

1 **Evaluating the measurement interference of wet rotating denuder-IC**
2 **in measuring atmospheric HONO in highly polluted area**

3 Zheng Xu^{1,2}, Yuliang Liu^{1,2}, Wei Nie^{1,2*}, Peng Sun^{1,2}, Xuguang Chi^{1,2}, Aijun Ding^{1,2},

4 ¹ Joint International Research Laboratory of Atmospheric and Earth System Sciences
5 & School of Atmospheric Sciences, Nanjing University, Nanjing, Jiangsu Province,
6 China

7 ² Collaborative Innovation Center of Climate Change, Jiangsu Province, China

8 Correspondence: Wei Nie (niewei@nju.edu.cn)

9 **Abstract**

10 Due to the important contribution of nitrous acid (HONO) to OH radicals in the
11 atmosphere, various technologies have been developed to measure HONO. Among
12 them, wet denuder/ion chromatography (WD/IC) is a widely used measurement
13 method. Here, we found interferences with HONO measurements by WD/IC based on
14 a comparison study of concurrent observations of HONO concentrations using a
15 WD/IC instrument (Monitorfor AeRosols and Gases in ambient Air, MARGA) and
16 long-path absorption photometer (LOPAP) at the Station for Observing Regional
17 Processes of the Earth System (SORPES) in eastern China. The measurement
18 deviation of the HONO concentration by the MARGA instrument, as a typical
19 instrument of WD/IC, is affected by two factors. One is the change in denuder pH
20 influenced by acidic and alkaline gases in the ambient atmosphere, which can affect
21 the absorption efficiency of HONO by the wet denuder to underestimate the HONO
22 concentration up to 200% in lowest pH. The other is the reaction of NO₂ oxidizing
23 SO₂ to form HONO in the denuder solution to overestimate the HONO concentration,
24 which can be improved up to 400% in denuder solutions with highest pH values due
25 to ambient NH₃. These processes are in particular important in polluted east China,

26 where is suffered from the high concentrations of SO_2 , NH_3 and NO_2 . The
27 overestimation induced by the reaction of NO_2 and SO_2 is expected to be growing
28 important with the potentially increased denuder pH due to the decrease of SO_2 . We
29 further established a method to correct the HONO data measured by a WD/IC
30 instrument such as the MARGA. In case a large amount WD/IC techniques based
31 instruments are deployed with the main target to monitor the water soluble
32 composition of $\text{PM}_{2.5}$, our study can help to obtain a long-term multi-sites database of
33 HONO to assess the role of HONO in atmospheric chemistry and air pollution in east
34 China.

35 **1. Introduction**

36 Since the first detection of nitrous acid (HONO) in the atmosphere in 1979 (Perner
37 and Platt, 1979), HONO has drawn much attention due to its important contribution to
38 OH radicals, which are the primary oxidants in the atmosphere (Kleffmann, 2007). It
39 has been realized that the photolysis of HONO is the most significant OH source in
40 the morning when other OH sources, such as the photolysis reactions of O_3 and
41 formaldehyde, are still weak (Kleffmann, 2007; Platt et al., 1980). In addition,
42 unexpectedly high HONO concentrations have been observed in the daytime and are
43 believed to be a major OH source even during the daytime (Kleffmann et al., 2005;
44 Michoud et al., 2013; Sorgel et al., 2011). Currently, the source of daytime HONO is
45 still a challenging topic under discussion.

46 Because of the important role of HONO in atmospheric chemistry and the knowledge
47 gap with regards to its sources, various techniques have been developed to detect the
48 HONO concentration in ambient air or in a smog chamber. Generally, on-line HONO
49 analyzers can be divided into chemical methods and optical methods. The chemical
50 methods include wet denuder-ion chromatography (WD/IC) (Acker et al., 2004; Febo
51 et al., 1993), long-path absorption photometer (LOPAP) analysis (Heland et al., 2001),
52 chemical ionization mass spectrometry (CIMS) (Lelièvre et al., 2004) and stripping
53 coil-ion chromatograph (Cheng et al., 2013; Xue et al., 2019). The optical methods

54 include differential optical absorption spectroscopy (DOAS) (Perner and Platt, 1979)
55 and incoherent broadband cavity absorption spectroscopy (IBBCEAS) (Wu et al.,
56 2014).

57 WD/IC is a widely used measurement method due to its simple design, low price, and
58 high sensitivity (Zhou, 2013). In a WD/IC instrument, HONO is absorbed by the
59 solution, converted into nitrite by the denuder and then quantified by ion
60 chromatography. The ambient HONO concentration is calculated from the
61 concentration of nitrite and volumes of the sampled air and absorption solution. Using
62 this method, a large number of studies have been performed to study the variation in
63 HONO and its sources in the atmosphere. For example, Trebs et al. (2004) reported
64 the HONO diurnal variation in the Amazon Basin and found relatively high HONO
65 concentrations during the daytime. Using WD/IC, Su et al. (2008a; 2008b) reported
66 the variation characteristics of HONO in the Pearl River Delta and found that the
67 heterogeneous reaction of NO₂ on the ground surface is the major HONO source. Nie
68 et al. (2015) evaluated the enhanced HONO formation from the biomass burning
69 plumes observed in June, which is the intense biomass burning season in the Yangtze
70 River Delta (YRD) in China. Makkonen et al. (2014) reported a one-year HONO
71 variation pattern at the Station for Measuring Ecosystem-Atmosphere Relations
72 (SMEAR) III, a forest station in Finland. Recently, abundant ambient particulate
73 nitrite levels were also measured by WD/IC (VandenBoer et al., 2014).

74 However, many studies found that the HONO sampling procedures may have
75 introduced unintended artifacts due to NO₂ and other atmospheric components will
76 generate a series of chemical reactions in the sampling tube to generate HONO
77 (Heland et al., 2001; Kleffmann and Wiesen, 2008). For example, NO₂ will
78 heterogeneously react with H₂O on the sampling tube wall to produce HONO (Heland
79 et al., 2001; Zhou et al., 2002). This interference may be related to the length of the
80 sampling tube and the relative humidity in the atmosphere (Su et al., 2008a). Recent
81 studies have shown that NO₂ reacts with atmospheric aerosols such as black carbon,
82 sand and hydrocarbons under certain conditions to produce HONO (Gutzwiller et al.,

83 2002; Monge et al., 2010; Nie et al., 2015; Su et al., 2008a). Therefore, in the
84 presence of high concentrations of aerosols, this reaction may lead to an enhancement
85 of measurement interferences for the WD/IC system. In addition, when an alkaline
86 solution, such as sodium carbonate, was used as the wet-denuder absorbing liquid for
87 sampling HONO, artifact nitrous acid will be produced by the reaction between NO_2
88 and SO_2 . (Jongejan et al., 1997; Spindler et al., 2003). Spindler et al. (Spindler et al.,
89 2003) quantified the artifact HONO on an alkaline K_2CO_3 surface with a pH of 9.7 in
90 laboratory experiments. However, their results were only applicable for concentrated
91 alkaline striping solution (1mM K_2CO_3), which limited the application for quantifying
92 the artifact HONO by the other WD/IC instrument with different denuder solution
93 (Spindler et al., 2003; Su et al., 2008a). As an alternative, Genfa et al. (2003) used
94 H_2O_2 as the absorption liquid to absorb HONO. Since H_2O_2 can rapidly oxidize the
95 produced S(IV) to sulfate, and interrupt the reaction pathway of NO_2 and SO_2 to form
96 NO_2^- , which will eliminate the measurement error.

97 Though many efforts was conducted on the interferences of WD/IC, an
98 intercomparison between WD/IC and a technology with less interference is still
99 needed in the field observation(Zhou, 2013). Only limited studies have been
100 conducted on field comparisons between WD/IC and other reliable technologies.
101 Moreover, the performance of WD/IC for HONO measurement is quite different
102 under different environmental conditions. For example, Acker et al. (2006) showed a
103 suitable correlation between WD/IC and coil sampling/HPLC during a HONO
104 intercomparison campaign in an urban area of Rome ($r^2=0.81$, slope=0.83). Su et al.
105 (2008b) found that WD/IC, on average, overestimated the HONO concentration by
106 1.2 times compared to the LOPAP measurement. However, when the same system
107 was used for comparative observations in Beijing, the HONO concentration from the
108 WD/IC measurement was overestimated by approximately 2 times (Lu et al., 2010).
109 This phenomenon also indicates that the performance of WD/IC in the measurement
110 of HONO is environmentally dependent.

111 To solve the complex atmospheric pollution problem in eastern China, a large number

112 of two-channel WD/IC instruments represented by Monitor for AeRosols and Gases
113 in ambient Air, MARGA) instruments was widely used to obtain aerosol composition
114 information, as well as acid trace gas levels, including HONO (Stieger et al., 2018).
115 Those database will greatly improve the understanding of air pollution in China.
116 However, the application of HONO data was limited because of the measurement
117 uncertainty. Therefore, the major purpose of this study is to try to evaluate the
118 measurement uncertainty of WD/IC and increase reliability of HONO database
119 obtained by MARGA or similar instruments. For the purpose, a MARGA and more
120 accurate equipment (LOPAP) were used to simultaneously measure the HONO
121 concentration at the Station for Observing Regional Processes of the Earth System
122 (SORPES) in the YRD of East China. We evaluated the performance of the WD/IC
123 instrument in measuring HONO concentrations and analyzed the source of
124 measurement inference based on the atmospheric composition data from SORPES.
125 Based on the understanding of the interference factors, a correction function was
126 given to correct the HONO data measured by MARGA.

127 **2. Experiment**

128 **2.1 Observation site**

129 The field-intensive campaign was conducted from December 2015 to January 2016 at
130 the SORPES station in the Xianlin campus of Nanjing University (Ding et al., 2013c).
131 SORPES station is a regional background site located on top of a hill (118°57'10" E
132 and 32°07'14" N; 40 m a.s.l.), eastern suburb, approximately 20 km from downtown
133 Nanjing. The station is an ideal receptor for air masses from the YRD with little
134 influence from local emissions and urban pollution from Nanjing. Detailed
135 information about SORPES can be found in Ding et al. (2016).

