retrieval. GPS and radiosonde TWV

have been measured at the five coastal Arctic stations Alert, Eureka, Ny Ålesund, Resolute and Scorebysund, as shown in

Figure 6. These datasets are part of a homogenized time series. From the GPS data, 1-h average values of local integrated20

TWV have been computed each 6 hours. The radiosoundings have been performed once or twice per day at the selected sites

(00:00 and 12:00 UTC). Further details about processing can be found in Negusini et al. (2016). As for the AMSU-B and MHS

TWV values, we selected points fulfilling the data conditions of ±1h from the integrated GPS measurements (00:00, 06:00,

12:00, 18:00UTC) and found in a 50 km radius around the GPS/RS stations. Additionally, TWV data from ERA5 reanalysis

(Copernicus Climate Change Service , C3S) were obtained using the same conditions. The resulting the AMSU-B, MHS,25

ERA5, GPS and radiosonde time series in Figure 7 present generally consistent patterns and reasonable seasonal evolution,

with drier winters and wetter summers. Overall, the datasets have worse agreement during the summer months, mainly due to

“spikier” data, i.e. more extreme water vapour values. Due to this pronounced seasonal cycle, we separate the results between

summer (April to September) and winter (October to March) in the following analysis. There seems to be a slight wet bias in

summer for both satellite-derived TWV with respect to the other datasets.30

Scatter plots comparing each dataset (both satellite and reanalysis) with both radiosondes and GPS have been prepared for

each season and station. As an example, Figure 8 shows the results for Alert. The correlation coefficients vary between 0.55

to 0.88, and the correlations in winter seems to be generally lower. We presume this is just a numerical effect because of the

narrower data distribution. The RMSD, in contrast, is higher in summer (as seen in Figure 9). The only difference between
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both satellite-based retrievals seems to be a smaller number of coincident points between the MHS TWV and the radiosondes

TWV (approximately half of the data points).

Figure 9 shows all fit parameters for the five stations, with separated results between summer and winter. There seems to be

only little difference between the results from the two satellite-based retrievals, which corroborates our confidence in the MHS-

based retrieval. Over the three quality indicating parameters RMSD, bias and correlation coefficient there is even a slight, but5

consistent advantage for the MHS based retrieval. The bias values are almost all negative, and the RMSD is along usual values

for TWV studies at high latitudes (as seen in Palm et al. (2010) for Ny Ålesund and in Buehler et al. (2012) for Kiruna), which

reassures us on the quality of satellite-based TWV retrievals. The higher RMSD values in the Arctic summer in Figure 9 can

also be seen at high PW values over 7 kg/m2 during summer for all methods in Figure 8 (left, top and bottom). One explanation

for the smaller bias and RMSD during winter can be that also the absolute values during winter are small. The reason for a low10

correlation is likely that the temporal coherence is less pronounced.

When fits like in Figure 8 are performed for all stations for ERA5 versus GPS and radiosondes, the slopes are closer to one

in summer (0.99 for GPS and 0.87 for radiosondes in average for all stations) but underestimate data to a higher degree in

winter (in average, 0.85 for GPS and 0.76 for radiosondes). The behaviour of the correlation coefficient is similar, averaging

0.9 and 0.92 in summer, and 0.85 and 0.75 in winter, for GPS and radiosondes, respectively. These values are very similar to15

the averages for the satellite data versus the in-situ data. The RMSD and bias are generally small, but smaller in winter. The

average RMSD is 1.89 kg/m2 in summer, 1.10 kg/m2 in winter for GPS, and 1.58 kg/m2 in summer and 1.05 kg/m2 in winter

for radiosondes. The average bias is generally negative for GPS, averaging -0.5 kg/m2 in summer and -0.02 kg/m2 in winter,

while it is always positive for radiosondes, averaging 0.34 kg/m2 in summer and 0.17 kg/m2 in winter.