136 **2.1 Instrumentation**

137 The fine particulate matter (PM_{2.5}) and trace gas (SO₂, O₃, NO_x, and NO_y) levels were
138 measured by a set of Thermo Fisher analyzers (TEI,5030i, 43i, 49i, 42i, and 42iy).
139 The MoO convertor of NO_x analyzer was replaced by a blue light convertor to avoid

140 the NO₂ measurement interference (Xu et al., 2013). The water soluble ions of PM_{2.5}
141 were determined by MARGA. For details on these instruments, please refer to Ding et
142 al. (2016). The following section will focus on the measurement of HONO.

143 The WD/IC instrument for the HONO measurement used in our study was a Monitor
144 for AeRosols and Gases in ambient Air for ambient air (Metrohm, Switzerland,
145 MARGA) (Xie et al., 2015). **MARGA was located in the top floor of the laboratory**
146 **building with the sampling inlet of 3m.** The sampling system of the MARGA
147 instrument comprised two parts: a wet rotating denuder for gases and a steam jet
148 aerosol collector (SJAC) for aerosols, which worked at an air flow rate of 1 m³ h⁻¹.
149 The trace gases, including SO₂, NH₃, HONO, HCl, and HNO₃, were absorbed by the
150 H₂O₂ denuder solution with a concentration of 1mM. Subsequently, the ambient
151 particles were collected in the SJAC. Hourly samples were collected in syringes, and
152 analyzed with a Metrohm cation and anion chromatograph using an internal standard
153 (LiBr). In our experiments, the flow rate of the absorption solution was 25 ml/hour.

154 As the intercomparison technology, HONO was also observed by a LOPAP (QUMA,
155 Germany) with **a 1-2 cm sample inlet before the sample box.** The ambient air was
156 sampled in two similar temperature-controlled stripping coils in series using a mixture
157 reagent of 100 g sulfanilamide and 1 L HCl (37% volume fraction) in 9 L pure water.
158 In the first stripping coil, almost all of the HONO and a fraction of the interfering
159 substances were absorbed in the solution named R1. In the second stripping coil, the
160 remaining HONO and most of the interfering species were absorbed in the solution
161 named R2. After adding 0.8 g N-naphtylethylenediamine-dihydrochloride reagent in 9
162 L pure water to both coils, a colored azo dye was formed in the solutions of R1 and
163 R2, which were then separately detected via long-path absorption in special Teflon
164 tubing. The interference-free HONO signal was the difference between the signals in
165 the two channels. The method was believed to be an interference-free method for
166 HONO measurement.

167 **3. Results and discussion**168 **3.1 Performance of MARGA for measuring atmospheric HONO**

169 During the observation period, the HONO concentration measured by LOPAP
170 ($\text{HONO}_{\text{lopap}}$) varied from 0.01 to 4.8 ppbv with an average value of 1.1 ± 0.77 ppbv,
171 and the HONO concentration measured by the MARGA instrument ($\text{HONO}_{\text{marga}}$) was
172 0.01- 9.6 ppbv, with an average value of 1.52 ± 1.21 ppbv. The comparison between
173 $\text{HONO}_{\text{lopap}}$ and $\text{HONO}_{\text{marga}}$ values is shown in Figure 1. The ratio of $\text{HONO}_{\text{marga}}$ to
174 $\text{HONO}_{\text{lopap}}$ varied from 0.25 to 5, but $\text{HONO}_{\text{marga}}$ was higher than $\text{HONO}_{\text{lopap}}$ during
175 most of the observation period (>70%). The average diurnal variations of HONO
176 marga and HONO lopap, as shown Figure 1b, HONO marga /HONO lopap ratios
177 were higher at night, and especially in the morning, which were different from the
178 results of Muller et al. (1999) who found the remarkable overestimation of HONO by
179 WD/IC usually occurred during daytime. Meanwhile, the correlation between the
180 HONO concentrations measured by WD/IC and by another techniques varied in
181 different studies. The slope of HONO lopap to HONO marga measured by this study
182 was approximately 0.57 (with a correlation coefficient of $r^2=0.3$) which was within
183 the large range of 0.32-0.87 reported by the limited comparison investigations on
184 HONO measurements using a WD/IC instrument and LOPAP at four sampling sites
185 including SORPES of a suburban site in YRD (this work), YUFA of a rural site in
186 southern Beijing, PKU of a unban site in Beijing (Lu et al., 2010) and Easter Bush of
187 a forest site in south of Edinburgh (Ramsay et al., 2018). Such large variation of the
188 slopes at the different sampling sites may indicate that the performance of WD/IC in
189 the measurement of HONO is environmental dependent.

190 Here, the relationship between the measurement deviations and atmospheric
191 compositions, including aerosols and major trace gases, during the observation was
192 further analyzed, as shown in Figure 2. As the major precursor of HONO, the
193 heterogeneous reaction of NO_2 on the sampling tube or aerosol may introduce the
194 artificial HONO (Kleffmann et al., 2006; Gutzwiller et al., 2002; Liu et al., 2014; Xu

et al., 2015). In our study, the results showed that the correlation between the deviations of $\text{HONO}_{\text{marga}}$ with regards to NO_2 and $\text{PM}_{2.5}$ is weak, thereby indicating that the hydrolysis of NO_2 on the tube surface or in $\text{PM}_{2.5}$ is not the major contributor resulting in the measurement deviation of HONO . However, the measurement deviation was notably affected by the ambient SO_2 (Figure 2c) and NH_3 (Figure 2d). Compared to $\text{HONO}_{\text{lopap}}$, $\text{HONO}_{\text{marga}}$ was significantly higher at a high concentration of SO_2 and had the opposite trend at a high concentration of ammonia. A reasonable extrapolation was that SO_2 and NH_3 , as the main acid gas and alkaline gas in the atmosphere, were absorbed by the denuder solution in the process of sampling HONO . This process will impact the pH of the denuder solution and further change the absorption efficiency of HONO (Zellweger et al., 1999). In a real atmosphere, ambient SO_2 will be rapidly oxidized to sulfuric acid by H_2O_2 in the denuder solution (Kunen et al., 1983), thereby lowering the pH. Similar to SO_2 , ammonia in the atmosphere is hydrolyzed to NH_4^+ and OH^- , which increases the pH of the denuder solution. The variation in the pH of the denuder solution caused by atmospheric composition, specifically the condition of a high SO_2 concentration, will ultimately affect the absorption efficiency of HONO by the denuder.

3.2 The influence of the denuder pH on HONO measurement by MARGA

According to previous studies by Zellweger et al. (1999), the absorption efficiency of the denuder for HONO is mainly affected by the pH of the denuder solution, the flow rate of the absorbing liquid, the gas flow rate and the effective Henry coefficient of HONO , as shown by formulas 1 and 2.

$$\varepsilon = \frac{f_a}{f_g/H_{\text{eff}} + f_a} \quad (\text{Eq.1})$$

$$H_{\text{eff}} = H(1 + \frac{K_a}{H^2}) \quad (\text{Eq.2})$$

where H is the Henry constant of HONO , H_{eff} is the effective Henry constant, K_a is the dissociation constant, and f_a and f_g are the flow rates (ml min^{-1}) of the aqueous and gaseous phase, respectively.

The absorption efficiency of the MARGA (ε) instrument for HONO as calculated

according to *Eq.1* and *Eq.2* is shown in Figure 3a. The absorption efficiency was sensitive to the pH of the denuder solution. Therefore, estimating the pH of the denuder solution was the first step and the key issue to evaluate the measurement deviation of HONO by WD/IC.

Here, we attempted to use the ion concentration of the denuder solution (SO_4^{2-} , NO_3^- , NO_2^- , Cl^- , Mg^{2+} , Ca^{2+} , NH_4^+ , Na^+ , and K^+) measured by MARGA to inversely derive the pH of the denuder solution. The calculation of the pH was conducted with Curtipot, which is a simple software program that provides a fast pH calculation of any aqueous solution of acids, bases and salts, including buffers, zwitterionic amino acids, from single components to complex mixtures (http://www.iq.usp.br/gutz/Curtipot_.html). As input of the model, SO_4^{2-} , NO_3^- , NO_2^- , and NH_4^+ ions, which accounted for more than 98% of the total ions, were used. To verify the reliability of the calculation, a pH detector (Metrohm, 826 PH) was used to measure the pH of the denuder solution, which was collected in a clean glass bottle when the denuder solution was injected into the IC instrument. **In order to adjust the pH of denuder solution, SO_2 with concentration of 0, 5, 10, 20, 40, 80 and 100 ppbv were injected into the sampling line with the NH_3 concentration around 10-15 ppbv.** During the test, 13 samples were collected, and the pH results are shown in Figure 3b. When the pH value was lower than 5.6, the calculated pH (pH_a) was close to the measured value (pH_c), but when the value was higher than 7, pH_a was notably higher than pH_c . These results should be attributed to the buffering effect of carbonic acid in the denuder solution, which was exposed to the atmosphere. When the equilibrium between the CO_2 and the carbonic acid in the denuder solution was reached, a carbonic acid buffer solution with a pH of 5.6 formed in the denuder solution with a dissolved CO_2 concentration of 1.24×10^{-5} M (Seinfeld and Pandis, 2016; Stieger et al., 2018). Additionally, when the NH_4^+ concentration was higher than the total anion concentration in the denuder solution (SO_4^{2-} , NO_3^- , NO_2^- , and Cl^-), more CO_2 would be dissolved in the denuder solution, and the excess dissolved CO_2 could be equal to the excess NH_4^+ . After including the buffering solution of carbonic acid and excess

252 CO_2 , the calculation of the pH values denoted as pH_b , and pH_b was in good
253 agreement with the actual measurement results (pH_c), which confirmed the
254 feasibility of Curtipot to calculate the pH of the denuder solution. Therefore, the pH
255 of the denuder solution during the observation period was calculated by the above
256 method.

257 Under ideal conditions, the pH of the denuder absorption solution in MARGA (1mM
258 H_2O_2) was approximately 6.97, and the absorption efficiency of MARGA for HONO
259 should be 98% or higher under clear conditions. However, during the observation
260 period, the calculated pH of the denuder solution varied from 4 to 7 due to the
261 ambient SO_2 and NH_3 (Figure 4). Therefore, $\text{HONO}_{\text{marga}}$ was underestimated due to
262 the low absorption efficiency caused by the low pH. In other words, the
263 $\text{HONO}_{\text{marga}}/\text{HONO}_{\text{lopap}}$ ratio will increase with decreasing pH. Assuming that the
264 measurement deviation of $\text{HONO}_{\text{marga}}$ was only impacted by the collection efficiency,
265 the $\text{HONO}_{\text{lopap}}/\text{HONO}_{\text{marga}}$ ratio should be $1/\varepsilon$ (or $\text{HONO}_{\text{marga}}/\text{HONO}_{\text{lopap}}=\varepsilon$). However,
266 most of the observed $\text{HONO}_{\text{lopap}}/\text{HONO}_{\text{marga}}$ ratios were lower than $1/\varepsilon$ (Figure 4),
267 thus indicating that $\text{HONO}_{\text{marga}}$ had still been overestimated even when the deviation
268 of HONO caused by the variation in the denuder pH was corrected.

269 **3.3 The artifact HONO due to NO_2 oxidizing SO_2**

270 To further analyze the MARGA measurement deviation of HONO , we first eliminated
271 the influence of the denuder absorption efficiency on the measurement deviation
272 according to the below correction formula.

273
$$\text{MARGA}_{\text{int.}} = \text{HONO}_{\text{Marga}} - \text{HONO}_{\text{LOPAP}} * \varepsilon(\text{pH}) \quad (\text{Eq.3})$$

274 where $\text{MARGA}_{\text{int.}}$ is the additional HONO produced during the sampling process.

275 In previous studies, the interference of HONO in the denuder solution mainly came
276 from the NO_2 hydrolysis reaction and the reaction between NO_2 and SO_2 (Febo et al.,
277 1993; Spindler et al., 2003). In the study by Spindler et al. (2003), approximately
278 0.058% of NO_2 was hydrolyzed to HONO that indicate NO_2 hydrolysis reaction

279 contributed little to the artificial HONO in the denuder solution. In this study, a
280 similar ratio (0.060%) was found at a low PH (<4.5) when the level of artifact NO_2^-
281 from the reaction between NO_2 and SO_2 was low (this part is discussed in the below
282 section). However, the oxidation of SO_2 with NO_2 may have contributed to
283 $\text{MARGA}_{\text{int}}$ in the basic or slightly acidic denuder solution (Jongejan et al., 1997;
284 Spindler et al., 2003; Xue et al., 2019). In this study, the correlation between
285 $\text{MARGA}_{\text{int}}$ and $\text{SO}_2^* \text{NO}_2$ is shown in Figure 5(b). Compared to the study by Spindler
286 et al. (2003), where the correlation with $\text{SO}_2^* \text{NO}_2$ was linear in an alkaline solution,
287 the relationship between $\text{MARGA}_{\text{int}}$ and $\text{SO}_2^* \text{NO}_2$ was dependent on the pH of the
288 denuder solution. The generation rate of HONO by $\text{SO}_2^* \text{NO}_2$ was low when the pH
289 was <5, but would significantly increase with the pH. This discrepancy with the study
290 of Spindler et al. (2003) should be due to the additional H_2O_2 in MARGA's denuder
291 solution competitive oxidizing SO_2 .

292 The competition of SO_2 oxidation by H_2O_2 and NO_2 in the atmosphere has been well
293 studied (Hoffmann and Calvert, 1985; Seinfeld and Pandis, 2016). Due to the
294 presence of H_2O_2 in the denuder solution, the similar competition oxidation process of
295 SO_2 will also occur in the denuder solution. First, ambient SO_2 undergoes a hydrolysis
296 reaction when it is absorbed by the denuder solution. The reaction is shown in R1, and
297 the fraction of the three components ($\alpha\text{H}_2\text{SO}_3$, αHSO_3^- , and αSO_3^{2-}) is affected by the
298 denuder pH (Figure 7a). After that, HSO_3^- and SO_3^{2-} are simultaneously oxidized by
299 H_2O_2 and NO_2 (Seinfeld and Pandis, 2016).

304 Here, the reaction ratios of SO_2 oxidized by H_2O_2 ($P_{\text{H}_2\text{O}_2*\text{S}}$) and NO_2 ($P_{\text{NO}_2*\text{S}}$) in the
305 denuder solution are shown in Figure 6b. The concentration of H_2O_2 ($[\text{H}_2\text{O}_2(\text{aq})]$) is
306 1mM, the concentration of ambient NO_2 ($[\text{NO}_2]$) and SO_2 ($[\text{SO}_2]$) was assume as 1

307 ppbv, respectively. Because of the low solubility of NO_2 , the aqueous NO_2 [$\text{NO}_2(\text{aq})$]
308 in the denuder solution is balanced with $[\text{NO}_2]$ in Henry's law.

309 $[\text{NO}_2(\text{aq})] = [\text{NO}_2] * \text{H}_{\text{NO}_2}$ (Eq.4)

310 Compared to the gas and aqueous phase equilibrium of $\text{SO}_2(\text{g})$ and S(IV)(aq) in the
311 ambient air or cloud, almost all the SO_2 was absorbed by the denuder solution of
312 1mM H_2O_2 (Rosman et al., 2001; Rumsey et al., 2014), therefore the concentration of
313 $[\text{S(IV)}]$ (HSO_3^- , SO_3^{2-} , H_2SO_3) in the denuder solution was determined by $[\text{SO}_2]$,
314 sampling flow and the flow of denuder liquid. For example, $[\text{S(IV)}]$ should be
315 $8.34 * 10^{-6}$ M for the air flow of 16.67 L/min, liquid flow of 0.08 ml/min and 1 ppb
316 SO_2 . Thereby the $[\text{HSO}_3^-(\text{aq})]$ and $[\text{SO}_3^{2-}(\text{aq})]$ was determined by the pH and $[\text{S(IV)}]$
317 at the beginning of the oxidation reaction by H_2O_2 or NO_2 .

318 $[\text{S(IV)}] = [\text{SO}_2] * fg/fa$ (Eq.5)

319 $[\text{HSO}_3^-(\text{aq})] = [\text{S(IV)}] * \alpha \text{HSO}_3^-$ (Eq.6)

320 $[\text{SO}_3^{2-}(\text{aq})] = [\text{S(IV)}] * \alpha \text{SO}_3^{2-}$ (Eq.7)

321 The result is as shown in Figure 6. In the case of a lower pH, more HSO_3^- would be
322 present in the solution. At this point, the oxidation of SO_2 in the solution was mainly
323 due to H_2O_2 . With the increase in pH, the HSO_3^- concentration of the solution
324 decreased, while the SO_3^{2-} concentration of the solution increased. The role of NO_2 in
325 the oxidation of SO_2 gradually increased, and the ratio of $\text{P}_{\text{NO}_2*\text{S}}/\text{P}_{\text{S(IV)}}$ rose rapidly
326 and remained at nearly 100% at a pH of 8, which indicated that almost all SO_2 was
327 oxidized by NO_2 at this point.

328 Now, the question was whether the observed MARGAint. could be explained by the
329 reaction between SO_2 and NO_2 . This question could be answered by comparing
330 $\text{MARGA}_{\text{int.}}/(\text{SO}_2 * \text{NO}_2)$ and $\text{P}_{\text{NO}_2*\text{S}}/\text{P}_{\text{S(IV)}}$ because NO_2^- was formed in the denuder
331 solution only when SO_2 was oxidized by NO_2 . Here, the correlation between the
332 MARGA_{int.} production rate and SO_2 , NO_2 and the denuder pH is also shown in Figure
333 7(a). $\text{MARGA}_{\text{int.}}/(\text{SO}_2 * \text{NO}_2)$ was in good agreement with the theoretically calculated
334 $\text{P}_{\text{NO}_2*\text{S}}/\text{P}_{\text{S(IV)}}$, thereby confirming that the chemical reaction between SO_2 and NO_2 did
335 lead to the additional HONO production, which then resulted in the MARGA

336 overestimations of the HONO measurements. Additionally, under the condition of 1
337 ppb NO₂ concentration, as well as a range of the denuder pH of 4 to 7, only
338 approximately 10% of the SO₂ was oxidized by NO₂, which indicated that MARGA_{int.}
339 was low. However, during our observation, there was up to 50 ppbv NO₂. Under these
340 conditions, the oxidation of SO₂ by NO₂ was greatly elevated. As shown in Figure 7b,
341 the high NO₂ concentrations of the ambient air (circle dots) were consistent with the
342 P_{NO₂*S/P_{S(IV)}} values calculated from ambient air NO₂ concentrations (black squares),
343 which also confirmed the results.

344 In the reaction of SO₂ and NO₂, pH is the limiting factor. In the low pH, the dissolved
345 SO₂ in denuder solution major presented as the HSO₃⁻, which will be rapidly oxidized
346 by H₂O₂. In a real atmosphere, NH₃ is the major basic species to maintain the high pH
347 of denuder solution. Therefore, NH₃ is the key composition influencing MARGA_{int..}
348 Figure 8 shows the scenario of calculating MARGA_{int.} from the reaction between SO₂
349 and NO₂ with ambient NH₃ concentrations of 5 ppbv and 20 ppbv. As shown in the
350 figure, in the case of the 5 ppbv NH₃ concentration, the denuder pH would rapidly
351 decrease with increasing SO₂ concentration. At this point, the formation process of
352 MARGAint. from SO₂ and NO₂ was limited. However, for a high NH₃ concentration,
353 the pH of the denuder solution would slowly decrease due to neutralization of NH₃ by
354 sulfuric acid. A concentration of 1.2 ppb of artifact HONO could be produced with a
355 NO₂ concentration of 40 ppbv and a SO₂ concentration of 4 ppbv. MARGAint. would
356 be greatly improved at a high concentration of NH₃.