3.3 Comparison with ERA5 reanalysis20

We have compiled all the overlapping daily means of TWV from AMSU-B and ERA5 (Copernicus Climate Change Service

, C3S) for the complete months of January (top) and July (bottom) from 2008 to 2009, shown in Figure 10. The results of a

least squares regression are shown in the Figure as well. Both data sets show good agreement, with most of the points along

or parallel to the one-to-one line. ow AMSU-B TWV values compared to high ERA5 TWV values can be observed in both

months, but are more prominent in summer. These are remnants of ice cloud artefacts that were not entirely filtered out.25

Table 5 shows the fit statistics for all months. The correlation ranges from 0.71 in June to 0.88 in December. The worst slope

(1.6) is found in September. On the other hand, the slope is closest to 1.0 in August (0.97). However, the RMSD has higher

values for the central months of the year, with a maximum of 5.9 kg/m2 in August, coinciding with the increased number of

outliers. Minimum is of 1.004 kg/m2 in March. The bias is generally negative, and shows similar behaviour as the RMSD. In

general, all parameters show lowest agreement in the summer months when the atmospheric variability is highest.30
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4 Evaluation of changes/improvements in the retrieval: Filtering ice cloud artefacts

Figure 11 shows daily averaged TWV maps – with the ice cloud filtering (Section 2.7) already applied – for the AMSU-B/MHS

algorithm (top and second row), as well as from a different data product based on AMSR-E observations (Wentz and Meissner,

2006) over open ocean (third row) and ERA5 reanalysis daily mean (bottom) in winter (left) and summer (right). The days

chosen to represent each season (6 January and 6 July, 2008, respectively) show how a typical retrieval looks like for the5

respective season. The first thing to notice is the difference in spatial coverage of AMSU-B TWV between winter and summer.

In summer, AMSU-B/MHS retrieval is restricted to the drier regions, mostly over sea ice and Greenland (the upper limit of the

retrieval is usually about 15 kg/m2 for sea ice surfaces). In winter, the retrieval is possible over most of the land, open water

areas and sea ice. Meanwhile, there is no significant coverage variation shown between seasons for the AMSR-E retrieval:

most open water areas are covered. In consequence, the area covered by both methods is smaller in summer, as we can note10

in the map illustrating the regional coverage – for the same days – of both algorithms in Figure 12 (orange area shows joint

coverage). Still, TWV is retrieved in most of the Arctic in both seasons. Another consequence is that in summer the overlap

area is small. In this particular example of Figure 12, there is no overlap between both datasets. As for the ERA5 dataset, the

agreement with both AMSU-B and AMSR-E is qualitatively good, showing similar patterns, particularly in winter.

To visualize the areas affected by the ice cloud artifact, Figure 13 shows different areas of interest before (left) and after15

(right) filtering, for different days spaced evenly throughout 2008 (each three months approximately: 6th of January, 2nd of

April, 6th of July and 14th of October). These areas have been chosen as representative cases for the season. Most features –

small regions of low TWV surrounded by high TWV – are removed, but there are still some small areas of low values of TWV

(such as the retrieved regions in the land around 70◦ W, 62◦N Figure 13 (October, bottom right)). Note that these incorrectly

retrieved areas are surrounded by grey values which represent water vapour too high to be retrieved with the AMSU-B method20

(about >7 kg/m2 over ocean or land surfaces). We confirmed by comparison to the ERA5 atmospheric reanalysis that the

remaining high TWV values are within the expected range. Also the high, >14 kg/m2, TWV values on 6th July 2008 in the

Hudson Bay area are in agreement with ERA5.

To show the overall effectiveness of the ice cloud filtering, we have compiled all the overlapping retrieved TWV from

AMSU-B and AMSR-E for the complete months of January (top) and July (bottom) from 2006 to 2008, shown in Figure 14.25

Before filtering for ice cloud artefacts (left), there is a big cluster of data with high AMSR-E values for relatively low AMSU-B

values. Those correspond to the values affected by convective clouds with high ice content. Note that the overlap area between

AMSR-E and AMSU-B is small (Figure 12) and therefore cloud artefacts make up a large fraction of the overlap data points,

particularly in summer. After filtering (Figure 14, right) the AMSU-B retrieval, they are gone. Additionally, the fit performed

improves significantly, with the correlation reaching 0.6 in summer and the slope getting much closer to one in winter (0.95,30

as compared to 0.3). Note also the jump in density of the retrieved TWV values caused by switching between sub-algorithms

mentioned above (Section 2.5), most notably near 6 kg/m2 (Figure 14). Between 7.6% (January) and 11% (March) of the data

are masked by the ice cloud filter for winter months, while the percentage is much smaller in the summer months, ranging

10



between 0.18% of the data in August to 3.7% in June. In summer, up to 94% of those values (July) come from the overlap area

between AMSU-B and AMSRE, with the average 55.5%. In winter, the values from the overlap area average 11.8%.

5 Conclusions

We provide an updated version of the TWV retrieval algorithm that originally uses as input microwave humidity sounder data

from AMSU-B. The updated algorithm, can now also use data from MHS, the successor instrument of AMSU-B, and contains5

a filter for artefacts caused by convective clouds with high cloud ice content. The improved retrieval performs better when

compared to another satellite product and to in situ data.