357 In east China, NH₃ concentration is in general high, and keep increasing 30% from
358 2008 to 2016 in NCP (Liu et al., 2018). Especially in summer, NH₃ concentration can
359 be up to 30 ppb (Meng et al., 2018). In contrast, the SO₂ concentration is gradually
360 decreasing due to the emission reduction from 2008 to 2016 (around 60%), with the
361 concentration lower than 5 ppb frequency observed. In such case, the pH of the
362 denuder solution in the WD/IC instrument will be further enhanced, which will in turn
363 further aggravate the deviation of the HONO measurement.

364 **3.4 The correction for the HONO measurement interference**

365 According to the above results, the deviation of MARGA for the HONO measurement
366 could be caused by two factors: one is the low sampling efficiency of the denuder
367 solution at low pH, and the other is the external NO_2^- that is produced by the reaction
368 between SO_2 and NO_2 at high pH. In this study, we attempted to correct the
369 measurement deviation of HONO accordingly. The correction formula is as follows:

370 $\text{MARGA}_{\text{correct}} = (\text{HONO}_{\text{marga}} - \text{SO}_2 * \text{NO}_2 * \text{P}_{(\text{pH})} - \text{NO}_2 * 0.0056) / \epsilon_{(\text{pH})}$ (Eq.8)

371 The calculation results are shown in the Figure 9 (a). After correction, there was a
372 significant improvement in the measured HONO by MARGA, and the r^2 value
373 between $\text{HONO}_{\text{marga}}$ and $\text{HONO}_{\text{lopap}}$ increased from 0.28 to 0.61, specifically in the
374 high concentration range of HONO. However, when the concentration of HONO was
375 low, the degree of improvement was limited. To find the reason for the uncertainty of
376 correction, the residual analysis was made. The residual was the difference between
377 MARGA_{int.} and calculated interference from $\text{SO}_2 * \text{NO}_2 * \text{P}_{(\text{pH})} - \text{NO}_2 * 0.0056$. The
378 dependency of residual/ NO_2 on RH is similar with that of ambient HONO/ NO_2 on RH
379 which was observed in many other studies (Li et al., 2012; Yu et al., 2009), and
380 indicate the NO_2 heterogeneous reaction or the reaction of SO_2 and NO_2 in the
381 sampling tube may be another factors impacting the HONO interference (Su et al.,
382 2008).

383 Moreover, the uncertainty of correction $\text{HONO}_{\text{marga}}$ may have been attributed to
384 another two reasons. One is the uncertainty of the pH of the denuder solution. The pH
385 of the denuder solution was calculated according to the ions formed from the
386 absorbed gas in the denuder solution with a residence time of 1 hour, whereas the
387 oxidation of SO_2 occurred in real time when the pH of the denuder solution also
388 varied. Additionally, the low concentration ions ($< 5 * 10^{-5}$ M) in the denuder solution
389 will induce uncertainties in calculating the pH. Another reason is the uptake
390 coefficient of the denuder solution. $\text{NO}_2(\text{g})$ is weakly soluble in pure water with a
391 Henry's law constant (H) of $\sim 0.01 \text{ M atm}^{-1}$, which was used in this study. However,
392 previous studies have shown that the anions in the liquid greatly enhance the $\text{NO}_2(\text{g})$

393 uptake by two or three orders of magnitude (Li et al., 2018). This process may
394 influence the calculation of the dissolved NO₂ content and its hydrolysis. The
395 accuracy of the uptake coefficient was difficult to determine, which might be one of
396 the reasons for the underestimation of MARGA_{int.} for the reaction between SO₂ and
397 NO₂ at a high concentration of NO₂ (Figure 7b).

398 In addition to the correction, an alternative way to use HONO_{marga} is to select the
399 suitable conditions where the measurement interference is limited. In ambient air, SO₂
400 and NH₃ are the key pollutants resulting in the HONO measurement deviation.
401 According to our observations, under the clear condition of SO₂*NO₂ lower than 150
402 ppbv² (median value) and a NH₃ content lower than 5 ppbv (median value), MARGA
403 showed a much better performance for measuring the HONO concentration. The latter
404 was also the possible reason for the suitable performance of WD/IC in measuring
405 HONO concentrations in previous studies (Acker et al., 2004; Ramsay et al., 2018).

406 3. Conclusion

407 We conducted a field campaign at the SORPES station in December 2015 to evaluate
408 the performance of MARGA for measuring ambient HONO concentrations with the
409 benchmark of LOPAP. Compared with HONO_{lopap}, a notable deviation in HONO_{marga}
410 was observed between -2 and 6 ppb, and the ratio of HONO_{marga}/HONO_{lopap} ranged
411 from 0.4 to 4. When the SO₂ concentration in the atmosphere was high, a negative
412 deviation occurred, and when the NH₃ concentration was high, a positive deviation
413 occurred.

414 Through further analysis of the pH of the denuder solution and the oxidation of SO₂ in
415 the denuder solution, the deviation of the measurement of HONO by MARGA is
416 mainly due to two reasons. One is that an acidic-alkaline gas component in the
417 atmosphere enters the denuder solution of the instrument, thereby causing the denuder
418 pH to change, affecting the absorption efficiency of MARGA for HONO. Another
419 reason is that NO₂ oxidizes the SO₂ absorbed in the denuder solution, and the reaction
420 is generally improved with a higher pH of the denuder solution in the presence of high

421 concentrations of NH₃ and NO₂. The additional formation of HONO led to the
422 MARGA measurement error of HONO.

423 Based on the understanding of the interference factors, we established a method to
424 correct the HONO data measured by MARGA. Compared with LOPAP, the HONO
425 measurement results were improved after the correction, but the improvement was
426 limited at a low concentration of HONO. Moreover, under the clear conditions of low
427 concentrations of SO₂, NO₂, and NH₃, MARGA will have a better performance for the
428 measurement of HONO.

429

430 **Author contributions**

431 AD and WN designed the study and contributed to the editing of the paper. ZX,
432 contributed to the measurements, data analysis, and the draft of this paper, YL
433 contributed to the data analysis. PS, XC contributed in observation at SORPES and
434 data analysis.

435 **Acknowledgments**

436 The research was supported by National Key Research & Development Program
437 of China (2016YFC0200500), National Science Foundation of China (41605098) and
438 Jiangsu Provincial Science Fund (BK20160620), this study was also supported by the
439 other National Science Foundation of China (91644218)

440 **References**

441 Acker, K., Spindler, G., and Brüggemann, E.: Nitrous and nitric acid
442 measurements during the INTERCOMP2000 campaign in Melpitz, Atmospheric
443 Environment, 38, 6497-6505,418 <http://dx.doi.org/10.1016/j.atmosenv.2004.08.030>, 2004.
444 Acker, K., Febo, A., Trick, S., Perrino, C., Bruno, P., Wiesen, P., Möller, D., Weprecht, W., Auel, R.,
445 Giusto, M., Geyer, A., Platt, U., and Allegrini, I.: Nitrous acid in the urban area of Rome, Atmospheric
446 Environment, 40, 3123-3133, <https://doi.org/10.1016/j.atmosenv.2006.01.028>, 2006.
447 Cheng, P., Cheng, Y.F., Lu, K.D., Su, H., Yang, Q., Zou, Y.K., Zhao, Y.R., Dong, H.B., Zeng, L.M.,
448 Zhang, Y., 2013. An online monitoring system for atmospheric nitrous acid (HONO) based on stripping
449 coil and ion chromatography. *J. Environ. Sci. (China)* 25, 895–907.
450 Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael,
451 G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during
452 haze events in China, *Science Advances*, 2, 10.1126/sciadv.1601530, 2016.
453 Ding, A., Nie, W., Huang, X., Chi, X., Sun, J., Kerminen, V.-M., Xu, Z., Guo, W., Petäjä, T., Yang,
454 X., Kulmala, M., Fu, C.. *Front. Environ. Sci. Eng.*: Long-term observation of air
455 pollution-weather/climate interactions at the SORPES station: a review and outlook, 10, 15,

456 10.1007/s11783-016-0877-3, 2016.
457 Febo, A., Perrino, C., and Cortiello, M.: A denuder technique for the measurement of nitrous acid in
458 urban atmospheres, *Atmospheric Environment. Part A. General Topics*, 27, 1721-1728,
459 [https://doi.org/10.1016/0960-1686\(93\)90235-Q](https://doi.org/10.1016/0960-1686(93)90235-Q), 1993.
460 Genfa, Z., Slanina, S., Brad Boring, C., Jongejan, P. A. C., and Dasgupta, P. K.: Continuous wet
461 denuder measurements of atmospheric nitric and nitrous acids during the 1999 Atlanta Supersite,
462 *Atmospheric Environment*, 37, 1351-1364, [https://doi.org/10.1016/S1352-2310\(02\)01011-7](https://doi.org/10.1016/S1352-2310(02)01011-7), 2003.
463 Gutzwiller, L., Arens, F., Baltensperger, U., Gäggeler, H. W., and Ammann, M.: Significance of
464 Semivolatile Diesel Exhaust Organics for Secondary HONO Formation, *Environmental Science &*
465 *Technology*, 36, 677-682, 10.1021/es015673b, 2002.
466 Heland, J., Kleffmann, J., Kurtenbach, R., and Wiesen, P.: A New Instrument To Measure Gaseous
467 Nitrous Acid (HONO) in the Atmosphere, *Environmental Science & Technology*, 35, 3207-3212,
468 10.1021/es000303t, 2001.
469 Hoffmann, M.R., and Calvert, J.G.: *Chemical Transformation Modules for Eulerian Acid Deposition*
470 *Models, Vol.2, The Aqueous-Phase Chemistry, EPA/600/3-85/017, US Environmental Protection*
471 *Agency, Research Triangle Park, NC, 1985.*
472 Jongejan, P. A. C., Bai, Y., Veltkamp, A. C., Wye, G. P., and Slaninaa, J.: An Automated Field
473 Instrument for The Determination of Acidic Gases in Air, *International Journal of Environmental*
474 *Analytical Chemistry*, 66, 241-251, 10.1080/03067319708028367, 1997.
475 Kleffmann, J., Gavriloaiei, T., Hofzumahaus, A., Holland, F., Koppmann, R., Rupp, L., Schlosser,
476 E., Siese, M., and Wahner, A.: Daytime formation of nitrous acid: A major source of OH radicals in a
477 forest, *Geophysical Research Letters*, 32, L05818, 10.1029/2005GL022524, 2005.
478 Kleffmann, J., Lörzer, J., Wiesen, P., Kern, C., Trick, S., Volkamer, R., Rodenas, M., and Wirtz, K.:
479 Intercomparison of the DOAS and LOPAP techniques for the detection of nitrous acid (HONO),
480 *Atmospheric environment*, 40, 3640-3652, <https://doi.org/10.1016/j.atmosenv.2006.03.027>, 2006.
481 Kleffmann, J.: Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer,
482 *ChemPhysChem*, 8, 1137-1144, <https://doi.org/10.1002/cphc.200700016>, 2007.
483 Kleffmann, J., and Wiesen, P.: Technical Note: Quantification of interferences of wet chemical
484 HONO LOPAP measurements under simulated polar conditions, *Atmos. Chem. Phys.*, 8, 6813-6822,
485 10.5194/acp-8-6813-2008, 2008.
486 Kunen, S. M., Lazarus, A. L., Kok, G. L., and Heikes, B. G.: Aqueous oxidation of SO₂ by hydrogen
487 peroxide, 88, 3671-3674, doi:10.1029/JC088iC06p03671, 1983.
488 Lelièvre, S., Bedjanian, Y., Laverdet, G., and Le Bras, G. : Heterogeneous Reaction of NO₂ with
489 Hydrocarbon Flame Soot, *The Journal of Physical Chemistry A*, 108, 10807-10817,
490 10.1021/jp0469970, 2004.
491 Li, L., Hoffmann, M. R., and Colussi, A. J.: Role of Nitrogen Dioxide in the Production of Sulfate
492 during Chinese Haze-Aerosol Episodes, *Environmental Science & Technology*, 52,
493 2686-2693, 10.1021/acs.est.7b05222, 2018.
494 Li, X., Brauers, T., Häseler, R., Bohn, B., Fuchs, H., Hofzumahaus, A., Holland, F., Lou, S., Lu, K.
495 D., Rohrer, F., Hu, M., Zeng, L. M., Zhang, Y. H., Garland, R. M., Su, H., Nowak, A., Wiedensohler, A.,
496 Takegawa, N., Shao, M., and Wahner, A.: Exploring the atmospheric chemistry of nitrous acid (HONO)
497 at a rural site in Southern China, *Atmos. Chem. Phys.*, 12, 1497-1513, 10.5194/acp-12-1497-2012,
498 2012.
499 Liu, M., Huang, X., Song, Y., Xu, T., Wang, S., Wu, Z., Hu, M., Zhang, L., Zhang, Q., Pan, Y., Liu,

500 X., and Zhu, T.: Rapid SO₂ emission reductions significantly increase tropospheric ammonia
501 concentrations over the North China Plain, *Atmos. Chem. Phys.*, 18, 17933-17943,
502 10.5194/acp-18-17933-2018, 2018.

503 Liu, Z., Wang, Y., Costabile, F., Amoroso, A., Zhao, C., Huey, L. G., Stickel, R., Liao, J., and Zhu,
504 T.: Evidence of Aerosols as a Media for Rapid Daytime HONO Production over China, *Environmental
505 Science & Technology*, 48, 14386-14391, 10.1021/es504163z, 2014.

506 Lu, K., Zhang, Y., Su, H., Brauers, T., Chou, C. C., Hofzumahaus, A., Liu, S. C., Kita, K., Kondo,
507 Y., Shao, M., Wahner, A., Wang, J., Wang, X., and Zhu, T.: Oxidant (O₃ + NO₂) production processes
508 and formation regimes in Beijing, *Journal of Geophysical Research: Atmospheres*, 115,
509 D07303, 10.1029/2009JD012714, 2010.

510 Makkonen, U., Virkkula, A., Hellén, H., Hemmilä, M., Sund, J., Äijälä, M., Ehn, M., Junninen,
511 H., Kerönen, P., and Petäjä, T.: Semi-continuous gas and inorganic aerosol measurements at a boreal
512 forest site: seasonal and diurnal cycles of HONO and HNO₃, *Boreal Environment Research* 19,
513 311-328, 2014.

514 Meng, Z., Xu, X., Lin, W., Ge, B., Xie, Y., Song, B., Jia, S., Zhang, R., Peng, W., Wang, Y., Cheng,
515 H., Yang, W., and Zhao, H.: Role of ambient ammonia in particulate ammonium formation at a rural
516 site in the North China Plain, *Atmos. Chem. Phys.*, 18, 167-184, 10.5194/acp-18-167-2018, 2018.

517 Michoud, V., Colomb, A., Borbon, A., Miet, K., Beekmann, M., Camredon, M., Aumont, B., Perrier, S.,
518 Zapf, P., Siour, G., Ait-Helal, W., Afif, C., Kukui, A., Furger, M., Dupont, J. C., Haeffelin, M., and
519 Doussin, J. F.: Study of the unknown HONO daytime source at a European suburban site during the
520 MEGAPOLI summer and winter field campaigns, *Atmos. Chem. Phys.*, 14, 2805-2822,
521 10.5194/acp-14-487 2805-2014, 2014.

522 Monge, M. E., D'Anna, B., Mazri, L., Giroir-Fendler, A., Ammann, M., Donaldson, D. J., and George,
523 C.: Light changes the atmospheric reactivity of soot, *Proceedings of the National Academy of Sciences*,
524 107, 6605-6609, 10.1073/pnas.0908341107, 2010.

525 Muller, T., Dubois, R., Spindler, G., Bruggemann, E., Ackermann, R., Geyer, A., and Platt, U.:
526 Measurements of nitrous acid by DOAS and diffusion denuders: a comparison, *Transactions on
527 Ecology and the Environment*, 28, 345-349, 1999.

528 Nie, W., Ding, A. J., Xie, Y. N., Xu, Z., Mao, H., Kerminen, V. M., Zheng, L. F., Qi, X. M., Huang,
529 X., Yang, X. Q., Sun, J. N., Herrmann, E., Petäjä, T., Kulmala, M., and Fu, C. B.: Influence of biomass
530 burning plumes on HONO chemistry in eastern China, *Atmos. Chem. Phys.*, 15, 1147-1159,
531 10.5194/acp-15-1147-2015, 2015.

532 Perner, D., and Platt, U.: Detection of nitrous acid in the atmosphere by differential optical absorption,
533 *Geophysical Research Letters*, 6, 917-920, 10.1029/GL006i012p00917, 1979.

534 Platt, U., Perner, D., Harris, G., Winer, A., and Pitts, J.: Observations of nitrous acid in an urban
535 atmosphere by differential optical absorption, *Nature*, 285, 312-314, doi:10.1038/285312a0, 1980.

536 Ramsay, R., Di Marco, C. F., Heal, M. R., Twigg, M. M., Cowan, N., Jones, M. R., Leeson, S. R., Bloss,
537 W. J., Kramer, L. J., Crilley, L., Sörgel, M., Andreae, M., and Nemitz, E.: Surface-atmosphere
538 exchange of inorganic water-soluble gases and associated ions in bulk aerosol above agricultural
539 grassland and pre-and postfertilisation, *Atmos. Chem. Phys.*, 18, 16953-16978,
540 10.5194/acp-18-16953-2018, 2018.

541 Rosman, K., Shimmo, M., Karlsson, A., Hansson, H.-C., Kerönen, P., Allen, A., and Hoenninger, G.:
542 Laboratory and field investigations of a new and simple design for the parallel
543 plate denuder, *Atmospheric Environment*, 35, 5301-5310,

544 [https://doi.org/10.1016/S1352-2310\(01\)00308-9](https://doi.org/10.1016/S1352-2310(01)00308-9), 2001.

545 Rumsey, I. C., Cowen, K. A., Walker, J. T., Kelly, T. J., Hanft, E. A., Mishoe, K., Rogers, C., Proost, R.,

546 Beachley, G. M., Lear, G., Frelink, T., and Otjes, R. P.: An assessment of the performance of the

547 Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble

548 compounds, *Atmos. Chem. Phys.*, 14, 5639-5658, 10.5194/acp-14-5639-2014, 2014.

549 Seinfeld, J. H., and Pandis, S. N.: *Atmospheric chemistry and physics: from air pollution to climate*

550 *change*, John Wiley & Sons, 2016.

551 Sorgel, M., Regelin, E., Bozem, H., Diesch, J. M., Drewnick, F., Fischer, H., Harder, H., Held, A.,

552 Hosaynali-Beygi, Z., and Martinez, M.: Quantification of the unknown HONO daytime source and its

553 relation to NO₂, *Atmospheric Chemistry & Physics Discussions*, 11, 15119-15155, 2011.

554 Spindler, G., Hesper, J., Brüggemann, E., Dubois, R., Müller, T., and Herrmann, H.: Wet annular

555 denuder measurements of nitrous acid: laboratory study of the artefact reaction of NO₂ with S(IV) in

556 aqueous solution and comparison with field measurements, *Atmospheric Environment*, 37, 2643-2662,

557 [http://dx.doi.org/10.1016/S1352-2310\(03\)00209-7](http://dx.doi.org/10.1016/S1352-2310(03)00209-7), 2003.