The coefficients in the retrieval algorithm were adapted for MHS (Appendix A). We have investigated the impact of differ-

ences between AMSU-B and MHS on the retrieved TWV and have found the differences to be negligible. This means that a

consistent continuous data set for the years 1999 until now can be generated from combining AMSU-B and MHS data. Addi-10

tionally, the MHS-based TWV data have been compared with radiosonde data from the N-ICE2015 campaign, and the results

show good performance for MHS TWV. Both satellite-derived TWV have been compared against GPS and radiosonde data

for five Arctic coastal stations during 2008 and 2009, and the results are satisfactory, with averaged correlations for all stations

and methods 0.82 in summer and and 0.75 in winter, and RMSD along usual values for TWV studies at high latitudes. The

satellite based TWV retrieval also compares well with the ERA5 reanalysis. Some artefacts of not filtered ice clouds remain15

but overall the correlation with 0.79 and RMSD of 3.01 kg/m2 show good correspondence.

The filter for ice cloud artefacts performs well as shown by comparison with data from the AMSR-E based algorithm that

works over open water. A remaining issue are the jumps of retrieved TWV values between the different retrieval regimes.

This can, however, in principle be mitigated by comparing root mean square differences and bias for adjacent TWV regimes,

and choosing an optimal regime, i.e., channel combination, for the range of the water vapour column. Where regimes overlap,20

weighted averages can smooth the transition.

The algorithm described here has an upper TWV limit that restricts retrieval in summer to the central Arctic and Greenland.

However, when combining the TWV data retrieved by the algorithm described here with TWV retrieved over open ocean from

AMSR-E and AMSR2 – the product by Remote Sensing Systems (RSS) (Wentz and Meissner, 2006) – a nearly complete

coverage of the whole Arctic year-round is possible, starting in 2000, which is the overall goal of future work.25

Appendix A

The following Tables list the calibration parameters C0, C1, Fjk, and Fij for the TWV retrieval algorithm for the Arctic and –

for the sake of completeness – the Antarctic, for 15 viewing angles that span the range of the viewing angles of MHS, calculated

in the same way as the parameters for AMSU-B-based retrieval by Melsheimer and Heygster (2008). The retrieval equation is,

from (5) and (8):30

W secθ = C0 +C1ln

[
∆Tij −Fij
∆Tjk −Fjk

]
, (A1)

11



where ∆Tij = Tb,i−Tb,j , the MHS channels i, j,k are

– 5 (190.31 GHz), 4 (183.31 ± 3 GHz), 3 (183.31 ± 1 GHz) for the low-TWV algorithm,

– 2 (157 GHz), 5 (190.31 GHz), 4 (183.31 ± 3 GHz) for the mid-TWV algorithm,

and, from equations ( 10) and ( 9),

W secθ = C0 +C1ln

[
rj
ri

(
∆Tij −Fij
∆Tjk −Fjk

+ 1.1

)
− 1.1

]
(A2)5

where i,j,k are 1 (89.9 GHz), 2 (157 Ghz), 5 (190.31 GHz) for the extended algorithm.

The calibration parameters for the Arctic (Tables A1–A3) were derived using radiosonde data from those World Meteoro-

logical Organization (WMO) stations in the Arctic that are located on the coast or on islands(29 stations), from the years 1996

to 2002, which amounts to about 27000 radiosonde profiles.
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Figure 1. Density plot and fit for MHS TWV versus AMSU-B TWV retrievals for all the coincident points in January (top) and July (bottom),

2008-2010. The dashed line is the one-to-one line, and the black line corresponds to the linear fit of the data.

16



Figure 2. In black, location of the points chosen for the surface characterisation study for TWV. As background, the surface classification

used in the TWV algorithm, obtained from ASI algorithm ice concentration (Spreen et al., 2008) for a typical day in March (6.03.2008).
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Figure 3. Monthly and yearly means for 2008 and 2009 of the AMSU-B (pink circles) and MHS (blue triangles). TWV retrieval over the

locations shown in Figure 2.
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Figure 4. Time series of coincident MHS TWV data (blue symbols) and TWV from radiosondes (red symbols) during the N-ICE campaign.
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Figure 5. Scatter plot and fit for MHS TWV versus radiosonde TWV retrievals for all coincident points during the N-ICE campaign. The