558 Stieger, B., Spindler, G., Fahlbusch, B., Müller, K., Grüner, A., Poulain, L., Thöni, L., Seitler, E.,

559 Wallasch, M., and Herrmann, H.: Measurements of PM10 ions and trace gases with the online system

560 MARGA at the research station Melpitz in Germany— A five-year study, *Journal of Atmospheric*

561 *Chemistry*, 75, 33-70, 10.1007/s10874-017-9361-0, 2018.

562 Su, H., Cheng, Y. F., Cheng, P., Zhang, Y. H., Dong, S., Zeng, L. M., Wang, X., Slanina, J.,

563 Shao, M., and Wiedensohler, A.: Observation of nighttime nitrous acid (HONO) formation at a

564 non-urban site during PRIDE-PRD2004 in China, *Atmospheric environment*, 42,

565 6219-6232,

566 <https://doi.org/10.1016/j.atmosenv.2008.04.006>, 2008a.

567 Su, H., Cheng, Y. F., Shao, M., Gao, D. F., Yu, Z. Y., Zeng, L. M., Slanina, J., Zhang, Y. H., and

568 Wiedensohler, A.: Nitrous acid (HONO) and its daytime sources at a rural site during the 2004 PRIDE-

569 PRD experiment in China, *Journal of Geophysical Research*, 113, D14312,

570 <https://doi.org/10.1029/2007JD009060>, 2008b.

571 Trebs, I., Meixner, F. X., Slanina, J., Otjes, R., Jongejan, P., and Andreae, M. O.: Real-time

572 measurements of ammonia, acidic trace gases and water-soluble inorganic aerosol species at a rural site

573 in the Amazon Basin, *Atmos. Chem. Phys.*, 4, 967-987, 10.5194/acp-4-967-2004, 2004.

574 VandenBoer, T. C., Markovic, M. Z., Sanders, J. E., Ren, X., Pusede, S. E., Browne, E. C., Cohen, R.

575 C., Zhang, L., Thomas, J., Brune, W. H., and Murphy, J. G.: Evidence for a nitrous acid (HONO)

576 reservoir at the ground surface in Bakersfield, CA, during CalNex 2010, *Journal of Geophysical*

577 *Research: Atmospheres*, 119, 9093-9106, 10.1002/2013JD020971, 2014.

578 Wu, T., Zha, Q., Chen, W., Xu, Z., Wang, T., and He, X.: Development and deployment of a cavity

579 enhanced UV-LED spectrometer for measurements of atmospheric HONO and NO₂ in Hong Kong,

580 *Atmospheric Environment*, 95, 544-551, <http://dx.doi.org/10.1016/j.atmosenv.2014.07.016>, 2014.

581 Xie, Y., Ding, A., Nie, W., Mao, H., Qi, X., Huang, X., Xu, Z., Kerminen, V.-M., Petäjä, T., Chi, X.,

582 Virkkula, A., Boy, M., Xue, L., Guo, J., Sun, J., Yang, X., Kulmala, M., and Fu, C.: Enhanced sulfate

583 formation by nitrogen dioxide: Implications from in situ observations at the SORPES station, *Journal*

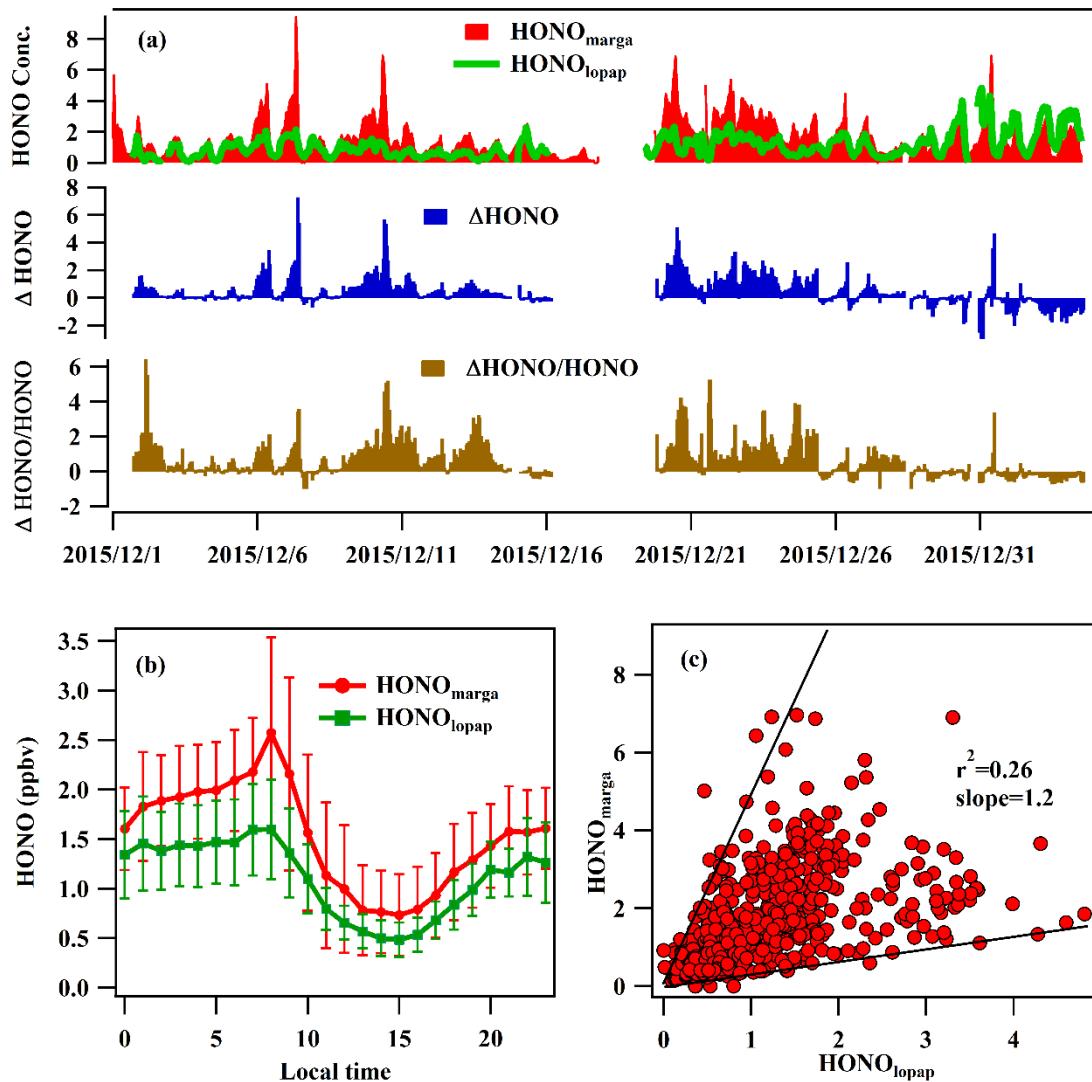
584 *of Geophysical Research: Atmospheres*, 120, 12679-12694, 10.1002/2015JD023607, 2015.

585 Xu, Z., Wang, T., Xue, L. K., Louie, P. K. K., Luk, C. W. Y., Gao, J., Wang, S. L., Chai, F. H., and

586 Wang, W. X. : Evaluating the uncertainties of thermal catalytic conversion in measuring atmospheric

587 nitrogen dioxide at four differently polluted sites in China, *Atmospheric Environment*, 76, 221-226,

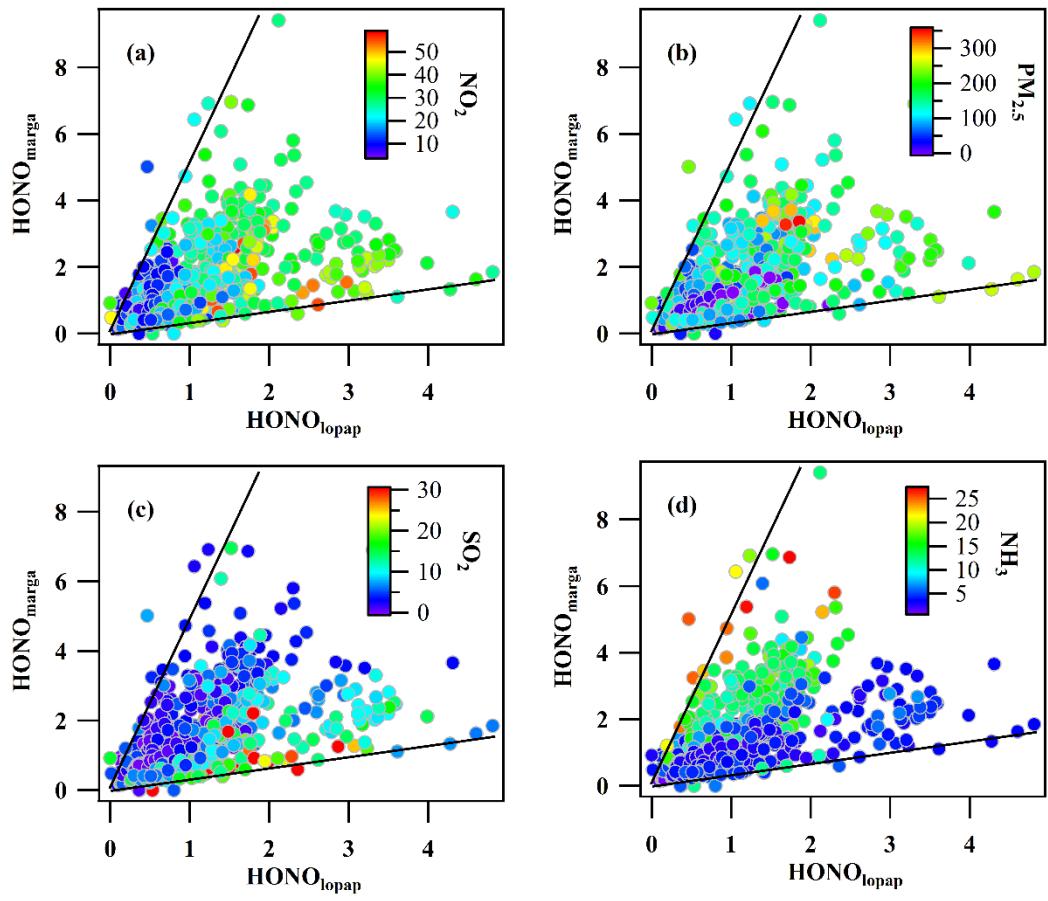
588 https://doi.org/10.1016/j.atmosenv.2012.09.043, 2013.
589 Xu, Z., Wang, T., Wu, J., Xue, L., Chan, J., Zha, Q., Zhou, S., Louie, P. K. K., and Luk, C. W. Y.:
590 Nitrous acid (HONO) in a polluted subtropical atmosphere: Seasonal variability, direct vehicle
591 emissions and heterogeneous production at ground surface, *Atmospheric Environment*,
592 106,100-109,http://dx.doi.org/10.1016/j.atmosenv.2015.01.061, 2015.
593 Xue, C., Ye, C., Ma, Z., Liu, P., Zhang, Y., Zhang, C., Tang, K., Zhang, W., Zhao, X., Wang, Y.,
594 Song, M., Liu, J., Duan, J., Qin, M., Tong, S., Ge, M., and Mu, Y.: Development of stripping coil-ion
595 chromatograph method and intercomparison with CEAS and LOPAP to measure atmospheric HONO,
596 *Science of The Total Environment*, 646, 187-195, https://doi.org/10.1016/j.scitotenv.2018.07.244,
597 2019.
598 Yu, Y., Galle, B., Panday, A., Hodson, E., Prinn, R., and Wang, S.: Observations of high rates of NO₂-
599 HONO conversion in the nocturnal atmospheric boundary layer in Kathmandu, Nepal, *Atmospheric*
600 *Chemistry and Physics*, 9, 6401-6415, https://doi.org/10.5194/acp-9-6401-2009, 2009.
601 Zellweger, C., Ammann, M., Hofer, P., and Baltensperger, U.: NO_y speciation with a combined wet
602 effluent diffusion denuder – aerosol collector coupled to ion chromatography, *Atmospheric*
603 *Environment*, 33, 1131-1140, https://doi.org/10.1016/S1352-2310(98)00295-7, 1999.
604 Zhou, X., He, Y., Huang, G., Thornberry, T. D., Carroll, M. A., and Bertman, S. B.: Photochemical
605 production of nitrous acid on glass sample manifold surface, *Geophysical Research Letters*, 29,
606 26-21-26-24, 10.1029/2002GL015080, 2002.
607 Zhou, X.: An Overview of Measurement Techniques for Atmospheric Nitrous Acid, in: *Disposal*
608 *of Dangerous Chemicals in Urban Areas and Mega Cities*, Dordrecht, 2013, 29-44,
609


610 **Author contributions**

611 AD and WN designed the study and contributed to the editing of the paper. ZX,
612 contributed to the measurements, data analysis, and the draft of this paper, YL
613 contributed to the data analysis. PS, XC contributed in observation at SORPES and
614 data analysis.

615 **Acknowledgments**

616 The research was supported by National Key Research & Development Program
617 of China (2016YFC0200500), National Science Foundation of China (41605098) and
618 Jiangsu Provincial Science Fund (BK20160620), this study was also supported by the
619 other National Science Foundation of China (91644218)

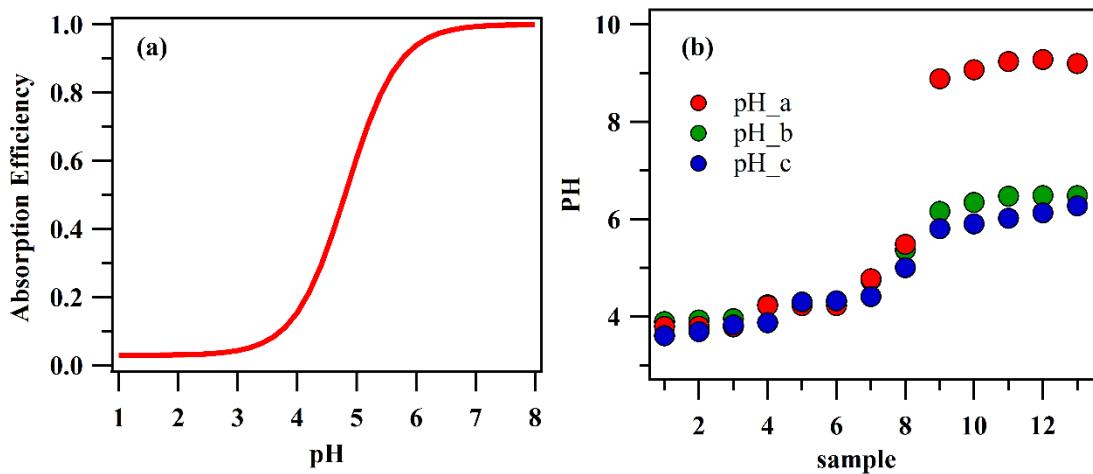

620

621 **Figure 1-10**

622

623 Figure 1. The time series of HONO concentrations measured by the LOPAP
 624 (HONO_{lopap}) and MARGA instruments (HONO_{marga}), the deviation of HONO_{marga}
 625 including ΔHONO ($\text{HONO}_{\text{marga}} - \text{HONO}_{\text{lopap}}$) and $\Delta\text{HONO}/\text{HONO}$, with regards to
 626 the benchmark of HONO (a), the average diurnal variations (b) and their scatter plot
 627 during the observation period (c).

628

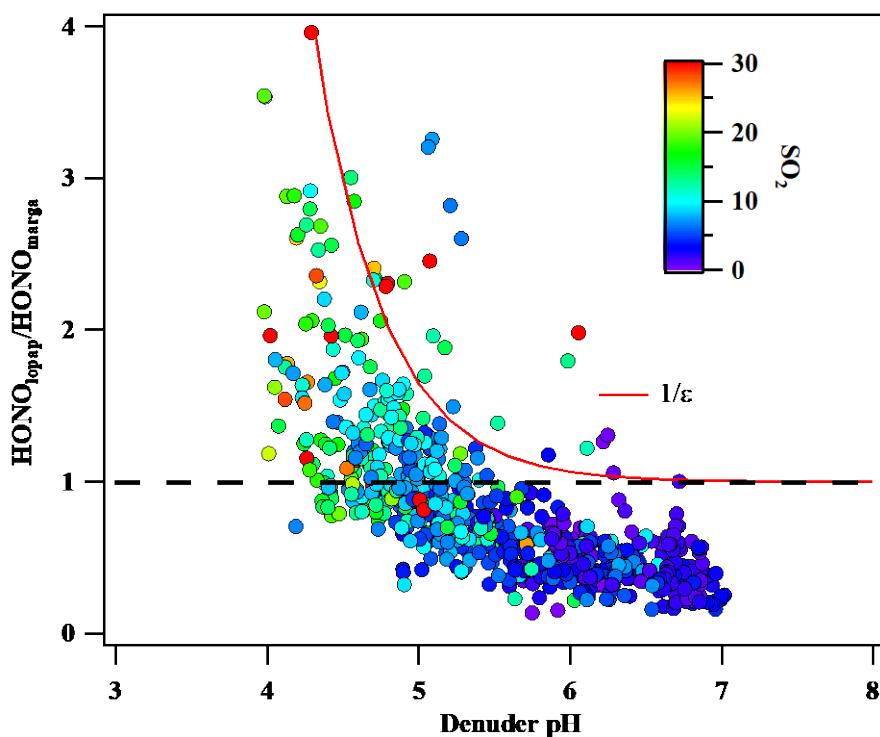


629

630

Figure 2. The colored scatter plots between $\text{HONO}_{\text{marga}}$ and $\text{HONO}_{\text{lopap}}$ for NO_2 ,
 631 $\text{PM}_{2.5}$, SO_2 and NH_3 .

632



633

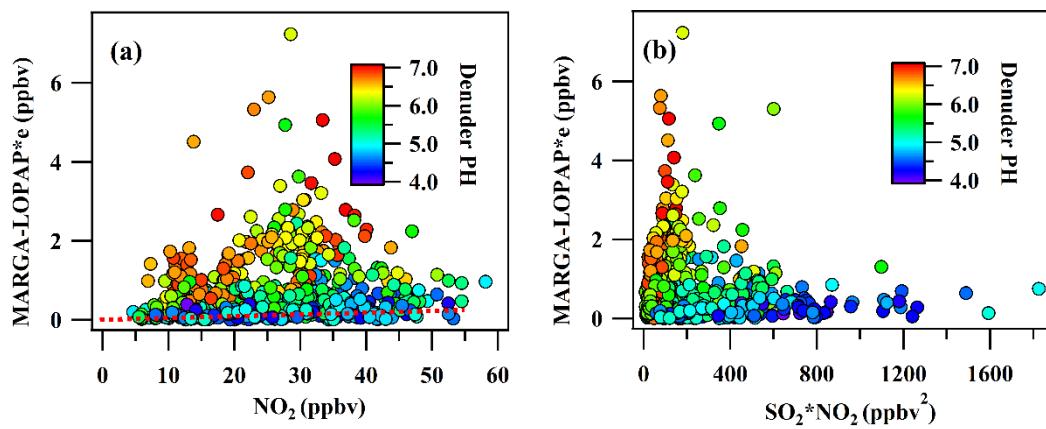
634 Figure 3. The absorption efficiency of HONO by the denuder at different pH values (a)
 635 and denuder absorption solution pH values in 13 denuder solution samples (b). pH_a
 636 was calculated by the ions by Curtipot according to the NH_4^+ , SO_4^{2-} , NO_3^- , and
 637 NO_2^- (PH_a) ions, which were measured by IC. pH_b was calculated by the above
 638 ions and the carbonic acid. PH_c was measured value by a pH detector.