colour scale shows the month where the data point comes from; dashed line: one-to-one lines, solid line: linear regression.
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Figure 6. Location of the radiosonde and GPS stations.
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Figure 7. Time series of AMSU-B (dark blue), MHS (light blue), ERA5 (green), GPS (purple) and radiosonde (salmon) TWV retrievals

during 2008 and 2009.
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Figure 8. Scatter plots and fits for AMSU-B (top) and MHS (middle) and ERA5 (bottom) TWV retrievals versus GPS (light blue) and

radiosondes (dark blue) TWV retrievals for all coincident points during summer (left) and winter (right) of 2008 and 2009 in the Alert

station. The solid lines in light and dark blue show the linear regressions for GPS and radiosondes in each case, while the dashed lines are

the identity line
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Figure 9. Values of fit parameters for summer (left) and winter (right): RMSD, bias, correlation coefficient R2, slope and intercept of

regression line for MHS and AMSU-B TWV retrievals versus radiosonde and GPS TWV retrievals. RMSD, bias and intercept are in kg/m2;

slope and R2 are absolute numbers.
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Figure 10. Density plot and fit for AMSU-B TWV versus ERA5 TWV retrievals for all the coincident points in January (top) and July

(bottom) from 2008 to 2009, with a fit (black solid line) for the data clusters over the 1-1 line (dashed grey).
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Figure 11. AMSU-B (top), MHS (second row), AMSR-E (third row) and ERA5 (bottom) TWV retrievals for (left) winter (6 January, 2008),

and (right) summer (6 July 2008)
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Figure 12. Coverage and overlap area of the merged AMSU-B and AMSR-E retrieval for (top) winter (6 January, 2008), and (bottom)

summer (6 July, 2008). Note that there is no overlap between retrievals (orange) for the summer case presented.
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Figure 13. Unmasked (left) and masked (right) AMSU-B TWV retrieval for different showcased areas of four days through 2008: 6 January

(top), 2 April (middle up), 6 July (middle down) and 14 October (bottom). Please note the different location in each case.
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Figure 14. Density plot and fit for AMSR-E TWV versus AMSU-B TWV retrievals for all the coincident points in January (top) and July

(bottom) from 2006 to 2008, before (left) and after (right) filtering AMSU-B retrieval for ice cloud artefacts, with a fit (black solid line) for

the data clusters over the 1-1 line (dashed grey).
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Table 1. Frequency and polarization details for each channel of AMSU-B and MHS sensor

AMSU-B MHS

Channel Frequency (GHz) Polarisation Channel Frequency (GHz) Polarisation

16 89.9 ± 0.9 Vertical 1 89.9 Vertical

17 150.0 ± 0.9 Vertical 2 157.0 Vertical

18 183.31 ± 1 Vertical 3 183.31 ± 1 Horizontal

19 183.31 ± 3 Vertical 4 183.31 ± 3 Horizontal

20 183.31 ± 7 Vertical 5 190.311 Vertical
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Table 2. Humidity Sounders in orbit with platforms, launch year and approximate equator crossing times (ECT) [NOAA]

Platform Sensor Launch year ECT

NOAA15 AMSU-B 1999 07:00

NOAA16 AMSU-B 2000 21:00

NOAA17 AMSU-B 2002 07:00

NOAA18 MHS 2005 20:00

NOAA19 MHS 2009 20:00

MetOp-A MHS 2006 9:30

MetOp-B MHS 2012 9:30

MetOp-C MHS 2018 9:30
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Table 3. Characteristics of the different sub-algorithms of the AMSU-B/MHS TWV retrieval. The channel combination is described with

AMSU-B frequencies, the MHS retrieval uses the corresponding ones

Sub-algorithm Chanel combination Operating surface Approximate limit TWV (kg/m2)

Low 183.31 ± 7 183.31 ± 3 183.31 ± 1 Sea ice, ocean, land 1.5

Middle 183.31 ± 7 183.31 ± 3 150 Sea ice, ocean, land 7

Extended 183.31 ± 7 150 89 Sea ice 15
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Table 4. Parameters for linear regression for monthly MHS and AMSU-B intercomparison

Month R2 Slope Intercept (kg/m2) RMSD (kg/m2) Bias (kg/m2) Number of points

January 0.90 0.85 0.37 0.97 0.06 10691385

February 0.89 0.84 0.38 0.87 0.05 9858305

March 0.90 0.87 0.31 0.73 0.04 10389349

April 0.90 0.88 0.40 1.02 0.06 8592621

May 0.91 0.91 0.61 1.59 -0.02 6087842

June 0.87 0.84 2.33 2.25 -0.38 4741678

July 0.88 0.83 2.23 2.18 0.38 3803287

August 0.92 0.88 1.43 2.07 0.35 3272951

September 0.94 0.89 0.83 1.77 0.49 3630497

October 0.93 0.86 0.67 1.55 0.19 6000153

November 0.90 0.85 0.53 1.20 0.06 8610697

December 0.88 0.82 0.50 1.24 0.12 7723324
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Table 5. Parameters for linear regression for monthly AMSU-B and ERA5 intercomparison

Month R2 Slope Intercept (kg/m2) RMSD (kg/m2) Bias (kg/m2) Number of points

January 0.84 1.36 -0.22 1.43 -0.58 13738999

February 0.85 1.33 -0.2 1.25 -0.52 12626117

March 0.85 1.17 0.06 1 -0.44 14004549

April 0.84 1.16 0.12 1.38 -0.61 11891174

May 0.78 1.25 -0.19 2.72 -1.21 8511599

June 0.71 1.11 1.69 4.32 -2.72 7212136

July 0.75 0.97 4.28 4.89 -3.87 6397174

August 0.73 0.97 5.1 5.91 -4.79 5376590

September 0.81 1.54 0.95 5.83 -4.77 5692249

October 0.74 1.67 -0.24 3.54 -2.11 9281562

November 0.77 1.5 -0.41 2.1 -1.05 11880942

December 0.88 0.82 0.50 1.24 0.12 10822902
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Table A1. Calibration parameters, Arctic, low-TWV algorithm

θ C0 [kg/m2] C1 [kg/m2] FL
4,3 [K] FL

5,4[K]

1.667◦ 0.619 1.05 4.86 4.43

5.000◦ 0.619 1.05 4.87 4.45

8.333◦ 0.618 1.05 4.90 4.50

11.667◦ 0.617 1.05 4.94 4.58

15.000◦ 0.615 1.05 4.99 4.68

18.333◦ 0.613 1.05 5.06 4.81

21.667◦ 0.609 1.05 5.14 4.97

25.000◦ 0.606 1.04 5.23 5.16

28.333◦ 0.601 1.04 5.32 5.36

31.667◦ 0.598 1.02 5.31 5.41

35.000◦ 0.597 1.00 5.25 5.36

38.333◦ 0.602 0.96 5.01 4.96

41.667◦ 0.603 0.92 4.76 4.50

45.000◦ 0.607 0.87 4.43 3.85

48.333◦ 0.607 0.80 4.12 3.27
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Table A2. Calibration parameters, Arctic, mid-TWV algorithm

θ C0 [kg/m2] C1 [kg/m2] FM
5,4 [K] FM

2,5[K]

1.667◦ 1.63 2.64 6.56 5.74

5.000◦ 1.63 2.64 6.55 5.75

8.333◦ 1.62 2.64 6.54 5.75

11.667◦ 1.61 2.63 6.52 5.75

15.000◦ 1.60 2.62 6.50 5.77

18.333◦ 1.59 2.61 6.46 5.77

21.667◦ 1.57 2.59 6.43 5.79

25.000◦ 1.55 2.57 6.38 5.82

28.333◦ 1.53 2.54 6.34 5.86

31.667◦ 1.50 2.50 6.25 5.86

35.000◦ 1.46 2.46 6.18 5.90

38.333◦ 1.42 2.40 6.09 5.95

41.667◦ 1.37 2.33 5.99 6.01

45.000◦ 1.30 2.24 5.83 6.03

48.333◦ 1.22 2.11 5.65 6.08
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Table A3. Calibration parameters, Arctic, extended algorithm

θ C0 [kg/m2] C1 [kg/m2] FE
2,5 [K] FE

1,2[K]

1.667◦ 14.4 7.45 6.52 0.74

5.000◦ 14.4 7.47 6.55 0.74

8.333◦ 14.4 7.50 6.61 0.75

11.667◦ 14.4 7.56 6.71 0.77

15.000◦ 14.4 7.63 6.84 0.80

18.333◦ 14.4 7.73 7.00 0.83

21.667◦ 14.5 7.83 7.20 0.87

25.000◦ 14.5 7.97 7.44 0.93

28.333◦ 14.5 8.11 7.72 1.00

31.667◦ 14.5 8.26 8.04 1.08

35.000◦ 14.5 8.43 8.41 1.19

38.333◦ 14.4 8.60 8.83 1.33

41.667◦ 14.2 8.76 9.30 1.50

45.000◦ 13.9 8.90 9.83 1.74

48.333◦ 13.4 8.99 10.4 2.04
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