639

640

641

642


Figure 4. Variation in the ratio of $\text{HONO}_{\text{lopap}}$ to $\text{HONO}_{\text{marga}}$ with the denuder absorption solution pH. The red line is the multiplicative inverse of the HONO absorption efficiency of MARGA.

643

644

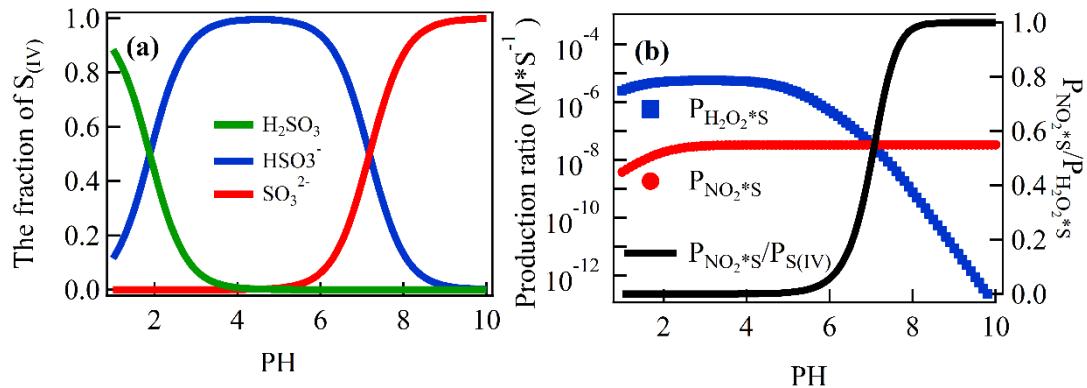
645

646

647

648 Figure 5. The scatter plot between the $\text{MARGA}_{\text{int}}$ and NO_2 (a), $\text{SO}_2^* \text{NO}_2$ (b). The
649 plot was colored as a function of the denuder pH

650


651

652

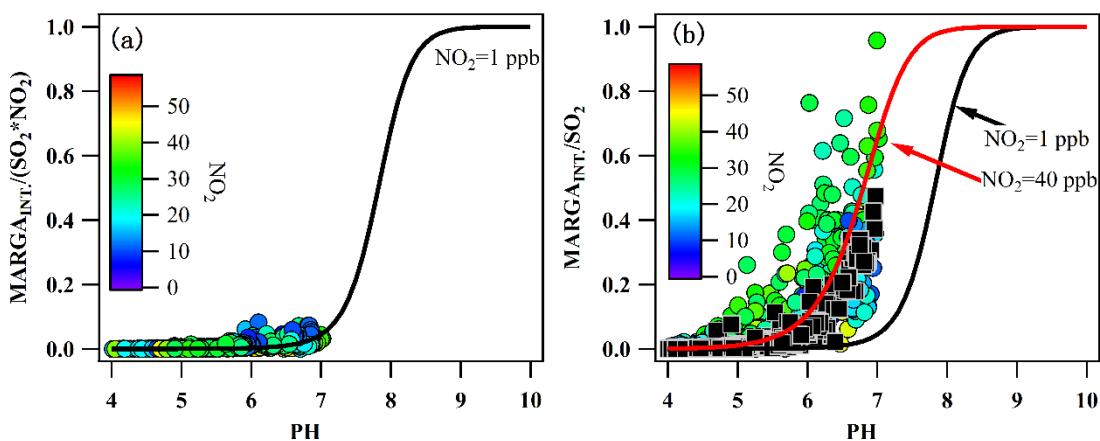
653

654

655
656
657

658
659
660
661
662
663
664

Figure 6. The fraction of S(IV) species (αHSO_3^- , αSO_3^{2-} , and $\alpha\text{H}_2\text{SO}_3$) as a function of the pH (a) and the formation rate of aqueous-phase oxidation of S(IV) by H_2O_2 and NO_2 as a function of the pH for $[\text{SO}_2]=1$ ppb, $[\text{NO}_2]=1$ ppb, and $[\text{H}_2\text{O}_2]$ in the denuder solution=1. $P_{\text{H}_2\text{O}_2*\text{S}}$ and $P_{\text{NO}_2*\text{S}}$ are the oxidation ratio of S(IV) by H_2O_2 and NO_2 , respectively (b).


665

666

667

668

669

670

Figure 7. (a) Variation in the production rate of the artifact HONO from 1 ppbv SO₂ and 1 ppbv NO₂ with the denuder pH and (b) the variation in MARGA_{int.}/SO₂ with the pH of the denuder solution (circle dots) and calculated PNO₂*S/Ps(IV) for different pH values according to the ambient NO₂ (black squares).

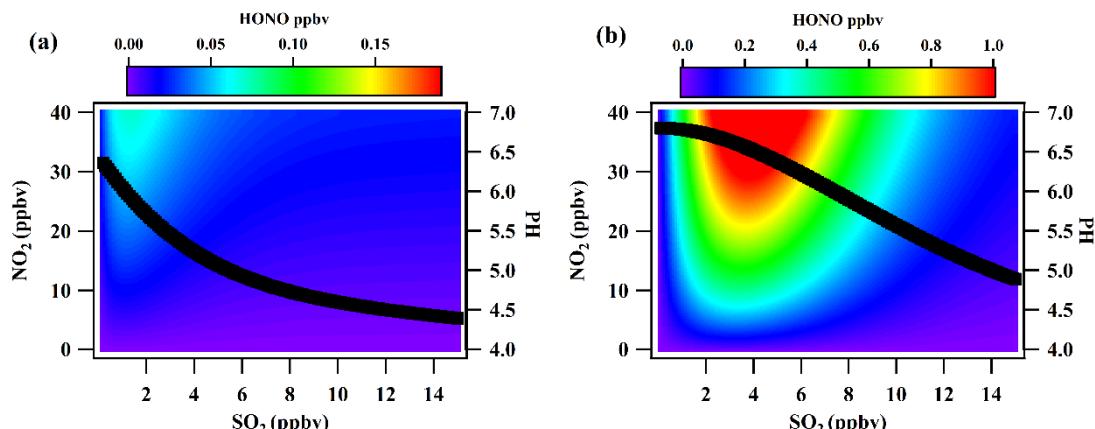
671

672

673

674

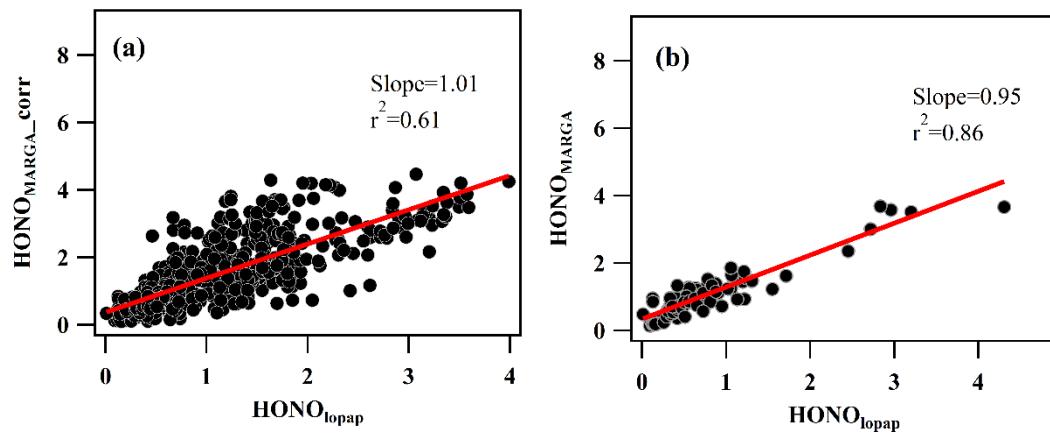
675


676

677

678

679


680
681
682
683

684
685 Figure 8. The HONO produced from the reaction between NO_2 and SO_2 in the
686 presence of 5 ppbv (a) and 20 ppbv NH_3 concentrations (b). The black line is the
687 variation in the pH with the SO_2 concentration.
688

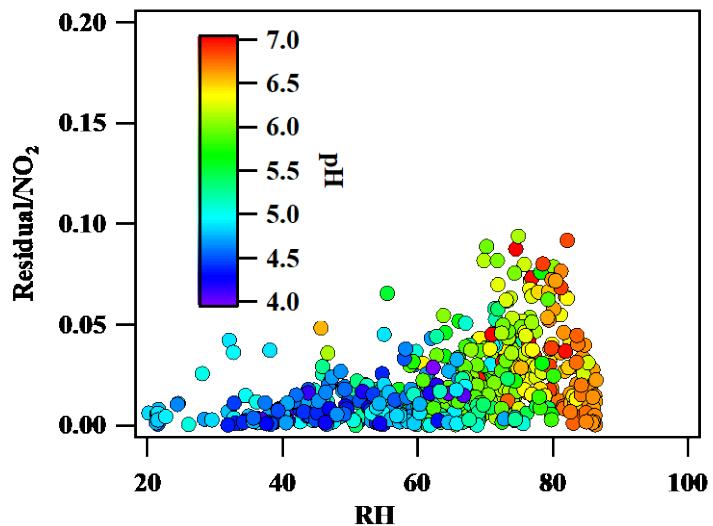
689

690

691

692

Figure 9. The correlation between HONO_{MARGA}_corr and HONO_{lopap} (a) and the correlation between HONO_{MARGA} and HONO_{lopap} under the conditions of $\text{SO}_2 \cdot \text{NO}_2 < 150 \text{ ppbv}^2$ (median value) and $\text{NH}_3 < 5 \text{ ppbv}$ (median value) (b).


693

694

695

696

697
698
699

700
701 Figure 10. The correlation of residual/NO₂ with RH. The residual is the difference of
702 MARGA_{int.} and the calculated interference from the reaction of SO₂ and NO₂
703